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Abstract

High entropy alloys (HEAs) tend to exhibit good mechanical properties, making
them potential candidates for various applications. However, tailoring the alloys
for target properties requires extensive exploration of microstructure configurations
and corresponding properties either through experiments or numerical simulations.
Leveraging recent advances in generative modeling, the deformation behavior
of CoCrFeNiTa0.395 alloy is modeled as conditional generation of deformed mi-
crostructures based on processing conditions. To achieve this, a Conditional
Generative Adversarial Network (CGAN) model is developed, which synthesizes
a deformed microstructure based on temperature and strain rate parameters. A
contrastive conditional loss is utilized to induce similarity bias which effectively
deals with data sparsity. To help the model learn intricate features across a wide
range of process parameters, additional architectural mechanisms like self-attention
are employed. Our evaluations reveal good qualitative and quantitative similarities
between experimental and predicted microstructures. We also propose a modi-
fied contrastive loss for continuous conditioning variables and briefly discuss the
ongoing work on demonstrating its generalization capability.

1 Introduction

Traditional alloys such as Ni-based superalloys, Ti-alloys and steels are designed by adding alloy
elements to one principal element. However, in the last two decades, a new class of alloys namely
High entropy alloys (HEAs) [11, 9], also known as complex concentrated alloys, which are designed
with multiple principal elements have received a lot of attention due to their superior properties.
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Figure 1: As-cast and deformed microstructures of CoCrFeNiTa0.395 under different strain rates and
temperatures

Some examples include FeCoNiCrTa, FeCoCrNiMn, and AlFeCoNiCr. The multiple principal
element alloying strategy opens up a vast multi-dimensional compositional and processing space,
making it possible to design materials with exceptional mechanical properties and microstructural
stability or processability. However, extensive experimentation is required to identify favorable
thermo-mechanical processing domains for industrial applications, which could be infeasible due
to the high time and cost involved. While physics-based multi-scale simulation models are being
developed to reduce the need for extensive experimentation, the computational cost of these models
is often prohibitively high.

Recent advances in deep generative models can be adapted for faster and reasonably accurate predic-
tion of microstructural changes under given processing conditions, thereby enabling faster screening.
Recently, conditional generation models such as CGANs (Conditional Generative Adversarial Net-
works) have been explored for developing process-structure linkages in various materials [3, 7,
13, 16]. A similar approach can be adapted to identify favorable processing domains for an HEA,
by modeling its deformation behavior under given processing conditions. However, the approach
comes with several challenges and research gaps. First, well curated experimental data on HEAs
is scarce and extremely sparse. For example, consider a recent study [15] on deformation behav-
ior of an HEA CoCrFeNiTa0.395. Fig. 1a shows the as-cast microstructure, and fig. 1b shows the
deformed microstructures after 50% compression at two strain rates and four temperatures. Given
the complex interplay of different phenomena at different processing conditions (e.g., coarsening
of eutectic colony, loss of lamellar morphology, etc.) the resulting microstructures display a wide
variety of features. Training a deep model capable of learning how the processing conditions impact
the microstructures is extremely difficult with such limited data. Second, most existing works on
conditional generation [4, 5, 7] treat the processing conditions as discrete variables, making it difficult
to generalize to new processing conditions which is the main purpose in this application.

In this work, we propose a Contrastive Conditional GAN model for predicting deformed microstruc-
tures of CoCrFeNiTa0.395 from processing conditions, leveraging an inductive similarity bias based
on conditioning labels to reduce the data requirement. We show that the (deformed) microstructures
generated by our model are qualitatively and quanitatively similar to the corresponding real ones.
We also present an extension of the present model to continuous conditioning variables and briefly
discuss the ongoing work on a larger simulated dataset to demonstrate the generalization capability
of our model in section 4.

