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ABSTRACT

In recent years, using predefined agentic workflows to guide large language models
(LLMs) for literature classification and review has become a research focus. However,
writing research introductions is more challenging. It requires rigorous logic, coherent
structure, and abstract summarization. Existing workflows often suffer from long reason-
ing chains, error accumulation, and reduced textual coherence. To address these limita-
tions, we propose eliminating external agentic workflows. Instead, we directly parameter-
ize their logical structure into the LLM. This allows the generation of a complete intro-
duction in a single inference. To this end, we introduce the Stage Token for Introduction
Generation (STIG). STIG converts the multiple stages of the original workflow into ex-
plicit stage signals. These signals guide the model to follow different logical roles and
functions during generation. Through instruction tuning, the model learns the mapping
between stage tokens and text functions. It also learns the logical order and transition pat-
terns between stages, encoding this knowledge into the model parameters. Experimental
results show that STIG can generate multi-stage text in a single inference. It does not re-
quire explicit workflow calls. STIG outperforms traditional agentic workflows and other
baselines on metrics of semantic similarity and sentence-level structural rationality. The
code is provided in the Supplementary Materials.

1 INTRODUCTION

In recent years, large language models (LLMs) and LLM agents have become essential tools throughout the
entire scientific research lifecycle (Zhang et al., 2025b; Lu et al., 2024). Early studies have shown that they
can accelerate scientific discovery (Garikaparthi et al., 2025; Li et al., 2025; Langley, 2024; Wang et al.,
2023), generate innovative research hypotheses (Yang et al., 2024b), and even participate in experimental
design and execution (Zhao et al., 2025; Boiko et al., 2023; Huang et al., 2024). Now, LLMs have been
integrated into interactive research agents, enabling end-to-end support from academic database retrieval to
iterative manuscript refinement.

However, current LLM-based approaches for academic writing still face critical limitations that hinder broad
adoption. Many existing methods rely on agentic workflows (Liu et al., 2025), which divide the writing pro-
cess into discrete stages, such as background composition and problem articulation. Specialized agents are
assigned to each stage. These workflows depend heavily on carefully handcrafted designs for agent roles,
invocation sequences, and fallback strategies. Any change in task granularity or domain conventions may
require costly workflow reconfiguration. These methods also rely on multi-turn iterative interactions and
opaque API calls. This increases token usage, slows inference, and adds substantial computational over-
head. A typical generation pipeline is illustrated in the upper half of Figure 1. Prior LLM-based academic
writing research, exemplified by AutoSurvey (Wang et al., 2024b) and SURVEYFORGE (Yan et al., 2025),
has mostly focused on literature reviews. These methods emphasize document classification and summariza-
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Section 1: [NAME OF SECTION 1]
Description 1: [DESCRIPTION]
 ...
Section K: [NAME OF SECTION K]
Description K: [DESCRIPTION]

Stage 1: Writing Outline Stage 2: Writing Subsection

Subsection 1 Subsection Kā ā ā

Stage 3: Integration
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<STAGE7>{Section of Contributions}<END7> Final Content
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Introduction Writer

Writing Parse

Agentic Workflow
for Writing

Pipeline

Figure 1: Comparison of Agentic Workflow and STIG in writing. Agentic workflows rely on multi-turn
interactions. They complete writing step by step, including outline generation, subsection drafting, inte-
gration, and refinement. In contrast, STIG generates the content in a single inference. The final output is
obtained by parsing the generated text according to stage tokens.

tion. However, generating specific manuscript sections, such as the Introduction, has been largely neglected.
The Introduction is a core section that integrates research background, objectives, and contributions into
a coherent and logically rigorous narrative. Its quality directly affects the clarity, logical flow, and schol-
arly impact of a paper. Yet existing workflow-based LLM agents often omit or fabricate critical content,
such as experimental results or baseline comparisons, which undermines the paper’s factual accuracy and
persuasiveness.

To address cascading errors, structural drift, and computational redundancy caused by brittle, manually de-
signed agentic workflows, we propose the Stage Token for Introduction Generation (STIG) model. STIG
compresses multi-stage writing logic into a single inference using parametric stage tokens. This eliminates
the need for manually orchestrated workflows. The model converts the multiple stages of the original work-
flow into explicit stage signals. These signals guide the model to follow different logical roles and functions
during generation. Through instruction tuning, the model learns the mapping between stage tokens and text
functions. It also learns the logical order and transition patterns between stages. This knowledge is directly
encoded into the model parameters. We construct a high-quality training dataset by parsing over 2,600 sci-
entific papers. Each sample is split into eight sequential subtasks across four core subsections: Background,
Problem Statement, Methodological Overview with Results, and Research Contributions. Each subsection is
further divided into Outline Generation and Content Drafting. All samples are annotated with stage tokens,
such as ⟨STAGE0⟩ for Background outlines and ⟨STAGE1⟩ for Background content. This explicitly encodes
the temporal logic of introduction writing. Using this dataset, we fine-tuned open-source LLMs to generate
structured and academically rigorous introductions in a single inference. The process is illustrated in the
lower half of Figure 1.

We conduct experiments on 1,176 papers from the ACL 2025 Main Conference, comparing STIG with
one-shot methods such as Pure Prompt and prevalent agentic-workflow baselines. We evaluate the generated
introductions at both the overall semantic level and sentence-level structural rationality. Experimental results
show STIG model eliminates agentic workflow dependencies and achieves a computational efficiency of up
to 3.3 times that of agentic workflows, while generated introductions also outperform those from agentic
workflows and other baselines in terms of semantic similarity and structural rationality metrics.

This work advances academic introduction writing through three key contributions. (1) We introduce STIG
model, which eliminates agentic workflow by integrating parametric stage. (2) We decompose introduction
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writing into multiple stages and construct the corresponding training data, integrating stage tokens into both
model training and inference. During inference, stage-wise generation is accomplished by conditioning
on these stage tokens. Additionally, we construct a customized dataset tailored for training and testing
introduction generation, derived from over 3,800 ACL main conference papers. (3) Experimental results
demonstrate STIG model outperforms agentic workflows on composite metrics like semantic similarity,
structural rationality, and content coverage, producing introductions that better conform to academic norms.

2 RELATED WORK

2.1 LLM AGENTIC WORKFLOW

Agentic workflows coordinate multiple LLM agents to address complex tasks by decomposing them into
several modulars. In scientific research, these workflows emulate collaborative teams, dividing the academic
writing process into stages, including idea generation (Su et al., 2025; Wu et al., 2023; Baek et al., 2025),
literature review (Zimmermann et al., 2024; Agarwal et al., 2024), experimental design (Ye et al., 2025), and
results analysis (Schmidgall et al., 2025). Existing studies focus on developing communication protocols,
reflection strategies to enhance agent self-awareness, and adaptive autonomous multi-agent systems that
adjust to task variations (Zhang et al., 2025a; Hu et al., 2025a). However, these workflows require metic-
ulous design of agent interactions and task assignments, significantly increasing complexity and limiting
scalability for practical applications (Liu et al., 2025). Additionally, reliance on opaque API calls restricts
access to model parameters, while multi-turn interactions incur high token costs and latency. To this end,
our STIG model employs stage tokens to enable end-to-end generation of introductions in a single inference
step, reducing computational costs.

2.2 LLMS FOR SCIENTIFIC PAPER WRITING

LLMs support academic writing tasks, including citation generation, literature synthesis, and section draft-
ing. For citation generation, multimodal networks generate intent-aware summaries, while graph-based
clustering organizes related studies (Ge et al., 2021; Wang et al., 2021; Hu et al., 2025b). In writing tasks,
LLMs apply task decomposition and retrieval-augmented generation to automate literature reviews through
multi-stage pipelines of retrieval, outlining, drafting, and refinement, achieving high citation recall (Wang
et al., 2024b). Other methods improve coherence using outline heuristics and memory-driven refinement
(Yan et al., 2025). Multi-agent systems with iterative reinforcement learning support drafting and simulated
analysis, often relying on fabricated experimental data (Weng et al., 2025). However, prior research has
narrowly concentrated on literature review generation. Compared with the encyclopedic coverage sought by
surveys, introduction writing poses a sharper rhetorical challenge because it must simultaneously map the
scholarly background, pinpoint the research gap, and foreshadow the empirical contribution. The absence of
any single argumentative link disrupts textual coherence and precipitates the omission of critical evidentiary
elements such as experimental outcomes (Garg et al., 2025). Our STIG model introduces a curated dataset
and stage tokens to generate structured, authentic introductions for scientific papers.

