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Abstract: Modern paradigms for robot imitation train expressive policy archi-
tectures on large amounts of human demonstration data. Yet performance on
contact-rich, deformable-object, and long-horizon tasks plateau far below per-
fect execution, even with thousands of expert demonstrations. This is due to
the inefficiency of existing “expert” data collection procedures based on human
teleoperation. To address this issue, we introduce RaC, a new phase of training
on human-in-the-loop rollouts after imitation learning pre-training. In RaC, we
fine-tune a robotic policy on human intervention trajectories that illustrate recovery
and correction behaviors. Specifically, during a policy rollout, human operators
intervene when failure appears imminent, first rewinding the robot back to a famil-
iar, in-distribution state and then providing a corrective segment that completes
the current sub-task. Training on this data composition expands the robotic skill
repertoire to include retry and adaptation behaviors, which we show are crucial
for boosting both efficiency and robustness on long-horizon tasks. Across three
real-world bimanual control tasks: shirt hanging, airtight container lid sealing,
takeout box packing, and a simulated assembly task, RaC outperforms the prior
state-of-the-art using 10x less data collection time and samples. We also show
that RaC enables test-time scaling: the performance of RaC policy scales linearly
in the number of recovery maneuvers it exhibits. Videos of the learned policy are
available at https://rac-scaling-robot.github.io/.

1 Introduction

Imitation learning on human teleoperation data powers a large chunk of modern robotic learning. In
fact, a number of recent academic and industrial bets have been on massively scaling up imitation
learning as a form of pre-training for robots [1, 2, 3, 4, 5, 6, 7, 8]. However, results increasingly
suggest that this paradigm is approaching a performance ceiling well below perfect task completion.
For example, even with over 5000 human demonstrations, state-of-the-art task-specific models can
only place a single t-shirt on a hanger with bimanual manipulators at roughly 75% success. While
one might hope that more data or alternative learning frameworks could close this gap, in practice
these methods still struggle to overcome compounding errors and stochasticity in long-horizon tasks.

This limitation of imitation is fundamental: while mimicking expert actions can imbue the policy
with “basic” useful skills, doing so is inherently suboptimal when the robot faces task variations
or new initial states, the environment is stochastic or noisy, or the task is inherently long-horizon,
where failing at one stage inhibits success in the rest (i.e., when “compounding errors” can be
catastrophic) [9]. Thus, policies trained via imitation often fail to generalize to real-world stochasticity
and dynamism, and exhibit diminishing returns with additional data, leading to a performance plateau.
Crucially, this failure stems not from the algorithm or the model but from the data distribution itself:
demonstrations are biased toward clean, successful trajectories, but do not imbue the policy with
behaviors needed to tackle compounding errors stemming from stochasticity in long-horizon tasks.

In this work, we propose an alternative paradigm for training robot policies that directly addresses
the limitations of success-only imitation learning. We introduce a new phase of learning that is
run subsequent to basic imitation learning on clean teleoperation data (“pre-training’’), which we
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Figure 1: Illustrating RaC. Our approach enables imitation learning policies to robustly execute long-horizon
tasks by explicitly learning skills such as recovery and correction to handle mistakes and failures. Doing so
substantially improves data efficiency and results in effective performance scaling at test time.

refer to as RaC. The central idea of RaC is to train on trajectories that interleave successful task
executions with segments that demonstrate recovery, retries, and adaptation, i.e., behaviors that are
essential for robustness in complex or novel situations. While standard human teleoperation data may
already contain some incidental recovery behavior,' RaC explicitly encourages and amplifies such
behaviors. Conceptually, this phase is analogous to “mid-training” for large language model (LLM)
reasoning [11], which aims to illustrate how to best combine basic knowledge (i.e., skills needed to
solve individual sub-tasks in our case) with algorithmic behavior (e.g. backtracking, trial-and-error,
self-verification, etc.) to solve complex reasoning problems by producing much longer responses.

Concretely, we introduce a lightweight human-in-the-loop data collection protocol: human tele-
operators intervene to take control from the running policy as soon as it begins to deviate from
the correct course. As shown in Figure 3, these interventions naturally fall into two categories: a)
error correction segments, where human experts guide the robot to solving tasks (similar in spirit to
DAgger-style supervision), and b) recovery segments, where the human rewinds or repositions the
robot to a previously successful state. To scale up recovery and correction for imitation learning,
RaC standardizes interventions with two rules. Rule 1 (recover then correct) structures every human
takeover into a reset back to in-distribution states followed by a corrective segment that completes
the current sub-task. Rule 2 (termination after intervention) ends the episode immediately once the
intervention segment finishes, which avoids collecting data on later sub-tasks under distribution shifts
from a mixture of learned policy and human expert. Crucially, RaC keeps the imitation objective
unchanged; performance gains come purely from improved data composition. Applied to three
challenging, long-horizon real-world bimanual control tasks, shirt hanging, airtight-lid sealing, and
clamshell takeout-box packing, RaC outperforms batched full-demonstration and HG-DAgger style
human-in-the-loop collection, both in performance and in data efficiency. In particular, RaC achieves
higher success rates and steeper scaling trends than batched full demonstration and HG-DAgger-style
human-in-the-loop data collection, demonstrating superior data efficiency up to 1 order of magnitude.

