
Sparse Probabilistic Circuits via Pruning and Growing

Abstract

Probabilistic circuits (PCs) are a tractable rep-
resentation of probability distributions allowing
for exact and efficient computation of likelihoods
and marginals. There has been significant recent
progress on improving the scale and expressive-
ness of PCs. However, PC training performance
plateaus as model size increases. We discover that
most capacity in existing large PC structures is
wasted: fully-connected parameter layers are only
sparsely used. We propose two operations: pruning
and growing, that exploit the sparsity of PC struc-
tures. Specifically, the pruning operation removes
unimportant sub-networks of the PC for model
compression and comes with theoretical guaran-
tees. The growing operation increases model ca-
pacity by increasing the dimensions of latent states.
By alternatingly applying pruning and growing,
we increase the capacity that is meaningfully used,
allowing us to significantly scale up PC learning.
Empirically, our learner achieves state-of-the-art
likelihoods on MNIST-family image datasets and
an Penn Tree Bank language data compared to
other PC learners and less tractable deep generative
models such as flow-based models and variational
autoencoders (VAEs).

1 INTRODUCTION

Probabilistic circuits (PCs) [Vergari et al., 2020, Choi
et al., 2020b] are a unifying framework to abstract from
a multitude of tractable probabilistic models. The key prop-
erty that separates PCs from other deep generative mod-
els such as flow-based models [Papamakarios et al., 2021]
and VAEs [Kingma and Welling, 2013] is their tractabil-
ity. It enables them to compute various queries, including
marginal probabilities, exactly and efficiently [Vergari et al.,
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Figure 1: Histogram of parameter values for a state-of-the-
art PC with 2.18M parameters on MNIST.

2021]. Therefore, PCs are increasingly used in inference-
demanding applications such as enforcing algorithmic fair-
ness [Choi et al., 2020a, 2021], making predictions under
missing data [Khosravi et al., 2019], and data compres-
sion [Liu et al., 2022a].

Recent advanced of PC learning [Rahman et al., 2014],
regularization [Shih et al., 2021, Liu and Van den Broeck,
2021] and efficient parallelism implementation [Peharz
et al., 2020a] have been pushing the limits of PC’s expres-
sivity and scalability such that PCs can even match the
performance of less tractable deep generative models such
as Flows and VAEs. This lead to a trend of building larger
PCs. However, PC training performance plateaus as model
size increases. This indicates that to go even further, simply
scaling up might not suffice, and we need to be better at
using the capacity available. We discover that this might
be caused by the fact that the capacity of large PCs are
wasted. As shown in Figure 1, most parameters in a PC with
2.18M parameters have close-to-zero values, which have
little effect to the PC distribution. Since existing PC struc-
tures usually have fully-connected parameter layers [Liu and
Van den Broeck, 2021, Rahman et al., 2014], this indicates
that the parameter values only are sparsely used.

In this work, we propose to better exploit the sparsity of
large PC models by two structure learning primitives —
pruning and growing. Specifically, the goal of the prun-
ing operation is to identify and remove unimportant sub-
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networks of a PC. This is done by quantifying the impor-
tance of PC edges w.r.t. a dataset using circuit flows, a
theoretically-grounded metric that upper bounds the drop of
log-likelihood caused by pruning. Compared to L1 regular-
ization, the proposed pruning operator is more informed by
the PC semantics, and hence quantifies the global effects of
pruning much more effectively. Empirically, the proposed
pruning method achieves a compression rate of 80-98% with
at most 1% drop in likelihood on various PCs.

The proposed growing operation increases the model size
by copying its existing components and injecting noise. In
particular, when applied to PCs compressed by the pruning
operation, growing produces larger PCs that can be opti-
mized to achieve better performance. Applying pruning and
growing iteratively greatly refine the structure and param-
eters of a PC. Empirically, the log-likelihoods metric can
improve from 2% to 10% after a few iterations. Compared
to existing PC learners and less tractable deep generative
models such as VAEs and flow-based models, our proposed
method achieves state-of-the-art density estimation results
on image datasets including MNIST, EMNIST, FashionM-
NIST, and Penn Tree Bank language modeling task.

2 PROBABILISTIC CIRCUITS

Probabilistic circuits (PCs) Vergari et al. [2020], Choi
et al. [2020b] model probability distributions with a struc-
tured computation graph. They are an umbrella term for
a large family of tractable probabilistic models including
arithmetic circuits Darwiche [2002, 2003], sum-product
networks (SPNs) Poon and Domingos [2011], cutset net-
works Rahman et al. [2014], and-or search spaces Marinescu
and Dechter [2005], and probabilistic sentential decision
diagrams Kisa et al. [2014]. The syntax and semantics of
PCs are defined as follows.

Definition 1 (Probabilistic Circuit). A PC C :=(G,θ) rep-
resents a joint probability distribution p(X) over random
variables X through a directed acyclic (computation) graph
(DAG) G parameterized by θ. Similar to neural networks,
each node in the DAG defines a computational unit. Specifi-
cally, the DAG G consists of three types of units — input,
sum, and product. Every leaf node in G is an input unit;
every inner unit n (i.e., sum or product) receives inputs from
its children in(n), and computes output, which encodes a
probability distribution pn defined recursively as follows:

pn(x) :=


fn(x) if n is an input unit∏

c∈in(n) pc(x) if n is a product unit∑
c∈in(n) θc|n · pc(x) if n is a sum unit

(1)
where fn(x) is a univariate input distribution (e.g, Gaus-
sian, Categorical), and θc|n denotes the parameter that cor-
responds to edge (n, c) in the DAG. For every sum unit n,
its input parameters sum up to one, i.e.,

∑
c∈in(n) θc|n = 1.
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Figure 2: A smooth and decomposable PC (right) and equiv-
alent Bayesian network (left). The probability of each unit
given input x̄1x2x̄3x4 is in red.

