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Abstract

We consider online optimization over Riemannian manifolds, where a learner
attempts to minimize a sequence of time-varying loss functions defined on Rieman-
nian manifolds. Though many Euclidean online convex optimization algorithms
have been proven useful in a wide range of areas, less attention has been paid to
their Riemannian counterparts. In this paper, we study Riemannian online gradi-
ent descent (R-OGD) on Hadamard manifolds for both geodesically convex and
strongly geodesically convex loss functions, and Riemannian bandit algorithm
(R-BAN) on Hadamard homogeneous manifolds for geodesically convex functions.
We establish upper bounds on the regrets of the problem with respect to time
horizon, manifold curvature, and manifold dimension. We also find a universal
lower bound for the achievable regret by constructing an online convex optimiza-
tion problem on Hadamard manifolds. All the obtained regret bounds match the
corresponding results are provided in Euclidean spaces. Finally, some numerical
experiments validate our theoretical results.

1 Introduction

The online optimization has been widely studied in the past decades in online routing, spam filtering,
and machine learning [4, 23, 8]. Without a prior knowledge of loss functions, an online convex
optimization algorithm predicts solutions before the loss function is revealed.

In this paper, we consider the following Riemannian online convex optimization (R-OCO) problem,

min
xt∈K⊂M

ft(xt), t = 1, 2, . . . , T, (1)

where M is a complete Riemannian manifold equipped with a Riemannian metric g and K is a
geodesically convex (g-convex) subset ofM. Here, {ft}t=1,2,...,T is a sequence of unknown loss
functions and every ft is a geodesically convex (g-convex) function with sufficient smoothness.
The R-OCO problem (1) extends the online convex optimization in Euclidean spaces with potential
applications in machine learning, such as online principal component analysis (PCA), dictionary
learning, and neural networks [28, 19, 25].
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The R-OCO problem (1) can be understood as a learning process of T rounds. At each round
t = 1, 2, 3, . . . , T , an online learner chooses a strategy xt from the g-convex subset K. Later or
simultaneously, the adversary (or nature) produces a g-convex loss function ft : K → R of which the
learner has no prior knowledge. Finally, the learner receives the feedback and suffers the loss ft(xt).
Generally, there are two types of information feedback. One is the full information feedback, where
the entire function ft is revealed to the learner; the other is the bandit feedback, where only the value
ft(xt) is revealed. The goal of the R-OCO is to minimize the regret, defined as

R(T ) =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x),

which measures the difference between the cost by {xt}t=1,...,T and the best-fixed point chosen in
hindsight. An algorithm is called no-regret [32], if the regret of the algorithm goes sublinearly with
the time horizon T .

For carrying out optimization on a manifold, some classical methods treat the manifold as a subset of
an ambient Euclidean space and employ Euclidean constrained optimization techniques. For instance,
[30] presented an algorithm for the online PCA problem, where the variables were updated in an
embedding Euclidean space and then projected onto a manifold. However, in practical applications,
the dimension of an embedding Euclidean space can be too high (e.g., the Grassmann manifold [13]),
and the projection can be expensive to compute (e.g., the manifold of symmetric positive definite
(SPD) matrices [37]). An alternative approach termed Riemannian optimization makes use of intrinsic
geometry of manifolds so that Riemannian optimization can optimize directly on the manifold as
an unconstrained problem, and thus avoiding high dimension embedding and high computing cost
for the projection. Furthermore, this viewpoint has shown benefits from the g-convexity, by which
a nonconvex optimization problem can be converted into a g-convex one [6]. Consequently, it is
important to take a Riemannian approach in our problem (1).

Although there were many existing algorithms for offline manifold optimization problems [2, 31, 5],
very few results were obtained about the Riemannian online optimization problem. [35] proposed an
online algorithm for estimating hidden Markov chains on Hadamard homogeneous spaces and [9]
analyzed Riemannian adaptive methods on products in the regret sense. More recently, [29] studied a
zeroth-order online optimization problem on Hadamard manifolds with a sublinear assumption.