2 Related Work

Scaling data in robotic learning. Recent work shows that scaling real-robot data across tasks,
embodiments, and environments enables generalization. Large robotic datasets [10, 12, 13, 3], paired
with highly expressive neural network architectures [5, 6, 4, 14, 1, 15, 2], have produced generalist
policies that achieve strong performance on many atomic skills (e.g., grasping an object, folding
cloth). In parallel, a complimentary line of work [8, 16] demonstrates that a similar data-driven
recipe can also produce specialist policies that perform very well on substantially more complex

'For instance, in the DROID [10] dataset, we find that only 3.68% of the episodes contain recovery behavior.



dexterous bimanual tasks. However, these approaches require collecting thousands high-quality
expert demonstrations per skill and performance plateau once a certain scale of data is reached [8, 2].

Scaling laws for robot imitation learning. Inspired by work in LLMs [17, 18], several works aim
to build scaling laws for robotic imitation [19, 20, 21]. Aimed at evaluating generalization across
variations in the task, most of these works analyze the performance of short-horizon tasks as a
function of the environmental diversity present in the training data. However, in all such studies, the
demonstrations themselves are collected via human “expert” teleoperation and exhibit little variation
within the sorts of skills shown in the data. In contrast, instead of studying the environmental diversity,
we focus on the data collection strategy within a trajectory: specifically, the kinds of maneuvers,
recovery behaviors, and variations within. As we show in our experiments, carefully designing
atrajectory-level data collection strategy can improve efficiency by more than 10x.

Human-in-the-loop imitation learning. Our approach collects intervention data by emphasizing
recovery and correction behaviors, which connects it to the broad literature on human-in-the-loop
imitation learning. Classical approaches are rooted in DAgger [22], which alternates between (1)
running on-policy rollouts from the learner, (2) querying the expert on visited states, and (3) retraining
on the aggregated dataset. This framework assumes access to a high-quality expert policy. To adapt
DAgger to human operators, HG-DAgger [23] enables teleoperators to provide interventions when
policy visits undesirable states, while more recent systems such as RoboCopilot [24] extend these
ideas to bimanual mobile manipulation by developing improved interfaces for teleoperation and
intervention. Other works [25, 26] explore objectives that combine on-policy rollouts, intervention
data, and full human demonstrations. Although our learning objective bears similarities to HG-
DAgger[23], we depart from its formulation in a crucial way: prior works largely treat human
intervention as an optimal expert solution to be imitated, but we show that collecting recovery
segments which by themselves are not task-optimal and may even “undo” progress on a subtask,
yields substantially better scaling. This challenges the conventional wisdom that only “expert”
interventions are useful, and highlights the importance of trajectory-level data design. We discuss
extended related work on shared autonomy and corrections in imitation in Appendix A.

3 Background, Notation, and Problem Setup == o
Robot setup. Our robot system (Figure 2) consists of two 7- VR Joysicks |

DoF xArm-7 manipulators with scaled-down version of soft
grippers [16, 27] to facilitate contact-rich and dexterous tasks.
To obtain reactive control, a central server synchronizes and
publishes RGB image streams from a top-view camera and two
wrist cameras, robot state, and action commands at 60Hz.

From a purely learning standpoint, our work is situated in the = =
setting of iterative imitation learning with evolving robotic Figure 2: Our bimanual manipula-
datasets. Each trajectory 7 in this dataset consists of an action #on robot system. An illustration of
a; for every observation s,. We describe the precise observation ' bimanual robot sefup showing cam-
.. . era placements and workspace setup.
set to our policy in Section 4.3. We develop an approach to
collect data for imitation learning that results in better scaling by incorporating human interventions
on a previous generation of the learned policy. Formally, our goal is to develop an iterative human
data collection strategy that improves scaling of task performance as a function of data-collection
budget. In other words, we aim to improve the scaling behavior, i.e., the slope of task success rate
vs. data size. To study data compositions, our data consists of three types: (i) full, successful expert
demonstrations A D™ (ii) recovery segments, that begin in failure or out-of-distribution regions and
return to in-distribution regions; and (iii) correction segments that complete the current sub-task.

Data collection protocol. Our data collection begins with collecting one round of expert demonstra-
tion using an initial budget size Ry, in terms of hours or the number of frames/timesteps. We then first
train an initial policy my using this “Round 0” full-demonstration data and evaluate its performance.
Prior methods have then scaled the data in one of two ways. In the batched data collection protocol,
practitioners allocate an additional budget of K x Ry frames, yielding a single batch of expert data



of size (K 4+ 1) x Ry. In the iterative human intervention protocol [23, 24, 25, 26], experts instead
perform K alternating rounds of intervention and training: in each round &, they provide interventions
on rollouts of m;_1, aggregate intervention segments with existing data (in different ways), and train
7. We study the nature of interventions that improve data scaling of imitation learning the most.

4 RaC: Scaling Recovery and Correction for Imitation Learning

Our goal is to design an iterative data collection strategy for scaling imitation learning. Unlike prior
approaches that collect corrective segments [23, 24, 25, 26], our approach guides human interventions
to include a substantial proportion of “recovery” behavior alongside “corrective” segments. While
recovery segments are suboptimal for completing any sub-task within the long-horizon task, they
bring the policy back into an in-distribution state preemptively, giving it a chance to re-attempt
sub-tasks (Figure 3). In contrast, corrective segments illustrate how to complete the task. Qur
main insight is that the ability to retry multiple times gives the policy a generic recipe to attenuate
compounding errors that often bottlenecks imitation learning, by trading off acting longer for lower
error. We formalize this notion and develop a data collection protocol naturally rich in these behaviors.

