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ABSTRACT

In recent years, there has been an increased interest in foundation models for geo-
science due to the vast amount of Earth observing satellite imagery. Existing
remote sensing foundation models make use of the various sources of spectral
imagery to create large models pretrained on the task of masked reconstruction.
In this paper, we present a foundation model framework, where the pretraining
task captures the causal relationship between multiple modalities. Our framework
leverages the knowledge guided principles that the spectral imagery captures the
impact of the physical drivers on the environmental system, and that the relation-
ship between them is governed by the characteristics of the system. Specifically,
our method, called MultiModal Variable Step Forecasting (MM-VSF), uses fore-
casting of satellite imagery as a pretraining task and is able to capture the causal
relationship between spectral imagery and weather. In our evaluation we show
that the forecasting of satellite imagery using weather can be used as an effective
pretraining task for foundation models. We further show the effectiveness of the
embeddings produced by MM-VSF on the downstream tasks of pixel wise crop
mapping and missing image prediction of spectral imagery, when compared with
embeddings created by models trained in alternative pretraining settings including
the traditional single modality input masked reconstruction.

1 INTRODUCTION

Increased availability and ease of access to large scale satellite data has motivated the development
of deep learning models that use this data to perform tasks such as land cover mapping Ghosh et al.
(2021b); Kussul et al. (2017), wildfire mapping Nayak et al. (2018); Seydi et al. (2022); Zhao et al.
(2018), crop yield prediction Kuwata et al. (2015); You et al. (2017), flood forecasting Bentivoglio
et al. (2022) etc. In recent times, methods have been developed to use large amounts of data in a
self supervised fashion to pre-train their model weights using a pre-training task, such as masked
reconstruction He et al. (2022), which would then be fine-tuned for downstream tasks. Such models,
called foundation models, have been shown to perform well (after refinement) over various down-
stream tasks, in the image Yuan et al. (2021); Singh et al. (2022) and text domains Touvron et al.
(2023) (e.g. large language model such as GPT Achiam et al. (2023)).

Motivated by the success of such models, there is a huge interest in building geo-science foundation
models for remote sensing applications Mai et al. (2022). Current remote sensing foundation models
are typically built using the vast amounts of spectral data available from various satellites Jakubik
et al. (2023); Gao et al. (2022); Cha et al. (2023); Mendieta et al. (2023); Liu et al. (2024). These
models use a pretraining task such as masked reconstruction Cong et al. (2022); Tseng et al. (2023)
where given a sequence of satellite imagery, the objective is to reconstruct the spectral imagery of the
masked timestamps in the sequence. Utility of finetuning such models have been demonstrated for
downstream tasks such as flood inundation mapping, wildfire scar mapping, cloud removal, urban
semantic segmentation mapping, scene classification etc. Jakubik et al. (2023); Cong et al. (2022);
Sun et al. (2022).

In this paper, we present a foundation model, where the pretraining task captures the causal rela-
tion between two different modalities. To understand the reason behind choosing such a pretraining
task, let us look at Figure 1, which represents an environment as a system, where various physical
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Figure 2: Abstract Representation of our proposed Variable Step Forecasting Pretraining task. Our pretraining
task is to estimate a spectral image in future(red) using satellite imagery and weather context(yellow) and
weather data till that day in future(green)

drivers such as weather (e.g. temperature, precipitation) act upon a region (e.g. a farm, hydrological
catchment) to result in a response such as crop growth, streamflow, greenhouse gas emissions. The
relationship between drivers and response is governed by the physical properties of the environmen-
tal system (e.g. land cover type, soil characteristics). Some characteristics of the environmental
system can be observed by in-situ or remote sensors (e.g., satellites such as Sentinel, Landsat).

Figure 1: Abstract Representation of an Environmental Sys-
tem depicting the various components

Our pretraining task attempts to capture
the causal relationship between weather
and satellite imagery by predicting future
satellite imagery based upon past weather
and satellite imagery (see Figure 2). Note
that while weather is expected to be avail-
able continuously (at daily scale), the
satellite imagery may be available only for
a small number of dates (at least one).
We call this pretraining task “variable-
step forecasting”. A foundation model
trained using such a pretraining task is
likely to perform better on downstream
tasks, where such a relationship between modalities is relevant. For example, such a foundation
model can perform better on the downstream tasks of mapping of crops Ravirathinam et al. (2024)
at a pixel level and filling missing or noisy satellite data on a future date using satellite observations
from past dates because this model captures the causal relationship between weather drivers and
spectral data from the satellite.

Specifically, we present a novel spatio temporal multimodal foundation model framework called
MultiModal Variable Step Forecasting (MM-VSF), that captures the casual relationship between
satellite and weather data (two entirely different modalities) to perform the pretraining task of fore-
casting (variable step forecasting). Our architecture is temporal flexible (i.e., its input does not
need to be of a certain length for it to make prediction), which is useful for generalizing across a
wide range of downstream tasks. Via experimental evaluation on two different downstream tasks of
crop mapping and corrupted/missing image prediction, we show that the embeddings created by our
framework are richer when compared to those created using the pre-training task of reconstruction.