3 STAGE TOKEN FOR INTRODUCTION GENERATION

3.1 GENERATION WITH STAGE TOKEN

STIG model generates introductions for scientific papers using core materials from a completed paper, de-
noted as M = {T ,A,F , T A,R}, where T is the title, A is the abstract, F is the descriptions of the paper’s
figures, T A represents descriptions and table contents of the paper’s tables, and R is the abstracts of base-
line references, providing context. T and A provide the research theme and core logic of the study while
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Figure 2: Overview of the STIG Model Architecture. STIG integrates eight stage-token pairs that guide
the generation of four subsections, across outline and content phases. We highlight the flow from core
input materials to structured output, emphasizing the single inference mechanism and the role of parametric
stage tokens in enhancing logical coherence. The top-right corner illustrates the stage writing finetuning
procedure, which constitutes a component of our ablation study in section 5.2.

F , T A, and R collectively serve as content support for introduction generation. Traditional outline-based
methods first produce an outline O = {o1, o2, . . . , on} leveraging M as input where O = LLM(M). Then,
paragraphs are generated for each outline point and merged into the final introduction I:

I = Merge(s0, s1, · · · , sn), (1)
where si = LLM(oi) for i ∈ [0, n]. Specifically, an LLM agent generates a dedicated paragraph si for
each individual outline point oi. Merge(·) function consolidates all generated paragraphs {s0, s1, · · · , sn}
into a cohesive introduction I. This multi-step process introduces inefficiencies due to sequential calls and
potential inconsistency.

The STIG model integrates an end-to-end generation process for Introductions, using core materials M =
{T ,A,F , T A,R} to guide structured output. To enforce a fixed generation order, it employs eight stage-
token pairs, from ⟨STAGE0⟩-⟨END0⟩ to ⟨STAGE7⟩-⟨END7⟩, corresponding to outline and content tasks
for four subsections: Background, Problem and Limitations of Existing Methods, Brief Method Overview
and Summary of Main Results, and Contributions. For instance, ⟨STAGE0⟩-⟨END0⟩ denotes the Back-
ground outline, and ⟨STAGE1⟩-⟨END1⟩ its content, decomposing the process into eight sequential subtasks
to provide clear stage signals and support the logic of outline-to-content and modular generation.

This end-to-end approach mitigates inefficiencies from multi-agent workflows by generating the entire In-
troduction in a single inference step. The token sequence for stage k + 1, Sk + 1 = {⟨STAGEk +
1⟩, sk+1,1, sk+1,2, . . . , ⟨ENDk + 1⟩}, is predicted based on the concatenated prior stages S<k+1 = S0 ⊕
S1 ⊕ · · · ⊕ Sk, where Si = {⟨STAGEi⟩, si1, si2, . . . , ⟨ENDi⟩} includes stage tokens and content. The joint
probability of the introduction is:

P (S0 ⊕ S1 ⊕ · · · ⊕ Sn) =

T∏
t=1

P (St | S<t). (2)
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The probability of generating tokens for the (k + 1)-th stage is:

pθ(Sk+1 | S<k+1) =
∏

t∈Tk+1

pθ(yt | S<k+1 ⊕ Y<t). (3)

Here, Tk+1 denotes the set of position indices of all tokens in the (k + 1)-th stage (e.g., T1 corresponds
to the positions of ⟨STAGE1⟩, Background content tokens, and ⟨END1⟩). S<k+1 ⊕ Y<t represents the
concatenation of the complete sequence of the previous k stages and the preceding tokens Y<t of the (k+1)-
th stage. This ensures that when the model generates the current token, it can simultaneously refer to the
logic of all previous stages and the content already generated in the current stage.

During training process, the stage association logic of from previous outline to current content and from cur-
rent section to next section is internalized into the model parameters θ. The training model can automatically
complete the prediction and generation of previous from stage to next stage based on Equation 2 without
manual intervention, realizing end-to-end Introduction generation.

3.2 DATA CONSTRUCTION

To train STIG model effectively, we constructed a dataset through a two-step process of batch collection
and structured conversion. First, we collected long papers from ACL 2021–2025 Main Conferences via
the official open interface of the ACL Anthology digital library 1. Second, we employed the MinerU tool
(Wang et al., 2024a) to perform structured parsing on these PDFs, converting contents into Markdown and
JSON formats. We extract key materials including title, abstract, introduction, figures, and tables, providing
data foundation for model input preparation. In total, we obtained over 3,800 papers, with 1,176 of them
(ACL 2025) utilized as test data. As a supplement, we employ GPT-4o (Achiam et al., 2023) to extract
citation identifiers (e.g., Smith et al., 2023) from experimental sections and match them with reference lists
to retrieve metadata and obtain full abstracts via the Semantic Scholar API, ultimately creating an auxiliary
dataset of baseline references.

For STIG’s phased generation, a triple framework of core materials, subsection outlines, and subsection
content directs the annotation process. We employ GPT-4o to annotate introduction sections, targeting four
subsections. Each subsection received two types of annotations: outline annotations extracted logical key
points in list form (e.g., current research status and bottlenecks for the Background subsection), and content
annotations merged original sentences into coherent paragraphs aligned with the outlines, ensuring one-to-
one correspondence between them. Annotation results are stored in with each sample including subsection
outline and subsection content, as detailed in Figure 2, details are shown in Appendix B. Based on these
annotations, eight specialized training groups are constructed, corresponding to outline and content tasks for
each subsection, providing precise supervision for STIG’s phased learning.

3.3 TRAINING AND INFERENCE

All models are trained on 8 × A800 GPUs using the LLaMA-Factory framework (Zheng et al., 2024) with
ZeRO3 optimization (Rajbhandari et al., 2020) to handle memory constraints efficiently during the finetuning
process.

During the inference phase, the trained model generates content in a structured manner, producing text
containing Stage tokens. It then removes the outline sections, extracts the main content sections, and finally
concatenates the four parsed sections to form the final Introduction.

1https://aclanthology.org/
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4 EXPERIMENTAL SETTINGS

4.1 BACKBONE LLMS AND BASELINES

We employ two widely used open-source LLMs as backbones: Qwen2.5-7B-Instruct (Yang et al., 2024a)
and Llama3.1-8B-Instruct (Dubey et al., 2024) and we compared our proposed method with the following
baselines:

Pure Prompt: A baseline using only prompt engineering without explicit outline guidance, where the model
generates the introduction directly based on input materials.

ELABORATE Prompt (Garg et al., 2025): ELABORATE prompt enforces a strict four-paragraph struc-
ture (each 100–150 words), detailing context, gaps, contributions, and impact.

Outline Writing: A two-stage approach where the model first generates an outline for the introduction and
then expands it into full content sequentially.

AutoSurvey (Wang et al., 2024b): An advanced outline-based method that incorporates survey-style struc-
tured prompting to guide the outline generation process, enhancing the coverage of existing literature.

STIG (Our method): Our proposed STIG model, which eliminates agentic workflows and integrates stage
tokens into the sequence generation process after SFT to learn the phased writing logic.

4.2 MULTI-DIMENSIONAL EVALUATION METRICS

To comprehensively assess generated introductions, we adopt multi-dimensional evaluation metrics covering
semantic similarity, structural rationality, content coverage, narrative quality, and hard constraints.

Semantic Similarity (SS) evaluates the consistency of meaning between the generated introduction and the
original introduction. It measures the degree to which the generated introduction is semantically accurate.
We adopt BERTScore (Zhang* et al., 2020) as the specific metric for this purpose.

Structural Rationality (SR) verifies adherence to the introduction framework (Background, Problem and
Limitations, Method Overview, Research Contributions) by checking subsection boundaries. It quantifies
content confusion avoidance, labeling sentences and computing the error rate from misclassified sentences
(Cmis) over total sentences (Ctotal):

Structural Rationality = 1− Cmis

Ctotal
. (4)

Content Coverage (CC) measures the extent to which a generated introduction captures key contents
from the original, combining content completeness and structural rationality. It calculates sentence-level
SBERT similarity (sj) between each generated subsection sentence and the corresponding original subsec-
tion, weighted by a rationality label (rj : 1 for correct classification, 0 for incorrect). The base score averages
weighted similarities, adjusted by a missing coefficient (k: 1 for no missing subsections, 0.75 for one):

CC =

 1

m

m∑
j=1

(sj × rj)

× k, (5)

where m denotes the total number of sentences.