2 Materials and Methods

Shah et al. [15] designed a hypo-eutectic high entropy alloy CoCrFeNiTa0.395 with primary dendritic
FCC phase and fine eutectic (FCC solution + Laves phase) microstructure possessing good high-
temperature mechanical properties. The dark grey phase in the microstructure in fig. 1a is an FCC
solid solution with almost equal atomic fractions of Fe, Cr, Ni and Co, while the laves phase in
eutectic colony is relatively rich in Ta.1 A high-temperature uniaxial compression test (up to 50%
compression) was performed at different temperatures and strain rates(fig. 1b shows the deformed
microstructures). The authors observed that deformation at low temperature and high strain rate leads
to microcracks, whereas at high temperature (and lower strain rates) there was a coarsening and loss

1Here, note that Co and Ni are distributed relatively uniformly across both the phases.
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Figure 2: Comparing generated microstructures with real ones for discrete conditional labels.

of lamellar morphology(the black and white alternative layers in the as-cast microstructure of 1a is
lamellar morphology). At high temperature and high strain rate, the eutectic inter-lamellar spacing
increased, but the microstructure is still lamellar in appearance.2

Scarcity of training data (only one microstructure available at each processing condition) makes it
quite challenging to train a conditional generative model on this data. Vanilla conditional GAN [10]
formulation cannot capture the variations in features at different processing conditions well. Hence,
we leverage the contrastive conditional GAN [8] objective function, which is based on the idea of
contrastive learning - pull similar inputs close and push disssimilar inputs far apart. By minimizing
this objective, the Discriminator learns a representation space in which images with same class label
are mapped close together. And the Generator exploits this knowledge to generate images that follow
these relationships, reducing the data requirement through inductive bias. Please see supplementary
material A.1.1 for the ContraGAN objective function and its intuition.

Further, we replace the Discriminator with a Critic, as in the Wasserstein GAN [1]. By removing the
adversarial training, WGAN avoids common GAN training issues such as Discriminator overfitting,
mode collapse and lack of diversity. We also add self-attention layer in Generator network(first
used in GANs by [18]), which has successfully shown to capture long-range dependencies in image
regions. Please see supplementary material A.2 and A.3 for details of the architecture and training.

3 Experimental Results

We trained a ContraGAN model using the loss function in equation 3, treating the strain rate and
temperature combinations as discrete class labels. Evaluations are presented in this section.

Qualitative Evaluation

Fig. 2 shows for each combination of strain rate and temperature parameters, the real microstructure
and three generated microstructures resulting from noise vectors z1, z2, z3 input to the Generator.
Note that for the same input noise vector, with different processing conditions, the model is able
to generate different microstructures, appropriate for those processing conditions. For example,
the second column in fig. 2a shows the different microstructures generated for each tempearture
(strain rate 0.001) using the same z1. Whereas, by combining the same processing condition with
different noise vectors (consider any row in fig 2a or b), the model generates variations within the
microstructure morphology for that processing condition. Further, all generated microstructures are
visually similar to the corresponding real ones.

Quantitative Evaluation

The HEA microstructures contain the primary phase and fine eutectics (which contain FCC and Laves
phase), as discussed earlier. The features of interest are the shape and size descriptors, and density of
primary phase grains, and features of eutectics such as interlamellar spacing and width of lamella.
The finer features such as lamellar width and spacing are unresolvable at the length scale we are

2Some of these variations (e.g. inter-lammellar spacing) cannot be clearly obversed at the length scale of the
microstructures shown in fig. 1.
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(a) (b) (c) (d)

Figure 3: Average features of primary phase grains in real vs generated microstructures - (a)size,
(b)density and (c)aspect ratio. (d) Mean absolute percentage deviation averaged over all processing
conditions.

Figure 4: Distributions of average size of primary phase grains in real(read solid line) vs gener-
ated(green dashed line) microstructures, for different temperatures at strain rate 0.001s−1

working with (a choice driven by data availability). Hence, we present a quantitative comparison
between real and generated microstructures based on features of primary phase. The features are
computed using a segmentation algorithm (ImageJ [14]) to fit ellipses around each grain.

Figures 3a, 3b, and 3c show the plots of average size, density and aspect ratio, respectively, of real
vs generated microstructures for the eight processing conditions. All the points in the three scatter
plots lie very close to x = y line, indicating that the average values of features are approximately
equal for real and generated microstructures. The average percentage deviations (over all processing
conditions), as shown in fig. 3d are well below 10%.

Further, each part in fig. 4 shows the distributions of grain size in real and generated microstructures
for each temperature value at strain rate 0.001s−1. The distributions match quite well, with the tails
also matching. Please see supplementary material A.5 for similar results obtained for aspect ratio at
strain rate 0.001s−1 and both features at strain rate 0.1s−1.

