
Published as a conference paper at ICLR 2025

SORT-FREE GAUSSIAN SPLATTING VIA WEIGHTED
SUM RENDERING

Qiqi Hou1, Randall Rauwendaal2, Zifeng Li2, Hoang Le1, Farzad Farhadzadeh1, Fatih Porikli1,
Alexei Bourd2, Amir Said∗1

1Qualcomm AI Research† 2Graphics Research Team
1{qhou,rrauwend,zifeli,hoanle,ffarhadz,abourd,fporikli,asaid}@qti.qualcomm.com

(a) Run on Mobile Phones
Pre-processing

Lighting
Sorting

Rasterization Total0.0

25.0

50.0

75.0

100.0

125.0

150.0
Ru

nt
im

e 
(m

s)

3.0 1.6

50.6

85.9

143.0

2.6 1.6
9.5

28.2

42.2

1.7 1.4 0.0

32.8 34.1

(b) Runtime Comparison

3DGS-Compute
3DGS-Graphics
Ours

3DGS-Compute

3DGS-Graphics Ours
0

100

200

300

400

M
em

or
y 

(M
B)

421

322

241

(c) Memory Comparison
Mip-NeRF360

Tanks & Temples

Deep Blending
22.0

24.0

26.0

28.0

30.0

PS
NR

 (d
B) 27.2

23.1

29.4

27.2

23.6

29.6

(d) PSNR comparison

3DGS
Ours

Figure 1: This paper proposes a sort-free Gaussian Splatting method, which simplifies volumetric
rendering to Weighted Sum Rendering. (a) Visual example from the “counter” scene rendered on a
Snapdragon® 8 Gen 3 GPU‡. (b) and (c) Runtime and memory comparison between our methods and
3DGS Kerbl et al. (2023) at a resolution of 1920 × 1080 on the “counter” scene , respectively. We
implemented two versions of 3DGS, one implementation faithfully porting 3DGS CUDA kernels
to Vulkan compute shaders (3DGS-Compute), and another leveraging a global-sort following by
hardware rasterization (3DGS-Graphics). (d) PSNR results on Mip-NeRF, Tank & Temples, and
Deep Blending datasets.

ABSTRACT

Recently, 3D Gaussian Splatting (3DGS) has emerged as a significant advance-
ment in 3D scene reconstruction, attracting considerable attention due to its abil-
ity to recover high-fidelity details while maintaining low complexity. Despite the
promising results achieved by 3DGS, its rendering performance is constrained by
its dependence on costly non-commutative alpha-blending operations. These op-
erations mandate complex view dependent sorting operations that introduce com-
putational overhead, especially on the resource-constrained platforms such as mo-
bile phones. In this paper, we propose Weighted Sum Rendering, which approxi-
mates alpha blending with weighted sums, thereby removing the need for sorting.
This simplifies implementation, delivers superior performance, and eliminates the
“popping” artifacts caused by sorting. Experimental results show that optimizing
a generalized Gaussian splatting formulation to the new differentiable rendering
yields competitive image quality. The method was implemented and tested in a
mobile device GPU, achieving on average 1.23× faster rendering.

1 INTRODUCTION

Photo-realistic 3D view synthesis has very wide use in graphics applications like video games, vir-
tual reality, and 3D scene modeling techniques based on learnable appearance and transparency
have achieved remarkable success thanks to their capability for consistently generating image de-
tails. Neural Radiance Fields (NeRF) by Mildenhall et al. (2021) is one seminal work using this

*Corresponding author
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
‡Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its

subsidiaries.

1



Published as a conference paper at ICLR 2025

approach, where Multi-Layer Perceptron (MLP) networks and positional encoding are used to cre-
ate models representing a scene’s radiance field and opacity.

More recently, 3D Gaussian Splatting (3DGS) was proposed by Kerbl et al. (2023), and rapidly
gained popularity (Fei et al., 2024; Chen & Wang, 2024b; Wu et al., 2024). It replaces the MLP
networks used by NeRF with a sparse scattering of anisotropic 3D Gaussian “splats” that have view-
dependent appearance. These splats are efficiently rendered using rasterization instead of costly vol-
umetric ray-marching, while maintaining its rendering differentiability. Nevertheless, while 3DGS
produces high quality views with significantly lower complexity compared to NeRF, it is still chal-
lenging for resource-constrained platforms like mobile phones.

An important complexity factor results from the fact that splatting volumetric elements with trans-
parency requires sorting before α-blending, and it is difficult to combine non-commutative blending
operations—which are intrinsically sequential—with the parallelization required for fast rendering.
Furthermore, approximating ray integrals with sorting can create visible “popping” transitions due
to temporal changes in rendering order, that can only be alleviated with more complex sorting and
rendering (Radl et al., 2024).

The original 3DGS proposal achieves impressive rendering performance with a compute-based ras-
terizer implemented in CUDA, enabled by a tiled-based GPU radix sort that ensures front-to-back α-
blending, but incurring memory overhead. Subsequent implementations have leveraged other APIs
such as Vulkan or WebGL kishimisu (2024); Kwok (2024), either choosing a similar compute-based
implementation, or leveraging the graphics hardware (GPU) to varying degrees. Unfortunately, there
is no mechanism to feed the hardware rasterizer in a tile-wise fashion, so such implementations must
either perform a costly global-sort prior to submitting work to the hardware rasterizer, or maintain
a compute-based rasterizer, sacrificing the benefits of hardware execution. In the case of WebGL,
implementations often rely on an asynchronous CPU-sort that runs at a lower-frequency than the
frame rate, which degrades view quality and exacerbates temporal “popping” artifacts.

Although the sorting stage in Gaussian Splatting appears inevitable, it results from using approxi-
mations to physical processes. In reality, a general scheme for learning scene representations, with
components and parameters optimized for the best view reproductions, is bound only by the mathe-
matical constraints of the scene model. This observation motivates us to pursue alternative methods
that reduce rendering complexity while incurring minimal degradation in view quality.

We are further encouraged by a widely adopted empirical method for rendering transparent me-
dia utilizing the traditional rendering pipeline — Order Independent Transparency (OIT) Meshkin
(2007); McGuire & Bavoil (2013), representing a class of techniques in rasterization-based com-
puter graphics for rendering transparency without sorting. By eliminating the sorting step from the
rasterization pipeline, OIT maintains rendering speed and has been incorporated into commercial
tools such as Blender, Vulkan, Unity, and Unreal Engine.

In this paper we exploit those approaches to develop a novel view synthesis method combining
learning with commutative blending operations. It extends the definition of learned Gaussian Splat-
ting, and integrates it with a new method for volumetric rendering, called Weighted-Sum Rendering
(GS-WSR), still relying on differentiable rendering and machine learning techniques. To render an
image, our approach employs the depth of each Gaussian to compute weights for each Gaussian
splat using learned functions. These weighted Gaussians are then splatted onto the image plane us-
ing a straightforward summation operation, thereby obviating the necessity for sorting. As a further
enhancement, we found that introducing view-dependent opacity greatly improved image quality for
sort-free Gaussian Splatting.

This paper contributes to Gaussian Splatting as follows. First, we present the first sort-free Gaussian
Splatting technique which is compatible with the graphics pipeline, and allows us the benefit of
hardware rasterization. Second, we introduce Weighted Sum Rendering as well as view-dependent
opacity that can effectively learn the model parameters and produce high-quality rendered images.
Third, our experiments show that our method accelerates Gaussian Splatting with comparable visual
performance on mobile phones.