Narrative Quality (NQ) evaluates fluency and readability. We employ Perplexity (PPL), computed as
average negative log-likelihood per token under GPT-2 (Radford et al., 2019) as the metric with lower values

6
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Table 1: Quantitative results of STIG and baselines. All methods are tested on 1,176 main conference
papers from ACL 2025. Our method outperforms the baselines overall, particularly in terms of structural
rationality and content coverage. Additionally, as Llama3.1-8B-Instruct is unable to produce the outline
format required by AutoSurvey, the corresponding experiments could not be conducted. Underlined text
indicates poor readability.

LLM Methods SS SR CC NQ QC

Qwen2.5-7B-Instruct

Pure Prompt 0.975 0.749 0.394 25.426 0.95
ELABORATE Prompt 0.972 0.722 0.327 28.461 0.97
Outline Writing 0.972 0.706 0.357 28.613 0.99
AutoSurvey 0.966 0.658 0.333 18.084 0.92
STIG (Ours) 0.977 0.832 0.442 24.810 1.00

Llama3.1-8B-Instruct

Pure Prompt 0.975 0.772 0.427 14.843 1.00
ELABORATE Prompt 0.980 0.800 0.447 19.981 1.00
Outline Writing 0.958 0.759 0.404 26.328 1.00
AutoSurvey — — — — —
STIG (Ours) 0.978 0.836 0.472 20.717 1.00

(below 25 for strong readability) signifying better quality. For sequence T = [t1, t2, ..., tn]:

PPL(T ) = n

√√√√ n∏
i=1

1

P (ti | t1, ..., ti−1)
, (6)

where P (ti | t1, ..., ti−1) is the conditional probability of token ti. To avoid numerical underflow,

Hard Constraints assess instruction following ability, focusing on Quotation Constraint (QC). Explicit
instructions exclude citations, and non-compliance occurs if markers (e.g., Smith et al., 2023, [12]) appear.

5 EXPERIMENTS AND ANALYSIS

5.1 QUANTITATIVE RESULTS

We conducted a comparative analysis between baseline methods and our proposed STIG model, with re-
sults presented in Table 1. The experimental findings substantiate STIG’s efficacy in elevating the quality of
generated introductions, with a particular emphasis on structural rationality, a critical metric reflecting ad-
herence to the academic introduction writing framework. This pronounced structural coherence underscores
the strategic advantage of STIG’s stage-token training, which meticulously delineates module boundaries,
mitigates content confusion, and ensures logical progression through SFT. STIG outperforms baselines by
up to 17.4% in structure rationality (e.g., 0.832 vs. 0.658 against AutoSurvey on Qwen2.5-7B-Instruct),
leveraging parametric stage tokens to encode phased generation logic. Complementing this, STIG achieves
superior content coverage and semantic similarity, reflecting robust content fidelity and completeness. In
contrast, relying on agentic workflows, Outline Writing and AutoSurvey exhibit structural deficiencies due
to isolated module generation followed by post-hoc integration, amplifying cascading errors and yielding
performance inferior to the simpler Pure Prompt baseline, as evidenced by its inconsistent structural ratio-
nality and content coverage scores. As shown in Figure 3, introduction generated by AutoSurvey exhibits
extreme academic irregularity and weak logical coherence.

7
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Managing intricate tasks that necessitate iterative dialogue and feedback poses significant challenges for large
language models (LLMs). As these models increasingly engage with complex environments, their effectiveness hinges
on the ability to efficiently incorporate feedback into successive interactions. Traditional methods such as sequential
revision and parallel sampling struggle with length generalization and lack the ability to self-reflect, leading to
suboptimal performance. Moreover, naive retry mechanisms fail to leverage prior knowledge, further hindering
progress. To address these limitations, we introduce FTTT (Feedback-Enabled Test-Time Training), a paradigm that
formulates feedback utilization as an optimization problem at test time. We also propose OpTune āāā.

 Addressing complex tasks that require iterative refinement and continuous feedback presents significant challenges
for current methods. Existing schemes such as Revision (Snell et al., 2024), āāā leading to suboptimal performance.
Beam Search, despite its efficiency, also falters in length generalization. In contrast, our proposed approach, FTTT, āāā
overcome these limitations through a robust optimization framework at test time. Figures 1 and Table 1 illustrateāāā.
        Next, we introduce Fine-Tuning Through Testing-Time Optimization (FTTT), a novel framework that formulates
feedback āāā Background Problem Method

Figure 3: The introduction generated by AutoSurvey, with each sentence annotated to correspond
to one of the four subsections. The introduction generated by AutoSurvey exhibits a highly irrational
structure, with excessive and repetitive emphasis on the method. Detailed introduction is shown in D.2.

Table 2: Ablation results. We test the effectiveness of finetuning and stage writing. Among them, finetun-
ing brings stable performance improvements, while stage writing needs to be combined with finetuning to
achieve more effective performance enhancements due to deviations in the agentic workflow. Underlined
text indicates poor readability.

LLM Methods SS SR CC NQ QC

Qwen2.5-7B-Instruct

FT w/o Stage Writing 0.980 0.797 0.433 26.350 1.00
Stage Writing w/o FT 0.971 0.682 0.390 20.341 0.96
Stage Writing FT 0.978 0.800 0.430 38.174 1.00
STIG (Ours) 0.977 0.832 0.442 24.810 1.00

Llama3.1-8B-Instruct

SFT w/o Stage Writing 0.980 0.790 0.440 20.054 1.00
Stage Writing w/o FT 0.968 0.819 0.450 13.864 0.98
Stage Writing FT 0.980 0.842 0.495 27.183 1.00
STIG (Ours) 0.978 0.836 0.472 20.717 1.00

5.2 ABLATION STUDIES

The ablation study, as detailed in Table 2, substantiates the pivotal roles of stage writing and finetuning in
enhancing the efficacy of the STIG model.

FT w/o Stage Writing: This approach involves finetuning the model on the annotated dataset without incor-
porating outline and stage tokens or phased writing logic.Pure finetuning significantly elevates semantic sim-
ilarity, yet its performance in structural rationality remains constrained, suggesting that while this approach
optimizes semantic fidelity, it inadequately ensures the structural coherence of generated introductions.

Stage Writing w/o FT employs agentic workflow to perform stage-based writing (from outline to content)
across the four subsections, relying on agent interactions without SFT. The stage writing methodology em-
beds a deliberate structural design intent, but unmitigated errors propagate through the agentic workflow and
produce suboptimal structural rationality scores.

8
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Figure 4: Statistics on token consumption and effectively generated tokens. Our method demonstrates
the highest token usage efficiency, which is 3.3 times that of AutoSurvey and twice that of Stage Writing FT.

Stage Writing FT also employs the same multi-agent system to perform stage-based writing across the
four subsections and trains all the agents with LoRA (Hu et al., 2022) (LoRA reduce memory usage and
enable easy switching). Differently, it integrates task-specific finetuning into the stage writing framework,
which effectively mitigate the inherent error propagation of agentic workflows, yielding performance levels
approaching that of STIG. Details are shown in Figure 2.

STIG model combining supervised finetuning with the internalization of stage writing into parametric stage
tokens achieves superior structural rationality while closely aligning semantic content with the original intro-
duction. This holistic enhancement is quantitatively supported by STIG’s elevated content coverage score,
surpassing that of competing models.

5.3 EFFICIENCY ANALYSIS

We investigated the efficiency of various methods using Qwen as the backbone LLM, quantifying the total
token consumption and the number of effectively generated tokens, as depicted in Figure 4. STIG exhibits a
marked efficiency advantage, consuming the fewest total tokens, attributable to its streamlined prompt design
and end-to-end generation approach, achieving an effectiveness rate over three times that of AutoSurvey.
Compared to Stage Writing FT, which undergoes similar finetuning and delivers comparable performance,
STIG demonstrates double the efficiency, as the latter incurs greater token expenditure due to the overhead
of multi-agent interactions. This reduction in token usage, particularly in total token count, underscores
STIG’s capability to simplify the generation process and minimize redundant computations.