Contribution This paper aims to design no-regret algorithms for the R-OCO problem in both full
information feedback and bandit feedback. The contribution of this paper is summarized as follows:

• We propose a Riemannian online gradient descent algorithm (R-OGD) for the R-OCO
problem in the full information feedback, and then establish upper regret bounds of the
R-OGD algorithm for g-convex and strongly g-convex functions.

• We introduce a Riemannian bandit algorithm (R-BAN) for the R-OCO problem in the bandit
feedback and then establish an upper regret bound for g-convex functions. Moreover, we
develop a key technique to analyze the derivative of a local integration on homogeneous
manifolds, which can be applied to estimate gradients in Riemannian optimization and
beyond.

• We focus on the worst-case regret and present a universal lower regret bound of R-OCO
algorithms with g-convex losses on Hadamard manifolds, which matches the upper bound
achieved by the R-OGD algorithm for g-convex functions.

The established lower and upper bounds on the achievable bounds of R-OCO match their counterparts
for Euclidean online convex optimization e.g., [38, 24, 20, 1]. We briefly list our results in Table 1.

Related Work The Euclidean online convex optimization was introduced in [38]. Inspired by the
gradient descent method, [38] proposed the online gradient descent algorithm (OGD) of which the
upper regret bound was proven to be O

(√
T
)
. Then [24] proceeded with the study of the OGD

algorithm and established an upper regret boundO
(

log T
)

for strongly convex functions. In addition,
[1] gave a universal lower bound of O

(√
T
)

for online algorithms, which indicated that the bounds
in [38] and [24] are essentially optimal. In the bandit setting, [20] provided a detailed exposition
of a one-point bandit algorithm. By modifying the gradient in the OGD algorithm to a randomized
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Table 1: Comparison of regrets between our work and corresponding results in Euclidean spaces. T :
the time horizon; n: dimension of the manifold; ζ and Λ: constants relied on the sectional curvature
bound κ, the dimension n and the domain K.

Full information, Full information, Bandit Universal
g-convex strongly g-convex feedback lower bound

Our Work O
(
ζ

1
2

√
T
)

O
(
ζ log T

)
O
(
n

1
2 ζ

1
4 ΛT

3
4

)
Ω(
√
T )

Euclidean O
(√
T
)

[38] O
(

log T
)

[24] O
(
n

1
2T

3
4

)
[20] Ω(

√
T ) [1]

estimator, the upper regret bound attained O
(
T

3
4

)
and O

(
T

2
3

)
for convex loss functions and strongly

convex loss functions, respectively. By extending the one-point bandit algorithm, [3] developed a
multi-point bandit algorithm and presented upper regret bounds O

(√
T
)

and O
(

log T
)

for convex
and strongly convex loss functions. The Riemannian online algorithms proposed in this paper in the
full information feedback and the one-point bandit feedback settings are extensions of the algorithms
in ([38, 24, 20, 1]) to Riemannian manifolds.

Riemannian optimization has drawn much research attention in the past decades. Many basic
algorithms in Euclidean spaces such as the gradient descent method, Newton’s method, and trust-
region methods have been adapted into a Riemannian setting [2, 5, 31]. Some research of Riemannian
stochastic optimization (R-SO) was intended to deal with time-varying optimization problems
[12, 36, 37, 35]. Among them, [36] provided the first global complexity analysis for the R-SGD
algorithm on geodesically convex problems over Hadamard manifolds, and [35] proposed an online
algorithm to deal with hidden Markov chains on Hadamard homogeneous spaces. When performed in
batch, R-SO methods are to minimize the average regret in the case of knowing the prior distribution
of the loss functions. In these sense, the R-SO can be viewed as a kind of R-OCO problems and
R-OCO algorithms can handle settings without prior knowledge.

The results about the R-OCO problem are quite limited. [7] proposed regularized online optimization
methods via a Riemann–Lipschitz continuity condition, which focused on convex functions from
an ambient Euclidean space. In the full information setting, [9] constructed regret upper bounds of
Riemannian adaptive methods for g-convex functions, which required a product manifold structure.
When the form of loss function was not available, [29] proposed a zeroth-order online algorithm on
Hadamard manifolds for the tracking error in asymptotic sense as well as regret bounds by assuming
the sublinearity of the term VT , which is a summation of distance between the minimizer of ft and
ft+1. In contrast, the regret bounds established for our online gradient-based/bandit Riemannian
optimization algorithms are sublinear for any time, matching those for Euclidean online optimization.