(a) fully-connected layers (b) after pruning (c) after growing
Figure 3: Pruning (3a to 3b) and growing (3b to 3c).

Intuitively, a product unit defines a factorized distribution
over its inputs, and a sum unit represents a mixture over its
input with weights {θc|n :c ∈ in(n)}. Finally, the probabil-
ity distribution of a PC (i.e., pC) is defined as the distribution
represented by its root unit r (i.e., pr(x)), that is, its output
neuron. The size of a PC, denoted |C| = |θ|, is the number
of parameters in C. Figure 2 shows an example of PC.

Computing the (log)likelihood of PC C given a sample x
is evaluating its computation units in G in a feedforward
manner following Equation 1.

The key property that separates PCs from other deep prob-
abilistic models such as flows [Dinh et al., 2014] and
VAEs [Kingma and Welling, 2013] is their tractability,
which is the ability to exactly and efficiently answer vari-
ous probabilistic queries. This paper focuses on PCs that
support linear time (w.r.t. model size) marginal probability
computation, as they are increasingly used in downstream
applications such as data compression [Liu et al., 2022b]
and making predictions under missing data [Khosravi et al.,
2019], and also achieve on-par expressiveness [Liu et al.,
2022b, Liu and Van den Broeck, 2021, Liang et al., 2017].
To support efficient marginal inference, PCs need to be
smooth and decomposable.

Definition 2 (Smoothness and Decomposability [Darwiche
and Marquis, 2002]). For a PC, the scope ϕ(n) of a PC unit
n is the input variables that it depends on; then, (1) a product
unit is decomposable if its children have disjoint scope; (2)
a sum unit is smooth if its children have identical scope. A
PC is decomposable (or smooth) if all of its produce units
are decomposable (or smooth).

Decomposability ensures that every product unit encodes
a well-defined factorized distribution over disjoint sets of
variables; smoothness ensures that the mixture components
of every sum units are well-defined over the same set of vari-
ables. Both structural properties will be the key to guaran-
teeing the effectiveness of the structure learning algorithms
proposed in the following sections.
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Algorithm 1: PC Sampling
Input :a PC C over variables X
Output :an instance x ∼ pC

1 Q← a queue initialized with the root node r of C
2 while Q is not empty do
3 n← Q.pop()
4 if n is an input unit then sample the value of var(n)

following the distribution defined by n
5 else if n is a product unit then Q.push(c) for each

c ∈ in(n)
6 else if n is a sum unit then
7 sample i∼Categorical({θc|n :c∈ in(n)});

Q.push(ci), where ci is the ith input of n
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Figure 4: (4a) A case study of comparing pruning heuris-
tics EPARAM (left) and EFLOW (right) pruned from PC in
Figure 2 given sample x = x̄1x2x̄3x4. (4b): Comparison
of pruning heuristics (1) ERAND (2) EPARAM, (3) EFLOW
for different percentage (4c): Histogram of parameters be-
fore/after the pruning operation.

3 PROBABILISTIC CIRCUIT MODEL
COMPRESSION VIA PRUNING

Given a PC C and a dataset D, our goal is to efficiently
identify a set of k edges E such that the performance gap
between the pruned PC C\E and the original PC C is mini-
mized:

argmin
E
LL(D, C)− LL(D, C\E)

such that E ⊆ {(n, c) : θc|n ∈ θ} and |E| = k,
(2)

where LL(D, C) = 1
|D|

∑
x∈D log pC(x) is the averaged

log-likelihood of PC C given dataset D. The edges E are
chosen among all parameterized edges (i.e., all input edges
of sum units). Figure 3b illustrates the result of pruning five
(red) edges from the PC in Figure 3a.

Pruning by parameters. Figure 1 shows that most param-
eters in a large PC are very small. Hence, by pruning away
these unimportant components, it is possible to significantly
reduce model size while maximally retaining model expres-
siveness. This leads to thee EPARAM heuristic, which selects

k edges with the smallest parameters. The parameters of a
sum unit are normalized to be 1 so they only contain local
information and are insufficient to quantify the importance
of inputs to a sum unit in the entire PC’s distribution. In Fig-
ure 4a (left), we prune the edge with the smallest parameter.
However, as shown in Figure 4a (right), pruning another
edge delivers better likelihoods as it accounts more for the
“global influence” of edges on the PC’s output. This global
influence is highly related to PC semantics and we will
introduce it next with its corresponding heuristics EFLOW.

Pruning by generative significance. A more informed
pruning strategy needs to consider the global impact of
edges on the PC distribution. To achieve this, we quantify
the significance of a unit or edge by the probability that it
will be “activated” when drawing samples from the PC.

Algorithm 1 shows that the PC sampling process proceeds
in a top-down manner: a queue Q is initialized with the root
unit (line 1). The algorithm then processes every unit in the
queue until it is empty. For a sum unit n (lines 6-7), the
sampler randomly adds one of its input units to the queue
according to the categorical distribution defined by sum
parameters {θc|n : c ∈ in(n)}; for a product unit (line 5), all
its inputs are added to the queue; for an input unit n defined
on variable X (line 4), the algorithm randomly samples
value x according to its input distribution. Algorithm 1 is
designed to sample instances following the PC distribution,
therefore the probability of adding a unit n to the queue Q
is the probability that n will be sampled, which we call as
the top-down probability of n.