4.1 Understanding the Role of Recovery and Correction Segments in Imitation

Consider a robot policy 7 that executes a trajectory 7 = (sg, ag, 1,01, - . ., St), where s; denotes
the state at which a human expert intervenes. A sequence of human actions (a},;,a} ,, ..., af, ;)
starting from s, constitutes a recovery segment if the resulting state s}, , that the robot reaches after
the intervention lies within the distribution of states visited in the prefix of human demonstrations
DUIQ : ¢]. Conversely, this sequence of actions constitutes a corrective segment if the resulting state
sh . lies within the distribution of states visited after timestep ¢ in demonstrations DU+ 1 H].
We illustrate this concept in Figure 3.

How can recovery segments im-
prove performance? Intuitively,
recovery segments return the pol-
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raises a question: Can a policy
actually learn to “reset” itself by
imitating recovery segments, and l
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mance? Our key intuition is that
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tial states is broad (e.g., for the task of hanging a shirt, any configuration where a shirt lies on a table
and a hanger is held in one of the robot’s gripper is an initial state) but the set of valid goal states is
narrow (e.g., only when the shirt is correctly placed on the hanger resting on the rack), resetting to a
previously encountered state is generally far easier than executing a sub-task correctly (e.g., inserting
the collar of the shirt onto the hanger). Because there are multiple familiar past states to reset to,
recovery requires less precision and can be more sample-efficient to learn than solving the task.
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Figure 3: Schematic of RaC. Data collected via human interventions
prescribed by RaC and a sample policy rollout when training on only
correction data (“HG-DAgger”) vs recovery and correction data (RaC).

This means that training via imitation learning on a mixture of recovery and corrective behavior
should equip a policy with two complementary ways to improve performance: (1) by mimicking
corrective segments (and full demonstration) to make progress in the first shot, and (2) by resetting
to a previous familiar state and retrying to self-correct. This ability to recover can be acquired with
relatively little data. Once the policy can reliably recover from an anticipated failure, repeated retries
would then naturally amplify the overall probability of producing at least one attempt that correctly
executes the sub-task. In fact, the probability of never succeeding on a sub-task decays exponentially
with the number of retries. This means that total suboptimality in imitation learning performance
should decrease. This mechanism is akin to sequential test-time scaling [28] in large language models



(LLMs): just as long chain-of-thought (CoT) models [29] improve performance and generalization
by spending more tokens on backtracking and recovery before re-attempting a question, we expect
RaC to achieve similar gains by performing backtracking and retrying directly in action space.

How can recovery segments improve data scaling relative to HG-DAgger style methods? Recovery
segments improve data efficiency because returning to familiar in-distribution states requires less
data than mastering corrective skills in many cases. From in-distribution states, the policy already
has strong supervision from existing data and the newly added corrective segments amplify this
supervision. In contrast, methods like HG-DAgger demonstrate an entirely new behavior from an
unfamiliar out-of-distribution state and require the policy to master it. As a result, performance as a
function of data scale is expected to be lower for HG-DAgger since it does not necessarily amplify
coverage over either in-distribution states or new unfamiliar states within limited intervention budgets.

4.2 Scaling Recovery and Correction Segments in Human Teleoperation

Next, we turn to the question of how to collect imitation data that contains a substantial proportion of
both recovery and correction segments. In principle, one could simply instruct human teleoperators to
artificially stage possible failure states, and demonstrate recovery and corrective behaviors. However,
such behaviors produced by humans from contrived or “fake” states may not reflect the out-of-
distribution errors that a learned policy would actually encounter. Since policy mistakes are tightly
coupled with the policy itself, a purely offline approach is unlikely to be effective (akin to LLMs [30]).
A more effective alternative is to collect this data through human-in-the-loop interventions. Analyzing
human intervention data in Section 5.3, we find that it is difficult to achieve a good balance between
recovery and correction data with no standardization of human data collection protocol. To instantiate
our approach concretely, we prescribe two simple but crucial rules for guiding human intervention:

Rule 1: Pair each recovery segment with a correction segment. Each intervention is structured to
contain two phases. First, the human operator performs recovery behavior by executing a sequence
of actions that bring the robot system back into a familiar in-distribution region of states. Then, the
operator provides corrective behavior, attempting to push the current sub-task forward (see Figure 3
for an illustration). This simple structure ensures that every intervention teaches the policy both how
to reset itself and how to make progress, rather than overemphasizing one or the other.

Rule 2: Terminate after intervention. After an intervention concludes, we terminate the entire
episode. In long-horizon tasks, later sub-tasks depend on the correct execution of earlier ones.
Allowing the rollout to continue after human intervention would contaminate later sub-tasks with
a distribution of states induced by a combination of the learned policy and the human teleoperator.
While not problematic itself, learning on this distribution of states might not necessarily improve the
policy under its own induced distribution of states when it attempts the later sub-tasks, which can be
fairly different from the joint human and policy distribution in a particular intervention rollout.

Summary: Balanced composition of recovery and correction

For the widely-used DROID dataset [10], an analysis on its 1% sub-sample reveals only
3.68% of episodes contain > 1 recovery and 16.58% contain > 1 correction. Similarly, in
Section 5.3, our HG-DAgger data skews heavily toward corrections with scarce recovery.
RaC collection protocol standardizes interventions: pair a recovery with a correction, then
terminate, to produce a balanced mixture of skills, improving robustness and data efficiency.