2 Preliminaries

Riemannian manifolds A manifoldM is a topological space locally diffeomorphic to Euclidean
spaces. The tangent space TxM is a linearization of manifoldM at point x. A vector field X is a
map assigning every point x ∈ M with a tangent vector X(x) ∈ TxM, which can be also viewed
as differential operators over smooth functions onM, i.e., the operation X(f) defines a function
X(f)(x) = limt→0

1
t (f(ξ(t))− f(x)) onM, where ξ is a curve that starts at x with tangent vector

X(x).

A Riemannian manifold is a smooth manifoldM equipped with a metric tensor g (or called Rieman-
nian metric), which defines an inner product 〈·, ·〉x in every tangent space TxM of x ∈ M. The
Riemannian metric g brings a distance structure onM. A curve is a geodesic if it locally minimizes
the length, which is an analog of a straight line in Euclidean spaces. On Riemannian manifolds,
a geodesic is uniquely determined by the start point and initial tangent vector. In this way, the
exponential map expx : TxM→M is defined by mapping a vector X ∈ TpM to γ(1) ∈ M for
the geodesic γ such that γ(0) = x and γ̇(0) = X .

Curvature reflects the geometry of manifolds. We focus on sectional curvature, which is the Gauss
curvature of a two-dimensional submanifold. Following [36], we consider the Hadamard manifold,
which is a simply connected and complete manifold with nonpositive sectional curvature. The
Cartan-Hadamard theorem [11] shows that the exponential map expx(·) is a diffeomorphism from the
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tangent space TxM∼= Rn to the manifoldM. Therefore, the exponential map has an global inverse
exp−1

x (·) on Hadamard manifolds, and the distance d(x, y) can be expressed as ‖ exp−1
x (y)‖x.

Isometries of Riemannian manifolds have been widely studied in differential geometry [11, 10]. An
isometry φ : M→M is a diffeomorphism preserving distance, i.e., d(x, y) = d(φ(x), φ(y)) for
all x, y ∈ M. It is remarked that all isometries of a Riemannian manifold form a Lie group G. A
Riemannian manifold is a homogeneous manifold if the group of isometries G acts onM transitively,
i.e., for any points x, y ∈ M there exists an isometry such that φ(x) = y. Some properties of
homogeneous manifolds are used in our work, for example, the Killing field that represents the
infinitesimal symmetry of isometries. We leave those properties in the appendix, due to the space
limitation.

Function Classes A set K is called geodesically convex (g-convex) if, for any points x, y ∈ K,
there admits a geodesic γ ⊂ K connecting x and y. A function f : K → R is called geodesically
convex (or g-convex) if for any geodesic γ : [0, 1]→M,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)), ∀t ∈ [0, 1].

The g-convexity has some equivalent conditions. When f is differentiable, which means that there
exists a gradient ∇f(x) such that 〈∇f(x), X〉 = X(f)(x) for any vector field X , the g-convexity is
equivalent to

f(y) ≥ f(x) + 〈∇f(x), exp−1
x (y)〉,∀x, y ∈M.

Furthermore, if f is twice differentiable, the g-convexity is equivalent to

Hess(f)(x)(X,X) = X(X(f(x))− (∇XX)f(x) ≥ 0,∀x ∈M,∀X ∈ TxM,

where ∇ is the Levi-Civita connection ofM, which is an analog of the differential of vector fields in
Euclidean spaces (see [17]). A differentiable function f :M→ R is geodesically µ-strongly convex
(or µ-strongly g-convex) if there exists a constant µ > 0 such that for any x, y ∈M,

f(y) ≥ f(x) + 〈∇f(x), exp−1
x (y)〉+

µ

2
d2(x, y).