2



Published as a conference paper at ICLR 2025

2 RELATED WORK

Neural Scene Representations. Recent advancements in neural scene representations for novel
view synthesis have led to significant progress, with techniques assigning neural features to struc-
tures like volumes Lombardi et al. (2019); Sitzmann et al. (2019), textures Chen et al. (2020); Thies
et al. (2019), or point clouds Aliev et al. (2020). The pioneering NeRF (Neural Radiance Fields) ap-
proach Mildenhall et al. (2021), revolutionized the field by using Multi-Layer Perceptrons (MLPs) to
encode 3D density and radiance without proxy geometry, achieving photorealistic renderings from
sparse 2D images. Subsequent research has aimed to enhance NeRF’s quality and efficiency through
optimized sampling strategies Neff et al. (2021), light field-based formulations Li et al. (2022), com-
pact representations Müller et al. (2022), tensor decomposition Chen et al. (2022), or leveraging the
polygon rasterization pipeline for efficient rendering on mobile devices such as MobileNeRF Chen
et al. (2023). However, the high computational and memory requirement still puts a challenge on
mapping these methods on resource constrained platforms.

Order Dependent Transparency 3DGS The novel 3D Gaussian Splatting (3DGS) and its numer-
ous follow-up works primarily utilize anisotropic 3D Gaussians for scene representation and an
efficient differentiable rasterizer to project these Gaussians onto the image plane, either in pixel or
feature representation Hamdi et al. (2024); Lin et al. (2024); Yu et al. (2024); Liang et al. (2024);
Yan et al. (2024); Lu et al. (2024); Bulò et al. (2024); Fan et al. (2024); Fu et al. (2024); Zhang et al.
(2024); Zou et al. (2024); Jiang et al. (2023); Qin et al. (2024); Li et al. (2024); Jo et al. (2024);
Lee et al. (2024); Fan et al. (2023); Niedermayr et al. (2024); Chen et al. (2024); Morgenstern et al.
(2023); Navaneet et al. (2023). These methods enable fast, high-resolution rendering while main-
taining excellent quality. For a comprehensive overview, please refer to recent survey papers such as
Chen & Wang (2024a). A crucial requirement in these methods for proper blending and rendering
is the order of the Gaussians, which are typically sorted by their depth using a tile-based sorting
algorithm. However, this sorting requirement introduces several challenges in practical implemen-
tation and visual quality, such as sudden changes in the appearance of object parts or “popping”
artifacts, as recently addressed in Radl et al. (2024). While their results show a limited increase in
computational complexity, the necessary sorting modifications are significantly more involved.

Order Independent Transparency. Modeling partial coverage has a long history in computer
graphics. It’s an essential problem as we need to render fine non-opaque structure or elements such
as flames, smoke, clouds, hair, etc. In Porter and Duff’s seminal work Porter & Duff (1984), they
formulate transparency as the OVER operator as

C = α0c0 + (1− α0)c1, (1)
where α, c indicate alpha and color, respectively. As the OVER operator is not commutative, it re-
quires back-to-front order for composition. Traditional accelerated either by successively “peeling”
depth layers Everitt (2001) or accumulating list for sorting like A-buffers Carpenter (1984). These
methods introduce time and memory overhead.

To avoid sorting, there are many methods that have been proposed to approximate compositing,
namely Order-Independent Transparency (OIT). For instance, k-buffer methods work like depth
peeling methods, but only storing and accumulating first k-layers in a single pass Bavoil et al.
(2007). Alternatively, stochastic transparency methods in Monte Carlo rendering samples the frag-
ments according to the opacity and depth, which can generate promising results for a large sampling
rate Enderton et al. (2010). A survey on these methods can be found in Wyman (2016).

The weighted blended OIT proposed by McGuire & Bavoil (2013) is the most relevant to our
method. There are several OIT variants listed in McGuire & Bavoil (2013), the most general of
which is to replace the OVER operator with the following commutative blending operator

C =

N∏
i=1

(1− αi) c0 +

(
1−

N∏
i=1

(1− αi)

) ∑N
i=1 ciαiw (di, αi)∑N
i=1 αiw (di, αi)

(2)

where di is the distance to camera, c0 is the background color, w (·) is a function that decreases with
distance, so that objects nearer to the camera are assigned larger weights. In the OIT rendering Eq. 2
there are two sums defining pixel values, and since addition is commutative, they can be computed
in any order. Inspired by OIT, our method extends to Gaussian Splatting by introducing the learnable
parameters and view-dependent opacity. Besides, compared to the OIT exponential weights, linear
weights produce better PSNR results for Gaussian Splatting.

3



Published as a conference paper at ICLR 2025

Gau1 Dep1

Gau1 Dep1

Gau2 Dep2

Gau2 Dep2

Gau2 Dep2

Gau2 Dep2

Gau3 Dep3

Gau3 Dep3

Gau3 Dep3

Gau3 Dep3

Gau1 Dep1

Gau2 Dep2

Gau3 Dep3

Gau1 Dep1

Gau2 Dep2

Gau3 Dep3

Gau2 Dep2

Gau3 Dep3

Gau2 Dep2

Gau3 Dep3

𝛼1𝑐1

+ 1 − 𝛼1 𝛼2𝑐2

+ 1 − 𝛼1 1 − 𝛼2 𝛼3𝑐3

𝐶 =

Gau1

Gau2 Gau3
…

… …

Tiling Replication Sorting Rendering

𝛼1𝑤(𝑑1)𝑐1

+𝛼2𝑤 𝑑2 𝑐2

+𝛼3𝑤(𝑑3)𝑐3

𝐶 =

3DGS with sort 

Sort-free Gaussian Splatting via Weighted Sum Rendering

Splatting 

𝛼1, 𝑐1 𝛼2, 𝑐2 𝛼3, 𝑐3

𝛼1, 𝑐1, 𝑑1

𝛼2, 𝑐2, 𝑑2

𝛼3, 𝑐3, 𝑑3Gau1 Dep1

Gau2 Dep2

Gau3 Dep3

Weight1 

Weight2

Weight3

Weight Calculation Weighted Sum Rendering

Gaussians Image 

Gau1 Dep1

Gaussians 

Gaussian 1 for the 
blue tile with depth 1

Pixel

Tiles

𝛼 Alpha 𝑐 Color 𝑑 Depth

Figure 2: The architecture of sort-free Gaussian Splatting via Weighted Sum Rendering. 3DGS
needs to tiling, replication, sorting, and rendering. Our method only needs to calculate the weight
for each Gaussian, and independently sum their contributions per-pixel.

3 PRELIMINARIES: GAUSSIAN SPLATTING

The 3DGS scene model G = {(pi, ti,qi, si,Hi)}Ni=1 represents a scene of N Gaussians with center
locations p ∈ R3, maximum opacity ti ∈ [0, 1], orientation q ∈ R4, scale s ∈ R3, and spherical
harmonics coefficients H following an equation similar to Gaussian probability distributions. The
opacity of each element at a position x in 3D space is defined according to

αi (x) = ti exp

(
− (x− pi)

t
[Σ (qi, si)]

−1
(x− pi)

2

)
, i = 1, 2, · · · ,N (3)

and considering a camera with focal point at position f , the view-dependent color is defined by

ci = Y (∥f − pi∥,Hi) , i = 1, 2, · · · ,N , (4)

where Y (·) indicates the spherical harmonic function and ∥·∥ indicates the vector norm.