Definition 3 (Top-down probability). The top-down proba-
bility of the output unit r is 1: pTDr,θ(r) = 1. The top-down
probability of sum/product units n is defined recursively:

pTDr,θ(n) =
∑

m∈pasum(n)

θn|m · pTDr,θ(m) +
∑

m′∈paprod(n)

pTDr,θ(m
′),

where pasum(n) and paprod(n) are the sum and product
units that take n as input. The top-down probability of a
sum edge (n, c) is defined as pTDr,θ(n, c) = θc|n · pTDr,θ(n).
Pruning by circuit flows. The top-down probability
pTDC,θ(n) represents the probability of reaching n in an un-
conditional sampling process. However, the pruning objec-
tive of Equation 2 requires that the sampled instance is
some x ∈ D. Therefore, we define circuit flow as a sample-
dependent version of the top-down probability.

Definition 4 (Circuit Flow). For a given C = (G,θ) and
input x, let θx denote a new set of parameters such that θxc|n
is the probability of component c in the mixture represented
by sum unit n after observing sample x. The node flow
Fn(x) of a unit n is then defined as the top-down probability
under this reparameterization of the circuit:

Fn(x) = pTDr,θx(n),whereθxc|n =
θc|n · pc(x)∑

c′∈in(n) θc′|n · pc′(x)
.
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Similarly, the edge flow Fn,c(x) w.r.t. PC C and sample
x is defined by pTDr,θx(n, c). We further define Fn,c(D) =∑

x∈D Fn,c(x) as the aggregate flow over D.

Fn(x) defines the probability of reaching unit n in Algo-
rithm 1, given sampled x. Therefore, edge flow Fn,c(x)
is a natural metric of the importance of edge (n, c) given
x, measuring how many expected samples “flow” through
certain edges, which we call EFLOW heuristic.

Empirical Analysis. Figure 4b compares the effect of
pruning heuristics EPARAM, EFLOW, and ERAND(an un-
informed strategy, prune randomly). It shows that both
EPARAM and EFLOW are reasonable pruning strategy, how-
ever, as we increase the percentage of pruned parame-
ters, EFLOW has less log-likelihoods drop compared with
EPARAM. Using EFLOW heuristics we can pruning up to
80% of the parameters without much log-likelihoods drop.
As shown in Figure 4c, the parameter distribution is more
balanced after pruning compared to Figure 1, indicating a
higher significance of each edge. We also theoretically ver-
ify the effectiveness of the EFLOW heuristic in Appendix A.

4 SCALABLE STRUCTURE LEARNING

The pruning operator benefits PCs in two aspects: (1) model
parameters are more balanced after pruning (Figure 4c); (2)
pruning removes sub-circuits with negligible contribution
to the model distribution. In another direction, we propose a
growing operation to increase the PC capacity by introduc-
ing more sub-circuits. Pruning and growing together defines
an scalable structure learning algorithm for PCs.

Growing Operation. Growing operation increases model
size by coping its existing components and injecting noise.
Specifically, the growing operation is applied to units, edges,
and parameters respectively: (1) for units, growing creates
new copy nnew for every unit n; (2) for edges, the sum edge
(n, c) PC (Figure 3b) are copied three times to the grown PC
(Figure 3c): from new parent to new child (nnew, cnew), from
old parent to new child (n, cnew), and from new parent to old
child (nnew, c); the product edge is simply connecting new
copied sum units; (3) for parameters, new parameter θnewc|n are
a noisy copy from old parameter θc|n, that is θnewc|n ← ϵ · θc|n
where ϵ ∼ N (1, σ2) and σ2 controls the Gaussian noise
variance. Gaussian noise is injected to encourage parameter
learning algorithms to find diverse parameters for different
copies. After a growing operation, the PC size is 4 times
the original PC size. Algorithm 4 in Appendix B shows a
feed-forward implementation of the growing operation.

Structure Learning through Pruning and Growing. We
utilize pruning and growing operations and propose a joint
structure and parameter learning algorithm for PCs. Specif-
ically, starting from an initial PC, we apply 75% pruning,

growing, and parameter learning iteratively until conver-
gence. We utilize HCLT [Liu and Van den Broeck, 2021] as
initial PC structure as it has the state-of-the-art likelihood
performance, however this structure learning pipeline can
be applied to any PC structure.

5 EXPERIMENTS

We now evaluate our proposed method pruning and grow-
ing on two different sets of density estimation benchmarks:
(1) the MNIST-family image generation datasets including
MNIST [LeCun et al., 2010], EMNIST [Cohen et al., 2017],
and FashionMNIST [Xiao et al., 2017]; (2) character level
Penn Tree Bank language modeling task [Marcus et al.,
1993]. We report the test set bits-per-dimension (bpd) we
get via structure learning proposed in Section 4. Details of
experiments are in Appendix C.

Image Datasets. We compare with 2 competitive PC
learning algorithms: HCLT [Liu and Van den Broeck, 2021]
and RatSPN [Peharz et al., 2020b], one flow-based model:
IDF [Hoogeboom et al., 2019], and 3 VAE based methods:
BitSwap [Kingma et al., 2019], BB-ANS [Townsend et al.,
2018], and McBits [Ruan et al., 2021]. As shown in Table 1,
our proposed method significantly outperforms all other
baselines on all datasets, and establishes new state-of-the-
art results among PCs, flows, and VAE models.