4 Continuous conditional information

While the current model can predict the microstructures for known cases (which the model saw
during training) excellently, it can’t generalize to new, unseen processing conditions. For this purpose,
we modified the contrastive loss function of ContraGAN (3) for continuous conditional variables.
Specifically, we propose the following contrastive objective instead of equation 3:

L2C =
1

m

m∑
i=1

m∑
j=1

1j ̸=i ·max(0, |d(l(xi), l(xj))− α · d(e(yi), e(yj))| − δ) (1)

where ⟨xi, yi⟩ for i = 1 . . .m is the batch of images and processing conditions, l(.) is the image
representation, and e(.) is the process parameter representation learned by the Discriminator, d(·) is a
distance measure like cosine or L2, α is the proportionality constant and δ is a softness parameter. 3

Intuitively, this loss encourages that the distance between image embeddings is proportional to the
distance between corresponding processing conditions. The discrete ContraGAN loss only maximizes
the distance between images with different conditioning labels. In our case, the conditioning variables
have numerical significance and we want the distances between image representations to correspond
to the distances between conditioning variables.

The current dataset is not a good candidate to evaluate the continuous ContraGAN formulation since
it is extremely sparse and doesn’t cover the vast continuous space of process parameters. The 2 strain
rates 0.001s−1 and 0.1s−1 are orders of magnitude apart, with no data points in between. We are
currently working on evaluating the modified ContraGAN model on a larger simulated dataset on
spinodal decomposition of Mg2SixSn1−x [2].

3Note that α and δ are hyperparameters.
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5 Summary

In this work, we introduced a conditional generative model to predict deformed microstructures of a
high entropy alloy CoCrFeNiTa0.395, by treating process parameters as class labels. The generated
microstructures were shown to be qualitatively and quantitatively similar to the real ones. We also
proposed a continuous form of conditional contrastive loss function, which will be used to train a
conditional generative model on continuous conditional information. The model will be trained on
a larger, simulated dataset, instead of sparsely available alloy microstructures data. This will show
the generalization capability of our model to generate samples for unobserved processing conditions,
providing a means for faster identification of safe and favorable processing domains for HEAs.
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A Supplementary material

A.1 Conditional Wasserstein GAN

Generative Adversarial Network(GAN) [6] belongs to a class of generative models, which is used to
generate synthetic data by learning distribution of their training data. It consists of two competing
networks - Generator and Discriminator, which are trained using a minimax game. Generator
transforms an input noise vector(from a Gaussian or Uniform distribution) to a sample from target
data distribution, trying to mimic real data distribution as closely as possible. Discriminator takes
in real and generated data samples, and computes Jenson-Shannon divergence between real and
generated distributions. Generator is trained to fool the Discriminator into thinking that it generated a
real data sample, while the Discriminator is trained to distinguish the generated samples from the real
samples. Because of this adversarial training, GANs are difficult to train.

To overcome many problems posed by vanilla GAN formulation(like mode collapse and vanishing
gradients), Wasserstein GAN was introduced [1], which computes Wasserstein’s distance between
the two distributions. Equation 2 gives the objective function, which the Critic(since Discriminator is
no longer an adversary, it’s called Critic) tries to maximize, while the Generator tries to minimize it:

Ex∼Pr
[fw(x)]− Ez∼p(z)[fw(gθ(z))] (2)

where, x is a sample from real data distribution Pr, z is a noise vector from standard Gaussian
distribution N (0, I), fw represents the Critic function, and gθ is the Generator.

The Generators trained using above GAN formulations are limited to generating random data from
the learned data distributions, and cannot sample from specific regions of the distribution. To generate
a particular kind of samples(for example, to generate images of digit 5 by training on MNIST dataset),
a conditional variant of GAN was introduced by [10], which allows to conditionally generate samples.
Feeding conditional information to the Generator, along with a noise vector, allows the model to
generate samples appropriate to the fed conditional information.

We used a conditional Wasserstein GAN formulation to train conditional generative model, by giving
class labels as conditional information.

A.1.1 Conditional contrastive loss

A contrastive learning method for conditional image distribution was introduced by [8], which
presented a conditional contrastive loss:

L2C =
1

m

m∑
i=1

−log

(
el(xi)

T e(yi)/t +
∑m

k=1 1yk=yi
· el(xi)

T l(xk)/t

el(xi)T e(yi)/t +
∑m

k=1 1k ̸=i · el(xi)T l(xk)/t

)
(3)

where, ⟨xi, yi⟩ for i = 1 . . .m is the batch of images and conditioning labels, l(xi) is the image
representation and e(yi) is the class (discrete conditioning variable) representation learned by the
Discriminator.