Our key contributions are listed below:

• We propose MM-VSF, a temporally flexible foundation model framework that captures causal
relationships across modalities .
• To help capture causal relationships we propose variable step satellite imagery forecasting with
multimodal data as a novel pretraining task for geoscience remote sensing models.
• Our pretraining task is guided by the knowledge that the spectral imagery captures the impact of
the physical drivers on the environmental system.
• We demonstrate how embeddings from MM-VSF can be efficiently fine-tuned for spatiotemporal
downstream tasks, showing improved results in crop mapping and missing image imputation relative
to foundation models built using masked image reconstruction.
• We release the code and model used to public (Link)
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2 RELATED WORK

There are a number of existing geoscience foundation modelsJakubik et al. (2023); Cha et al. (2023);
Mall et al. (2023); Deng et al. (2024); Hong et al. (2024); Guo et al. (2024); Mai et al. (2022); Bastani
et al. (2023). Most of these foundation models can be placed into one of two groups based on the data
they use : (1) weather-climate Nguyen et al. (2023); Pathak et al. (2022) that are typically used for
weather forecasting or climate modeling and (2) spectral data from remote sensing satellites Cong
et al. (2022); Jakubik et al. (2023) that are largely used for identifying land-use land-cover change
dynamics. The most common pretraining task in geoscience has been reconstruction of spectral
imagery. To enrich the embedding created, varying amounts of the input spectral image are masked,
making the reconstruction task of the entire image harder leading to better embeddings Cong et al.
(2022). However, simple reconstruction embeddings capture just that particular image and might not
be suited for downstream tasks that rely on multi temporal contexts such as crop mapping or land
cover land use change. To solve this, previous works included multiple timestamps in their input,
however some of these methods stacked these images together Jakubik et al. (2023), thus removing
the temporal aspect. However, some methods added a timestamp positional embedding so that the
model has a sense of time Khanna et al. (2023); Cong et al. (2022). This led to moderate success in
handling downstream tasks that require multi temporal contexts. Another common pretraining task
is forecasting of imagery. Typically, this pretraining task has been used in weather related foundation
models and not in spectral imagery based foundation models. Foundation models created using
masked forecasting has shown great success in weather related downstream tasks Schmude et al.
(2024); Pathak et al. (2022). To enrich the embeddings created, these works add variable future
time forecasting, i.e vary the amount of time into the future the model needs to forecast, which
was achieved by including an embedding for delta time Nguyen et al. (2023). Other variants of
foundation models include diffusion models that incorporate more information such as geographic
location, time of year, country etc Khanna et al. (2023).

3 ARCHITECTURE

Our architecture follows a heavy encoder and lightweight decoder format. Keeping our decoder
lightweight forces richer embeddings from encoder, suitable for pretraining and downstream tasks.
Unlike previous models, we incorporate multiple modalities (spectral imagery and weather) in pre-
training our architecture. Figure 3 shows MM-VSF’s architecture. For the forecasting-based pre-
training task, it is essential for architecture design to capture spatial and temporal modalities of
satellite data, temporal weather data, and their interactions.

3.1 SATELLITE IMAGE ENCODER/DECODER

We use a shared Vision Transformer (ViT) to extract spatial features from spectral imagery across
timestamps. ViT have been shown to be effective in the presence of high masking He et al. (2022),
even in geoscience contexts Jakubik et al. (2023). The ViT converts each image into a patch grid of
embeddings, incorporating patch positional information. This results in a series of spectral image
embeddings on unmasked patches for each timestamp. Since our input is an image series, we pro-
pose using a shared ViT across timestamps, leading to a robust encoder, that is capable of embedding
images from all timestamps.

3.2 WEATHER ENCODER

Due to the coarse spatial resolution of weather data, typically for each image location, we have one
weather data point value per timestamp. Thus we use a sequence-to-sequence Bidirectional LSTM
(BiLSTM) to encode the weather data. The Bi-LSTM based approach showed higher accuracy over
the transformer based approaches when trying to solely reconstruct masked weather. The BiLSTM
generates weather embeddings for each timestamp, which are then subsampled to match input image
timestamps, similar to WSTATT Ravirathinam et al. (2024), called temporal embedding matching.

3.3 TIMESTAMP/DELTA ENCODER

For temporal information we incorporate day of year (DOY) using a shared linear layer with tanh
activation, creating DOY embeddings for each timestamp. Additionally, we create another series
that corresponds the number of days in between the images, i.e the delta in timestamps. We generate
embeddings for these time delta between images using a separate linear layer. The DOY embeddings
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Figure 3: MultiModal Variable step Forecasting (MM-VSF) Architecture diagram

provide temporal context, while delta embeddings, shown useful in forecasting tasks Nguyen et al.
(2023), informs the model about forecast distance.

3.4 MULTIMODAL SEQUENCE ENCODER

From the previous steps we have spatial, weather, and day-of-year embedding series. Since all these
series are of the same length, we add them all along the temporal dimension to create the multimodal
embedding series. We use a transformer with forward-only attention to extract the spatio-temporal
information from this multimodal embedding series, analyzing embedding patches from the same
spatial location across timestamps. Further we add forward only attention (causal) in transformer,
i.e the temporal embeddings created are not bidirectional in nature. This feature makes sure there
is no information leakage from future timestamp information to previous timestamps embeddings.
The resulting embedding series EmbSTW = [Embt1:t1 , . . . , EmbtC:tC ] can be used for downstream
tasks, with flexibility in embedding selection. Depending on the task, one can choose to use all the
embeddings or choose to use only the final embedding.