Table 1: Test set bpd on MNIST-family datasets.

Dataset SparsePC HCLT RatSPN IDF BitSwap BB-ANS McBits

MNIST 1.14 1.20 1.67 1.90 1.27 1.39 1.98
E(MNIST) 1.52 1.77 2.56 2.07 1.88 2.04 2.19
E(Letters) 1.58 1.80 2.73 1.95 1.84 2.26 3.12
E(Balanced) 1.60 1.82 2.78 2.15 1.96 2.23 2.88
E(ByClass) 1.54 1.85 2.72 1.98 1.87 2.23 3.14
FMNIST 3.27 3.34 4.29 3.47 3.28 3.66 3.72

Language Modeling Task. We use the Penn Tree Bank
dataset with standard processing from Mikolov et al. [2012].
We compare with 3 competitive normalizing flow based
models: Bipartite flow [Tran et al., 2019] and latent
flows [Ziegler and Rush, 2019] including AF/SCF and
IAF/SCF, since they are the only comparable work with
non-autoregressive language modeling. As shown in Tab. 2,
the proposed method outperforms all 3 baselines.

Table 2: Character-level language modeling results.

Dataset SparsePC Bipartite flow AF/SCF IAF/SCF

Penn Tree Bank 1.35 1.38 1.46 1.63

Conclusions. We propose structure learning of PCs by
combining pruning and growing operations to exploit the
sparsity of PC structures and show significant empirical
improvements in the density estimation tasks.
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A BOUNDING AND APPROXIMATING
THE LOSS OF LIKELIHOOD

This section establish a theoretical upper bound on the log-
likelihood drop ∆LL(D, C, E)=LL(D, C) − LL(D, C\E)
(cf. Equation 2) caused by pruning away edges E . Interest-
ingly, the EFLOW heuristic proposed in the previous section
is a good approximation of the derived upper bound.

We start from the case of pruning one edge (i.e., k = 1
in Equation 2). In this case, the loss of likelihood can be
quantified exactly using flows and edge parameters:

Theorem 1 (Log-likelihood drop of pruning one edge). For
a PC C and a datasetD, the loss of log-likelihood by pruning
away edge (n, c) is

∆LL(D, C, {(n, c)})

=
1

|D|
∑
x∈D

log

(
1− θc|n

1−θc|n+θc|n Fn(x)−Fn,c(x)

)
≤ − 1

|D|
∑
x∈D

log(1−Fn,c(x)).

See proof in Appendix A.1.1. By computing the second term
from Theorem 1, we can pick the edge with the smallest log-
likelihood drop. Additionally, the third term characterizes
the log-likelihood drop without re-normalizing parameters
of θ·|n. It suggests pruning the edge with smallest edge flow.
A key insight from Theorem 1 is that the log-likelihood drop
depends explicitly on the edge flow Fn,c(x) and unit flow
Fn(x). This matches the intuition from Section 3 that the
circuit flow of an edge is sufficient to quantify its importance
in the PC.

Next, we bound the drop of pruning multiple edges.

Theorem 2 (Log-likelihood drop of pruning multiple edges).
Let C be a PC and D be a dataset. For any set of edges E
in C, if ∀x∈D,

∑
(n,c)∈E Fn,c(x) < 1, the log-likelihood

drop by pruning away E is bounded and approximated by

∆LL(D, C, E) ≤ − 1

|D|
∑
x

log(1−
∑

(n,c)∈E

Fn,c(x))

≈ 1

|D|
∑

(n,c)∈E

Fn,c(D).
(3)

Proof of this theorem is provided in Appendix A.1.2. We
first look at the second term of Equation 3. Although it pro-
vides an upper bound to the performance drop, it cannot be
used as a pruning heuristic since the bound does not decom-
pose over edges. And hence finding the set of edges with
the lowest score requires evaluating the bound exponentially
(w.r.t. k) many times. Therefore, we do an additional ap-
proximation step of the bound via Taylor expansion, which
leads to the third term of Equation 3. This approximation
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matches the EFLOW heuristic by a constant factor 1/|D|,
which theoretically justifies the effectiveness of the heuris-
tic. As shown in Figure 5, the approximate bound (EFLOW
heuristic) matches closely to the actual log-likelihood drop.
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100
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Figure 5: Comparing the actual log-likelihood drop (∆LL)
and quantity computed from EFLOW heuristics (which is
also the approximated upper bound in Equation 3) for dif-
ferent percentage of pruned parameters (x-axis).

A.1 PROOFS

In this section, we provide detailed proofs of Theorem 1
(Section A.1.1) and Theorem 2 (Section A.1.2).

A.1.1 Pruning One Edge over One Example

Lemma 1 (Pruning One Edge Log-Likelihood Lower
Bound). For a PC C and a sample x, the loss of log-
likelihood by pruning away edge (n, c) is

∆LL({x}, C, {(n, c)})

= log

(
1− θc|n

1−θc|n+θc|n Fn(x)−Fn,c(x)

)
≤ − log(1−Fn,c(x)).

Proof. For notation simplicit, denote the probability of units
m (resp. n) in the original (resp. pruned) PC given sample
x as pm(x) (resp. p′n(x)). As a slight extension of Defini-
tion 4, we define Fn(x;m) as the flow of unit n w.r.t. the
PC rooted at m.