We term a function to be geodesically L-Lipschitz (or g-L-Lipschitz) if there exists a constant L > 0
such that,

|f(y)− f(x)| ≤ L · d(x, y),∀x, y ∈M,

When f is differentiable, the g-L-Lipschitzness is equivalent to

‖∇f(x)‖ ≤ L,∀x ∈M.

3 Riemannian Online Convex Optimization with Full Information Feedback

This section is devoted to the study of the R-OCO problem in the full information feedback. Here,
we first propose our R-OGD algorithm and then analyze upper regret bounds of R-OGD for both
g-convex and strongly g-convex functions. In addition, a universal lower regret bound is presented to
illustrate that the regret bound of the R-OGD algorithm is tight up to a constant in the g-convex case.

3.1 Riemannian Online Gradient Algorithm

In the full information setting, we consider the following assumptions, which were used in the
literature of Euclidean online convex optimization and Riemannian optimization (e.g., [38, 36, 5]).

Assumption 1. There exists x? ∈M such that x? = arg min
∑T
t=1 ft(x).

Assumption 2. (M, g) is a Hadamard manifold with the sectional curvature lower bounded by a
constant −κ (κ ≥ 0).
Remark 1. The Hadamard manifold plays an important role in Riemannian geometry [22]. Some
well-known spaces, such as the Euclidean space Rn, the hyperbolic space Hn, and the manifold of
SPD matrices, are all Hadamard manifolds [36, 5].
Assumption 3. The g-convex set K is a bounded set with diameter D, i.e.,

d(x, y) ≤ D,∀x, y ∈ K.
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Assumption 4. For all t = 1, . . . , T , ft are differentiable and g-L-Lipschitz.

We now propose our Riemannian online gradient descent algorithm (R-OGD) in Algorithm 1, where
the exponential map replaces the vector addition in the Euclidean online gradient descent [38].

Algorithm 1: Riemannian Online Gradient Descent Algorithm (R-OGD)
Input: ManifoldM, time T , step sizes {αt}
Output: {xt}t=1,...,T

for t = 1 to T do
Play xt and observe the function ft;
Update

xt+1 = PK(expxt(−αt∇ft(xt))),
where PK is the Riemannian projection mapping of x onto K, that is,
PK(x) := arg miny∈K d(x, y);

Return xt+1, and suffer from the loss ft(xt);
end

3.2 Regret Upper Bounds

In Theorems 1 and 2 we present upper bounds of the regret along the R-OGD algorithm for g-convex
and strongly g-convex functions, respectively. Take ζ(κ, d) =

√
κ·d

tanh
(√

κ·d
) . By direct observation, ζ

is an increasing function of the variables κ and d when κd ≥ 0.
Theorem 1 (Convex Case). Suppose that Assumptions 1-4 hold, and ft is g-convex for any t =
1, . . . , T . Then the R-OGD algorithm with step sizes {αt = D

L
√
ζ(κ,D)t

} guarantees the following

regret bound for all T ≥ 1,

R(T ) ≤ 3

2
DL
√
ζ(κ,D)T.

Theorem 2 (Strongly-convex Case). Suppose that Assumptions 1-4 hold, and ft is µ-strongly g-
convex for any t = 1, . . . , T . Then the R-OGD algorithm with step sizes {αt = 1

µt} guarantees the
following regret bound for all T ≥ 1,

R(T ) ≤ L2ζ(κ,D)

2µ
(1 + log T ).

The proofs of Theorems 1 and 2 are in the appendix. A major challenge in proving Theorems 1 and
2 is that there is no vector space structure on Riemannian manifolds. Thanks to the trigonometric
distance bound proposed in [36], we manage to obtain the regretO

(√
T
)

andO
(

log T
)

for g-convex
and strongly g-convex loss functions, respectively. By gradually moving κ to zero, the results recover
the regret bounds for Euclidean gradient descent in [38] and [24].

Theorems 1 and 2 also reveal the influence of curvature on the regret bounds. Since ζ(κ, d) is an
increasing function of κ, the upper regret bounds in the R-OGD algorithm are larger than those in
Euclidean spaces and the increase of κ raises the upper regret bound. Therefore, a proper Riemannian
metric should be chosen in the optimization to avert the high sectional curvature bound.

