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Abstract. Magnetic Resonance Imaging reconstruction accelerates im-
age acquisition by reconstructing high-quality images from undersam-
pled k-space data using deep learning. However, real-world deployment
of these models remains hindered by concerns around trustworthiness,
generalization, and data privacy, especially in the presence of corrupted
or adversarial training samples. We propose a Corrective Machine Un-
learning framework that selectively removes the influence of harmful data
while preserving overall model performance. By leveraging techniques
such as Selective Synaptic Dampening, our approach aims to robustly
and efficiently forget poisoned representations. Experimental results on
MRI reconstruction tasks demonstrate that Corrective Machine Unlearn-
ing can effectively mitigate artifacts introduced through data poisoning
while maintaining high fidelity on untainted inputs. Our findings un-
derscore the promise of corrective unlearning as a practical step toward
safer, privacy preserving, and clinically reliable MRI systems. All code
and scripts used are available at Github repository.
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1 Introduction

Magnetic Resonance Imaging (MRI) is essential in clinical diagnostics but is hin-
dered by slow acquisition speeds. Deep learning–based accelerated reconstruction
techniques, such as variational networks[16], have significantly improved image
quality from undersampled data.

However, these models remain vulnerable to corrupted training samples and
out-of-distribution inputs[22], which can lead to hallucinated anatomical struc-
tures and unreliable reconstructions. These risks are further intensified when us-
ing large, noisy, or biased datasets. Moreover, regulatory frameworks like GDPR
demand mechanisms to remove specific data influence, motivating the need for
responsible model correction.

We propose Corrective Machine Unlearning as a post-training solution to
selectively remove the influence of flawed data without full retraining. Using
methods like Selective Synaptic Dampening (SSD), we target improved robust-
ness and clinical viability in MRI reconstruction models.

https://anonymous.4open.science/r/CorrectiveMachineUnlearningForMRI-0C22/
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Fig. 1: Conceptual overview of corrective unlearning to mitigate hallucinations
from corrupted training data.

2 Related Work

Litjens et al. [11] and Shen et al. [15] demonstrated the transformative impact
of deep learning in medical imaging, particularly for tasks such as segmentation,
detection, and disease classification in various modalities. Among these, MRI
reconstruction has seen significant advancement, moving beyond classical com-
pressed sensing [12] to end-to-end deep learning frameworks such as variational
networks proposed by Hammernik et al. [9], which combine data fidelity with
learned priors to achieve accelerated and high-quality reconstructions.

However, such models often lack robustness to out-of-distribution or cor-
rupted inputs, leading to hallucinated features and clinical risks. Xu et al. [20]
and Wang et al. [19] proposed machine unlearning to remove specific data influ-
ence without full retraining, aligning with privacy mandates like GDPR [18].

Based on this, Goel et al. [8] introduced corrective unlearning, which deals
with scenarios involving only partial knowledge of corrupted or adversarial data.
Their strategies, such as selective parameter damping, offer promising solutions
to mitigate the lasting impact of such data on model behavior. Existing ap-
proaches [21] have considered the problem of privacy based unlearning. Here we
extend this approach to corrective unlearning bridging the gap to real world
applications where both clinical accuracy and regulatory compliance are impor-
tant.
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3 Methods

3.1 Problem Formulation

Following [8], let D be the full training dataset used to train a model M with
parameters θ. We define a forget set Df ⊂ D, of which a subset D∗

f ⊂ Df is
available for unlearning. The retain set is Dr = D \Df .

Our objective is to obtain an updated model M ′ with parameters θ′, such
that the influence of Df is removed while maintaining performance on Dr.

1. Performance Retention on Dr

2. Performance Degradation on Df

3. Model Efficiency

To represent this trade-off, we define a score function:

S(M, θ,Df ;α) = α · Perf(M, θ;Dr) + (1− α) · [1− Perf(M, θ;Df )],

where Perf(·) is a performance metric (e.g., accuracy or loss), and α ∈ [0, 1]
controls the relative importance of retention and forgetting. The optimization
objective is then:

θ∗ = argmax
θ

S(M, θ,D∗
f ;α), λ

∗ = arg max
λ∈Rn

S(M(λ), θ,Df ;α)

where λ represents model-specific hyperparameters.