The proof proceeds by induction over the PC’s root unit.
That is, we first consider pruning (n, c) w.r.t. the PC rooted
at n. Then, in the induction step, we prove that if the lemma
holds for PC rooted at m, then it also holds for PC rooted
at any parent unit of m. Instead of directly proving the
statement in Lemma 1, we first prove that for any root node

m, the following holds:

pm(x)− p′m(x)

= Fn(x;m) · pm(x) ·
(

1

1− θ

Fn,c(x;m)

Fn(x;m)
− θ

1− θ

)
.

(4)

Base case: pruning an edge of the root unit. That is, the root
unit of the PC is n. In this case, we have

pn(x)− p′n(x)

=
∑

c′∈in(n)

θc′|n · pc(x)−
∑

c′∈in(n)\c

θ′c′|n · p
′
c(x)

= θc|n · pc(x)

+
∑

c′∈in(n)\c

θc′|n · pc(x)−
∑

c′∈in(n)\c

θ′c′|n · pc(x),

(5)

where θ′c|n denotes the normalized parameter corresponding
to edge (n, c) in the pruned PC. Specifically, we have

∀m ∈ in(n)\c, θ′m|n =
θm|n∑

c′∈in(n)\c θc′|n
=

θm|n

1− θc|n
.

For notation simplicity, denote θ := θc|n. Plug in the above
definition into Equation 5, we have

pn(x)− p′n(x)

= θc|n · pc(x)

+
∑

c′∈in(n)\c

θc′|n · pc(x)−
1

1− θ

∑
c′∈in(n)\c

θc′|n · pc(x)

= θc|n · pc(x)−
θ

1− θ

∑
c′∈in(n)\c

θc′|n · pc(x)

= θc|n · pc(x)−
θ

1− θ
(pn(x)− θc|npc(x))

=
1

1− θ
· θc|n · pc(x)−

θ

1− θ
· pn(x)

(a)
=

1

1− θ
· pn(x) ·

Fn,c(x;n)

Fn(x;n)
− θ

1− θ
· pn(x)

= Fn(x;n) · pn(x) ·
(

1

1− θ

Fn,c(x;n)

Fn(x;n)
− θ

1− θ

)
,

(6)

where (a) follows from the fact that Fn(x;n) = 1 and
Fn,c(x;n) = θc|npc(x)/pn(x).

Inductive case #1: suppose Equation 4 holds for m. If prod-
uct unit d is a parent of m, we show that Equation 4 also
holds for d:
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pd(x)− p′d(x)

=
∏

n′∈in(d)

pn′(x)−
∏

n′∈in(d)

p′n′(x)

= (pm(x)− p′m(x))
∏

n′∈in(d)\m

pn′(x)

(a)
= Fn(x;m)pm(x)

(
1

1− θ

Fn,c(x;m)

Fn(x;m)
− θ

1− θ

)
·

∏
n′∈in(d)\m

pn′(x)

(b)
= Fn(x; d)pd(x)

(
1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
,

where (a) is the inductive step that applies Equation 6; (b)
follows from the fact that (note that d is a product unit)
Fn(x;m) = Fn(x; d) and Fn,c(x;m) = Fn,c(x; d).

Inductive case #2: for sum unit d, suppose Equation 4 holds
for m, where m ∈ A iff m ∈ in(d) and m is an ancester of
n and c. Assume all other children of d are not ancestoer of
n, we show that Equation 4 also holds for d:

pd(x)− p′d(x)

= θm|d · (pm(x)− p′m(x))

= θm|d · Fn(x;m) · pm(x) ·
(

1

1− θ

Fn,c(x;m)

Fn(x;m)
− θ

1− θ

)
= θm|d · Fn(x;m) · pm(x) ·

(
1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
= θm|d · Fn(x; d) ·

∑
m′∈in(d) θm′|dpm′(x)

θm|dpm(x)
· pm(x)

·
(

1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
= Fn(x; d) ·

( ∑
m′∈in(d)

θm′|dpm′(x)

)
·

·
(

1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
= Fn(x; d) · pd(x)

·
(

1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
.

Therefore, following Equation 4 for root r, we have

pr(x)− p′r(x)

pr(x)
=

1

1− θ
Fn,c(x; r)−

θ

1− θ
Fn(x; r)

⇔ p′r(x)

pr(x)
= 1 +

θ

1− θ
Fn(x; r)−

1

1− θ
Fn,c(x; r)

Therefore, we have

∆LL({x}, C, {(n, c)})
= log pr(x)− log p′r(x)

=
1

|D|
∑
x∈D

log

(
1− θc|n

1−θc|n+θc|n Fn(x; r)−Fn,c(x; r)

)
(a)

≤ − log(1− Fn,c(x)),

where (a) follows from the fact that Fn,c(x) ≤ Fn(x).

Theorem 1 follows directly from Lemma 1 by not-
ing that for any dataset D, ∆LL(D, C, {(n, c)}) =
1

|D|∆LL({x}, C, {(n, c)}).

A.1.2 Pruning Multiple Edge

Proof. Similar to the proof of Lemma 1, we prove Theo-
rem 2 by induction. Different from Lemma 1, we induce a
slightly different objective:

pm(x)− p′m(x)

≤
∑

(n,c)∈E∩des(m)

Fn(x;m) · pm(x)

·
(

1

1− θc|n

Fn,c(x;m)

Fn(x;m)
−

θc|n

1− θc|n

)
, (7)

where des(n) is the set of descendent units of n.