3.5 FORECASTER

Since our embeddings are constructed using forward-only attention, we use each of the embeddings
in EmbSTW to forecast an image in its respective future. For each embedding Embti:ti , the forecaster
uses the weather embeddings Emb

tj
w as well as the the temporal embeddings Emb

tj
t and the delta

embeddings to generate the embeddings Embtj of the forecast timestamp tj . By incorporating
weather data leading up to a particular date, we can make more informed estimates about how
the land cover might appear, as weather patterns play a significant role in shaping the landscape
over time. We combine the four embeddings through addition and feed it to a series of linear and
activation layers that forms our forecaster. The objective of these layers is to morph the embeddings
from current timestamp to the future timestamp before passing them to the MLP decoder to get the
satellite image forecast.

For all but last embeddings in the series EmbSTW , we forecast the next time-step, i.e t1 of the
input series would be used to forecast the image at t2, t2 would be used to forecast t3 and so on.
For the last embedding EmbtC:tC we forecast the K’th time-step, which is K-C days into the future.
This K is a variable and is sampled for each training instance in a batch, thus the name variable-step
forecasting (VSF). This method enables the model to predict future images based on current image
embeddings and weather information up to the forecast date, acknowledging weather’s impact on
land cover. Moreover, such multiple forecasting allows for a robust decoder, as similar to encoder,
the decoder also has shared weights across timestamps.
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3.6 DECODER

Following this stage, we repopulate these embeddings in their respective unmasked positions in
the timestamps and zero out the masked patches to pass to the decoder, as done by most methods
in transformer based autoencoder methodsJakubik et al. (2023); He et al. (2022). We use a light-
weight MLP decoder (similar to the one used in ViT) to ensure that the main focus of the model is to
create strong encoder to capture the best information so that even a lightweight decoder can perform
the pretraining task required. Similar, to the encoder, we have a shared decoder that performs the
operations on each timestamp using the same weights. The decoder maps the embeddings to the
spectral image space and reshape the output to match the required size of the spatiotemporal stack.

4 PRETRAINING

As mentioned before, our proposed pretraining task is forecasting of satellite imagery using mul-
timodal data in a knowledge informed fashion, a pretraining task that varies significantly from the
traditional single modality reconstruction. Our proposed approach can be trained using the archi-
tecture described above in a direct shot, i.e initialise and update all layers at once. However, this
may not be the best way to ensure that the EmbSTW embeddings would contain information about
the relationship between modalities, as that is the ultimate aim of our proposed approach. To ensure
this information capture, we propose a phase wise pretraining process. Specifically we propose 2
phases of pretraining, where the first phase focuses on getting information from each modality and
the second phase focuses on encoding the relationship between the modalities in the embedding.

Phase 1: Masked Reconstruction As can be observed, there are many components to our ar-
chitecture. However, if you break it down, each component serves a primary purpose. The VIT
encoder/decoder serves the purpose of bringing an image to and out of embedding space. This
component can be separately trained via masked reconstruction of satellite imagery. Similarly, the
Weather encoder brings the weather data to embedding space. This encoder can also be constructed
via a masked autoencoder approach using a Bidirectional LSTM. These steps result in models that
give embeddings for both the spectral imagery and weather components. We can now add the mul-
timodal sequence encoder and train it using the spectral imagery model with the overall objective
to reconstruct the entire image series, but instead of masking images, we can mask embeddings,
to make the sequence encoder stronger. After these steps, we have a baseline for the EmbSTW

embedding series(through addition). Though this embedding series contains spatial and multitem-
poral information about the input series, it would not capture the relationship between modalities.
To prove this, this embedding series would be used a baseline for finetuning across our downstream
tasks. To infuse multimodal relationship, we move to Phase 2, adding a forecaster.

Phase 2: Forecasting From the architecture section, we saw that the forecaster was a set of lin-
ear layers, making it sound simple. However its purpose is to translate the embedding from input
timestamp space to the forecasted timestamp space. Now, to perform this translation within a few
layers is very difficult, so the model will search for ways to learn this relationship from other parts
of the overall architecture. The solution would come from the multimodal data, in our case weather
data. Using weather data, the current embedding, timestamp embedding and delta embedding, the
forecaster is tasked to create the future embedding, but due to less amount of layers, the embeddings
of all the components will all change to best capture all information from each modality in regard
to forecasting, thus capturing the relationship across modalities. For example, if there was a lot of
rain the lakes would be fuller, if there was a lot of sunlight then growth of crop/vegetation would
accelerate. As a result, this scheme would infuse land growth/change dynamics into the embeddings
that the model creates. Asking the model to do this without weather data would be very challenging
as it would have no relationship to learn, tasking the forecaster with a big challenge. This no weather
variant of embeddings is also added a baseline for downstream tasks.