To render an image, each 3D Gaussian is mapped to 2D as approximated by a 2D Gaussian with the
following 2× 2 covariance matrix

Σ2D = JWΣ3DW
tJt (5)

where W is a matrix defined by the camera’s image-generation transformation, and J is the Jacobian
matrix defined by an affine approximation of the projective camera transformation.

After sorting Gaussians in depth order, the final pixel color obtained by Gaussian splatting can be
computed according to

C =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj), (6)

which corresponds to the well-known computer graphics technique of alpha-blending (Marschner &
Shirley, 2015).

4 SORT-FREE GAUSSIAN SPLATTING VIA WEIGHTED SUM RENDERING

4.1 SORT-FREE GAUSSIAN SPLATTING

As discussed in Sec. 3, 3DGS relies on non-commutative alpha blending, which requires a depth
order sorting operation before rendering. To recover high-fidelity of the rendered images, 3DGS
models typically include a substantial number of Gaussians, which can escalate to millions in com-
plex scenes. The overhead associated with these sorting operations poses a challenge in splatting
Gaussians onto an image without effective optimization.

4



Published as a conference paper at ICLR 2025

To accelerate rendering, 3DGS incorporates several optimizations designed to leverage parallel com-
putation capabilities in CUDA. As shown in Figure 2, 3DGS splits the rendered image into multiple
non-overlapping tiles, with Gaussians that span across multiple tiles being duplicated accordingly.
Each Gaussian is assigned a tile ID and sorted by depth on a per-tile basis. Once sorted, all tiles are
rendered in parallel, significantly improving computational efficiency. Additionally, 3DGS employs
early termination to further optimize performance: if the alpha value of the frontmost Gaussians
is sufficiently high, the rendering process will skip subsequent Gaussians, reducing unnecessary
computations and memory usage.

While 3DGS achieved promising results, its CUDA based implementation restricts its portability,
and its sorting requirement limits its performance. Their usage of an efficient tile-based radix sort
forces them maintain a fully compute-based render pipeline, including compute-based rasteriza-
tion. On the other hand, current APIs fail to expose efficient mechanisms to submit geometry to the
hardware rasterizer in a tiled fashion, thereby requiring that implementations leveraging the hard-
ware rasterizer execute a more costly global sort over all visible Gaussians. 3DGS chose to pursue
the fully compute-based approach with its CUDA implementation, which denies them some of the
benefits of the GPU’s fixed function hardware. Their tile-based sort incurs some overhead in its
duplication of Gaussians at tile boundaries, which is exacerbated in instances where there are a large
number of Gaussians, and finally, as noted by prior work Radl et al. (2024), sorting Gaussians by
their centers can introduce “popping” artifacts during view transformation, further affecting visual
quality.

These limitations motivate the elimination of the sorting phase in Gaussian Splatting, which not only
significantly simplifies the implementation but also enhances compatibility with hardware graph-
ics pipelines. Inspired by Order Independent Transparency (OIT), we propose a novel approach
that modifies the volumetric rendering process in 3DGS to a more efficient representation termed
Weighted Sum Rendering (WSR).

4.2 WEIGHTED SUM RENDERING

𝛼1 = 1, 𝑑1

𝛼2 = 1 , 𝑑2

DIR-WSRGT EXP-WSR LC-WSR

Figure 3: Three variants of Weighted
Sum Rendering with different weight
calculations, namely Direct Weighted
Sum Rendering (DIR-WSR), Exponen-
tial Weighted Sum Rendering (EXP-
WSR), and Linear Correction Weighted
Sum Rendering (LC-WSR).

Figure 2 compares the architectures of the original sort-
based 3DGS model, with our proposed sort-free Gaussian
Splatting framework. Unlike the volumetric rendering
approach employed by 3DGS, our method estimates the
transparency of each Gaussian solely based on its depth
and learnable parameters, thereby eliminating the need
for depth ordering. The final image can be rendered using

C =
cBwB +

∑N
i=1 ciαiw(di)

wB +
∑N

i=1 αiw(di)
, (7)

where cB and wB indicate the color and learnable weight
of the background, respectively. d indicates the depth.
w(·) indicates the learnable weight function. Our net-
work learns the Gaussian’s parameters during training.
Rendering with Eq. 7 in WSR corresponds to comput-
ing weighted sums. As the addition is commutative, these
sums can be computed in any order, overcoming the constraints of depth sorting. Unlike traditional
OIT methods Meshkin (2007); McGuire & Bavoil (2013), which rely on predefined parameters, our
method optimizes the parameters of this new representation during training.

3DGS produces novel views based on a physics-based blend model, whereas GS-WSR demonstrates
the benefits of departing from a phsyically-based model, and using machine learning to train the
parameters for a non-physically based model. In volumetric rendering Eq. 6, it is necessary to have
αi ∈ [0, 1] to guarantee that all terms are positive. However, these constraints are not necessary
in WSR Eq. 7 as αi serves as a learnable parameter in a radiance field model. Removing such
constraints can potentially result in better approximations. Similarly, our view-dependent opacity
may not correspond to optical laws, but it is in practice useful for minimizing the limitations of the
WSR Eq. 7 compared to volume rendering Eq. 6.

Direct Weighted Sum Rendering (DIR-WSR). A straightforward method of rendering is to sum
all contributions directly, allowing the network to learn specific opacities. In DIR-WSR, the weight

5



Published as a conference paper at ICLR 2025

is defined as a constant as follows

w(di) = 1, i = 1, 2, · · · ,N . (8)

However, DIR-WSR does not work well for complex scenes, and often introduces blurring artifacts
in areas where Gaussians overlap. We attribute the poor visual performance due to the lack of depth
information, which prevents accurate estimation of transparency. A visual example is provided in
Figure 3, illustrating two non-transparent Gaussians with α = 1 with different color1. Since DIR-
WSR uses a constant weight of 1, it is unable to correctly handle this situation, leading to an incorrect
estimation of the resulting color as purple.

Exponential Weighted Sum Rendering (EXP-WSR). To better capture the effects of occlusion,
we introduce EXP-WSR to assign larger weights to Gaussians closer to the camera. The weight is
defined as

w(di) = exp
(
−σdβi

)
, i = 1, 2, · · · ,N , (9)

where σ, β are learnable parameters. In this manner, the Gaussians closer to the viewer would
have a higher weight, thus contributing more to the final rendered image. Although EXP-WSR can
effectively reduce artifacts and generate better results compared to DIR-WSR, it is not entirely free
from visual distortions, as distant Gaussians still contribute to the rendered image to some extent.
As shown in Figure 3, the red Gaussian, being closer to the viewer, has a larger weight than the blue
Gaussian, yielding results that are closer to the ground truth. However, some artifacts remain visible
in the final output.

Linear Correction Weighted Sum Rendering (LC-WSR). Inspired by the deformable convolution
Dai et al. (2017) and KPConv Thomas et al. (2019), we use linear correction to estimate the weight
from depth by

w(di) = max

(
0, 1− di

σ

)
vi, i = 1, 2, · · · ,N , (10)

where σ, vi are learnable parameters. This formulation will assign a relatively larger weight for the
Gaussians closer to the camera. For distant Gaussians, the weight may be reduced to 0, depending on
σ or vi. As shown in Figure 3, the rendered result is closest to the ground truth, since this model can
set weights to zero it can more accurately model occlusions. Additionally, compared to EXP-WSR,
LC-WSR is cheaper to compute.