Intuitively, in a batch, the loss function pulls the image representations together if their conditioning
labels are same(similar samples) and pushes them apart otherwise(dissimilar samples). It also brings
the image representations and the corresponding class representations close.

The loss function given by equation 3 was added to the usual Wasserstein GAN objective(equation 2),
to train Critic and Generator networks.

A.2 Model architecture

Figure S-1 shows high-level architecture of our proposed Conditional Generative adversarial network
model. The model consists of two networks: Generator and Critic - Generator takes in a Gaussian
noise vector, z ∼ N (0, I) and conditional information (the processing conditions in our case) and
generates microstructures appropriate for those processing conditions; while Critic takes either a
batch of real microstructures or generated microstructures, combined with corresponding conditional
information (processing conditions), and outputs an approximation of the Wasserstein’s distance
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between the data (real) and Generator’s distribution. The Critic network also outputs the image
and processing condition (treated as a class label) representations, which are used to compute the
contrastive loss.

We explored different ways of feeding processing conditions (treated as class labels) to the Generator
and Critic. Both Generator and Critic contain an embedding layer, which maps the integer class label
to a sparse embedding (one-hot vector), with dimension equal to the number of classes (in our case,
total number of processing conditions, i.e. 8) in the dataset. The Generator then linearly projects
the embedding to a vector, whose dimension is same as that of Gaussian noise vector, which is then
multiplied element-wise with the noise, and passed to the next layers. The Critic linearly projects the
embedding to a high-dimensional space (equal to the feature size of fourth convolution layer), which
is then reshaped and appended to the output of fourth convolution layer.

In Generator, we also used self-attention layer (64 features) [17] after third convolution transpose
layer, which helps the network learn and generate intricate features of the microstructures. Tables1
and 2 give input and output feature sizes of each layer in Generator and Critic network respectively.
Tangent hyperbolic(TanH) activation function was used at Generator’s output layer, which scales
output in the range [−1, 1], and no activation function was used at Critic’s output layer.

In both networks, kernel size of each convolution layer is 4× 4, with stride 2 and padding 1, and each
batch norm layer is followed by Leaky Rectified Linear Unit(ReLU) activation function(slope = 0.2).

Layer Input feature size Output feature size
Embedding 8 128
Linear 128 8192
Convolution Transpose I 512 x (4 x 4) 256 x (8 x 8)
Batch Norm 256 x (8 x 8) 256 x (8 x 8)
Convolution Transpose II 256 x (8 x 8) 128 x (16 x 16)
Batch Norm 128 x (16 x 16) 128 x (16 x 16)
Convolution Transpose III 128 x (16 x 16) 64 x (32 x 32)
Batch Norm 64 x (32 x 32) 64 x (32 x 32)
Self-attention 64 x (32 x 32) 64 x (32 x 32)
Convolution Transpose IV 64 x (32 x 32) 64 x (64 x 64)
Batch Norm 64 x (64 x 64) 64 x (64 x 64)
Convolution Transpose V 64 x (64 x 64) 1 x (128 x 128)
Batch Norm(Output) 1 x (128 x 128) 1 x (128 x 128)

Table 1: Details of each layer in Generator network

Layer Input feature size Output featue size
Embedding 8 64
Convolution I 1 x (128 x 128) 64 x (64 x 64)
Convolution II 64 x (64 x 64) 64 x (32 x 32)
Batch Norm 64 x (32 x 32) 64 x (32 x 32)
Convolution III 64 x (32 x 32) 128 x (16 x 16)
Batch Norm 128 x (16 x 16) 128 x (16 x 16)
Convolution IV 128 x (16 x 16) 256 x (8 x 8)
Batch Norm 256 x (8 x 8) 256 x (8 x 8)
Convolution V 257 x (8 x 8) 128 x (4 x 4)
Batch Norm 128 x (4 x 4) 128 x (4 x 4)
Linear(Output) 2048 1
Projection Layer I 2048 1024
Projection Layer II(Output) 1024 64

Table 2: Details of each layer in Critic network
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Figure S-1: High level architecture of our proposed Contrastive conditional GAN model

A.3 Training details

Our CGAN model was implemented and trained using PyTorch [12] library. For optimization, we
employed the Root Mean Squared Propagation(RMSProp) algorithm with a mini-batch size of 128.
The model was trained for 800 epochs.