Guiding teleoperators for intervention data collection.
To facilitate operators in demonstrating trajectories that
adhere to the recovery then correction rule, we build a
lightweight software tool using an image segmentation
model SAM2 [31] to render a robot end effector visitation
frequency heatmap by tracking grippers across all RGB
frames recorded by the overhead camera in the initial full
demonstrations (“Round 0” data). As shown in Figure 4,

(]
: ) > Figure 4: Visual aid to guide human inter-
during data collection, we overlay this heatmap onto the vention. In sub-task 3 of box—packing,
overheadcamera’s display window to provide visual aids, when the policy fails to scoop the burger with
spatula, the expert recovers into the bounding
box of sub-task 3 before retrying again.



showing in-distribution regions where the robot grippers should recover back to upon intervention.
Our approach is one way that can guide recovery demonstrations towards in-distribution regions.

4.3 Policy Architecture and Training via Imitation Learning

We now run imitation learning from a dataset containing multi-modal, long-horizon behaviors of
various types: 1) full demonstrations, 2) the policy’s own full successes from online rollouts, and 3)
human intervention segments with recoveries and corrections. Fitting various sources of data demands
a high-capacity policy architecture, with sufficiently expressive output heads [32, 1, 15]. Therefore,
we utilize a flow-matching [33] policy to fit an action chunk [34], A; = [at, Gtq1,-ees Gpp -1
conditioned on observation o, = [I}, I, I}, q;], where I} is the i-th RGB camera image and ¢, is
a vector of robot states containing end effectors velocities and relative distance from each other
at timestep ¢. For all tasks, we use H = 60, equivalent to predicting one second of actions into
the future. Our policy is a 300 million parameter, multimodal diffusion transformer (MM-DiT)
architecture [35]. We use separate ResNet-50 [36] vision encoders for all three camera views (one
overhead and two wrist cameras) in our real-world experiments and utilize ResNet-18 encoders
in simulation. We optimize a conditional flow matching loss [33] for training. Additional details
regarding policy training, architecture, and inference are provided in Appendix B.

S Experimental Evaluation of RaC

Our goal is to evaluate RaC on bimanual, long-horizon manipulation tasks. Concretely, we aim to
answer the following questions: (1) Does RaC improve data scaling compared to standard human full
demonstration data collection, including existing state-of-the-art results?, (2) How does RaC compare
to human-in-the-loop imitation learning methods such as HG-DAgger [23]?, (3) Is enhancing the
proportion of recovery behaviors critical for effective performance?, and (4) How do policies learned
by RaC differ from traditional imitation learning policies? We answer these questions through
experiments in three real-world long horizon tasks. We also use a combination of real and simulated
experiments to provide ablations to establish the role of recovery behaviors in training more effective
policies for long-horizon tasks, with extra ablations on design choices of RaC in Appendix E.

5.1 Evaluation Domains and Task Setups

We study four manipulation tasks; three of them are situ-
ated in the real world and one is in simulation (see Figure
5). Our real-world tasks are inspired from some of the
most difficult challenges explored in prior work [8, 37].
These tasks are: 1) shirt-hanging: the robot lifts a
hanger, passes it between grippers, inserts it through both
shirt collars, and rehangs the shirt. 2) 1id-sealing:
the robot grasps a lid, places it on the container, snaps
two tabs, rotates the bowl, and snaps the remaining tabs.
3) box-packing: the robot takes one box, scoops
and places a burger inside with a spatula, adjusts place- _. ]

. . Figure 5: Our robot tasks. We study 3 real-
ment, closes the lid, and secures the tab. In simula- world long-horizon tasks, shirt-hang,
tion, we consider a long-horizon assembly task. 4) 1ig-sealing, box-packing, and a
bimanual-assembly: the robot inserts a white block simulated bimanual-assembly task.
into a pink socket, then joins with a blue socket, and finally places the assembly on the platform.

Comparisons and evaluation protocol. We compare the scaling characteristics, performance, and
learned behaviors of RaC against two approaches for imitation learning: (1) scaling up batched full
expert data collection, and (2) performing human-in-the-loop interventions as per HG-DAgger [23].
For each task, we allocate a total budget of K x/N demonstrations for the batched setting, where
N is a base number of demonstrations chosen in advance. To match this budget, we run K rounds
of human-in-the-loop data collection, each with equivalent per-round budget, and train the policy
in each round using the corresponding intervention data. We conduct evaluations with 60 trials for
the real-world tasks and 100 trials in the simulation task with various initial configurations (videos
on website). When rolling the trained policy out during evaluation, we record the performance for
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Figure 6: Performance scaling for RaC as a function of human-collected frames on real-world tasks. Note
that within K = 6 rounds for shirt-hanging, K = 10 rounds for airtight-lid-sealing, and K = 9 rounds for
takeout-box-packing, we observe the best-known results for tasks of a similar difficulty from prior work. The
top row shows average progress over various sub-tasks, the bottom row shows full long-horizon task success
rate. On the right, we compare RaC to various other baseline approaches based on HG-DAgger and cloning full
demonstration data, and observe a substantial improvement in data efficiency.

each sub-task upto an irrecoverable failure, then we terminate the episode. We measure sub-task
performance per a binary success or failure indicator function without assigning partial credits.

5.2 Main Results: One Order of Magnitude Improvement in Data Efficiency

Despite the challenges associated with coherent long-horizon execution, deformable object handling,
and contact-rich manipulation, our policies reach high success rates and task progress scores with
only modest data requirements. Strikingly, just 5 hours of training data suffice to surpass 75% full
task success rate on average. To highlight data efficiency gains, consider the shirt-hanging task: prior
works [8, 38] report needing thousands of expert demonstrations or more than one hundred hours of
teleoperation data to achieve a comparable success to RaC. RaC achieves better results with an order
of magnitude less data, illustrating its efficacy in scaling imitation learning (Figure 6).