3.2 Unlearning Approaches

We consider several corrective machine unlearning strategies suited for the med-
ical imaging domain, particularly for MRI reconstruction tasks:

1. Retraining from Scratch: The model is retrained solely on the retain set:

θ′ = argmin
θ

L(θ;Dr).

While this method fully removes Df , it is computationally expensive and
impractical for clinical use. Moreover, limited availability of forget data can
significantly degrade model performance.

2. Selective Synaptic Dampening (SSD): This approach[7] uses the Fisher
Information Matrix to identify and dampen parameters most influenced by
the forget set:

FDf
= Ex∼Df

[
∇θ log p(x|θ)∇θ log p(x|θ)⊤

]
.

3. Bad Teacher Distillation: Following [6], a biased teacher model overfit
to Df , is first trained. The student model then subtracts this overlearned
signal to retain only the unbiased representation.

4. Gradient Ascent (GA): A targeted gradient ascent step[17] is performed
on the loss over Df , with learning rate η, to negate its influence:

θ′ = θ + η∇θL(θ;Df ).

Careful tuning of η is critical to reverse learning without destabilizing the
model.
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4 Dataset
M4Raw: M4Raw[13] is a 28 GB, multi-anatomy MRI dataset providing raw
multi-coil k-space data, magnitude images, sensitivity maps, and undersam-
pling masks. It covers regions such as the brain and knee, all acquired with
fastMRI-style protocols, and is released under an open license to support repro-
ducible acceleration experiments across a variety of clinical scenarios.
EXBox1: EXBox1[5] is a publicly released collection of artifact-heavy MR scans
exhibiting ghosting, motion blur, and intensity distortions. Each scan comes with
paired clean and corrupted versions, enabling precise evaluation of unlearning
methods under real-world acquisition anomalies without sacrificing anatomical
diversity.
BraTS: The BraTS dataset[4] provides T1-weighted MRI scans of glioma tu-
mors spanning multiple grades. Though originally released as spatial-domain
images, we convert each volume to synthetic k-space via Fourier transform and
inject adversarial perturbations and label noise to create poisoned examples for
robust unlearning assessment.

Poisoning Techniques

We first explored a mislabeling-based attack to mimic potential misannotations
in loosely curated datasets. Initial attempts using basic PGD attacks to sim-
ulate tumor-like features in healthy scans resulted in noisy perturbations. To
improve realism, we developed a multi-objective adversarial approach combin-
ing SSIM loss, total variation loss, and region-aware masking. However, for our
experiments, we focused solely on mislabeling attacks.

Fig. 2: Adversarial attack on a sample: Original image (Label: 1) on the left and
its adversarial counterpart (Predicted: 0) on the right. Minor structural noise
led to class flipping.

5 Experiments

5.1 Classifier Experiment

To assess whether unlearning was necessary, we first tested if a significant portion
of the forget set could be identified outright. If so, retraining from scratch—after
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removing these samples—could suffice without a dedicated unlearning strategy.
Even with a powerful model like ResNet-50[10] pretrained on 1M images, accu-

Fig. 3: Confusion matrix for the Forget Classifier (RNet). True label vs. predicted
label. The model performs well on ’retain’ samples but struggles to correctly
classify many ’forget’ instances.

rate detection of anomalous or poisoned samples remains challenging. As shown,
a significant number of ’forget’ instances are misclassified, meaning retraining
on a filtered set would still leave many corrupted samples intact.

(a) Ground truth reconstruction. (b) Poisoned model reconstruction.

Fig. 4: Visual comparison of clean and poisoned MRI reconstructions.

5.2 Unlearning Experiments

To evaluate the corrective unlearning strategies, we compared five methods using
a known subset of poisoned samples as the forget set, and the remaining clean
data as the retain set. An oracle model, trained from scratch on the unpoisoned
dataset, served as the reference baseline.
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Finetuning methods were run to convergence on the retain set, starting from
the poisoned checkpoint. In contrast, SSD was applied for a single epoch to
highlight its immediate corrective effect.