3.3 Regret Lower Bound

This section is intended to answer the question of whether there exists an algorithm that attains a
tighter regret bound than O

(√
T
)

for g-convex functions. Theorem 3 provides a negative answer.
Theorem 3. Suppose that Assumptions 1-4 hold. Then for any Hadamard manifoldM, the Rieman-
nian online convex optimization incurs the regret Ω(DL

√
T ) for any possible strategy in the worst

case.

The proof of Theorem 3 is in the appendix. The result illustrates that, as in Euclidean spaces, the
regret of a Riemannian online comvex algorithm can not be less than Ω(

√
T ) in the worst case.

Moreover, Theorem 3 shows that the regret of the R-OGD algorithm in Theorem 1 is tight up to a
constant.
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4 Riemannian Online Convex Optimization with Bandit Feedback

In this section, we consider the Riemannian online convex optimization with the one-point bandit
feedback. We first present the Riemannian bandit algorithm (R-BAN) on Hadamard homogeneous
manifolds and then analyze the (expected) upper regret bound for our algorithm. In the rest of this
section, for any point x, we denote Bδ(x) as the geodesic ball centered at x with radius δ, and Sδ(x)
as the geodesic sphere centered at x with radius δ.

4.1 Riemannian Bandit Algorithm

In the bandit setting, Assumptions 2-4 are slightly modified as follows.
Assumption 5. M is an n-dimensional homogeneous Hadamard manifold with the sectional curva-
ture lower bounded by a constant −κ (κ ≥ 0).
Remark 2. The homogeneous Hadamard manifold has been widely studied in differential geometry
[10, 11]. The property of homogeneity has received much attention in machine learning [33, 35, 14].
It has been seen that many manifolds often considered in Riemannian optimization, such as the
Euclidean space Rn, the Hyperbolic space Hn, and the manifold of SPD matrices, are Hadamard
homogeneous manifolds.

Note that on Hadamard homogeneous manifolds, the volume and surface area of a geodesic ball is
only related to the radius but not to the center of the ball, thus we denote Vδ as the volume of Bδ(x)
and Sδ as the surface area ((n− 1)-dim volume) of Sδ(x) for all x in the manifoldM.
Assumption 6. There exists an interior point p ∈ K such that the set K contains a ball with radius r
centered at p, and is also contained in a ball with radius D, i.e.,

Br(p) ⊂ K ⊂ BD(p).

Assumption 7. For any t = 1, . . . , T , ft is differentiable, g-L-Lipschitz and bounded by C.

Inspired by the Euclidean bandit algorithm, we replace the gradient ∇ft(xt) with a randomized
estimator gt and propose our R-BAN in Algorithm 2 on Hadamard homogeneous manifolds.

Algorithm 2: Riemannian Bandit Algorithm (R-BAN)
Input: ManifoldM, time T , step size α, parameters δ, τ .
Output: Sequence {xt}t=1,...,T

for t = 1 to T do
Pick xt uniformly from Sδ(yt);
Play xt and observe ft(xt);
Construct the gradient estimator

gt = ft(xt)
exp−1

yt (xt)

‖ exp−1
yt (xt)‖

;

Update yt with the rule
yt+1 = P(1−τ)K(expyt(−αgt)),

where we denote P(1−τ)K as the projection mapping onto the shrinking set
(1− τ)K = {expp((1− α)u)|u = exp−1

p (x), x ∈ K}.
Return xt and suffer from the loss ft(xt);

end

4.2 Challenges from Geometry

Since Algorithm 2 is an extension of the Euclidean bandit algorithm in [20], it is worth reviewing the
analysis in [20]. In the Euclidean setting, we uniformly choose xt on the Sδ(yt) and update yt by the
rule {

g̃t = f(xt)
xt−yt
‖xt−yt‖ ,

yt+1 = P(1−τ)K(yt − αg̃t).
(2)

6



The basic idea for the analysis is to introduce the smoothed loss function [20]

f̂Et (x) = Eu∈Bδ(x)[ft(u)] =
1

Vδ

∫
Bδ(x)

ft(u)du,

where f̂Et is a convex approximation of ft when δ is small. It is shown that nδ g̃t is an unbiased
estimator of the gradient ∇f̂Et (yt), hence the bandit algorithm is actually an expected gradient
descent method [20] with the loss function f̂Et . In this way, an Euclidean regret bound of the bandit
algorithm is established by [20].