To summarise, our proposed pretraining task is to predict a spectral image in the future (response)
using a series of spectral images in the past (context) along with the weather till the future date
(query) we want to predict. We call this pretraining task as Variable step Forecasting (V SF ), where
the model is expected to forecast k steps into the future. To ensure that relationship across modaliteis
is captured in the embeddings, we adopt a two phase pretraining process. Our hypothesis is that this
extra knowledge infusion would help greatly in downstream tasks that rely on land growth and
change dynamics such as crop prediction, land cover land use change, etc. A schematic of the stages
of pretraining can be found in appendix A.1. We mask out patches in the spectral imagery and
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weather data in all the stages to make the prediction harder and lead to better embeddings. We will
describe our masking strategy for pretraining in a future section(Sec 5.2).

5 DATASET

5.1 DATA SOURCES

Our spectral imagery data comes from Sentinel imagery Drusch et al. (2012) and our weather data
is from ERA5 land analysis data Hersbach et al. (2020). We chose these two sources due to their
temporal resolutions and more importantly their availability globally from 2021. Due to these fac-
tors, we randomly sampled around 10000 locations across land areas globally. Each location is of
size 128x128 Sentinel pixels and for spectral imagery we collected all images for that region in that
year. Due to missing data and improper coverage of some regions, the number of Sentinel samples
from each region would vary. For example, regions in well covered regions such as US, might have
upto 70 image instances in a year for that region, whereas regions like India (which is not as well
covered) would have 40 image instances. For each instance, we collect six bands namely (B2, B3,
B4, B8, B9, B12), which have shown to be the most useful in land cover related tasks and have been
used in other works Jakubik et al. (2023). For each image instance, we also collect the day of the
year it came from, thus forming a series with values from 1 to 365 and a length the same as the
number of image instances for that location. Though ERA5 data source consists of various bands
that are useful for land cover related tasks we chose 5 bands to keep it simple and efficient, namely
(temperature 2m min, temperature 2m max, total precipitation sum, u component of wind 10m, v
component of wind 10m). ERA5 data is available at a daily temporal resolution and a spatial resolu-
tion of 11k meters. Given the coarse spatial resolution compared to Sentinel, for most locations in
our analysis we get only one value band set per timestamp, thus making our weather data of length
365 with 5 values per timestamp.

To summarise, for each location our data comprises of 3 main components:
• Spectral Imagery Series: A series of Sentinel2 Imagery each of 6 bands and of shape 128x128.
Length of this series depends on coverage of the location.
• Weather Data Series: A series of ERA5 Land data of 5 bands and of shape 1x1, with a series
length of 365 (one per day)
• Day of Year Series: A series of the day of the year number for each spectral image in the series.
The length of this series is same as the spectral imagery series.

5.2 MASKING

Figure 4: Example of 50 percent spatiotemporally uni-
form masking on a 4x4 4 image timeseries

Since we are dealing with a spatiotemporal in-
put and architecture, we adopt a spatiotempo-
rally uniform masking method, i.e, masking
that is fair both spatially and temporally. In
our unique masking strategy, there are an equal
number of masked patches per timestamp as
well as an equal number of masked patches per
spatial patch location along the temporal axis. Figure 4 shows an example of such masking for a
image series of 4 4x4 grids with 50% masking. From the Figure, we can see that in each timestamp
image there are 8 patches masked and focusing on a particular patch location along the temporal
dimension we notice that 2 patches are available. This ensures that all temporal patch series that
can be created from unmasked patches at each spatial location would be of same length, easing the
implementation of temporal components. Also the shared vision transformer will also have same
number of outputs per timestamp due to same number of unmasked patches per timestamp.

6 EXPERIMENTAL EVALUATION

6.1 BASELINES

Recall that our model uses the multimodal (MM) satellite and weather data as input series and
variable-step forecasting (VSF) as pretraining task. In the experiments, we evaluate the effectiveness
of MM-VSF by comparing with several representative foundation modeling methods. We create
these baselines by varying the choices for input series and pretraining task, as described below.
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• SM-MAE: Single Modality Masked AutoEncoder (SM-MAE) with satellite data as input series
and masked reconstruction as pretraining task.
• MM-MAE: MultiModal Masked AutoEncoder (MM-MAE) with satellite and weather data as
input series and masked reconstruction as pretraining task
• SM-VSF: Single Modality Variable step Forecasting (SM-VSF) with the satellite data as input
series and variable-step forecasting as pretraining task.

Note that the above combinations can be implemented by only changing the inputs and the loss
functions, without significant architecture changes. Thus these variations, which we call baselines,
can also be considered as ablations of different components of our model. Though MM-MAE uses
multi modal data we hypothesise that due to the task of reconstruction the relationship between
modalities will not be captured in the embeddings. Also note that SM-MAE is closest to the existing
remote sensing based foundation models (e.g.,Jakubik et al. (2023); Cong et al. (2022); Sun et al.
(2022)), as these works also use only satellite data to pretrain using Masked AutoEncoder(MAE).

6.2 IMPLEMENTATION DETAILS

For the pretraining phase, we choose an input series length of 6 images, and selected a random image
after the final image as the final image to forecast. Since our input series length is 6, we can create
multiple samples from one location, i.e one location’s data can result in multiple input series. After
splitting the 10000 sampled locations in 60-20-20 split and created numerous samples in each split,
We used 50000 image series for training, 10000 images series for validation, and 10000 for testing.
We also use 50% spatiotemporally uniform masking for both forecasting and reconstruction based
pretraining. We use a patch size of 8 for the vision transformer and a hidden dimension size of 256.
Model was trained on 4 A100 Nvidia GPUs using Adam Optimizer and Mean Squared Error loss.