Comparisons on real-world tasks. Since scaling up batched data collection on all real-world
tasks was infeasible due to the prohibitive expert data costs, we instead scaled the batched data
collection baseline on one representative task, shirt-hanging. Observe in Figure 6, RaC not
only achieves substantially higher absolute performance and task progress, but also delivers at
least a 2x improvement in data efficiency compared to the batched data collection approach. RaC
also consistently outperforms HG-DAgger. This result does not arise from a subpar baseline: our
HG-DAgger implementation exhibits performance trends consistent with prior work, such that it
outperforms batched data collection under the same amount of human collected data. Finally, we note
that RaC exhibits a markedly steeper scaling curve (“higher slope”) than either baseline in Figure 6.

5.3 Examining the Properties of RaC Policies

Result 1: Robustness of intermediate RaC policies. Having established the efficacy of RaC, we next
analyze the properties of the learned policies in a more systematic manner. We visualize in Figure 8,
the distribution of sub-tasks completed by intermediate policy checkpoints produced during successive
rounds of human intervention (for RaC) and as we scale data (for batched data collection). We observe
that the fraction of on-policy rollouts making little progress rapidly decreases with more rounds when
using RaC. In other words, RaC systematically reduces/eliminates the long tail of rollouts that fail or
stall early. In contrast, training on increasing amounts of batched full demonstration data does not
exhibit the same kind of progress on all sub-tasks, especially in simulation (Figure 8, right). Because
our evaluations begin from a broad set of initial configurations, this experiment in a sense highlights
the robustness of RaC. To summarize, by explicitly scaling recovery, RaC drives progress even in the
difficult “tail” cases, a persistent failure mode that is common lore with imitation learning.
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Figure 8: Performance profiles for RaC and batched data collection. For both real-world shirt-hanging
(left two plots) and simulation bimanual-assembly (right two plots) tasks, RaC rapidly reduces the fraction
of rollouts that make little progress and steadily shift probability mass toward later sub-task completions and full
task success. This trend however is not consistent or strong enough for batched data collection.
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ent rounds, and annotate Figure 7: Test-time scaling with number of recovery segments. We observe a
strong linear scaling relationship between the number of recovery segments
upon policy deployment and success rate of policies produced by later rounds
of RaC. This is a form of test-time scaling analogous to that in LLMs [39].

each rollout with the num-
ber of recovery attempts it
contains. In Figure 7, we
show the average number of recovery segments observed against the task success rates. The correla-
tion coefficients r indicate a linear relationship between the task success and recovery frequency. In
other words, as the policy learns to demonstrate more recovery behaviors, its overall performance im-
proves. To readers familiar with LLMs, this pattern resembles favorable test-time scaling curves [39]:
just as reasoning LLMs perform better when they produce longer CoTs that illustrate backtracking
and error correction, robot policies that scale the number of recovery segments directly in the space
of action sequences are likely to succeed more.
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full demonstration data can likely only succeed for various methods. Note thgt RaC policies produce the

e e .. longest rollouts on average, likely due to the presence of
when they stay within distribution, resulting in .

. recovery behavior but also succeed more.

shortest median successful rollout length.
Ablation Studies. Please check the Appendix E and G for further ablation experiments, comparisons,

and analysis on the data composition of the RaC datasets.

Discussion and Conclusion. Please check Appendix I for a discussion of future work.
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Appendices

A Extended Related Work

Shared autonomy. Effectively collecting intervention data requires responsive and intuitive teleop-
eration interfaces. Prior human-in-the-loop systems have typically relied on 6-DoF SpaceMouse
devices [26, 40, 41] or smartphone-based controllers with on-screen buttons and IMU sensing [25].
While functional, these devices come with steep learning curves and are difficult to use for dexterous
skills, particularly those requiring wrist rotation. As a result, they are mostly limited to single-arm
settings or relatively simple manipulation tasks where end-effector poses remain constrained. More
recent work [24] has explored combining VR joysticks with exoskeleton hardware to provide force
feedback and richer intervention options, but this demands specialized equipment and additional cost.
In contrast, we adopt widely available off-the-shelf VR joysticks as our teleoperation and intervention
interface. With a lightweight software modification that we described in Section 4.2, our design
enables users to take over control and provide interventions instantly, without the need to align the
VR joystick poses with the robot end effector poses.

Corrections in imitation learning. Several works also study employing corrections for imitation
learning policies. [42] proposes a “rewind-and-refine” data collection system that detects failures,
returns the robot to a previous pose, and then the teleoperator collects corrective trajectories. [43]
trains a base diffusion policy on expert data and a learned latent dynamics model that performs test-
time steering, encouraging the policy to stay on the expert demonstration manifold. [44] introduces
CCIL, which learns a locally Lipschitz dynamics model from expert demonstrations and synthesizes
corrective labels near the demo manifold to mitigate compounding errors. [45] combines a compliant
intervention interface to provide corrections and learns a residual policy to improve the performance of
the contact-rich tasks. Instead of engineering the return to in-distribution states through an engineered
rewind mechanism or modifications to the base imitation learning policy, RaC treats recovery as yet
another skill to learn from human demonstrations and scales it explicitly alongside full demonstration
and correction skills. Hence, without modifying existing imitation learning objectives or adding
additional complexity to the robot system, RaC improves the robustness and performance of the
policy by directly scaling human demonstration data. Brandfonbrener et al. [46] proposes a similar
data collection protocol to RaC, in which operators deliberately collect sequences of visually similar
failures, recoveries, and successes by backtracking to earlier visual states. However, Brandfonbrener
et al. [46] studies the benefit of such data collection strategy through the lens of offline reinforcement
learning, enabling efficient learning of accurate value functions from small datasets. RaC instead
focuses on scaling properties of such recovery skills in dataset composition and their impact on
imitation learning policy.
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B Policy Architecture and Training Details
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Figure 10: Policy architecture. We train all imitation learning policies using a multi-modal diffusion transformer
architecture via a conditional flow-matching objective.