Back to the Riemannian case, we attempt to generalize the analysis of [20] in parallel by defining the
"Riemannian version" of the smoothed loss function,

f̂t(x) = Eu∈Bδ(x)[ft(u)] =
1

Vδ

∫
Bδ(x)

ft(u)ω,

where ω is the volume element with respect to the metric g. Analyzing this smoothed loss function in
the Riemannian space, however is fundamentally challenging due to the following two reasons.

(i) The gradient is hard to compute. Computing the gradient of f̂t is quite different from that
in Euclidean spaces, due to the absence of the commutativity of the derivative operator ∇ and the
integration operator

∫
Bδ(yt)

. In Euclidean spaces, the derivative operator ∇ commutes with the

integration operator
∫
Bδ(yt)

. Accordingly, for the Euclidean smoothed loss function f̂Et ,

∇f̂Et (yt) =
1

Vδ
∇
∫
Bδ(yt)

ft(u)du =
1

Vδ

∫
Bδ(yt)

∇ft(u)du, (3)

which implies n
δE[g̃t] = ∇f̂Et (yt). However, on Riemannian manifolds the derivative operator ∇

does not commute with the integration operator
∫
Bδ(yt)

. Consequently, the equation (3) fails for
functions on Riemannian manifolds.

(ii) The convexity may be lost. Another essential challenge for regret analysis is the convexity
of f̂t. In Euclidean spaces, one can easily conclude the convexity of f̂Et . However, the convexity
may not hold for a Riemannian manifold. Through calculation, the Hessian of f̂t on Riemannian
manifolds is

Hess(f̂t)(X,X) =
1

Vδ

∫
Bδ(x)

(Hess(ft)(η, η)(u) + 〈∇ηη,∇ft(u)〉)ω,

where η is a Killing field such that η(x) = X . Since the quadratic form Hess(ft)(η, η)(x) +

〈∇ηη,∇ft(x)〉 can be negative at some η ∈ TpM, the g-convexity of f̂t is violated for some small δ.

4.3 Gradient Bound and Approximate g-Convexity

To address the difficulty (i), we propose a key technique to analyze the derivative of local integration
by introducing the Killing vector field. With the help of this technique, we manage to compute the
gradient of f̂t in Lemma 1.

Lemma 1. LetM be a homogeneous Hadamard manifold, and f be a C1 function onM. Then the
smoothed function f̂(x) = 1

Vδ

∫
Bδ(x)

fω satisfies,

1) ∇f̂(x) = 1
Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖ = Sδ

Vδ
Eu∈Sδ(x)

[
f(u)

exp−1
x (u)

‖ exp−1
x (u)‖

]
,∀x ∈M;

2) If |f(x)| < C, then

‖∇f̂(x)‖ ≤ Sδ
Vδ
C ≤ n

δ
C + nκδC

for all δ > 0.
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Remark 3. The proof of Lemma 1 can be found in the appendix. The first part of the lemma
establishes a gradient estimator of f̂t(x) , while the second part gives us an easy-to-compute bound
of the gradient. In the proof, we develop a key technique that transforms a derivation of integration
on Bδ(x) to a integration of derivative of corresponding Killing vector field on Bδ(x), i.e.,

X
( ∫

Bδ(x)

f(u)ω
)

=

∫
Bδ(x)

η(f(u))ω, (4)

where η is a Killing field with η(x) = X . This technique does not rely on the curvature and
other specific manifold structures. Hence, the technique can be a basic tool for optimization on
homogeneous spaces and maybe in broader areas.

For difficulty (ii), we notice that though the function f̂t may not be g-convex, it is very close to be
g-convex.