6 CONCLUSION AND LIMITATIONS

Conclusion. This paper introduces the STIG model, which eliminites external agentic workflows. By pa-
rameterizing stage token, it internalizes the logical structure of the agentic workflow into the LLM itself, en-
abling single generation that avoids cascaded errors and inefficiencies of agentic workflows for introduction
writing of scientific papers. Experimental evaluations across diverse model backbones demonstrate STIG’s
superiority, exhibiting enhanced structural rationality, semantic fidelity, and content coverage while main-
taining narrative coherence and adherence to academic norms. These outcomes affirm the STIG model’s
capacity to streamline phased generation and reduce computational demands.

Limitations. This study acknowledges several limitations inherent to the STIG model. First, the model’s
training relies on a dataset derived from a specific domain, potentially limiting its generalizability to other
academic fields or manuscript types beyond computer science conference papers. Additionally, the model’s
dependence on annotated data assumes high-quality annotations, and any inconsistencies could impact per-
formance.
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ETHICAL STATEMENT

In this study, we only employ LLMs as an exploratory tool to generate the introduction section of conference
papers in the field of computer science. The core objective is to evaluate their auxiliary potential in academic
research, not to advocate for the unsupervised use of LLMs in academic writing scenarios. While LLMs
can produce initial drafts of sections that appear logically coherent and format-compliant with academic
standards, they are prone to significant issues such as factual errors, including misleading representations of
fundamental concepts in the field and inaccuracies in key technical details.

This study emphasizes that all academic content generated by LLMs must undergo sentence-by-sentence
verification, factual validation, and targeted revision by researchers to ensure the content’s accuracy, rigor,
and academic integrity. This process further confirms that throughout the entire academic writing work-
flow, the role of human researchers in providing professional judgment, knowledge verification, and quality
control is irreplaceable, serving as a core link in safeguarding the credibility of academic outcomes.

REPRODUCIBILITY STATEMENT

This study ensures the full reproducibility of the Stage Token for Introduction Generation (STIG) model by
providing open access to supplementary materials and documentation.

The source code, including scripts for model generation (main experiments and ablation studies) and eval-
uation (semantic similarity, structural rationality, content coverage, narrative quality and hard constraints),
is presented in the supplementary materials. Detailed model configuration information is documented in the
experimental setup, encompassing the Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct backbones. LLMs
are trained employing the LLaMA-Factory framework and ZeRO3 optimization. For evaluating structural
rationality, this study employs the Qwen2.5-32B-Instruct model.

The ACL dataset used in this study for training and testing contains annotated introduction sections of
papers. It is available for research purposes, though its usage must comply with relevant licensing terms.
Potential challenges include hardware dependencies on high-performance GPUs and the need for consistent
annotation quality, which may affect replication across diverse environments.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, LLMs are used exclusively for grammar correction and text polishing to improve readability.
They did not contribute to research ideation, content generation, or any substantive aspects of the work. We
(the authors) bear full responsibility for all contents, ensuring originality and accuracy.

B ANNOTATION OF TRAINING AND TESTING DATA

The following is the prompt used in this paper to extract the outline and content of the four subsections via
GPT-4o. A metadata sample immediately follows.

Prompt for Extracting

Please break down the introduction section of the following academic
paper into a structured outline format for academic discussion
purposes.

The content should be divided into the following four sections,
extracting key points for each:

1. Background: Basic background and significance of the research field
- Number of points: 2-4

2. Problem and Limitations of Existing Methods: Current issues,
challenges, and limitations of existing methods
- Number of points: 2-6

3. Brief Method Overview and Summary of Main Results: Overview of the
proposed method, main experimental results, and findings
- Number of points: 4-8

4. Our Contributions: Main contributions and innovations of the paper
- Number of points: 2-3

Please output in the following JSON format, including outline points and
paragraphs classified by section:

{
‘‘sections’’: {

‘‘Background’’: ‘‘Combine all paragraphs and sentences belonging
to the background section’’,

‘‘Problem and Limitations of Existing Methods’’: ‘‘Combine all
paragraphs and sentences belonging to the problems and
limitations section’’,

‘‘Brief Method Overview and Summary of Main Results’’: ‘‘Combine
all paragraphs and sentences belonging to the method overview
and main results sections’’,

‘‘Our Contributions’’: ‘‘Combine all paragraphs and sentences
belonging to the contributions section’’

},
‘‘outline’’: {

‘‘Background’’: [‘‘Point 1’’, ‘‘Point 2’’, ...],
‘‘Problem and Limitations of Existing Methods’’: [‘‘Point 1’’,

‘‘Point 2’’, ...],
‘‘Brief Method Overview and Summary of Main Results’’: [‘‘Point

1’’, ‘‘Point 2’’, ...],
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‘‘Our Contributions’’: [‘‘Point 1’’, ‘‘Point 2’’, ...]
},

}

Introduction content:
{text}

Notes:
1. Analyze the content coherently and categorize it into the appropriate

sections, strictly controlling the number of points for each section.
2. When assigning sections, ensure continuity; for example, Background

must be at the beginning of the article, and if there is an Our
Contributions section, it must be at the end. In some paragraphs, the
first part might belong to section 1, and the latter part to section
2. There should be no section 1, section 2, section 1 sequences.

3. Some papers may not have a section similar to Our Contributions; if
so, generate an empty Our Contributions field.

4. First, divide the sections, then perform an outline analysis to
identify key points.

5. Do not use demonstrative pronouns like ‘‘this’’ or ‘‘the model’’ in
the key points; use specific names if available.

Metadata of Training and Testing data

{
‘‘sections’’: {

‘‘Background’’: ‘‘Text embeddings, essential language features,
are foundations of semantic textual similarity (STS) tasks,
which quantify how similar two text pieces are in semantics.
They broadly benefit downstream tasks, such as information
retrieval and clustering, and are particularly helpful in many
recent LLMs-based applications; e.g., many RAG tasks employ
text embeddings for retrieval.’’,

‘‘Problem and Limitations of Existing Methods’’: ‘‘The existing
STS training commonly involves optimizing cosine functions -
the learning objective to indicate the similarity of pairwise
text embeddings. However, the cosine has saturation zones,
resulting in gradient vanishing in optimization regardless of
the network depth. The gradient will be close to zero for
embedding pairs falling in the saturation zone, preventing
parameters from updating in backpropagation. Because embedding
pairs in saturation zones are nearly aligned or antialigned, it
hinders text embedding models from discerning subtle, implicit
differences that appear similar yet are actually dissimilar in
semantics. Such pairs commonly appear in STS training data from
Natural Language Inference (NLI) datasets, such as the
Multi-Genre NLI (MNLI) and the Stanford NLI (SNLI). They
typically include three labels of entailment, neutral, and
contradict; pairs in saturation zones may render obscure
cross-label boundaries. To illustrate this point, Figure 1
shows an example from the SNLI dataset. The ‘‘neutral’’ pair
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shows a high appearance similarity (with many shared words)
instead of semantically similar. The similar appearance
similarity results in them falling into cosine’s saturation
zones, causing vanishing gradients during optimization.
Consequently, the model mistakenly considers their relations as
‘‘entailment’’ instead of their correct label ‘‘neutral.’’’’,

‘‘Brief Method Overview and Summary of Main Results’’: ‘‘Viewing
these concerns, we aim to tackle the negative effects of the
cosine’s saturation zones in embeddings and propose a novel
Angle-optimized Embedding (AoE) model for STS. It decomposes an
embedding into real and imaginary components through complex
division, aiming to employ the real component for reflecting
appearance differences and the imaginary component for subtle
differences. It allows AoE to involve the optimization of the
angle difference to understand subtle differences in text pairs
for similarity learning. To the best of our knowledge, we are
the first to explore the negative effects of cosine’s
saturation zones and optimize angle differences through
division in complex space for text embedding learning. In the
STS experimental setup, we observed that most existing STS
benchmarks focus on evaluating models on short texts.
Unfortunately, limited datasets are available to evaluate the
STS performance on long texts. However, long texts are
prevalent in real-world applications such as financial and
legal documents. To tackle this challenge, we present a
high-quality long-text STS dataset collected from GitHub Issues
with roughly 22K samples. It allows for a more comprehensive
evaluation of STS performance with long texts. We first
experimented with short- and long-text STS datasets in the
standard and in-domain STS tasks, where AoE outperforms
non-trivial baselines in varying embedding backbones. Then, AoE
shows consistently superior results in facilitating various
downstream tasks, indicating its benefits in diverse scenarios.
In particular, AoE achieves SOTA results on the Massive Text
Embedding Benchmark (MTEB) at the same model scale. Next, an
ablation study indicates that all modules positively contribute
to AoE. Finally, we further discuss how AoE learns better
embeddings in cosine saturation zones.’’,

‘‘Our Contributions’’: ‘‘In summary, our contributions are as
follows: We investigate the effects of cosine saturation zones
for STS and optimize angle differences in complex space for
improving text embedding. We extend the existing STS benchmark
with a new long-text dataset from Github Issues to allow more
comprehensive STS empirical studies. We present extensive
experiments demonstrating that AoE effectively handles cosine
saturation zones to broadly benefit text embedding learning and
create positive effects in various scenarios.’’