4.3 VIEW-DEPENDENT OPACITY

ො𝛼1 = 𝛼1 = 0.9
ො𝛼2 = 1 − 𝛼1 𝛼2 = 0.1

ො𝛼1 = 1 − 𝛼2 𝛼1 = 0

𝛼1 = 0.9

𝛼2 = 1
ො𝛼2 = 𝛼2 = 1

Figure 4: View dependent opacity. In 3DGS,
the accumulated α̂ changes depending on
the viewer’s direction, which motivates us to
assign view-dependent opacities in sort-free
Gaussian Splatting.

In Sec 4.2, we proposed WSR to assign differ-
ent weights to Gaussians according to their depth.
Moreover, the order of Gaussians would also change
depending on the viewer’s direction in the original
3DGS. Figure 4 illustrates this phenomenon: two
viewers observe two Gaussians from different di-
rections. The left viewer assigns a larger weight
to the red Gaussian, while the right viewer assigns
a smaller weight to the same Gaussian. This ob-
servation motivates our approach to assigning view-
dependent opacities.

We substitute our opacity values for an additional set of spherical harmonic coefficients for view-
dependency. It’s another mechanism by which we mitigate the contribution of occluded Gaussians.
We modify Eq 3, which defines the sort-free Gaussian’s opacity, replacing the 3DGS element’s
maximum opacity ti ∈ [0, 1] with an unconstrained value ui as

ui = Y (∥f − pi∥,Hi) , i = 1, 2, · · · ,N , (11)

where Y (·) indicates the spherical harmonic function and ∥·∥ indicates the vector norm. Hi indicates
the learnable spherical harmonics coefficients for opacity. Thus, the maximum opacity ui depends
on view direction ∥f−pi∥ according to learned spherical harmonics parameter vector Hi. There is a

1Please note that in WSR, α can be larger than 1. We assume α = 1 as non-transparency for illustrative
purposes.

6



Published as a conference paper at ICLR 2025

Dr Johnson (LC-WSR) GT(PSNR↑) 3DGS(30.66) DIR-WSR(32.72) EXP-WSR(33.07) LC-WSR(33.49)

Room (LC-WSR) GT(PSNR↑) 3DGS(30.20) DIR-WSR(28.71) EXP-WSR(30.87) LC-WSR(32.72)

Counter (LC-WSR) GT(PSNR↑) 3DGS(30.19) DIR-WSR(28.86) EXP-WSR(30.61) LC-WSR(31.61)

Figure 5: Visual comparison on the Mip-NeRF 360 dataset. Our OIT method achieves similar visual
performance compared to 3DGS. Please note that our method doesn’t require the order of Gaussians.

slight difference to the SH evaluation for the RGB channels and the opacity in our implementation.
The maximum opacity ui is not clamped. Please note that the view-dependent opacity may not
correspond to optical laws, but it is in practice useful for minimizing the limitations of OIT rendering
Eq. 7 compared to volume rendering Eq. 6.

4.4 IMPLEMENTATION DETAILS

Loss function. We optimize our sort-free Gaussian Splatting using the same rendering loss from
3DGS Kerbl et al. (2023), which contains the ℓ1 loss and D-SSIM loss with a factor of 0.2.

Training and Evaluation. We trained our sort-free Gaussian Splatting method using PyTorch. We
implemented the custom CUDA kernels for the PyTorch version. For EXP-WSR, we initialize the
σ = 0.1 and β = 0.8. For LC-WSR, we initialize σ = 10 and vi = 0.1. For convenience, we also
evaluate the quality of our method with a PyTorch inference simulation.

Testing on mobile devices. To measure model efficiency on mobile devices, we implemented our
method and the competitive 3DGS method in Vulkan 2, which is a cross-platform graphics and
compute API created and maintained by the Khronos Group 3.

3DGS’s rendering on mobile device contains four steps: pre-processing, lighting, sorting, and ras-
terization. The pre-processing step projects the 3D Gaussian into 2D based on the camera view. The
lighting stage calculates per-Gaussian color based on the camera view and the spherical harmonics
(SHs). The sorting step sorts the Gaussians front to back, and the rasterization step rasterizes all
Gaussians within each tile to output the final image.

To make a fair comparison, we implemented two versions of 3DGS, namely 3DGS-Compute and
3DGS-Graphics. 3DGS-Compute attempts to faithfully replicate the approach from 3DGS Kerbl
et al. (2023) in Vulkan compute shaders. It follows a similar scheme of replicating Gaussians per-
overlapped tile, followed by compute-based rasterization. The most notable difference is that the
optimized radix-sort from the NVIDIA CUB libraries NVIDIA (2024) had to be replaced with a
Vulkan equivalent. By contrast, the 3DGS-Graphics approach allows for more mobile friendly

2https://www.vulkan.org
3https://www.khronos.org

7



Published as a conference paper at ICLR 2025

Table 1: PSNR scores of our method on the Mip-NeRF360 dataset, the Tanks & Temples dataset,
and the Deep Blending dataset. Our method achieved comparable results with 3DGS.

Method
Mip-NeRF 360 Tanks & Temples Deep Blending

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Plenoxels 23.08 0.626 0.463 21.08 0.719 0.379 23.06 0.795 0.510
INGP-Base 25.30 0.671 0.371 21.72 0.723 0.330 23.62 0.797 0.423
INGP-Big 25.59 0.699 0.331 21.92 0.745 0.305 24.96 0.817 0.390
M-NeRF360 27.69 0.792 0.237 22.22 0.759 0.257 29.40 0.901 0.245
3DGS 27.21 0.815 0.214 23.14 0.841 0.183 29.41 0.903 0.243
Compact 3DGS 27.08 0.798 0.247 23.71 0.845 0.178 29.79 0.901 0.258
LightGaussian 27.28 0.805 0.243 23.11 0.817 0.231 - - -
Compressed 3DGS 26.98 0.801 0.238 23.32 0.832 0.194 29.38 0.898 0.253

LC-WSR 27.19 0.804 0.211 23.61 0.842 0.177 29.63 0.902 0.229

execution. It’s implementation globally sorts the Gaussians, eliminating per-tile replication, and
allowing it to easily submit a global list of Gaussian to the hardware graphics pipeline. Gaussian
color and opacity are evaluated in a fragment shader. These modifications allow Gaussians to be
efficiently rendered by the fixed-function rasterizer, while their contributions are accumulated by
hardware blending operations.

For both our method and the 3DGS methods, the pre-processing and lighting steps remain the same
as the original 3DGS implementation, except that our method’s opacity is now calculated in the
lighting stage based on the camera view and SHs. Our method removes the entire sorting step, and
rasterizes Gaussians in a fragment shader. Besides, our method contains an extra subpss to perform
the final normalization step. With our method, all Gaussians are rendered using a single instanced
draw call instead of the per-tile fashion used by 3DGS. We verified the consistency between our
on mobile implementation versus the Pytorch reference implementation. Please refer to our supple-
mentary for more details about our on mobile implementation.

5 EXPERIMENTAL RESULTS

Datasets. To ensure a fair comparison, we followed the evaluation setting of 3DGS Kerbl et al.
(2023) and conducted our experiments on 13 real-world scenes. Specifically, they include the com-
plete set of scenes from the Mip-Nerf360 dataset Barron et al. (2022), two scenes from the Tanks &
Temples dataset Knapitsch et al. (2017), and two scenes from the Deep Blending dataset Hedman
et al. (2018). These scenes encompass various challenging scenarios, including both indoor and
outdoor environments.

Evaluation metrics. We evaluate reconstruction fidelity using Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) metrics. For
model efficiency, we report run times on a Qualcomm® AdrenoTM GPU from Snapdragon 8 gen 3
chipset. To enable comparison, we also re-implemented our method and the official 3DGS (Kerbl
et al., 2023) in Vulkan for this setting.