Base case: the base case follows directly from the proof of
Lemma 1, and lead to the conclusion in Equation 6.

Inductive case #1: suppose for all children of a product unit
d, Equation 7 holds, we show that Equation 7 also holds for
d:

pd(x)− p′d(x)

=
∏

m∈in(d)

pm(x)−
∏

m∈in(d)

p′m(x)

=
∏

m∈in(d)

pm(x)−
∏

m∈in(d)

(
pm(x)− (pm(x)− p′m(x))

)
≤

∑
m∈in(d)

(
pm(x)− p′m(x))

)
·

∏
m′∈in(d)\m

pm′(x)

(a)

≤
∑

m∈in(d)

∑
(n,c)∈E∩des(m)

Fn(x; d) · pd(x) ·
(

1

1− θc|n

Fn,c(x;m)

Fn(x;m)
−

θc|n

1− θc|n

)
≤

∑
(n,c)∈E∩des(d)

Fn(x; d) · pd(x) ·
(

1

1− θc|n

Fn,c(x; d)

Fn(x; d)
−

θc|n

1− θc|n

)
,
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where (a) uses the definition that pd(x) =∏
m∈in(d) pm(x).

Inductive case #2: suppose for all children of a sum unit d,
Equation 7 holds, we show that Equation 7 also holds for d:

pd(x)− p′d(x)

=
∑

m∈in(d)∩(d,m)̸∈E

θm|d

(
pm(x)− p′m(x)

)
+

∑
m∈in(d)∩(d,m)∈E

θm|d

(
pm(x)− p′m(x)

)
(a)
=

∑
m∈in(d)∩(d,m) ̸∈E

θm|d

(
pm(x)− p′m(x)

)
+

∑
m∈in(d)∩(d,m)∈E

θm|dFn(x;m)pm(x)An,c(x,m),

where An,c(x,m) =

(
1

1−θc|n

Fn,c(x;m)
Fn(x;m) −

θc|n
1−θc|n

)
, and (a)

follows from the base case of the induction. Next, we focus
on the first term of the above equation:∑

m∈in(d)∩(d,m) ̸∈E

θm|d

(
pm(x)− p′m(x)

)
≤

∑
m∈in(d)∩(d,m) ̸∈E

∑
(n,c)∈E∩des(m)

θm|d

(
pm(x)− p′m(x)

)
≤

∑
m∈in(d)∩(d,m) ̸∈E

∑
(n,c)∈E∩des(m)

θm|dFn(x;m)pm(x)An,c(x, d)

≤
∑

(n,c)∈E∩des(d)

Fn(x; d)pd(x)An,c(x, d)

where the derivation of the last inequality follows from the
corresponding steps in the proof of Lemma 1.

Therefore, from Equation 7, we can conclude that

∆LL(D, C, E) ≤ − 1

|D|
∑
x

log(1−
∑

(n,c)∈E

Fn,c(x)).

Finally, we prove the approximation step in Equation 3. Let
ϵ(·) =

∑
(n,c)∈E Fn,c(·) ∈ [0, 1). We have,

RHS = −
∑
x∈D

log(1− ϵ(x))

= −
∑
x∈D

∞∑
k=1

−ϵ(x)k

k
(Taylor expansion)

≤
∑
x∈D

∞∑
k=1

ϵ(x)k =
∑
x∈D

ϵ(x)

1− ϵ(x)
=

1

1− ϵ

∑
x∈D

ϵ(x)

=
1

1− ϵ

∑
(n,c)∈E

∑
x∈D

Fn,c(x) =
1

1− ϵ

∑
(n,c)∈E

Fn,c(D).

B PSEUDOCODE

In this section, we list the detailed algorithms of pruning op-
eration (Section 3), circuit flows computation (Definition 4),
and mini-batch Expectation Maximization (Section 4).

Algorithm 2 shows how to prune k percentage edges from
PC C following heuristic h.

Algorithm 2: Prune(C, h, k)
Input :a non-deterministic PC C, heuristic h

deciding which edge to prune, h can be
EFLOW, ERAND, or EPARAM, percentage of
edges to prune k

Output :a PC C’ after pruned
1 old2new← mapping from input PC n ∈ C to pruned

PC
2 s(n, c)← compute a score for each edge (n, c) based

on heuristic h
3 f(n, c)← false
4 f(n, c)← true if s(n, c) ranks the last k
5 // visit children before parents
6 foreach n ∈ C do
7 if n is a leaf then
8 old2new[n]← n
9 else if n is a sum then

10 old2new[n]←
⊕

([old2new(c) for c ∈
in(n) and if f(n, c)])

11 else n is a product
12 old2new[n]←

⊗
([old2new(c) for c ∈

in(n)])
13 return old2new[nr] where nr is the root of C

Algorithm 3 computes the circuit flows of a sample x given
PC C with parameters θ though one forward pass (line 1)
and one backward pass (line 2-8).

Algorithm 3: CircuitFlow(C,θ,x)
Input :a PC C with parameters θ; sample x
Output :circuit flow flow[n, c] for each edge (n, c) and

flow[n] for each node n
1 ∀n ∈ C, p[n]← pn(x) computed as in Equation 1
2 For root nr, flow[n]← 1
3 for n ∈ C in backward order do
4 flow[n]←

∑
g∈pa(n) flow[g]

5 if n is a sum node then
6 ∀c ∈ in(n), flow[n, c]← θc|n

p[c]
p[n]flow[n]

7 else
8 ∀c ∈ in(n), flow[n, c]← flow[n]
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Algorithm 4 shows the growing operation.