7 RESULTS
In this section we evaluate various aspects of our proposed foundation model framework. First, we
evaluate the performance on the forecasting-based pretraining task and highlight some examples to
show that our method’s embeddings capture aspects that go beyond just encoding the image. We
further evaluate the performance of our embeddings against other variants when finetuned to the
downstream tasks of crop type mapping and missing spectral imagery imputation.

7.1 RESULTS ON PRETRAINING TASK

Here we evaluate the relative utility of using both weather and spectral data (MM) vs spectral data
(SM) only on the forecasting-based pretraining task. With the help of a few examples, we illustrate
that the embeddings produced by MM-VSF are more powerful than those SM-VSF, as MM-VSF is
able to capture the dynamic relationship between weather and the changes in the physical environ-
ment on the land captured by spectral data. Figure 5 shows a comparison of the images from these
models,i.e SM-VSF and MM-VSF, on 3 independent examples. Each row correspond to a sample,
with the first 6 images corresponding to the satellite component of the input series to the model, the
weather component is not shown in the image but is passed along with the satellite component(as
shown in Figure 3). Now, the output would also be a series of 6 images, with the last image corre-
sponding to a future day as specified in the user input (shown above the image in the groundtruth
column). Note that Figure 5 only shows the final forecast image for each method, as this is where
one would expect the most impact from using weather. Both schemes are able to construct earlier
images quite well, although MM-VSF can improve over SM-VSF in most cases.

Row 1 depicts an example of a crop field, with the final forecast image being 120 days following the
6th image in the input series. We can see that from the groundtruth image, that harvest has occurred
in the circular fields and growth has happened in the top left corner field. Comparing the forecasted
images from SM-VSF and MM-VSF, we can see that MM-VSF is able to capture both the harvest
and the growth of the crops whereas SM-VSF is not able to capture these changes. This shows that
the inclusion of weather allows the embeddings created by MM-VSF to capture land cover dynamics
that are driven by weather. Such dynamics cannot be captured by SM-VSF, as it only has access to
the past spectral imageries, and thus captures temporal autocorrelation amongst the spectral images.
Row 2 shows another example of a crop field later in the year, with the final forecast image being 90
days in future. We can see from the groundtruth image 90 days later that snow is present in the field,
which is captured by MM-VSF but not SM-VSF, whose prediction shows a faded green field. This
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Figure 5: Forecast based Pretraining Task comparison. 50% Masking is not shown. Row 1 depicts a crop field
with, Green arrows depict regions of growth, and Red arrows depict regions of harvest. Note how MM-VSF
captures both these phenomena better than SM-VSF. Row 2 depicts an example where MM-VSF is able to add
snowfall accurately compared to SM-VSF. Row 3 depicts an example where MM-VSF does not change land
cover due to terrain but SM-VSF adds false greenness

illustrates the ability of MM-VSF to capture the relationship between precipitation and temperature
(i.e., precipitation during cold winter days can fall as snow). One can also notice that evergreen
regions within the forecasted image of MM-VSF have less snowfall when compared to the fields,
showing that terrain information is also being captured. This is further reflected in Row 3, where
a mountainous region is depicted and the final forecast image is 255 days in future. We can see
that even after 255 days there is not much change in the region, which is correctly captured by our
method (MM-VSF) whereas SM-VSF seems to add some false greenness. These examples illustrate
that embeddings created with the inclusion of weather contain relevant land cover dynamics and
terrain information, which is very useful for various downstream tasks. We further observe that all
images from the forecast of SM-VSF appear blocky, inspite of long periods of training. This can be
explained as the model unable to forecast accurate images without weather information.

We also evaluated SM-MAE and MM-MAE, and observed that both models reconstruct the image
series quite well, with MM-MAE doing slightly better than SM-MAE. For more visuals on this
comparison please refer to Appendix A.2

7.2 DOWNSTREAM TASK: CROP MAPPING

Here we evaluate the performance of our proposed method (MM-VSF) in producing embeddings
by fine-tuning to the pixel wise crop type mapping downstream task. We compare our results with
embeddings created using other pretraining tasks and modalities.

7.2.1 DATASET AND REGION OF ANALYSIS
Our data for finetuning comes from Sentinel2 and ERA5 land data for the region of the T11SKA
Sentinel tile in the California Central Valley, a region rich in various crop classes and has been used
for crop type mapping in various other worksGhosh et al. (2021b;a); Ravirathinam et al. (2024) from
the years 2018 and 2019. Like other works, we get our labels for this region from the Cropland Data
Layer(CDL), an annually released land cover map for the entire continuous US by the USDA. A
diagrammatic representation of the CDL labels and the geographic location of the T11SKA tile can
be seen in Figure 9 in the appendix. Similar to WSTATT Ravirathinam et al. (2024), we adopt a
grid based training method, by splitting the entire region into train, validation and test grids and also
follow their preprocessing steps including combination and erosion.