Lemma 2. Suppose thatM is a Hadamard homogeneous manifold, and K is a convex and bounded
set ofM. Then there exists a constant ρ ≥ 0 only related to the set K such that for any g-convex and
g-L-Lipschitz function f ,

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ −2ρδL,∀x, y ∈ K.

The proof of Lemma 2 is in the appendix. It is worth mentioning that the constant ρ describes how
close a smoothed function is to be g-convex. Notice that,

ρ = sup
x,y,u∈K

| 1√
G

∂

∂xi

(√
G exp−1

u φ(u)
)i| s.t. φ(x) = y

does not depend on the function f̂t, and the time T . Moreover, for a certain manifoldM, once the set
K is fixed and the explicit expression of φ is given, we can compute the constant ρ as a finite number.
We briefly list the bound of φ in the following two kind of manifolds.

(1) Let manifoldM be a Euclidean space, then we can find the isometry φ(z) = z + y − x.
Hence we can conclude that ρ = 0 and f̂ is convex, which coincides with the result in
Euclidean spaces.

(2) LetM be a 2-dimensional Poincaré disk, and then the isometry φ from x to y has the closed
form of

φ = φx ◦ φy,

where φx(z) = x−z
1−x̄z and φy(z) = y−z

1−ȳz . Therefore, if K has diameter D, we can figure
out a bound of ρ in

ρ ≤ 16
1 + tanh(D/2)

1− tanh(D/2)

( 1

1− tanh(2D)2
+

D

tanh(D/2)

)
,

which implies that ρ may grow exponentially with respect to D.

Although the value of ρ is generally difficult to calculate, our algorithm analysis and parameter
selection do not depend on the specific value of ρ (see Theorem 4).

4.4 Regret Bound

With the above effort, we carry out the analysis of the expected regret bounds of Algorithm 2. Denote
B = nκ, ∆ = BCD

√
ζ(κ,D) + 3L+ 2C/r and Λ =

√
∆ + 2ρL√

∆
.

Theorem 4. Suppose that Assumptions 1 and 5-7 hold, and ft is g-convex for any t = 1, . . . , T .

Take τ = δ
r , α = D

C
√
ζ(κ,D)T

,δ = T−
1
4

√
CDn
√
ζ(κ,D)

∆ . Then the expected regret of Algorithm 2 is

upper bounded by

E[R(T )] ≤ 2T
3
4

√
nCD

√
ζ(κ,D)Λ.
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The proof of Theorem 4 can be seen in the appendix. Theorem 4 shows that the regret of the Rie-
mannian bandit algorithm achieves O

(
T

3
4

)
for g-convex loss functions on homogeneous Hadamard

manifolds, which is the same as the regret bounds in Euclidean spaces [20].

Our work is different from the result in [29] in two aspects. First, in [29] the sublinear regrets bounds
depends on the assumption of sublinearity of the term VT , while in Theorem 4, the sublinear regret
bound is expressed explicitly with the time horizon T with no additional assumptions. Second, to
estimate the gradient, [29] used a biased estimator of the gradient, while in our bandit algorithm the
gradient estimator gt of the smoothed function is unbiased.

5 Numerical Experiment

We validate our findings on Riemannian manifolds in both g-convex and strongly g-convex losses.
We also compare our results with the Riemannian zeroth online (R-OZO) algorithm [29] if possible
(the R-OZO is only suitable for strongly g-convex cases). All experiments are performed with the
help of Pymanopt toolbox [34]2 on a 64 bit Windows platform with a 3.4 GHz CPU (AMD Ryzen5
2600) and the code used for the numerical experiments is provided in the supplementary materials.