},
‘‘outline’’: {

‘‘Background’’: [
‘‘Text embeddings are foundational for semantic textual

similarity tasks.’’,
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‘‘Text embeddings benefit downstream tasks like information
retrieval and clustering.’’,

‘‘Text embeddings are particularly useful in LLMs-based
applications.’’

],
‘‘Problem and Limitations of Existing Methods’’: [

‘‘Optimizing cosine functions in STS training leads to
gradient vanishing.’’,

‘‘Cosine saturation zones prevent parameter updates during
backpropagation.’’,

‘‘Models struggle to discern implicit differences in
embeddings in saturation zones.’’,

‘‘STS data often have embedding pairs in saturation zones
affecting label clarity.’’

],
‘‘Brief Method Overview and Summary of Main Results’’: [

‘‘The AoE model decomposes embeddings for handling cosine
saturation zones.’’,

‘‘AoE optimizes angle differences for better similarity
learning.’’,

‘‘AoE introduces a long-text STS dataset from GitHub Issues
for evaluation.’’,

‘‘AoE outperforms baselines on short- and long-text STS
tasks.’’,

‘‘AoE achieves SOTA results on the Massive Text Embedding
Benchmark.’’,

‘‘An ablation study confirms positive contributions from all
AoE modules.’’,

‘‘AoE improves embedding effectiveness in saturation zones.’’
],
‘‘Our Contributions’’: [

‘‘Investigating cosine saturation zones and optimizing angle
differences.’’,

‘‘Introducing a long-text STS dataset for comprehensive
empirical studies.’’,

‘‘Extensive experiments showing AoE benefits for text
embedding learning.’’

]
}

}

C PROMPT FOR GENERATING INTRODUCTION

Table 3 presents two prompt templates in our experiments for guiding LLMs to generate the introduction
section, including pure prompt and ELABORATE prompt.
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Table 3: Prompt levels for generating the introduction section. It includes Pure Prompt and ELAB-
ORATE Prompt. Among them, ELABORATE Prompt explicitly requires that large language models be
written structurally.

PROMPT LEVEL DESCRIPTION
Pure Prompt You are an expert in academic paper writing. Please proceed

with the academic writing in accordance with the relevant re-
quirements. Please just write the Introduction section of the pa-
per, and do not include any references to other works or authors.
The paper should be written in a formal tone and should be suit-
able for submission to an academic conference.
Please write the Introduction section of the academic paper
based on the following requirements:
1. Your task is to write the Introduction section of an academic
paper based on the given abstract, figures, experimental results
tables and baseline abstracts.
2. The language should conform to academic standards, using
accurate professional terminology, with a word count controlled
between 600 and 1100 words. 3. Please do not write subtitles
such as **Background** to show the sturcture of the introduc-
tion, the subtitle is not suitable for introduction.
Given title: {title}
Given abstract: {abstract}
Given figures: {figures}
Given tables: {tables}
Given references (These baseline references only exist in exper-
iments): {baseline references}
Please write a paper Introduction based on the above informa-
tion. The Introduction should be well-structured, coherent, and
follow the conventions of academic writing. Ensure that the
introduction is original and does not contain any references to
other works or authors. The paper should be written in a for-
mal tone and should be suitable for submission to an academic
conference.

Continued on next page
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PROMPT LEVEL DESCRIPTION
ELABORATE Prompt You are an AI assistant tasked with generating a detailed and

well-structured “Introduction” section of a research paper based
on the provided title, abstract, and research materials. The ab-
stract of the paper outlines its main objectives, methods, and po-
tential contributions. Effectively integrate the given information
to establish a clear research context, articulate the significance of
existing gaps, and explicitly highlight the paper’s methods and
results as well as how it addresses these gaps through its novel
contributions, and finally state the contributions.
**Important Format Requirements**:
- Your response MUST consist of EXACTLY FOUR PARA-
GRAPHS for the “Introduction”.
- DO NOT deviate from this four-paragraph structure.
- Each paragraph must be between 100 and 150 words, totaling
approximately 600 words.
**Structure**:
1. Paragraph 1: Broad overview of the research area, contextual
insights from related materials, significance of the topic.
2. Paragraph 2: Specific problem or gap identified, supported by
related materials.
3. Paragraph 3: Novel contributions of the target paper, includ-
ing its methods and results, and how it addresses the gaps.
4. Paragraph 4: Summary of significance, potential impact, and
research purpose.
**Style and Content Requirements**:
- Maintain a formal academic tone.
- Be as coherent and concise as possible, and directly related to
the title and abstract.
- Use transitional phrases effectively.
**Citation Instructions**:
- Do not mention any citations. For example, “(Smith et al.)”.
Target Paper:
Title: {title}
Abstract: {abstract}
Figures: {figures}
Tables: {tables}
References(These baseline references only exist in experiments):
{baseline references}
**Introduction**:
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D EXAMPLES

The following is the introduction generated by the AutoSurvey and STIG model under the same paper
setting. STIG is trained employing the Qwen2.5-7B-Instruct as the backbone model. We provide the original
title and abstract along with the generated Introduction. Results of AutoSurvey are shown in Table 4 and
Table 5. Results of STIG model are shown in Table 6 and Table 7.

D.1 AUTOSURVEY: EXAMPLES I

Title:

Towards Multi-dimensional Evaluation of LLM Summarization across Domains and Languages

Abstract:

Evaluation frameworks for text summarization have evolved in terms of both domain coverage and metrics.
However, existing benchmarks still lack domain-specific assessment criteria, remain predominantly English-
centric, and face challenges with human annotation due to the complexity of reasoning. To address these,
we introduce MSumBench, which provides a multi-dimensional, multi-domain evaluation of summarization
in English and Chinese. It also incorporates specialized assessment criteria for each domain and leverages a
multi-agent debate system to enhance annotation quality. By evaluating eight modern summarization mod-
els, we discover distinct performance patterns across domains and languages. We further examine large
language models as summary evaluators, analyzing the correlation between their evaluation and summa-
rization capabilities, and uncovering systematic bias in their assessment of self-generated summaries. Our
benchmark dataset is publicly available at https://github.com/DISL-Lab/MSumBench.

Table 4: Generated Introduction by AutoSurvey: Towards Multi-dimensional Evaluation of LLM Summa-
rization across Domains and Languages.

Generated Introduction

Understanding the necessity of text summarization evaluation involves recognizing the crucial role of
summarization techniques in natural language processing (NLP). Over the years, summarization methods have
evolved significantly, yet challenges persist, particularly concerning evaluation. Traditional benchmarks often
lack domain-specificity and remain predominantly centered on English, posing limitations in capturing diverse
contexts and nuances. Moreover, human annotation, a cornerstone of these benchmarks, faces complex
reasoning and inter-annotator agreement (IAA) issues. The introduction of MSumBench addresses these gaps
by providing a multi-dimensional, multi-domain evaluation for summarization in both English and Chinese.
MSumBench employs a multi-agent debate framework to enhance annotation quality and includes
domain-specific key-fact categories, offering a more comprehensive and rigorous assessment. These
improvements are critical for developing more effective summarization models, especially as large language
models increasingly assume roles in both summarization and evaluation tasks.