7.2.2 CROP MAPPING ARCHITECTURE AND IMPLEMENTATION DETAILS
To perform crop mapping we would need an architecture that gives us a pixel wise output, in par-
ticular, we would need a decoder that takes the embedding series given by the foundation model
encoder, i.e EmbSTW , using it to construct a pixel wise classification map. To map this embedding
series to a pixel wise map, we follow an attention based approach, similar to WSTATTRavirathinam
et al. (2024). This strategy assigns a weightage to each timestamp and does an aggregated sum
to form a multitemporal attention-based embedding. This multitemporal embedding is then acted
on by a series of upscaling and convolution layers with activation, and an output Linear layer to
form a pixel wise map. Figure 10 in appendix shows a schematic of the architecture used for
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crop mapping. For our input series, we chose to have 10 spectral images, biweekly from May
to Sept, and while finetuning for crop mapping there is no masking of spectral imagery done.
Note that the number of timestamps passed in the downstream task is different from the num-
ber passed during pretraining. This highlights the temporal flexibility of our approach. In all
methods(MM-VSF, SM-MAE, etc.) the encoder weights to obtain the embedding series are fixed
from the respective pretraining task and the only the attention mechanism and decoder layers are
finetuned. All finetuning is done with only 2018 data with respective best hyperparameter settings.

Table 1: Comparison on downstream task of crop mapping across the
pretraining tasks. Finetuning is done only using 2018 data.

2019 Test Classwise F1 Scores
Crop Class SM-MAE MM-MAE SM-VSF MM-VSF

Corn 0.4135 0.4717 0.4489 0.5708
Cotton 0.8346 0.8403 0.9055 0.9125

WinterWheat 0.1156 0.0770 0.1043 0.1777
Tomatoes 0.7680 0.7637 0.7223 0.7341

Grapes 0.7398 0.7502 0.7447 0.7543
Almonds 0.3851 0.4386 0.2073 0.2990
Walnut 0.0238 0.1417 0.4494 0.5384

Pistachio 0.5070 0.6734 0.6200 0.7003
Alfalfa 0.6892 0.7271 0.7072 0.7057
Grass 0.7760 0.8436 0.7715 0.8445
Urban 0.6111 0.6408 0.6229 0.6191

Average 0.5331 0.5789 0.5731 0.6233

7.2.3 PERFORMANCE
ON CROP MAPPING TASK
Table 1 compares the perfor-
mance of MM-VSF and other
baselines when finetuned on
crop mapping downstream task.
Though finetuning is done us-
ing 2018 data, testing is done us-
ing 2019 data, assessing the ro-
bustness of the approaches. We
can see that MM-VSF performs
better than other variants in al-
most all classes, showing great
improvements in Corn and Wal-
nut. We also observe that MM-
MAE performs better than SM-MAE, which is because inclusion of weather in input is in general
better for crop mapping task Ravirathinam et al. (2024), however MM-MAE lacks capturing the
relationship between modalities, thus its inferior performance when compared to MM-VSF. Finally,
the ability of MM-VSF’s embeddings to generalize across years after finetuning indicates that they
capture crucial information going beyond what is just present in spectral imagery. Note that with
the minimal effort of choosing a timeframe for input series and adding a task-specific decoder, we
adapted our MM-VSF framework for the Crop-mapping downstream task providing empirical evi-
dence of our framework’s flexibility to adapt to various remote-sensing based spatiotemporal tasks.

7.3 DOWNSTREAM TASK: MISSING IMAGE PREDICTION

Here we evaluate the performance of our proposed method (MM-VSF) in the missing image predic-
tion downstream task, i.e estimating the spectral values for missing pixels in imagery. Like the crop
mapping task, we compare our results with SM-VSF, MM-MAE, and SM-MAE.

7.3.1 DATASET AND PROBLEM SETTING
With the vast amount of satellite imagery being captured on a daily basis, corrupted or missing data
is an occurring phenomenon. In some cases, the areas of missing/corrupted data is provided as a
mask, but in other cases this mask is not provided, making it hard clean or filter data, thus leaving
researchers to use these corrupted images in their work. In this downstream task, we aim to fill these
corrupted/missing values in the absence of these masks, i.e the methods have no access/information
as to which pixels are corrupted, making it a very real world downstream task. To solve this task,
we aim to use the spatiotemporal spectral imagery series along with the image with the missing data
to predict the missing values. For our dataset, we chose to sample a new 1000 locations globally,
similar to how our base dataset was created. We then did a 60-20-20 training-validation-test split
and used patch series from the 600 patches for finetuning. We ensured that there is no overlap in
regions across the 1000 newly sampled patches.

7.3.2 ARCHITECTURE AND IMPLEMENTATION DETAILS
In our downstream task methodology, we would pass a series of input images with one or more
timestamps having missing data, and we would ask our architecture to reconstruct the entire series,
but take only the mean squared loss on the timestamps with missing values, using those loss values
for backpropagation. Since our output is a series of images, we can use the same architecture as the
pretraining model. However, we freeze the encoder and reinitialise the decoder weights to random
values and update only these layers. We chose a input series length of 6, and varied the amount of
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missing values in input to create many finetuned models, each of whose results are depicted in the
next section. To simulate missing data, we would zero out large blocks from the image and pass
an input series with the blacked out images to the model. For our study, we chose to blacken out 2
images per series, both with a particular percentage of missing values.