Concretely, we train the policy using a conditional flow-matching objective:

Lrow(0) =E o, 4,~D, [H’Ue(T, o, 27) — (A — xo)Hﬂ , (B.1)
z0~N(0,14),
7~Unif([0,1])
where 7 denotes an interpolant computed at time 7 of the flow, vg (7, 04, 27) : [0,1] x S x R — R4
is velocity at 27, and d is the total dimensionality of action chunks we use. Importantly, when
sampling training data from D, we do not include any transitions from the robot’s own rollouts,
unless the trajectory reaches full task completion without any human intervention. This design
choice is consistent with HG-DAgger [23, 24], but different from other methods such as IWR and
follow-ups [25, 26], that filter segments based on human knowledge. reweight the loss depending on
different categories of trajectories or filtering out certain segments based on human knowledge.

We train all RaC imitation learning policies with the same model architecture and training configu-
rations detailed below. With the multi-modal DiT (mm-dit) architecture [35], we use two separate
modalities, i.e. two sets of transformer weights to model action generation conditioned on robot
observations. The first set of transformer weights processes robot observations, including image
tokens from the three camera views after ResNet encoders and a robot proprioceptive state token
after a MLP encoder. The second set of transformer weights processes noised action tokens. mm-DiT
joins the sequences of the two modalities for the attention operation, such that both representations
can work in their own spaces while taking the other one into account. This design is similar to the
action expert in [1].

ResNet encoders used in this work finetune on weights pre-trained on ImageNet.

All model trainings are conducted on 4-cards of RTX 6000 Ada GPU servers or 8-cards of L40S
GPU servers.

During inference, we generate actions by taking 10 Euler integration steps using the learned vector
field from ¢t = 0 to t = 1, starting with random noise A? ~ N (0, I). Following [32, 16, 1], we run
policy inference once every 0.5 seconds, i.e., we execute the first half of each action chunk and then
replan. A complete pseudocode of the procedure is shown in Algorithm 1.
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Config Value Detail Value

Optimizer AdamW (default) MM-D1iT modalities [35] 2

Learning Rate 1 x 107* (const.) Flow Matching Steps 10

Global Batch Size 512 MM-DiT Hidden Size 768

Training Length 200 epochs MM-DiT Depth 12

State Dimension 40 MM-DiT Heads 12

Action Dimension 14 Vision Encoder ResNet-50 / ResNet-18

Action Horizon 60 Total Parameters 367.865M
Model Training Configs Flow Matching Model Details

Table 1: Training configurations and model details. Left: training hyperparameters. Right: model
architecture specifics.

C RaC Pseudocode

Algorithm 1 RaC Data Collection and Training Protocol

1: Given per-round human data collection budget B in numbers of frames; total human intervention data
collection round K.

2: Initialize flow-matching policy 7§ =°; dataset Do.x < @

3: Collect B frames of expert demonstrations — ADy; Do.x < ADy; 7r§:
Matching B.1;

Human Intervention Data Collection Rounds

0 TRAIN(Do: ) via Flow

1: for k =1to K do
2: initialize human policy 77, intervention function
3: ADy +— @; b+ 0 > b counts budget used this round
4: while b < By, do
5: S0 + env.reset (); traj <+ []; intervened « false; ¢t + 0
6 while not env.done () do
7 if I(s:) = O then a Nﬂgfl(- | st); is_human «+ 0
8: else a; ~ (- | s¢); is_human <+ 1; intervened <« true > Rule 1: Pair each
recovery a correction
9: St+1 < env.step(at); traj.push(st,as,is_human); t+=1
10: if is_human = 0 and INTERVENTIONDONE() then break > Rule 2: Terminate after
intervention concludes
11: if intervened=false then > If an entire trajectory has no human intervention =
12: ADLU= traj > add full trajectory into dataset, with no human budget counted
13: else
14: ADU={(s,a) € traj:is_human =1} > add only human intervention transitions into
dataset
15: b=>b+ |traj] > charge full episode length to budget
16: Do.xU= ADy; 75 < TRAIN(Do.xc) > Aggregate datasets, then train policy via flow-matching B.1
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D Example Rollouts on Various Tasks

Task Subtask 1: grasp Subtask 2: hand over Subtask 3: insert Error: misaligned ~ Recovery: drive gripper ~ Correction: re-insert
Status hanger hanger hanger hanger backwards and reset  with correct alignment

Shirt Hanging

Figure 11: RaC rollout on the shirt-hanging task. In this task, recovery corresponds to driving the gripper and
hanger backwards and correction corresponds to reinserting the hanger again.

Task

1 gri i R Hi i ion:
Status Subtask 1: pick up lid Subtask 2: place lid Subtask 3: snap tabs ARl RESEPARSIIERRY | Correctlon: snapitabs

under tab and reset to complete Subtask 3

Airtight Lid
Sealing

Figure 12: RaC rollout on the airtight-container-lid-sealing task. In this task, recovery corresponds to driving
the gripper and hanger backwards and correction corresponds to reinserting the hanger again.