5.1 Strongly Convex Cases

For strongly g-convex cases, we apply our R-OGD and R-BAN algorithms to the Fréchet mean
problem, which is also known as finding the Riemannian centroid of a set of points on a manifold
with many applications, such as diffusion tensor magnetic resonance imaging (DT-MRI), radar
signal processing, and batch normalization of neural networks [16, 27, 15]. In this subsection,
we study an online form of the Fréchet mean problem to average a set of N time-varying points
{At,1, At,2, At,3, . . . , At,N} on a manifold. The loss function is defined as

ft(Xt) =
1

N

N∑
i=1

d2(Xt, At,i), t = 1, 2, . . . , T,

where d(X,Y ) is the Riemannian distance of the manifold. It is remarked that ft is g-convex and
2-strongly g-convex [18] so that we can apply our algorithms. In particular, we test the R-OGD and
the R-BAN algorithm, respectively, on the manifold of SPD matrices and in the hyperbolic space,
and we also compare our R-BAN algorithm with the R-OZO in [29].

Fréchet mean on the SPD Manifold On the manifold of SPD matrices {X ∈ Rn×n|XT =
X,X � 0} , we run the R-OGD algorithm with two kinds of step size: the step size for convex
case αt = D/(L

√
ζ(κ,D)t) (R-OGD-C) and the step size for strongly g-convex case αt = 1/(2t)

(R-OGD-SC). In these two cases, we set [n,N, T ] = [100, 10, 1000]. Matrices Ai,t are randomly
generated by the method in Pymanopt toolbox. We plot the average regret R(t)/t versus the learning
round t and the running time in Figures 1(a)-1(b). As seen, the regrets of the R-OGD algorithm go
sublinearly with t and the average regret of the R-OGD-SC converges faster than that of R-OGD-C in
terms of the iteration as well as the running time, which are consistent with the results in Theorems 1
and 2.

Fréchet mean on the Hyperbolic Space We test the performance of the R-BAN algorithm in the
hyperbolic spaceHn = {x ∈ Rn+1|−x2

n+1 +
∑n
i=1 x

2
i = −1}. The dataAi,t is randomly generated

by normal Gaussian distributions. Consider the case [n,N, T ] = [100, 10, 10000] and set δ = 0.399
(which is four times the theoretical value) and α = 0.006. Figures 1(b) and 2(b) compare the average
performance between the R-BAN algorithm and the R-OZO algorithm for 100 random runs. We
observe that our R-BAN algorithm can achieve a sublinear expected regret with less information,
since the R-OZO needs function values of two points in this case.

5.2 Convex Cases

An example of Riemannian optimization problems, which is g-convex but not strongly g-convex, is the
operator scaling problem defined on the manifold of SPD matrices {X ∈ Rn×n|XT = X,X � 0}.

2https://www.pymanopt.org/, BSD 3-Clause License
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The operator scaling problem has drawn abundant interest in many areas, such as computing non-
commutative rank [26] and computing Brascamp-Lieb constants [21]. In this subsection, we study an
online form of the operator scaling problem. Given a tuple of time-varying matrices (At,1, . . . , At,N ),
the online operator scaling can be formulated in terms of minimizing the log capacity of operator
Tt(X) =

∑N
i=1At,iXA

T
t,i, that is

ft(Xt) = log det(T (Xt))− log det(Xt), t = 1, 2, . . . , T.

We test our R-OGD and R-BAN algorithms for the case [n,N, T ] = [5, 2, 100000]. The entries of
Ai,t are generated from the normal Gaussian distribution. We test the R-OGD with with taking the
Lipschitz constant L = 2 and test the R-BAN with δ = 0.22 (which is five times the theoretical
value) and α = 0.002 for 100 different runs. The result in Figures 1(c) and 2(c) again shows the
(expected) sublinear regret in this case, which supports our theoretical results.

6 Conclusion

We considered an online optimization problem on Riemannian manifolds in the full information
and bandit feedback setting. We developed the R-OGD algorithm on Hadamard manifolds and the
R-BAN algorithm on Hadamard homogeneous manifolds. The upper regret bounds of the R-OGD and
R-BAN algorithm, together with a universal lower regret bound were established with the influence
of curvature clearly indicated. All of the regret bounds matched their Euclidean counterpart.

A limitation of our work is that we do not take retraction into consideration. A retraction map is
a cheap approximation of the exponential map on manifolds and is a sensible choice in many real
scenarios. In future work, we intend to design Riemannian online optimization methods with the
retraction map, so that the resulting algorithms can be more effective in large-scale optimization
problems.
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