7.3.3 PERFORMANCE ON MISSING IMAGE PREDICTION TASK

Table 2: Comparison on downstream task of missing image imputation
across models finetuned from different pretraining tasks. Mean Squared
Errors using various levels of missing image percentages shown

Missing Image Prediction Finetuned Models
% Missing SM-MAE MM-MAE SM-VSF MM-VSF

50% 792.68 788.94 362.02 326.43
70% 820.46 814.75 394.32 337.79
90% 826.23 820.43 404.32 343.88

Table 2 compares the Mean
Squared Errors across the vari-
ous finetuned models. We can
see that as the percentage of
missing values increases, the
MSE values go up, which can be
expected due to the task getting
harder. However, we can note
that the VSF pretrained models
have significantly lower MSE values when compared to MAE variants. We also note that MM-VSF
performs the best across all models and even as missing value percentage is increased the error does
not rise as much as the other variants. This is because the multimodal nature of MM-VSF helps
in filling in the missing values. We also observe that the difference between SM-MAE and MM-
MAE is not very high, thus furthering our hypothesis that MM-MAE method of pretraining does not
effectively capture the relationship between the different modalities of data.

Figure 6: Comparison of predictions for 50% missing image values
across finetuned models from different pretraining tasks.

In Figure 6 we compare some
output images from our 50 per-
cent missing values experiment
across the four methodologies.
Each row corresponds to a test
sample, and a common trend
across rows is that finetuned
models pretrained using MAE
based methodologies do not fill
the missing portions very well.
In the first row, we can see that
SM-VSF has added some false
greenness but MM-VSF has not,
showing that due to weather in-
formation, MM-VSF knows that
growth has not occurred. Row 2
depicts a dried up river bed, but
one can observe that SM-VSF fills the image with a wet river bed, whereas MM-VSF correctly es-
timates the dried up bed, once again proving that weather information has helped here. In the final
row, we see a case where SM-VSF did not green up the region, but MM-VSF did, which once again
is a result of weather information. From these experiments, we can see that pretrained embeddings
from MM-VSF are far better for finetuning for missing image imputation when compared to other
methodologies of pretraining.

8 CONCLUSION
In this paper we proposed a novel multimodal spatiotmeporal foundation model, MM-VSF, that
uses input of satellite and weather data and a knowledge guided pretraining task of variable step
forecasting to capture the causal relationship between the two modalities. This leads to superior
embeddings when compared with embeddings achieved by models using single modality input and
trained with standard pretraining task of reconstruction. Our pretraining task evaluation of MM-
VSF’s forecasting ability showed that our foundation model is able to learn aspects that go beyond
temporal autocorrelation. We showed that MM-VSF can be finetuned for a crop mapping model
that is generalisable across years and also can create a good model for missing image prediction.
Our model is temporally flexible and can adapt to various geoscience downstream tasks that include
spatiotemporal remote-sensing data. To the best of our knowledge, our study is the first step towards
incorporating knowledge guided principles in pretraining tasks and adapting multimodal approaches
to improve embeddings.
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Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

Danfeng Hong, Bing Zhang, Xuyang Li, Yuxuan Li, Chenyu Li, Jing Yao, Naoto Yokoya, Hao
Li, Pedram Ghamisi, Xiuping Jia, et al. Spectralgpt: Spectral remote sensing foundation model.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johannes Jakubik, Sujit Roy, C. E. Phillips, Paolo Fraccaro, Denys Godwin, Bianca Zadrozny,
Daniela Szwarcman, Carlos Gomes, Gabby Nyirjesy, Blair Edwards, Daiki Kimura, Naomi Si-
mumba, Linsong Chu, S. Karthik Mukkavilli, Devyani Lambhate, Kamal Das, Ranjini Ban-
galore, Dario Oliveira, Michal Muszynski, Kumar Ankur, Muthukumaran Ramasubramanian,
Iksha Gurung, Sam Khallaghi, Hanxi, Li, Michael Cecil, Maryam Ahmadi, Fatemeh Kordi,
Hamed Alemohammad, Manil Maskey, Raghu Ganti, Kommy Weldemariam, and Rahul Ra-
machandran. Foundation models for generalist geospatial artificial intelligence, 2023. URL
https://arxiv.org/abs/2310.18660.

Samar Khanna, Patrick Liu, Linqi Zhou, Chenlin Meng, Robin Rombach, Marshall Burke, David B
Lobell, and Stefano Ermon. Diffusionsat: A generative foundation model for satellite imagery. In
The Twelfth International Conference on Learning Representations, 2023.

Nataliia Kussul, Mykola Lavreniuk, Sergii Skakun, and Andrii Shelestov. Deep learning classifi-
cation of land cover and crop types using remote sensing data. IEEE Geoscience and Remote
Sensing Letters, 14(5):778–782, 2017.

Kentaro Kuwata et al. Estimating crop yields with deep learning and remotely sensed data. In 2015
IEEE international geoscience and remote sensing symposium (IGARSS), pp. 858–861. IEEE,
2015.

Fan Liu, Delong Chen, Zhangqingyun Guan, Xiaocong Zhou, Jiale Zhu, Qiaolin Ye, Liyong Fu,
and Jun Zhou. Remoteclip: A vision language foundation model for remote sensing. IEEE
Transactions on Geoscience and Remote Sensing, 2024.