Task Subtask 1: grasp Error: gripper Recovery: drive gripper ~ Correction: grasp to Subtask 2: scoop Subtask 3: place
Status spatula misaligned with spatula  backwards and reset complete Subtask 1 burger burger

Takeout Box
Packing

Figure 13: RaC rollout on the takeout-box-packing task. In this task, recovery corresponds to driving the
gripper backwards and correction corresponds to regrasping the spatula again.
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E Ablation Studies for the RaC Data Collection Protocol

Finally, we present ablation studies to better understand the properties of the human intervention data
collected by RaC across training rounds. In Figure 7, we visualize the composition of intervention
data over 4 rounds in the simulation task. We compare data collected using the full RaC approach
(“Ours”) and RaC without enforcing ‘recover-then-correct’” (“Ours w/o Rule 17, i.e. HG-DAgger
with only Rule 2). Recall that these Rules were prescribed in Section 4.2.

We classify each intervention frame as either a recovery segment or a corrective segment. Observe in
Figure 14 (left), that while RaC maintains a roughly balanced ratio of recovery to corrective frames
(close to 1:1), conventional intervention data exhibits a highly skewed distribution dominated by
corrective frames, with recovery frame’s proportion decreasing sharply in later rounds. The total
number of intervention frames naturally decreases as policies improve and require fewer interventions.

Next, we study the effect of Rule 2 in RaC: truncating an episode after human intervention concludes.
In the simulation task (Figure 14), we observe that terminating early after an intervention alone
(“Ours w/o Rule 1) yields more effective performance scaling than continuing policy rollouts after
human intervention (“Ours w/o Rule 1&2”, i.e., HG-DAgger). We hypothesize that this effect arises
because allowing the rollout to continue after human intervention completes contaminates later parts
of the trajectory with states influenced by both the human and the policy, producing data that are
out-of-distribution for a learned policy. By terminating right after the intervention, we ensure that the
collected data cleanly reflect recovery—correction behavior, while subsequent sub-tasks are reached
only with the policy’s own distribution in future rounds, leading to more efficient data scaling.

Intervention Skills Composition Bimanual Assembly Abaltions
6

- Recovery Frames 1.0 Ours w/o Rule 1 & 2
< Corrective Frames 0 -/\— Ours w/o Rule 1
Ox 20urs _E-,’ _*_ Ou o R

= CourswioRule1 1§ 0.8 i

0 55%

4 7 @

€ % 0.6

© 63% ]

o o]

w3 7 >

- 59% a

5 87% : 04

52 86% 9% esop

o e

c 45% —02

é 1| - 37% 1% Z

35%
13% 14% 9%

3 4 0 1 2
Rounds of Human Collection Budget

Figure 14: Ablation studies on the bimanual-assembly simulation task. Left: Assessing the composition of
human intervention data collected in each round. Note that data collected via RaC maintains a high proportion
of recovery segments along with corrective frames. On the other hand, the intervention data collected by HG-
DAgger skews heavily towards corrective frames. Right: Utilizing “Rule 2” and terminating the intervention
episode early yields better data scaling of performance than continuing the policy rollout after the recover-then-
correct intervention is complete. This showcases the importance of both rules prescribed by RaC.
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F Bimanual Manipulation Tasks Evaluation Protocols

* shirt-hanging. Our shirt hanging task setup follows ShirtEasy from ALOHA
Unleashed[8] with identical child-size polo shirts, child-size hanger and hanging rack.
During policy evaluation, we perform 60 trials per policy. For each of the five shirts, we
randomize the initial shirt pose in three orientations (center, left, right) and four hanger
placement locations on rack uniformly, resulting in 12 trials per shirt, and 60 trials in total.
We also provide an entire uncut evaluation video recording on website https://rac-scaling-
robot.github.io/ for reference.

* airtight-container—-lid-sealing. In this task, we perform 60 trials evaluation
for each policy tested. At the beginning of each trial, we randomly assign initial configura-
tions uniformly to 5 different lid placement locations on the drying rack and 12 different
container locations on the cutting board, resulting in a total of 60 trials.

* clamshell-takeout—-box-packing. For this task, we perform 60 trials evaluation
for each policy tested. At the beginning of each trial, we randomly assign the locations of
the burger uniformly on the right half of the cutting board. For the placement of the takeout
box pile and the spatula, we place them roughly in front of the cutting board with a small
range of variations each trial.

For computing the confidence interval when reporting results and producing the scaling curves, we
compute the 95% confidence interval for the task progress scores, where the max scores equal to
the maximum number of sub-tasks within each task. For the full task success rates, where each trial
receives a binary score for whether the robot completed the entire task successfully, we compute the
95% Wilson score interval, i.e. a formula for binomial proportion confidence interval.
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G Comparison to Prior Works on the Shirt-Hanging Task

Name Policy Architecture Model Size Training Data Size SR

ALOHA Unleashed [8] Diffusion Transformer policy 217M ~ 89 hours (5345 75.0%
shirt-hanging expert
demos)

Seed GR-3 [38] Vision-Language-Action model 4B 116 hours of ~63.6%
shirt-hanging expert
demos and
vision-language
data

Ours (RaC) Flow-matching Transformer policy 368M 5 hours (RaC data: 78.3%
expert, recovery,
and correction)

Table 2: Comparison to similar shirt-hanging tasks in prior work. Under similar task setups and difficulty, the
full task success rate (“SR” of RaC policy is higher than other methods using an order of magnitude less data.
See Appendix G for details.