Algorithm 4: Grow(C, σ2)
Input :a PC C, Gaussian noisy variance σ2

Output :a PC C’ after growing operation
1 old2new← a dictionary mapping input PC units

n ∈ C to units of the growed PC
2 foreach n ∈ C do // visit children

before parents
3 if n is an input unit then

old2new[n]← (n, deepcopy(n))
4 else
5 chs_1← old2new[c][0] for c in in(n)]
6 chs_2← old2new[c][1] for c in in(n)
7 if n is a product unit then

old2new[n]← (
⊗

(chs_1),
⊗

(chs_2))
8 else if n is a sum unit then
9 n1 ←

⊕
([chs_1, chs_2])

10 n2 ←
⊕

([chs_1, chs_2])
11 ϵ ∼ N (1, σ2) for i in [1, 2]
12 θ|ni

← normalize([θ|n,θ|n])× ϵ)
13 old2new[n]← (n1, n2)

14 return old2new[r][0] // r is the root of C

Algorithm 5 shows the pipeline of mini-batches Expectation
Maximization algorithm given PC C, dataset D, batch size
B and learning rate α.

Algorithm 5: StochasticEM(C,D;B,α)
Input :a PC C; dataset D; batch size B; learning rate

α
Output :parameters θ estimated from D

1 θ ← random initialization
2 For root nr, flow[n]← 1
3 while not converged or early stopped do
4 D′ ← B random samples from D
5 flow←

∑
x∈D′ CircuitFlow(C,θ,x)

6 for sum unit n and its child c do
7 θnewc|n ← flow[n, c]/flow[n]

8 θc|n ← αθ
(new)
c|n + (1− α)θc|n

C EXPERIMENTS DETAILS

Parameter Estimation. We use a stochastic mini-batch
version of Expectation-Maximization optimization [Choi
et al., 2020a]. Specifically, at each iteration, we draw a
mini-batch of samples DB , compute aggregated circuit
flows Fn,c(DB) and Fn(DB) of these samples (E-step), and
then compute new parameter θnewc|n = Fn,c(DB)/Fn(DB),
and update the targeting parameter with a learning rate α:
θt+1 ← αθnew + (1 − α)θt (M-step). Empirically this ap-

proach converges faster and is more regularized compared
to full-batch EM.

Parallelism Computation. Existing approaches to scale
up learning and inferences of PCs such as Einsum
networks [Peharz et al., 2020a] utilize fully connected
parametrized layers (Figure 3a) of PC structures such as
HCLT [Liu and Van den Broeck, 2021] and RatSPN [Peharz
et al., 2020b]. These structures can be easily vectorized to
utilize deep learning packages such as PyTorch. However,
the sparse structure learned by pruning and growing is not
easily vectorized as a dense matrix operation. We there-
fore implement customized GPU kernels to parallelize the
computation of parameter learning and inferences based on
Juice.jl [Dang et al., 2021], an open-source Julia package
for learning PCs. The kernels segment PC units into layers
such that the units in each layer are independent thus the
computation can be fully parallelized in the GPU. As a re-
sult, we can train PCs with millions of parameters in less
than half an hour.

Hardware specifications All experiments are performed
on a server with 32 CPUs, 126G Memory, and NVIDIA
RTX A5000 GPUs with 26G Memory. In all experiments,
we only use a single GPU on the server.

C.1 DATASETS

For MNIST-family datasets, we split 5% of training set
as validation set for early stopping. For Penn Tree Bank
dataset, we follow the setting in Mikolov et al. [2012] to
split a training, validation, and test set. Table 3 lists the all
the dataset statistics.

For Penn Tree Bank dataset, we use the standard processing
from Mikolov et al. [2012]. , which contains around 5M
characters and a character-level vocabulary size of k = 50.
The data is split into sentences with a maximum sequence
length of n = 288.

C.2 LEARNING HIDDEN CHOW-LIU TREES

HCLT structures. Adopting hidden chow liu tree (HCLT)
PC architecture as in Liu and Van den Broeck [2021], we
reimplement the learning process to speed it up and use a
different training pipeline and hyper-parameters tuning.

EM parameter learning We adopt the EM parameter
learning algorithm introduced in Choi et al. [2021], which
computes the EM update target parameters using circuit
flows. We use a stochastic mini-batches EM algorithm. De-
noting θnew as the EM update target computed from a mini-
batch of samples, and we update the targeting parameter
with a learning rate α: θt+1 ← αθnew + (1 − α)θt. α
is piecewise-linearly annealed from [1.0, 0.1], [0.1, 0.01],
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Table 3: Dataset statistics including number of variables (#vars), number of categories for each variable (#cat), and number
of samples for training, validation and test set (#train, #valid, #test).

Dataset n (#vars) k (#cat) #train #valid #test

MNIST 28×28 256 57000 3000 10000
EMNIST(MNIST) 28×28 256 57000 3000 10000
EMNIST(Letters) 28×28 256 118560 6240 20800
EMNIST(Balanced) 28×28 256 107160 5640 18800
EMNIST(ByClass) 28×28 256 663035 34897 116323
FashionMNIST 28×28 256 57000 3000 10000

Penn Tree Bank 288 50 42068 3370 3761

[0.01, 0.001], and each piece is trained T epochs.