Unveiling the Limitations of Existing Evaluation Benchmarks highlights several critical issues. Current
benchmarks often lack domain-specific assessment criteria, limiting their applicability across diverse domains
like news and medical literature, and rely heavily on English-centric evaluations such as mFACE, SummEdits,
MFHHD, and UniSumEval, which fail to capture nuances across languages. Additionally, the complexity of
human annotation leads to inconsistent inter-annotator agreement, particularly in faithfulness and
completeness assessments (IAA ranging from 0.55-0.64 for News and 0.82 for Fact Alignment). Addressing
these gaps, MSumBench introduces a multi-dimensional, multi-domain framework that supports
domain-specific key-fact evaluations and leverages a multi-agent debate system to enhance annotation quality.
This novel approach provides a robust foundation for comprehensive summarization model evaluation,
addressing prevailing challenges and offering a more rigorous and nuanced assessment.
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Generated Introduction

Building upon the introduction of MSumBench, this study systematically evaluates summarization systems
across English and Chinese domains, employing specialized criteria for each to enhance realism and
specificity. Unlike existing benchmarks, MSumBench incorporates a multi-agent debate system to improve
annotation quality and reliability. Through the evaluation of eight advanced summarization models, our work
reveals distinct performance patterns across various domains and languages, highlighting MSumBench’s
effectiveness in providing nuanced insights. Notably, our analysis of large language models as evaluators
uncovers systematic biases in their self-assessment, underscoring the importance of robust methodologies in
summarization research. By addressing the limitations of current evaluation benchmarks, MSumBench offers
significant enhancements in annotation quality and evaluation design, providing valuable insights into
summarization system capabilities and setting a robust foundation for future research.

Building upon the introduction of MSumBench as a comprehensive evaluation framework that addresses the
limitations of existing methods by offering multi-domain support, specialized evaluation criteria, and
enhanced annotation quality through a multi-agent debate system, this study systematically examines the
performance of eight modern summarization models. By uncovering distinct performance patterns and biases
in self-evaluation among Large Language Models (LLMs), MSumBench highlights the complexities inherent
in text summarization. The use of LLMs as evaluators reveals systematic discrepancies in their assessment of
self-generated summaries, underscoring the need for further refinement in annotation methods and new
dimensions of evaluation. This benchmark provides valuable insights for advancing the state of the art in text
summarization evaluation, encouraging researchers and practitioners to utilize MSumBench to develop more
robust and transparent summarization systems.

Building upon the systematic evaluation of summarization models provided by MSumBench, our framework
reveals distinct performance patterns and highlights biases in self-evaluation among Large Language Models
(LLMs). By employing LLMs as evaluators, we uncover systematic discrepancies in how they assess their
own summaries. This finding underscores the need for refined annotation methods and new dimensions of
evaluation. Moving forward, researchers and practitioners are encouraged to utilize MSumBench to advance
the state of the art in text summarization evaluation, fostering more robust and transparent summarization
systems.

D.2 AUTOSURVEY: EXAMPLES II

Title:

Learning to Reason from Feedback at Test-Time

Abstract:

Solving complex tasks in a single attempt is challenging for large language models (LLMs). Iterative inter-
action with the environment and feedback is often required to achieve success, making effective feedback
utilization a critical topic. Existing approaches either struggle with length generalization or rely on naive
retries without leveraging prior information. In this paper, we introduce FTTT, a novel paradigm that for-
mulates feedback utilization as an optimization problem at test time. Additionally, we propose a learnable
test-time optimizer, OpTune, to effectively exploit feedback. Experiments on two LLMs across four reason-
ing datasets demonstrate that FTTT and OpTune achieve superior scalability and performance.
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Table 5: Generated Introduction by AutoSurvey model: Learning to Reason from Feedback at Test-Time.

Generated Introduction

Managing intricate tasks that necessitate iterative dialogue and feedback poses significant challenges for large
language models (LLMs). As these models increasingly engage with complex environments, their
effectiveness hinges on the ability to efficiently incorporate feedback into successive interactions. Traditional
methods such as sequential revision and parallel sampling struggle with length generalization and lack the
ability to self-reflect, leading to suboptimal performance. Moreover, naive retry mechanisms fail to leverage
prior knowledge, further hindering progress. To address these limitations, we introduce FTTT
(Feedback-Enabled Test-Time Training), a paradigm that formulates feedback utilization as an optimization
problem at test time. We also propose OpTune, a learnable optimizer that enhances the exploitation of
feedback. Our experimental evaluations on two LLMs across four reasoning datasets underscore the
superiority of FTTT and OpTune, demonstrating enhanced scalability and performance compared to existing
methods such as revision, self-consistency, and best-of-N approaches. Figures 1 through 4 provide illustrative
comparisons and detailed model performance metrics, highlighting the substantial improvements achieved by
our proposed framework.

Addressing complex tasks that require iterative refinement and continuous feedback presents significant
challenges for current methods. Existing schemes such as Revision (Snell et al., 2024), Self-Refine (Madaan et
al., 2023), Best-of-N (Brown et al., 2024), and Beam Search (Ow and Morton, 1988) exhibit notable
limitations. Revision struggles with length generalization, whereas Self-Refine and Best-of-N fail to efficiently
utilize prior iterations, leading to suboptimal performance. Beam Search, despite its efficiency, also falters in
length generalization. In contrast, our proposed approach, FTTT, and its key component OpTune, overcome
these limitations through a robust optimization framework at test time. Figures 1 and Table 1 illustrate the
shortcomings of these baseline methods, particularly in terms of length generalization and the inefficiencies of
naive retry strategies. Specifically, FTTT demonstrates superior length generalization and leverages
self-reflected feedback for enhanced scalability and performance. Figures 3 and 4 provide further empirical
evidence of FTTT’s advantages over traditional methods.
Next, we introduce Fine-Tuning Through Testing-Time Optimization (FTTT), a novel framework that
formulates feedback utilization as an optimization problem at test time. Unlike existing methods, FTTT
leverages self-reflected feedback to enhance performance and scalability, thanks to its learnable test-time
optimizer, OpTune, which adaptively tunes feedback at each inference step. Our experiments on two large
language models across four reasoning datasets demonstrate FTTT’s superior performance and scalability,
surpassing baseline methods such as revision, self-refine, and best-of-N strategies. Notably, OpTune
significantly improves efficiency and accuracy, achieving state-of-the-art results with similar parameter
efficiency. Figures 2, 3, and 4 visualize and quantify the effectiveness and scalability of FTTT.

Building on the introduction of FTTT and its key component OpTune, we detail how FTTT formulates
feedback utilization as an optimization problem at test time, leveraging self-reflected feedback for enhanced
performance and scalability. Unlike existing methods such as revision, self-refine, and best-of-N, FTTT
introduces a learnable test-time optimizer, OpTune, which dynamically adapts to feedback through adaptive
tuning at each inference step. Our experiments on two large language models across four reasoning datasets
showcase FTTT’s superior performance and scalability, achieving state-of-the-art results with comparable
parameter efficiency. Figures 2, 3, and 4 provide visual and quantitative evidence supporting FTTT’s
effectiveness, while Table 1 highlights its advantages over baseline methods. These findings illustrate how
FTTT and OpTune significantly advance the state-of-the-art in feedback utilization for complex reasoning
tasks, ensuring more precise adaptation and efficient resource management. This progress is further
corroborated by extensive experimental results, detailed in Tables 2 and 3, underscoring the practical
applicability of our approach in real-world LLM applications.
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Generated Introduction

Building upon the contributions of Formulating Test-Time Training (FTTT) and Learnable Test-Time
Optimizer (OpTune), these mechanisms significantly advance feedback utilization for large language models
(LLMs) tackling complex reasoning tasks. FTTT refines feedback utilization by formulating it as an
optimization problem at test time, allowing for more precise adaptation. OpTune introduces a learnable
optimizer that efficiently exploits feedback, enhancing both scalability and performance. These improvements
are evidenced through comprehensive comparisons with baselines, as demonstrated in Figures 1–4 and Tables
1, 2, and 3. The results show that our approach surpasses traditional methods like sequential revision and beam
search in terms of accuracy and resource utilization. These advancements underscore the practical
applicability of FTTT and OpTune in real-world LLM applications, setting the stage for more efficient and
robust reasoning systems.