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with state-of-the-art techniques, including Plenoxels Fridovich-Keil et al.
(2022), INGP Müller et al. (2022), M-NeRF360 Barron et al. (2022), 3DGS Kerbl et al. (2023),
Compact 3DGS Morgenstern et al. (2023), Compressed 3DGS Niedermayr et al. (2024), and Light-
Gaussian Fan et al. (2023). The results in Table 1 demonstrate that our method, while avoiding
any sorting, achieves comparable results to the baseline 3DGS. In terms of PSNR, our method
outperforms 3DGS by 0.47dB and 0.22dB on the Tanks & Temples and Deep Blending datasets,
respectively, while averaging only 0.02dB less on the Mip-NeRF360 dataset. For visual compari-
son, Figure 5 shows that our LC-WSR excellently recovers challenging details of the fireplace in the
“Dr Johnson” scenes. In other scenes, WSR particularly recovers better fidelity in areas with strong
illumination and reflection.

5.2 COMPUTATIONAL COMPLEXITY STUDY

In this study, we examine the running time and memory consumption of our methods on the mobile
devices, using an Snapdragon 8 Gen 3 GPU, and with an implementation based on Vulkan. To

8



Published as a conference paper at ICLR 2025

Table 2: Runtime (ms) comparion using a Snapdragon 8 Gen 3 GPU on the Mip-NeRF360, Tanks
& Temples and Deep Blending datasets. The images are rendered at a resolution of 1920 × 1080.
(“*” indicates that mobile resources are exhausted).

Method Task
Mip-NeRF360 Tanks&Temples Deep Blending

bicycle flowers garden stump treehill room counter kitchen bonsai truck train drjohnson playroom

3DGS-Compute

Pre-processing 12.84 7.05 10.15 6.94 7.53 3.99 3.02 4.46 3.12 6.29 3.03 7.50 6.04

Lighting 4.57 3.26 5.19 3.43 3.37 1.84 1.55 3.07 1.40 3.53 2.41 2.61 2.40

Sorting 246.65 122.68 210.35 180.23 139.98 70.83 50.57 89.96 50.63 105.83 60.83 140.64 110.97

Rasterization 1239.12* 115.18 608.19* 265.27 147.08 140.16 85.94 177.01 73.43 165.64 130.23 212.10 167.09

Total 1511.96 253.60 842.15 463.06 303.68 219.31 143.03 277.35 130.58 285.11 198.01 367.93 290.32

3DGS-Graphics

Pre-processing 13.27 7.82 13.73 10.46 8.01 3.40 2.62 4.09 2.62 5.84 2.35 7.22 5.57

Lighting 5.32 3.66 5.67 3.68 3.80 2.00 1.61 3.55 1.51 4.03 2.68 2.94 2.71

Sorting 40.26 24.79 38.25 31.09 25.47 11.23 9.47 13.76 9.17 19.16 7.43 23.13 18.43

Rasterization 618.83∗ 246.47∗ 697.81∗ 344.72∗ 208.28∗ 32.50 28.22 52.84 30.86 78.24 39.70 164.25* 82.45

Total 678.08 283.11 755.89 390.33 245.95 49.46 42.25 74.56 44.47 107.64 52.48 197.86 109.46

Ours

Pre-processing 6.83 3.92 5.53 6.46 4.63 1.94 1.67 2.74 1.64 3.42 1.61 4.61 2.48

Lighting 4.07 2.81 4.36 3.67 3.23 1.41 1.35 2.98 1.16 3.21 2.31 2.91 1.70

Rasterization 67.84 28.30 57.84 57.25 52.99 45.44 32.82 68.51 37.52 52.89 48.98 78.11 49.87

Total 78.99 35.28 67.90 67.63 61.11 49.02 34.06 74.47 40.63 59.75 53.13 85.85 54.28

make a fair comparison, we also re-implement the 3DGS in Vulkan. Please refer Section 4.4 for
implementation details. We conduct our experiments on the Mip-Nerf360, Tanks & Temples, and
Deep Blending datasets, where each image is rendered at a resolution of 1920× 1080.

Table 2 reports the runtime comparison of 3DGS-Compute, 3DGS-Graphics, and our LC-WSR on
the Mip-NeRF360, Tanks&Temples, and Deep Blending datasets. Compared to 3DGS-Compute,
3DGS-Graphics is more efficient as it eliminates the replication steps and thus reducing the number
of Gaussians for sorting. Besides 3DGS-Graphics can also better utilize the graphic fixed-functions
in the hardware-supported graphic rasterization pipeline. Our method is in most cases faster than the
3DGS-Graphics method due to the elimination of the sorting step and fewer Gaussians. Note that
for certain scenes using the 3DGS-Graphics method, we can exhaust our edge device’s resources
due to the sorting step and high Gaussian count, which will drastically slow down the rasterization
step (labeled with “*”). Unfortunately, it can be difficult to pinpoint the sources of inefficiency in
complex GPUs. To the best of our knowledge, this is caused by sudden changes to many more cache
misses. In contrast, our method is fully capable of running all scenes in real time. In theory, our
method’s lighting pass should be slightly slower because opacity is calculated using SH, and our
rasterization step should be slower due to the weight calculations in the fragment shader and the
extra subpass for weight normalization. However, we observed that WSR tends to generate models
with fewer Gaussians (scene average 2.88M) compared to the original 3DGS (scene average 3.98M),
which is consistent with prior work Radl et al. (2024) that suggests modifying opacity leads to a
reduction in the number of Gaussians. This also contributes to faster lighting and rasterization steps
for us compared with 3DGS-Graphics. For certain scenes (kitchen and train) that have a similar
number of Gaussians, our total time is close to or slightly worse compared to the original model
because the overhead added in the rasterization step is not fully compensated by the removal of
the sorting step, which may indicate further optimizations are needed for our method’s rasterization
implementation. Overall, the proposed method is on average 1.23× faster in total time when the
mobile resources are not exhausted.

Table 3 compares the runtime memory of our method with 3DGS-Graphics and 3DGS-Compute.
Compared to 3DGS-Compute, 3DGS-Graphics utilizes less memory as it performs global sorting
thereby eliminating the replication step. Our method only requires around 63% memory of 3DGS-
Graphics. This memory reduction can be attributed to removing the sorting operations as well as
fewer total Gaussians. Specifically, removing sorting reduces around 17% memory, while the reduc-
ing the number of Gaussians contribute the remaining. For the view dependent opacity, the spherical
harmonics data in GPU graphic pipeline is represented as RGBARGBA· · · instead of RBGRGB· · · .
We exploit this fact by using the alpha memory position to create view-dependent opacity, which
does not increase the amount of memory and vector operations, i.e., computational complexity. For

9



Published as a conference paper at ICLR 2025

Table 3: Runtime memory (MB) comparison on the Mip-NeRF360, Tanks & Temples and Deep
Blending datasets. The images are rendered at a resolution of 1920× 1080.

Method
Mip-NeRF360 Tanks & Temples Deep Blending

bicycle flowers garden stump treehill room counter kitchen bonsai truck train drjohnson playroom

3DGS-Compute 2017 1205 1920 1636 1253 542 421 626 429 850 358 1131 851
3DGS-Graphics 1520 911 1448 1235 947 413 322 476 328 644 274 855 645

Ours 881 526 681 853 618 276 241 367 251 439 217 615 344

Table 4: WSR variants on the Mip-NeRF360, Tanks & Temples and Deep Blending datasets.