Gengchen Mai, Chris Cundy, Kristy Choi, Yingjie Hu, Ni Lao, and Stefano Ermon. Towards a
foundation model for geospatial artificial intelligence (vision paper). In Proceedings of the 30th
International Conference on Advances in Geographic Information Systems, pp. 1–4, 2022.

Utkarsh Mall, Cheng Perng Phoo, Meilin Kelsey Liu, Carl Vondrick, Bharath Hariharan, and Kavita
Bala. Remote sensing vision-language foundation models without annotations via ground remote
alignment. arXiv preprint arXiv:2312.06960, 2023.

Matı́as Mendieta, Boran Han, Xingjian Shi, Yi Zhu, and Chen Chen. Towards geospatial foundation
models via continual pretraining. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 16806–16816, 2023.

Guruprasad Nayak, Varun Mithal, Xiaowei Jia, and Vipin Kumar. Classifying multivariate time
series by learning sequence-level discriminative patterns. In Proceedings of the 2018 SIAM Inter-
national Conference on Data Mining, pp. 252–260. SIAM, 2018.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Praveen Ravirathinam, Rahul Ghosh, Ankush Khandelwal, Xiaowei Jia, David Mulla, and Vipin
Kumar. Combining satellite and weather data for crop type mapping: An inverse modelling
approach. In Proceedings of the 2024 SIAM International Conference on Data Mining (SDM),
pp. 445–453. SIAM, 2024.

Johannes Schmude, Sujit Roy, Will Trojak, Johannes Jakubik, Daniel Salles Civitarese, Shraddha
Singh, Julian Kuehnert, Kumar Ankur, Aman Gupta, Christopher E Phillips, Romeo Kienzler,
Daniela Szwarcman, Vishal Gaur, Rajat Shinde, Rohit Lal, Arlindo Da Silva, Jorge Luis Guevara
Diaz, Anne Jones, Simon Pfreundschuh, Amy Lin, Aditi Sheshadri, Udaysankar Nair, Valentine
Anantharaj, Hendrik Hamann, Campbell Watson, Manil Maskey, Tsengdar J Lee, Juan Bernabe
Moreno, and Rahul Ramachandran. Prithvi wxc: Foundation model for weather and climate,
2024. URL https://arxiv.org/abs/2409.13598.

12

https://arxiv.org/abs/2310.18660
https://arxiv.org/abs/2409.13598


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Seyd Teymoor Seydi, Mahdi Hasanlou, and Jocelyn Chanussot. Burnt-net: Wildfire burned area
mapping with single post-fire sentinel-2 data and deep learning morphological neural network.
Ecological Indicators, 140:108999, 2022.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Mar-
cus Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15638–15650, 2022.

Xian Sun, Peijin Wang, Wanxuan Lu, Zicong Zhu, Xiaonan Lu, Qibin He, Junxi Li, Xuee Rong,
Zhujun Yang, Hao Chang, et al. Ringmo: A remote sensing foundation model with masked
image modeling. IEEE Transactions on Geoscience and Remote Sensing, 61:1–22, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Gabriel Tseng, Ruben Cartuyvels, Ivan Zvonkov, Mirali Purohit, David Rolnick, and Hannah
Kerner. Lightweight, pre-trained transformers for remote sensing timeseries. arXiv preprint
arXiv:2304.14065, 2023.

Jiaxuan You, Xiaocheng Li, Melvin Low, David Lobell, and Stefano Ermon. Deep gaussian process
for crop yield prediction based on remote sensing data. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
vision. arXiv preprint arXiv:2111.11432, 2021.

Yi Zhao, Jiale Ma, Xiaohui Li, and Jie Zhang. Saliency detection and deep learning-based wildfire
identification in uav imagery. Sensors, 18(3):712, 2018.

A APPENDIX

A.1 PRETRAINING STAGES

Figure 7 depicts a diagrammatic representation of the 2 phase stage wise pretraining we propose to
ensure that our framework’s embeddings are able to capture the interaction between modalities.

A.2 PRETRAINING RESULTS: RECONSTRUCTION

Figure 8 depicts a comparison of SM-MAE and MM-MAE on some test samples. We can observe
that MM-MAE does better than SM-MAE, but only so slightly. We can notice small differences
in each row (lack of greenness, blocky pixels, slight false greenness). Even on comparing Mean
Squared error between the two approaches there was not a big difference.

A.3 DOWNSTREAM TASK: CROP MAPPING

Figure 9 depicts the Cropland Data Layer(CDL) labels and the region of analysis (Sentinel Tile
T11SKA) for our crop mapping downstream task. As can be seen our region of analysis lies in
the heart of the California Central Valley and contains numerous crop classes. Figure 10 depicts
the general layout of the architecture used for the crop mapping downstream task. The embedding
series mentioned would correspond to the series EmbSTW , i.e the output series of the encoder. The
decoder mentioned is a task specific decoder that use upscaling and convolution layers to map the
final embedding to a pixel wise crop map.
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Figure 7: A diagrammatic representation of the proposed stages of pretraining

Figure 8: A comparison of MM-MAE and SM-MAE on some test samples. As can be seen, MM-MAE
is slightly better than SM-MAE.
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Figure 9: Geographic location of the T11SKA Sentinel Tile and its corresponding CDL labels. Each
color in the CDL image corresponds to a land cover class.

Figure 10: Layout of architecture for downstream task of crop mapping
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