ALOHA Unleashed. In ALOHA Unleashed [8], the shirt-hanging task is performed with bimanual
ALOHA robot [34] at two difficulty levels: ShirtEasy and ShirtMessy. ShirtEasy uses 5345 full
trajectories and ShirtMessy uses 3313 full trajectories, with a fleet of robots and expert teleoperators.
In our work, the shirt-hanging task is designed to be as close to ShirtEasy as possible. They report a
full task success rate of 75% on the ShirtEasy task with Diffusion Policy trained on both the ShirtEasy
and ShirtMessy data. To standardize the comparison of the size of the data between different works,
we approximate the length of the ShirtEasy dataset in hours from ALOHA Unleashed by using an
average of 1 minutes per trajectory. Thus, we estimate a total of 5345 x 60/3600 ~ 89 hours for the
ShirtEasy dataset.

Seed GR-3. In Seed GR-3 [38], the shirt-hanging task is performed on a custom-designed bimanual
mobile manipulation platform. The task differs from ours and [8] in the final step, where the robot
“needs to rotate its mobile base from the table to the drying rack to hang the clothes”, while other
sub-tasks remain largely consistent. Importantly, Seed GR-3 reports their performance in average
task progress, where a full success corresponds to 1.0 or 100% and successful completion of each
sub-task contributes a fractional score towards the overall task progress. This is different from the
success rate metric (Table 2), where only full success trials are given score of 1.0 and other trials do
not receive any partial credit. To standardize the evaluation metrics, since ALOHA Unleashed[§]
does not report task progress scores, we estimate the full task success rate for GR-3[38] using the
Sankey diagram displayed in Figure 10 of their paper, by dividing the vertical heights of the bar
representing the last sub-task by the vertical height of the figure location representing the start. This
results in a ratio of 7/11 = 0.636.
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H Teleoperation & Human Intervention Interface

To enable effective interventions for RaC, we design a lightweight shared-autonomy using Oculus
Quest VR controllers. Our design uses a “clutch” mechanism that unifies policy execution and human
takeover: when the side button is pressed, controller motions are mapped directly to the end effector
enabling the human to take over control and intervene, and when the side button is released, the robot
follows the learned policy. To reduce operator effort, we adopt a local-frame registration scheme
with relative pose deltas. Let v denote the fixed VR headset coordinate frame, and let ¢, denote
the hand-controller frame at time ¢. At clutch engagement (¢t = 0), we define the controller’s pose
relative to the headset frame, 77, , as the local base frame. Subsequent poses are then expressed in this
local frame as 7o (t) = (Tp,))~ 1cht , with incremental translational Apy, = py — pr—1 and rotational
ARy = Rk 1 Ry offsets used to parameterize end-effector commands. This design eliminates the
need for global posture alignment, allowing operators to instantly take over and intervene with
minimal friction. A picture is shown in Figure 15.

Our system employs RMPFlow [47] as the inverse-kinematic motion generator, enabling real-time
collision avoidance and smooth arm motions.
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Figure 15: VR handset interface for shared autonomy in RaC. We design and implement a “clutch” design
that enables smooth handover from the robot policy to the human teleoperator.
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I Discussion, Conclusion, and Future Work

We presented an approach, RaC, for scaling imitation learning in the real world. Our core idea is
to scale not just the quantity of data, but the rype of data, explicitly pairing recovery and correction
behaviors collected through human interventions. By doing so, we enabled policies to mitigate
compounding errors, retry from failures, and achieve substantially higher data efficiency than standard
teleoperation or correction-only approaches. Our experiments demonstrated that this paradigm yields
robust policies on long-horizon, contact-rich tasks with orders of magnitude less data than prior work
and much better data efficiency than our comparisons. We also illustrated a form of “test-time scaling”
by showing that more recovery segments and longer action times correlate with higher performance.

We believe that there are quite a few avenues for future work. First, analogous to how autonomous RL
began performing substantially better on top of properly mid-trained initializations for LLMs [11],
we believe that policies trained via RaC bear the potential to serve as good initializations for online
RL fine-tuning on a real robot. Unlike typical imitation pre-trained policies that attempt to perform
“optimal” behavior (and typically lose track upon failing to accomplish the task), we hypothesize that
policies from RaC would naturally provide more structured exploration and coverage during online
RL due to the presence of recovery behavior. Recovery provides natural “stitching” points [48] which
might also be amenable to value-based training. Another interesting direction for future work is to
apply RaC on top of generalist vision-language-action (VLA) models [1, 14, 7]. Finally, while prior
results do show some examples of recovery behaviors in VLA models, it is unclear if such behaviors
systematically emerge in most settings or not, and studying this aspect rigorously (for example, by
plotting test-time scaling curves analogous to Figure 7) is also useful for the community.

23



	Introduction
	Related Work
	Background, Notation, and Problem Setup
	RaC: Scaling Recovery and Correction for Imitation Learning
	Understanding the Role of Recovery and Correction Segments in Imitation
	Scaling Recovery and Correction Segments in Human Teleoperation
	Policy Architecture and Training via Imitation Learning

	Experimental Evaluation of RaC
	Evaluation Domains and Task Setups
	Main Results: One Order of Magnitude Improvement in Data Efficiency
	Examining the Properties of RaC Policies

	Extended Related Work
	Policy Architecture and Training Details
	RaC Pseudocode
	Example Rollouts on Various Tasks
	Ablation Studies for the RaC Data Collection Protocol
	Bimanual Manipulation Tasks Evaluation Protocols
	Comparison to Prior Works on the Shirt-Hanging Task
	Teleoperation & Human Intervention Interface
	Discussion, Conclusion, and Future Work