Method
Mip-NeRF 360 Tanks&Temples Deep Blending

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DIR-WSR 25.99 0.778 0.262 22.80 0.821 0.218 28.85 0.899 0.254
EXP-WSR 26.97 0.801 0.216 23.32 0.833 0.183 29.77 0.902 0.229
LC-WSR 27.19 0.804 0.211 23.61 0.842 0.177 29.63 0.902 0.229

general storing of the splatting elements, it indeed increases the footprint per Gaussians because the
number of spherical harmonics coefficient values increases from 3 to 4.

5.3 ABLATION STUDY

Comparison of WSR variants. We compare the variants of WSR in Table 4 on Mip-NeRF360,
Tanks & Temples, and Deep Blending datasets. LC-WSR achieved the best performance on Mip-
NeRF360 and Tanks & Temples datasets, while EXP-WSR provides the best performance on Deep
Blending dataset. See Figure 5 for visual examples that demonstrate LC-WSR performs best at
recovering fine details.

View dependent opacity. We examine how our method works with view dependent opacity. Ex-
perimentally comparing our method with the view independent opacity method used in 3DGS, we
demonstrate view dependent opacity can significantly improve the results, shown in Table 5.

𝑡

𝑡 + 1

Garden 3DGS Ours

Figure 6: Our method eliminates the “pop-
ping” artifacts during view transformation.

Popping artifacts. As a side effect of not relying on
sorting, our methods also eliminates “popping” ar-
tifacts. Figure 6 shows an experiment in which we
slightly rotate the camera, causing the black Gaus-
sian to suddenly “pop” out in 3DGS, generating no-
ticeable temporal artifacts, whereas our method pro-
duces temporally consistent results.

Learnable parameters. Traditional OIT methods
rely on predefined parameters, while our method optimizes the parameters during training. We
compare fixed parameters vs. our learnable parameters in Table 5, which shows that our learnable
parameters significantly improve the performance.

Table 5: Ablation study on the Mip-NeRF360, Tanks & Temples and Deep Blending datasets.

Method
Mip-NeRF 360 Tanks & Temples Deep Blending

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours 27.19 0.804 0.211 23.61 0.842 0.177 29.63 0.902 0.229
w.o. learnable parameters 23.19 0.711 0.318 21.55 0.788 0.245 27.92 0.893 0.260
w.o. view-dependent opacity 25.88 0.784 0.251 21.83 0.798 0.237 29.27 0.902 0.249

6 CONCLUSIONS

This paper introduces a novel sort-free Gaussian Splatting method, enabled by its use of learned non-
commutative blend weight functions, a technique we term Weighted Sum Rendering. We presented
three variants of Weighted Sum Rendering: DIR-WSR, EXP-WSR, and LC-WSR. These variants
effectively eliminate the need for the sort operation in 3DGS. Additionally, we developed a view-
dependent opacity technique that significantly enhances reconstruction fidelity in sort-free Gaussian
Splatting. Our experimental results demonstrate that WSR not only achieves competitive visual
performance compared to 3DGS but also operates 1.23 times faster on mobile devices.

10



Published as a conference paper at ICLR 2025

REFERENCES

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. Neural
point-based graphics. In European Conference on Computer Vision, pp. 696–712. Springer, 2020.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022.

Louis Bavoil, Steven P Callahan, Aaron Lefohn, Joao LD Comba, and Cláudio T Silva. Multi-
fragment effects on the gpu using the k-buffer. In Proceedings of the 2007 symposium on Inter-
active 3D graphics and games, pp. 97–104, 2007.

Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. Revising densification in gaussian splat-
ting. arXiv preprint arXiv:2404.06109, 2024.

Loren Carpenter. The a-buffer, an antialiased hidden surface method. In Proceedings of the 11th
annual conference on Computer graphics and interactive techniques, pp. 103–108, 1984.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European Conference on Computer Vision (ECCV), 2022.

Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting. arXiv preprint
arXiv:2401.03890, 2024a.

Guikun Chen and Wenguan Wang. A Survey on 3D Gaussian Splatting, July 2024b. URL http:
//arxiv.org/abs/2401.03890. arXiv:2401.03890 [cs].

Yihang Chen, Qianyi Wu, Jianfei Cai, Mehrtash Harandi, and Weiyao Lin. Hac: Hash-grid assisted
context for 3d gaussian splatting compression. arXiv preprint arXiv:2403.14530, 2024.

Zhang Chen, Anpei Chen, Guli Zhang, Chengyuan Wang, Yu Ji, Kiriakos N Kutulakos, and Jingyi
Yu. A neural rendering framework for free-viewpoint relighting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5599–5610, 2020.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In
The Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 764–773, 2017.

Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. Stochastic transparency. In Pro-
ceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pp.
157–164, 2010.

Cass Everitt. Interactive order-independent transparency. White paper, nVIDIA, 2(6):7, 2001.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2023.

Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu,
Boris Ivanovic, Marco Pavone, Georgios Pavlakos, et al. Instantsplat: Unbounded sparse-view
pose-free gaussian splatting in 40 seconds. arXiv preprint arXiv:2403.20309, 2024.

Ben Fei, Jingyi Xu, Rui Zhang, Qingyuan Zhou, Weidong Yang, and Ying He. 3D Gaussian as
a New Era: A Survey. IEEE Transactions on Visualization and Computer Graphics, pp. 1–
20, 2024. ISSN 1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2024.3397828. URL
http://arxiv.org/abs/2402.07181. arXiv:2402.07181 [cs].

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5501–5510, 2022.

11

http://arxiv.org/abs/2401.03890
http://arxiv.org/abs/2401.03890
http://arxiv.org/abs/2402.07181


Published as a conference paper at ICLR 2025

Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A. Efros, and Xiaolong Wang. Colmap-
free 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 20796–20805, June 2024.

Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng Qian, Ruoshi Liu, Carl Vondrick,
Bernard Ghanem, and Andrea Vedaldi. Ges: Generalized exponential splatting for efficient ra-
diance field rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19812–19822, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. 37(6):257:1–257:15, 2018.

Wen Jiang, Boshu Lei, and Kostas Daniilidis. Fisherrf: Active view selection and uncertainty quan-
tification for radiance fields using fisher information. arXiv preprint arXiv:2311.17874, 2023.

Joongho Jo, Hyeongwon Kim, and Jongsun Park. Identifying unnecessary 3d gaussians using clus-
tering for fast rendering of 3d gaussian splatting. arXiv preprint arXiv:2402.13827, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian Splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

kishimisu. kishimisu/Gaussian-Splatting-WebGL, September 2024. URL https://github.
com/kishimisu/Gaussian-Splatting-WebGL. original-date: 2023-10-19T19:39:24Z.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Kevin Kwok. antimatter15/splat, September 2024. URL https://github.com/
antimatter15/splat. original-date: 2023-09-11T02:24:56Z.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21719–21728, 2024.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8508–8520, June 2024.

Zhong Li, Liangchen Song, Celong Liu, Junsong Yuan, and Yi Xu. Neulf: Efficient novel view
synthesis with neural 4d light field. In Eurographics Symposium on Rendering, 2022. URL
https://api.semanticscholar.org/CorpusID:236913029.

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting for
inverse rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21644–21653, 2024.

Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu,
Songcen Xu, Youliang Yan, et al. Vastgaussian: Vast 3d gaussians for large scene reconstruction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5166–5175, 2024.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser
Sheikh. Neural volumes: Learning dynamic renderable volumes from images. ACM Trans.
Graph., 38(4):65:1–65:14, July 2019.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Steve Marschner and Peter Shirley. Fundamentals of Computer Graphics. A K Peters, Wellesley,
MA, fourth edition, 2015. ISBN 978-1482229394.

Morgan McGuire and Louis Bavoil. Weighted Blended Order-Independent Transparency. Journal
of Computer Graphics Techniques, 2(4), 2013.

12

https://github.com/kishimisu/Gaussian-Splatting-WebGL
https://github.com/kishimisu/Gaussian-Splatting-WebGL
https://github.com/antimatter15/splat
https://github.com/antimatter15/splat
https://api.semanticscholar.org/CorpusID:236913029


Published as a conference paper at ICLR 2025

Houman Meshkin. Sort-Independent Alpha Blending, 2007.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM,
65(1):99–106, dec 2021. ISSN 0001-0782. doi: 10.1145/3503250. URL https://doi.org/
10.1145/3503250.

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene repre-
sentation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299, 2023.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July
2022. doi: 10.1145/3528223.3530127. URL https://doi.org/10.1145/3528223.
3530127.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compact3d: Compressing gaussian splat radiance field models with vector quantization. arXiv
preprint arXiv:2311.18159, 2023.

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H Mueller, Chakravarty
R Alla Chaitanya, Anton Kaplanyan, and Markus Steinberger. Donerf: Towards real-time render-
ing of compact neural radiance fields using depth oracle networks. In Computer Graphics Forum,
volume 40, pp. 45–59. Wiley Online Library, 2021.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10349–10358, June 2024.

NVIDIA. CUB :: CUDA Toolkit Documentation, 2024. URL https://docs.nvidia.com/
cuda/cub/index.html#cub-overview. Accessed: 2024-10-23.

Thomas Porter and Tom Duff. Compositing digital images. In Proceedings of the 11th annual
conference on Computer graphics and interactive techniques, pp. 253–259, 1984.

Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d lan-
guage gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20051–20060, 2024.

Lukas Radl, Michael Steiner, Mathias Parger, Alexander Weinrauch, Bernhard Kerbl, and Markus
Steinberger. Stopthepop: Sorted gaussian splatting for view-consistent real-time rendering. ACM
Trans. Graph., 43(4), jul 2024. ISSN 0730-0301. doi: 10.1145/3658187. URL https://doi.
org/10.1145/3658187.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael
Zollhofer. Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2437–2446, 2019.

Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image synthesis
using neural textures. ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 6411–6420, 2019.

Tong Wu, Yu-Jie Yuan, Ling-Xiao Zhang, Jie Yang, Yan-Pei Cao, Ling-Qi Yan, and Lin Gao. Recent
advances in 3d gaussian splatting. Computational Visual Media, pp. 1–30, 2024.

Chris Wyman. Exploring and expanding the continuum of oit algorithms. In High Performance
Graphics, pp. 1–11, 2016.

Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee. Multi-scale 3d gaussian splatting for anti-
aliased rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 20923–20931, 2024.

13

https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://docs.nvidia.com/cuda/cub/index.html#cub-overview
https://docs.nvidia.com/cuda/cub/index.html#cub-overview
https://doi.org/10.1145/3658187
https://doi.org/10.1145/3658187


Published as a conference paper at ICLR 2025

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-
free 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19447–19456, 2024.

Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and Eric Xing. Fregs: 3d gaussian splat-
ting with progressive frequency regularization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21424–21433, 2024.

Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Yan-Pei Cao, and Song-Hai
Zhang. Triplane meets gaussian splatting: Fast and generalizable single-view 3d reconstruction
with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10324–10335, 2024.

14



Published as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS ON MOBILE PHONES

For the 3DGS-Graphic method, the pre-processing and the lighting steps remain the same as the
original 3DGS implementation except for that they are now written in GLSL compute shaders. We
changed the rasterization step from a compute based pipeline to traditional graphic pipeline using
instanced draw, where each Gaussian treated as an instance and covered by a triangle pair in vertex
shader. The fragment shader then colors the pixels within a Gaussian’s radius. The alpha blending
is handled by the hardware automatically at the rendering back-end. With the graphic pipeline, all
Gaussians are rendered using a single instanced draw call instead of the per-tile fashion used by
3DGS. The sorting step is also changed from a tile-based sort to global sort, which is implemented
using GLSL compute shader.

For our method, the pre-processing and the lighting stages remain the same as the 3DGS method in
Vulkan except for that now opacity is calculated in the lighting stage based on camera view and SHs.
Sorting step is removed and we also pass depth for each Gaussian to the graphic pipeline to calculate
the per-Gaussian weight. The alpha blending operation is changed from using the blending factor to
simple summation of the color and weight. We added an extra graphic pass using the Vulkan subpass
feature to handle the final normalization. To make the 3DGS-Graphic method and our method a fair
comparison, the render target for both is set to use 16-bit RGBA. Note that the original 3DGS can
be implemented using 8-bit RGBA with a slightly lower image quality and better rendering speed,
but because our method requires the color and weight to be accumulated, we used 16-bit to avoid
overflow issue.

B PER SCENES EVALUATION METRIC

Table 6, 7, and 8 present the PSNR, SSIM, and LPIPS metrics for each scene within Mip-NeRF360,
Tanks & Temples, and Deep Blending datasets, respectively.

C MORE DISCUSSIONS

Compared with gsplat webgl gsplat.tech At the same rendering resolution, our method improve
the rendering speed from 19-25 fps to 30fps on a Snapdragon 8 gen3. The gsplat implementa-
tion runs at a significantly lower resolution and leverages an asynchronous CPU sort running at a
frequency below the framerate, which exacerbates temporally artifacts under motion. Our imple-
mentation does not have these artifacts, which demonstrates the effectiveness of our method.

Moving camera along z direction. The alpha and weights are applied equally to the RGB color
components. Ratios of different splats are maintained along the z-direction with Exponential
Weighted Sum Rendering (EXP-WSR), but not with Linear Correction Weighted Sum Rendering
(LC-WSR). However, LC-WSR also produces visually plausible results. We conducted the ex-
periments to move the camera along z direction. In the experiments, we test our EXP-WSR and

EXP-WSR EXP-WSRLC-WSR LC-WSR

Figure 7: Moving camera along z direction. EXP-WSR and LC-WSR produces plausible results.

15



Published as a conference paper at ICLR 2025

LC-WSR on the Bicycle and Garden scenes. As shown in Figure 7, we don’t observe the color
shifting artifacts.

Figure 8: Failure case. The seat seems
to be transparent, as it is in dark and the
bicycle frame is in bright white.

Densification and pruning for view dependent opacity.
The 3DGS densification technique was maintained for
our method without any modification. And we removed
the pruning based on the opacity threshold. There are re-
searches exploring other signals, such as mask Lee et al.
(2024), color Bulò et al. (2024), for densification and
pruning, and achieving promising results. Our method
will benefit from these works in the future.

Culling in WSR. Culling operates the same as 3DGS.
As with 3DGS, we render only those Gaussians within
the Camera Frustum. Our implementation does sum over
all visible Gaussians, we configure the hardware to per-
form this summation efficiently using hardware supported
blending operations.

Failure case. One type of failure that is easy to identify visually is apparent transparency of dark
objects when in front of a very light background. Figure 8 shows an example where our method
fails. However, this could be detected with differentiable rendering and thus can be attributed to
suboptimal training.