D.3 STIG: EXAMPLES I

Title:

Towards Multi-dimensional Evaluation of LLM Summarization across Domains and Languages

Abstract:

Evaluation frameworks for text summarization have evolved in terms of both domain coverage and metrics.
However, existing benchmarks still lack domain-specific assessment criteria, remain predominantly English-
centric, and face challenges with human annotation due to the complexity of reasoning. To address these,
we introduce MSumBench, which provides a multi-dimensional, multi-domain evaluation of summarization
in English and Chinese. It also incorporates specialized assessment criteria for each domain and leverages a
multi-agent debate system to enhance annotation quality. By evaluating eight modern summarization mod-
els, we discover distinct performance patterns across domains and languages. We further examine large
language models as summary evaluators, analyzing the correlation between their evaluation and summa-
rization capabilities, and uncovering systematic bias in their assessment of self-generated summaries. Our
benchmark dataset is publicly available at https://github.com/DISL-Lab/MSumBench.

Generated Content:

⟨STAGE0⟩ Outline for Background:

–Text summarization is a text generation task that aims to condense source text into coherent and abstract
summaries.

–The field is divided into abstractive and extractive summarization, with abstractive summarization provid-
ing more flexibility and innovation but being challenging due to the need for capturing semantics without
literal text. ⟨END0⟩
⟨STAGE1⟩ Contents for Background:

Text summarization is a challenging text generation task that condenses the source text into a few coherent
and abstract sentences. It is broadly categorized into abstractive and extractive summarization. Abstractive
summarization offers more flexibility and creativity in paraphrasing, condensing, and innovating with the
source text, making it a more desirable approach. However, it is significantly challenging as it requires
capturing the semantics of the source text without direct literal text. ⟨END1⟩
⟨STAGE2⟩ Outline for Problem and Limitations of Existing Methods:

–Reference summaries in datasets like CNN/Daily Mail and XSum are primarily extractive, making it un-
clear if models generate extractive summaries due to model limitations or dataset biases.
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–Existing datasets lack sufficient domain coverage, and often fail to assess critical dimensions such as faith-
fulness and completeness.

–Datasets are often language-specific (e.g., English) or task-specific (e.g., news summarization), limiting
generalization to other domains or languages.

–Human annotation of summary quality is costly, time-consuming, and faces reliability challenges due to
difficulties in reasoning and agreement among annotators.

–Automated evaluation metrics like ROUGE and BERTScore are unreliable because they do not accurately
reflect a model’s ability to capture semantics and are prone to cheating behaviors like keyword aggregation.
⟨END2⟩
⟨STAGE3⟩ Contents for Problem and Limitations of Existing Methods: Existing datasets typically con-
tain reference summaries that are primarily extractive, making it difficult to determine if models’ extractive
summaries are due to model limitations or dataset biases. Moreover, existing benchmarks have several
drawbacks, including insufficient domain coverage and failure to assess important dimensions such as faith-
fulness and completeness. Additionally, most datasets are language-specific (e.g., English) or task-specific
(e.g., news summarization), limiting the generalization of findings to other domains or languages. Human
annotation of summary quality is expensive and time-consuming, and reliability is low due to the complex-
ity of reasoning about multiple quality dimensions. Automatically evaluated metrics, such as ROUGE and
BERTScore, are unreliable proxies for summary quality, as they do not ensure the semantic capture of the
source text and are susceptible to cheating behaviors like keyword aggregation. ⟨END3⟩
⟨STAGE4⟩ Outline for Brief Method Overview and Summary of Main Results:

–MSumBench is introduced as a multi-dimensional benchmark for evaluating abstractive text summarization
models.

–MSumBench covers two domains, News and COVID-19 Research, and is multilingual, supporting sum-
maries in English and Chinese.

–Summaries are evaluated based on dimensions like faithfulness, completeness, and conciseness, with tai-
lored metrics for each domain.

–Human annotators use a multi-agent debate system to reach consensus on summary quality assessments.

–Eight modern summarization models are benchmarked across all dimensions in both languages.

–Performance patterns reveal differences among models and languages in summarization tasks.

–Experiments explore large language models as evaluators of summaries, revealing bias in self-generated
summary evaluations. ⟨END4⟩
⟨STAGE5⟩ Contents for Brief Method Overview and Summary of Main Results: To address these issues,
we introduce MSumBench, a multi-dimensional evaluation benchmark for abstractive text summarization
models. MSumBench covers two diverse domains, namely News and COVID-19 Research, and supports
summaries in two languages, English and Chinese. It evaluates summaries based on multiple dimensions,
including faithfulness, completeness, and conciseness, with domain-adaptive metrics. An innovative human
annotation scheme is employed, where human annotators facilitate a multi-agent debate to arrive at consen-
sus ratings for summary quality. Across eight modern summarization models, we conduct a comprehensive
evaluation, assessing their performance across all dimensions in both languages. The results provide insights
into distinct performance patterns among models and languages in the context of summarization tasks. Ad-
ditionally, we explore the feasibility of employing large language models as summary evaluators, providing
insights into their evaluation of self-generated summaries and the potential bias involved. ⟨END5⟩
⟨STAGE6⟩ Outline for Our Contributions:
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–MSumBench evaluates summarization models across multiple dimensions using adaptive metrics and spe-
cialized human annotation processes.

–The benchmark reveals differences in performance among models and languages and sheds light on LLMs’
evaluation of self-summarized content. ⟨END6⟩
⟨STAGE7⟩ Contents for Our Contributions:

We introduce a multi-dimensional evaluation benchmark, MSumBench, which assesses summarization mod-
els across multiple dimensions using domain-adaptive metrics and specialized human annotation procedures.
We evaluate eight modern models in English and Chinese across all benchmark dimensions. Our results shed
light on the performance differences among models and languages in summarization tasks and provide in-
sights into large language models’ evaluation of self-generated content. ⟨END7⟩
Generated Introduction:

Table 6: Generated Introduction by STIG model: Towards Multi-dimensional Evaluation of LLM Summa-
rization across Domains and Languages.

Generated Introduction

Text summarization is a challenging text generation task that condenses the source text into a few coherent and
abstract sentences. It is broadly categorized into abstractive and extractive summarization. Abstractive
summarization offers more flexibility and creativity in paraphrasing, condensing, and innovating with the
source text, making it a more desirable approach. However, it is significantly challenging as it requires
capturing the semantics of the source text without direct literal text.

Existing datasets typically contain reference summaries that are primarily extractive, making it difficult to
determine if models’ extractive summaries are due to model limitations or dataset biases. Moreover, existing
benchmarks have several drawbacks, including insufficient domain coverage and failure to assess important
dimensions such as faithfulness and completeness. Additionally, most datasets are language-specific (e.g.,
English) or task-specific (e.g., news summarization), limiting the generalization of findings to other domains
or languages. Human annotation of summary quality is expensive and time-consuming, and reliability is low
due to the complexity of reasoning about multiple quality dimensions. Automatically evaluated metrics, such
as ROUGE and BERTScore, are unreliable proxies for summary quality, as they do not ensure the semantic
capture of the source text and are susceptible to cheating behaviors like keyword aggregation.

To address these issues, we introduce MSumBench, a multi-dimensional evaluation benchmark for abstractive
text summarization models. MSumBench covers two diverse domains, namely News and COVID-19
Research, and supports summaries in two languages, English and Chinese. It evaluates summaries based on
multiple dimensions, including faithfulness, completeness, and conciseness, with domain-adaptive metrics. An
innovative human annotation scheme is employed, where human annotators facilitate a multi-agent debate to
arrive at consensus ratings for summary quality. Across eight modern summarization models, we conduct a
comprehensive evaluation, assessing their performance across all dimensions in both languages. The results
provide insights into distinct performance patterns among models and languages in the context of
summarization tasks. Additionally, we explore the feasibility of employing large language models as summary
evaluators, providing insights into their evaluation of self-generated summaries and the potential bias involved.

We introduce a multi-dimensional evaluation benchmark, MSumBench, which assesses summarization models
across multiple dimensions using domain-adaptive metrics and specialized human annotation procedures. We
evaluate eight modern models in English and Chinese across all benchmark dimensions. Our results shed light
on the performance differences among models and languages in summarization tasks and provide insights into
large language models’ evaluation of self-generated content.
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D.4 STIG: EXAMPLES II

Title:

Learning to Reason from Feedback at Test-Time

Abstract:

Solving complex tasks in a single attempt is challenging for large language models (LLMs). Iterative inter-
action with the environment and feedback is often required to achieve success, making effective feedback
utilization a critical topic. Existing approaches either struggle with length generalization or rely on naive
retries without leveraging prior information. In this paper, we introduce FTTT, a novel paradigm that for-
mulates feedback utilization as an optimization problem at test time. Additionally, we propose a learnable
test-time optimizer, OpTune, to effectively exploit feedback. Experiments on two LLMs across four reason-
ing datasets demonstrate that FTTT and OpTune achieve superior scalability and performance.