Hyper-parameters searching. For all the experiments,
the hyper-parameters are searched from

• h ∈ {8, 16, 32, 64, 128, 256}, the hidden size of HCLT
structures;

• γ ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}, Laplace smooth-
ing factor;

• B ∈ {128, 256, 512, 1024}, batch-size in mini-batches
EM algorithm;

• α piecewise-linearly annealed from [1.0, 0.1],
[0.1, 0.01], [0.01, 0.001], where each piece is called
one mini-batch EM phase. Usually the algorithm will
start to overfit as validation set and stop at the third
phase;

• T = 100, number of epochs for each mini-batch EM
phase.

The PC size is quadratically growing with hidden size h,
thus it is inefficient to do a grid search among the entire
hyper-parameters space. What we do is to fist do a grid
search when h = 8 or h = 16 to find the best Laplace
smoothing factor γ and batch-size B for each dataset, and
then fix γ and B to train a PC with larger hidden size
h ∈ {32, 64, 128, 256}. The best tuned B is in {256, 512},
which is different for different hidden size h, and the best
tuned γ is 0.01.

C.3 DETAILS OF BENCHMARKS

Sparse PC (ours). Given HCLT learned in Section C.2 as
initial PC, we use the structure learning process proposed
in Section 4. Specifically, starts from initial HCLT, for each
iteration, we (1) prune 75% of the PC parameters, and (2)
grow PC size with Gaussian variance ϵ, (3) finetuing PC us-
ing mini-batches EM parameter learning with learning rate
α. We prune and grow PC iteratively until the validation set
likelihood is overfitted . The hyper-parameters are searched
from

• ϵ ∈ {0.1, 0.3, 0.5}, Gaussian variance in growing op-
eration;

• α, piecewise-linearly annealed from [0.1, 0.01],
[0.01, 0.001];

• T = 50, number of epochs for each mini-batch EM
phase;

• for γ and B, we use the tuned best number from Sec-
tion C.2.

HCLT. The HLCT experiments in Table 1 are
performed following the original paper (Code
https://github.com/UCLA-StarAI/
Tractable-PC-Regularization), which is
different from the leaning pipeline we use as our inital PC
(Section C.2).

SPN. We reimplement the SPN architecture ourselves fol-
lowing Peharz et al. [2020b] and train it with the same
mini-batch pipeline as HCLT.

IDF. We run all experiments with the code in the GitHub
repo provided by the authors. We adopt an IDF model with
the following hyperparameters: 8 flow layers per level; 2 lev-
els; densenets with depth 6 and 512 channels; base learning
rate 0.001; learning rate decay 0.999. The algorithm adopts
an CPU-based entropy coder rANS.

BitSwap. We train all models using the following author-
provided script: https://github.com/fhkingma/
bitswap/blob/master/model/mnist_train.

BB-ANS. All experiments are performed using the
following official code https://github.com/
bits-back/bits-back.

McBits. All experiments are performed using the follow-
ing official code https://github.com/ryoungj/
mcbits.
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C.4 EVALUATING PRUNING AND GROWING

What is the Smallest PC for the Same Likelihood? We
evaluation the ability of pruning operations based on cir-
cuit flows (Section 3) to do effective model compression
by iteratively pruning k% of the PC parameters and then
fine-tuning them until the final training log-likelihood does
not decrease by more than 1%. Specifically, we take k%
ranging between {0.05, 0.1, 0.3}. As shown in Figure 6, we
can achieve a compression rate of 80-98% with negligible
performance loss on PCs. Besides, by fixing the number
of latent parameters (x-axis) and comparing bpp across dif-
ferent number of latent states (legend), we discover that
compressing a large PC to a get smaller PC has better likeli-
hoods compared to directly training a HCLT with the same
number of parameters from scratch, due to the sparsity of
compressed PC structures, as well as the smarter way to find
good parameters: finding a better PC with larger size and
compress it to smaller one.
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Figure 6: Model compression via pruning and finetuning.
We report the training set bpd (y-axis) in terms of the number
of parameters (x-axis) for different number of latent states.
For each curve, compression starts from the right (initial
PC #Params |Cinit|) and ends at the left (compressed PC
#Params |Ccom|); compression rate (1 - |Ccom| / |Cinit|) is
annotated next to each curve.

What is the Best PC Given the Same Size? We evaluate
structure learning methods combining pruning and growing
proposed in Section 4. Starts from initial HCLT, we iter-
atively prune 75% of the parameters, growing again, and
finetuning until meeting the stopping criteria. As shown in
Figure 7, our method consistently improve the likelihoods
of initial PCs for different number of latent states among all
datasets.

C.5 DETAILS OF SECTION C.4

For all experiments in Section C.4, we use the best tuned
γ and B from Section C.2 and hidden size h ranging from
{16, 32, 64, 128}. For experiments “What is the Smallest
PC for the Same Likelihood?”, the hyper-parameters are
searched from
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Figure 7: Structure learning via 75% pruning, growing and
finetuning. We report bpd (y-axis) on both train (red) and
test set (green) in terms of number of latent states (x-axis).
For each curve, training starts from the top (large bpd) and
ends at the bottom (small bpd).

• k% ∈ {0.05, 0.1, 0.3}, percentage of parameters to
prune each iteration;

• α, piecewise-linearly annealed from [0.3, 0.1],
[0.1, 0.01], [0.01, 0.001];

• T = 50, number of epochs for each mini-batch EM
phase;

For experiments “What is the Best PC Given the Same
Size?”, we use the same setting as in Section C.3.
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