D LIMITATIONS AND FUTURE WORK

Early-Termination. In 3DGS a pixel can be easily terminated by monitoring if its accumulated al-
pha has been saturated. Alternately, we could implement heuristic to halt further evaluation of Gaus-
sians whose opacity falls below some threshold, though our current WSR implementation does not
support such an optimization. We implemented our method using the traditional graphics pipeline
to make efficient use of mobile GPUs, especially the hardware rasterizer. In our implementation,
opacity and weight computations are performed in the fragment shader, while blending is handled
by the hardware, since every fragment operates independently and does not have access to the accu-
mulated opacity, we are unable to easily implement early termination. This would require reading
the render target’s content within the invoking draw pass, which necessitates costly read-modify-
write operations and requires Vulkan extensions that many mobile devices do not currently support.
Additionally, since the screen-space location of each Gaussian is determined only after the vertex
shader, a pixel can only be discarded very late in the pipeline.

Compact Gaussians. Recently, several compact Gaussian methods have been introduced to sig-
nificantly reduce the number of Gaussians while maintaining visual performance Jo et al. (2024);
Lee et al. (2024); Fan et al. (2023); Niedermayr et al. (2024); Chen et al. (2024); Morgenstern et al.
(2023); Navaneet et al. (2023). We believe that our sort-free method can benefit from the rapid pace
of research on compact Gaussians.

16



Published as a conference paper at ICLR 2025

Table 6: PSNR scores of our method on the Mip-NeRF360 dataset, the Tanks&Temples dataset, and
the Deep Blending dataset.

Method
Mip-NeRF360 Tanks&Temples Deep Blending

bicycle flowers garden stump treehill room counter kitchen bonsai Avg truck train Avg drjohnson playroom Avg

Plenoxels 21.91 20.10 23.49 20.66 22.25 27.59 23.62 23.42 24.67 23.08 23.22 18.93 21.08 23.14 22.98 23.06
INGP-Base 22.19 20.35 24.60 23.63 22.36 29.27 26.44 28.55 30.34 25.30 23.26 20.17 21.72 27.75 19.48 23.62
INGP-Big 22.17 20.65 25.07 23.47 22.37 29.69 26.69 29.48 30.69 25.59 23.38 20.46 21.92 28.26 21.67 24.96

Mip-NeRF360 24.31 21.65 26.88 26.18 22.93 31.47 29.45 31.99 33.40 27.69 24.91 19.52 22.22 29.14 29.66 29.40
3DGS 25.25 21.52 27.41 26.55 22.49 30.63 28.70 30.32 31.98 27.21 25.18 21.09 23.14 28.77 30.04 29.41

Compact 3DGS 24.77 20.89 26.81 26.46 22.65 30.88 28.71 30.48 32.08 27.08 25.35 22.07 23.71 29.06 29.87 29.46
Compressed 3DGS 24.97 21.15 26.75 26.29 22.26 31.14 28.67 30.26 31.35 26.98 24.82 21.86 23.34 28.87 29.89 29.38

LightGaussian 25.20 21.54 26.96 26.77 22.69 31.40 28.48 30.87 31.41 27.13 25.40 21.84 23.44 - - -

Ours 24.20 20.45 27.78 25.39 22.01 31.93 29.53 31.38 32.05 27.19 25.28 21.93 23.61 29.25 30.00 29.63

Table 7: SSIM scores of our method on the Mip-NeRF360 dataset, the Tanks&Temples dataset, and
the Deep Blending dataset.

Method
Mip-NeRF360 Tanks&Temples Deep Blending

bicycle flowers garden stump treehill room counter kitchen bonsai Avg truck train Avg drjohnson playroom Avg

Plenoxels 0.496 0.431 0.606 0.523 0.509 0.8417 0.759 0.648 0.814 0.626 0.774 0.663 0.719 0.787 0.802 0.795
INGP-Base 0.491 0.450 0.649 0.574 0.518 0.855 0.798 0.818 0.890 0.671 0.779 0.666 0.723 0.839 0.754 0.797
INGP-Big 0.512 0.486 0.701 0.594 0.542 0.871 0.817 0.858 0.906 0.699 0.800 0.689 0.745 0.854 0.779 0.817

Mip-NeRF360 0.685 0.583 0.813 0.744 0.632 0.913 0.894 0.920 0.941 0.792 0.857 0.660 0.759 0.901 0.900 0.901
3DGS 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938 0.815 0.879 0.802 0.841 0.899 0.906 0.903

Compact 3DGS 24.77 20.89 26.81 26.46 22.65 30.88 28.71 30.48 32.08 27.08 25.35 22.07 23.71 29.06 29.87 29.46
Compressed 3DGS 24.97 21.15 26.75 26.29 22.26 31.14 28.67 30.26 31.35 26.98 24.82 21.86 23.34 28.87 29.89 29.38

LightGaussian 25.20 21.54 26.96 26.77 22.69 31.40 28.48 30.87 31.41 27.13 25.40 21.84 23.44 - - -

Ours 0.744 0.580 0.872 0.728 0.614 0.925 0.909 0.923 0.938 0.804 0.882 0.802 0.842 0.898 0.906 0.902

Table 8: LPIPS scores of our method on the Mip-NeRF360 dataset, the Tanks&Temples dataset, and
the Deep Blending dataset.

Method
Mip-NeRF360 Tanks&Temples Deep Blending

bicycle flowers garden stump treehill room counter kitchen bonsai Avg truck train Avg drjohnson playroom Avg

Plenoxels 0.506 0.521 0.386 0.503 0.540 0.4186 0.441 0.447 0.398 0.463 0.335 0.422 0.379 0.521 0.499 0.510
INGP-Base 0.487 0.481 0.312 0.450 0.489 0.301 0.342 0.254 0.227 0.371 0.274 0.386 0.330 0.381 0.465 0.423
INGP-Big 0.446 0.441 0.257 0.421 0.450 0.261 0.306 0.195 0.205 0.331 0.249 0.360 0.305 0.352 0.428 0.390

Mip-NeRF360 0.301 0.344 0.170 0.261 0.339 0.211 0.204 0.127 0.176 0.237 0.159 0.354 0.257 0.237 0.252 0.245
3DGS 0.205 0.336 0.103 0.210 0.317 0.220 0.204 0.129 0.205 0.214 0.148 0.218 0.183 0.244 0.241 0.243

Compact 3DGS 0.286 0.399 0.161 0.278 0.363 0.209 0.205 0.131 0.193 0.247 0.163 0.240 0.201 0.258 0.258 0.258
Compressed 3DGS 0.240 0.358 0.144 0.250 0.351 0.231 0.215 0.140 0.217 0.238 0.161 0.226 0.194 0.254 0.252 0.253

LightGaussian 0.218 0.352 0.122 0.222 0.338 0.232 0.220 0.141 0.221 0.237 0.155 0.239 0.202 - - -

Ours 0.205 0.342 0.097 0.235 0.311 0.197 0.191 0.125 0.199 0.211 0.136 0.219 0.177 0.233 0.225 0.229

17


	Introduction
	Related Work
	Preliminaries: Gaussian Splatting
	Sort-free Gaussian Splatting via Weighted Sum Rendering
	Sort-free Gaussian Splatting
	Weighted Sum Rendering
	View-dependent opacity
	Implementation details

	Experimental Results
	Comparison with state-of-the-art methods
	Computational complexity study
	Ablation study

	Conclusions
	Implementation details on mobile phones
	Per Scenes Evaluation Metric
	More Discussions
	Limitations and Future Work