Generated Content:

⟨STAGE0⟩ Outline for Background:

–Large Language Models (LLMs) face challenges in solving complex tasks in a single attempt due to limi-
tations in knowledge retention and reasoning capabilities.

–LLMs can improve their performance by interacting with environments and receiving feedback. ⟨END0⟩
⟨STAGE1⟩ Contents for Background:

Large Language Models (LLMs) often lack the capability to solve complex tasks in a single attempt due to
limited knowledge retention and reasoning capabilities. However, LLMs can improve their performance by
interacting with the environment and receiving feedback. ⟨END1⟩
⟨STAGE2⟩ Outline for Problem and Limitations of Existing Methods: –Effective utilization of feedback for
iterative improvement is a key challenge.

–Existing methods like revision, self-consistency, and beam search do not utilize feedback effectively.

–These methods do not align well with the distribution shift in later attempts, leading to a performance gap.

–Iterative refinement using techniques such as self-instruction and prompt tuning shows promise but lacks
optimal feedback utilization.

–Learnable methods for feedback incorporation, such as adapter-based models and LoRA, are limited in
scope and do not maximize performance.

–Feedback-based test-time training offers a flexible and powerful approach but faces unresolved challenges.
⟨END2⟩
⟨STAGE3⟩ Contents for Problem and Limitations of Existing Methods: Utilizing feedback effectively to
achieve iterative improvement poses a significant challenge. For example, techniques such as revision, self-
consistency, and beam search primarily focus on generating multiple candidates and selecting the best one
based on predefined metrics. However, they do not utilize feedback effectively for iterative improvement.
This approach creates a performance gap when applied in environments with noise or sparse feedback, as it
does not align well with the distribution shift in later attempts. Recently, iterative refinement methods, such
as self-instruction and prompt tuning, have shown promise in improving task performance. These methods
involve using the model’s own predictions as feedback and continuously tuning the model parameters or
prompts. However, there is still a lack of optimal feedback utilization in these approaches. To address
the limitations of parameter-insensitive methods, learnable methods for feedback incorporation have been
proposed, such as adapter-based models, LoRA, and full fine-tuning. These methods treat the feedback as
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additional data for learning new things rather than for test-time improvements. Adapter-based learning and
LoRA are lightweight solutions for incorporating feedback, but they do not maximize performance. Full
fine-tuning allows for tuning all parameters of the LLM, but it is not scalable for large models and requires
costly retraining each time the model is deployed. Recently, feedback-based test-time training has been
proposed, which formulates feedback utilization as a prediction problem at test time. It offers a flexible and
powerful approach that can potentially handle any type of feedback and is easily integrated with existing
LLMs. However, challenges remain in optimizing the revision generation and effectively utilizing feedback.
⟨END3⟩
⟨STAGE4⟩ Outline for Brief Method Overview and Summary of Main Results: –The proposed FTTT frame-
work uses Test-Time Training for feedback utilization at test time.

–FTTT formulates feedback revision as an optimization problem and leverages a learnable test-time opti-
mizer, OPTUNE, to address feedback utilization.

–OPTUNE is trained jointly with the LLM and serves as a reusable component, reducing computational
costs.

–FTTT and OPTUNE together provide a scalable solution for feedback-based learning without requiring
retraining the LLM.

–Experiments indicate that FTTT and OPTUNE achieve strong performance results. ⟨END4⟩
⟨STAGE5⟩ Contents for Brief Method Overview and Summary of Main Results: In this paper, we propose
a novel framework called FTTT, which leverages Test-Time Training (TTT) for feedback utilization at test
time. FTTT formulates feedback revision as an optimization problem and introduces a learnable test-time
optimizer, OPTUNE, to solve this problem. By learning the feedback revision, FTTT enables LLMs to better
leverage feedback for iterative improvement. The learnable optimizer, OPTUNE, is jointly trained with the
LLM during the finetuning phase. Afterward, it can be reused for multiple feedback-based learning tasks,
eliminating the need for additional training and dramatically reducing computational costs. Thus, FTTT and
OPTUNE empower LLMs with the ability to scale to any testing environment without requiring retraining
the LLM. Experiments show that FTTT and OPTUNE achieve impressive performance. ⟨END5⟩
⟨STAGE6⟩ Outline for Our Contributions:

–Propose FTTT, a Test-Time Training-based framework for effective feedback utilization in LLMs.

–Introduce OPTUNE, a learnable optimizer that optimizes feedback revision for improved reasoning.

–Conduct extensive experiments on reasoning tasks, demonstrating the framework’s efficacy and scalability.
⟨END6⟩
⟨STAGE7⟩ Contents for Our Contributions:

In summary, our contributions are as follows: • We propose a novel Test-Time Training (TTT)-based frame-
work, called FTTT, for effective feedback utilization in LLMs. • We introduce a learnable optimizer, OP-
TUNE, which is trained jointly with the LLM to optimize feedback revision at test time. • Extensive experi-
ments on four reasoning tasks demonstrate that our framework enables LLMs to effectively utilize feedback
for iterative improvement in a scalable manner. ⟨END7⟩
Generated Introduction:
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Table 7: Generated Introduction by STIG model: Learning to Reason from Feedback at Test-Time.

Generated Introduction

Large Language Models (LLMs) often lack the capability to solve complex tasks in a single attempt due to
limited knowledge retention and reasoning capabilities. However, LLMs can improve their performance by
interacting with the environment and receiving feedback.

Utilizing feedback effectively to achieve iterative improvement poses a significant challenge. For example,
techniques such as revision, self-consistency, and beam search primarily focus on generating multiple
candidates and selecting the best one based on predefined metrics. However, they do not utilize feedback
effectively for iterative improvement. This approach creates a performance gap when applied in environments
with noise or sparse feedback, as it does not align well with the distribution shift in later attempts. Recently,
iterative refinement methods, such as self-instruction and prompt tuning, have shown promise in improving
task performance. These methods involve using the model’s own predictions as feedback and continuously
tuning the model parameters or prompts. However, there is still a lack of optimal feedback utilization in these
approaches. To address the limitations of parameter-insensitive methods, learnable methods for feedback
incorporation have been proposed, such as adapter-based models, LoRA, and full fine-tuning. These methods
treat the feedback as additional data for learning new things rather than for test-time improvements.
Adapter-based learning and LoRA are lightweight solutions for incorporating feedback, but they do not
maximize performance. Full fine-tuning allows for tuning all parameters of the LLM, but it is not scalable for
large models and requires costly retraining each time the model is deployed. Recently, feedback-based
test-time training has been proposed, which formulates feedback utilization as a prediction problem at test
time. It offers a flexible and powerful approach that can potentially handle any type of feedback and is easily
integrated with existing LLMs. However, challenges remain in optimizing the revision generation and
effectively utilizing feedback.

In this paper, we propose a novel framework called FTTT, which leverages Test-Time Training (TTT) for
feedback utilization at test time. FTTT formulates feedback revision as an optimization problem and
introduces a learnable test-time optimizer, OPTUNE, to solve this problem. By learning the feedback revision,
FTTT enables LLMs to better leverage feedback for iterative improvement. The learnable optimizer,
OPTUNE, is jointly trained with the LLM during the finetuning phase. Afterward, it can be reused for
multiple feedback-based learning tasks, eliminating the need for additional training and dramatically reducing
computational costs. Thus, FTTT and OPTUNE empower LLMs with the ability to scale to any testing
environment without requiring retraining the LLM. Experiments show that FTTT and OPTUNE achieve
impressive performance.

In summary, our contributions are as follows: • We propose a novel Test-Time Training (TTT)-based
framework, called FTTT, for effective feedback utilization in LLMs. • We introduce a learnable optimizer,
OPTUNE, which is trained jointly with the LLM to optimize feedback revision at test time. • Extensive
experiments on four reasoning tasks demonstrate that our framework enables LLMs to effectively utilize
feedback for iterative improvement in a scalable manner.
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