We used Bayesian optimization algorithm to find the optimal values of following hyperparameters:
learning rate of the RMSProp optimizer, weight clipping range used to constrain Critic’s weights to
enforce Lipschitz continuity, number of times Critic is updated as compared to Generator, and the
slope of Leaky ReLU activation function. Table3 gives values of these and other hyperparameters.
Weight of contrastive loss function and the temperature constant were tuned manually.

Hyperparameter Value
Learning rate of optimizer 0.0002
Critic weight clipping range [-0.009, 0.009]
No of times Critic is updated 4
Leaky ReLU slope 0.2
Contrastive loss function weight 1
Contrastive loss function temperature 0.1

Table 3: Values of hyperparameters

A.4 Data pre-processing

As a first pre-processing step, microstructures containing cracks were discarded, like shown in fig. S-2.
Also, from some higher resolution microstructures showing cracks, regions of interest were manually
cropped, avoiding the area around cracks, since the deformation in those areas could have been
governed by different phenomena. Lastly, we used image processing techniques to bring all the
microstructures at a uniform contrast level. The original microstructures were captured at different
magnifications. To get a sufficiently large training dataset, we cropped patches from the original
microstructures, such that all patches are at a uniform length scale (they represent an area of 100µm2)
and the relevant microstructural features are clearly visible. After cropping patches, we obtained
around 1200 images, and applied some techniques to augment the dataset, to get our training dataset.
Finally, all images in the dataset were scaled to [−1, 1] range.

A.5 Additional Experimental Results

In the main paper(fig. 4) we showed that the average size distributions of generated microstructures
match with corresponding real ones, for strain rate 0.001. Figure S-3 below shows similar results for
average size of strain rate 0.001, and average size and aspect ratio features for strain rate 0.1. The
figures show that feature distributions match very well, with an exception in aspect ratio distribution
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Figure S-2: An example microstructure containing crack.

(a) Distributions of average size of primary phase grains for every temperature at strain rate 0.1s−1

(b) Distributions of aspect ratio of primary phase grains for every temperature at strain rate 0.001s−1

(c) Distributions of aspect ratio of primary phase grains for every temperature at strain rate 0.1s−1

Figure S-3: Distributions of features of primary phase grains in real (read solid line) vs generated
(green dashed line) microstructures

for 900◦C, 0.1s−1(i.e. second plot in fig. S-3c). Perhaps this is due to the large variation in the aspect
ratio of primary phase grains for this processing condition. Figure S-4 shows the real deformed
microstructure in that case. While most of the grains are elongated (due to the compression), there are
many smaller grains which are not affected/deformed, resulting in multiple peaks in the distribution.
The generated distribution ends up averaging some of the nearby peaks which leads to a mismatch
between the two distributions.

Figure S-4: A microstructure from processing condition 900◦C, 0.1s−1, showing variations in aspect
ratio of primary phase grains.
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Figure S-5: Ablation study: Comparing generated microstructures with real ones without using
conditional contrastive loss

A.5.1 Ablation Study

As mentioned in the main text, we used conditional contrastive loss in addition to Wasserstein
GAN loss due to scarcity of our training dataset. We now motivate the need for using this loss, by
performing an ablation study. We trained a generative model, with just Wasserstein GAN loss(eq. 2),
and removed conditional contrastive loss(eq. 3), keeping all other settings same. Figure S-5 shows
the microstructures generated by this model, compared with corresponding real microstructures at
each processing condition. Qualitatively, the generated microstructures look good, but they do not
necessarily correspond to the appropriate processing condition, indicating that the model is not able
to distinguish among different classes(processing conditions) very well. The model is learning the
overall data distribution, but is unable to learn the conditional distribution of microstructures, region
where we would like to sample from.

We believe this is a consequence of working in a low data regime(our dataset consists of just 1
microstructure at each processing condition). In the absence of sufficient data, the model is not
able to fully capture the distinguishing microstructural features at each processing condition. The
class labels which are input to the Discriminator and Generator models during training, could have
provided enough implicit signal to differentiate between classes provided there was enough data. The
conditional contrastive loss explicitly tries to pull together samples belonging to same class, and
pushes apart those belonging to different classes in the representation space, hence learning the class
boundaries well. This sort of provides an inductive bias based on similarity measure in the class and
image representation space.
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