Experimental Setup
1. Dataset partitioning: For each target poison level (e.g., 1%, 5%, 10%), we

randomly sampled that fraction of the training set, and poisoned it to form
the true forget set. From this, we designated a known forget subset (50% of
the true forget set) available to each unlearning method; the remainder of
the data constituted the retain set.

2. Baseline (no unlearning): The original poisoned model, trained on the
full dataset including all poisoned samples.

3. Oracle: A clean model trained on entirely unpoisoned data, serving as the
best-achievable performance.

4. Evaluation: We measured reconstruction quality (e.g. PSNR, SSIM) sepa-
rately on the true retain set(unpoisoned samples)mcomplete forget set and
the validation set.

6 Results and Interpretation
6.1 Unlearning Experiment Results
We conducted a series of unlearning experiments to evaluate the effectiveness of
various methods in mitigating the impact of poisoned data on a reconstruction
task. The experiments focused on a range of poisoned model percentages, with
metrics evaluated on both the forget and retain sets. Below, we report the results
of our most promising approach, Selective Synaptic Dampening (SSD), alongside
a comparison with the original model’s unlearning performance.

Fig. 5: Reconstructions obtained after retrain from scratch

Metrics on Forget and Retain Sets We evaluated all methods on 9,216
samples using a model poisoned with 30% corrupted data, where 20% of the
forget set was known a priori. Inference ran at 12.19 iterations per second. As
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shown in Figure 6, the original model achieves the best reconstruction perfor-
mance across SSIM, PSNR, and NMSE, reflecting high fidelity even on poisoned
data. In contrast, our SSD method achieves a favorable trade-off, significantly
degrading performance on the forget set while maintaining high accuracy on the
retain set.

Fig. 6: Heatmap comparison of SSIM, PSNR, and NMSE across forget and retain
sets for different unlearning methods. SSD demonstrates strong forgetting while
preserving retain performance.

Selective Synaptic Dampening (SSD) SSD achieved this performance us-
ing a single hyperparameter configuration. Its mechanism selectively suppresses
synaptic weights to forget poisoned information while preserving useful features.
Given its sensitivity to α and λ, we anticipate further gains through systematic
hyperparameter tuning.

6.2 Retention of Generalizability in the Unlearnt Model

A key finding in our experiments is the ability of the unlearnt model to revert to
clean reconstructions, even when trained with poisoned data. As shown in Fig-
ure 7, the output of the model post-unlearning closely resembles the ground-truth
image rather than the corrupted input it was originally exposed to. This sug-
gests that our Selective Synaptic Dampening (SSD) approach effectively removes
the influence of harmful training signals while preserving useful representational
capacity.



8 Anonymized Authors

(a) Poisoned (b) Unlearnt Output (c) Ground Truth

Fig. 7: Comparison of poisoned input, unlearnt model output, and clean ground-
truth reconstruction.

This behavior demonstrates SSD’s robustness to adversarial perturbations,
its ability to retain generalizable features, and its precision in selectively for-
getting only the corrupted influences key attributes for reliable deployment in
clinical settings.

7 Conclusion

We presented a corrective machine learning framework for deep learning-based
MRI reconstruction, which allows the selective removal of corrupted training
data while preserving performance on clean inputs. Our approach, centered on
selective synaptic dampening (SSD), and supported by complementary tech-
niques like gradient ascent and bad teacher distillation, proved effective against
various data corruptions, including poisoning and adversarial attacks.
SSD consistently mitigated artifacts and restored reconstruction quality, demon-
strating the utility of unlearning beyond privacy - improving model trust and
robustness in clinical settings. As regulatory requirements like GDPR grow in
importance, such scalable unlearning methods offer a practical pathway for safe
and reliable medical AI.
Future directions include adaptive dampening strategies, improving reconstruc-
tion fidelity, integration with federated learning, and expert-guided clinical val-
idation.
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