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Abstract
Foundation models show an impressive ability to
write code snippets. However, there are still chal-
lenges when generating code for resource-poor
programming languages. In this work, using Rust
as an example, we tackle these challenges through
in-context learning, with additional components
that feed back compile errors to the LLM until it
converges on a runnable code that is free of sev-
eral common programming errors. We describe
the specific techniques that allow us to do this
– history-based search, prompt engineering, and
syntax-based skeletonization – and evaluate their
benefits on a set of code generation tasks in Rust.

1. Introduction
Large Language Models (Zhao et al., 2023; Brown et al.,
2020; OpenAI, 2023; Bubeck et al., 2023) are disrupting
the world of software development through their ability to
generate code, e.g. using services such as Copilot.1 Typi-
cally these are used to generate code snippets that must then
be reviewed, accepted, integrated, and tested by the human
developer (Svyatkovskiy et al., 2019; Lin et al., 2017; Barke
et al., 2023). Code generated by current LLMs often does
not compile “out of the box” – for example, it can contain
syntax errors, type errors, and missing dependencies. Fixing
these is currently left to the human developer. Similarly
writing unit tests, running the tests, and applying fixes when
tests fail, all require significant human interaction.

Our vision is for AI models to generate systems code in
a way that compiles out of the box, is testable, and scales
to large code bases. We believe that repeated human in-
teraction with the LLM, trying to “get it to do the right
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thing”, dilutes the benefit of using LLMs for code gener-
ation – ideally this would be an automated task and not a
manual one.

We would like to use LLMs unmodified as a black-box infer-
ence service, rather than training new models or fine-tuning
existing large models (Ouyang et al., 2022; Le et al., 2022).
This lets us trade training and fine-tuning costs for inference
costs, which are orders of magnitude lower. Thus, we exam-
ine different in-context learning approaches to automate the
process. by introducing additional components that enforce
desirable properties on the code output by the LLM. E.g., if
the code does not compile, we can automatically extract the
compilation error and its context, and prompt the LLM to
generate a fix. By doing this iteratively, the LLM can finally
generate an output that has the desired properties.

We pick Rust as the target programming language as it is
well-suited for high-performance and safety-critical large
software systems. To date, most of the research on AI-
generated code has focused on dynamically typed languages
such as Python (Svyatkovskiy et al., 2019; Chen et al., 2021;
Siddiq et al., 2022; Li et al., 2023a; Guo et al., 2022). In
Python, type errors and many other errors are only detected
at run time, making testing and debugging more complicated
and ultimately reducing reliability. The Python garbage
collector also introduces performance overheads that are
avoided by C/C++ and Rust (Zhang et al., 2022; Ismail &
Suh, 2018). Rust is a highly reliable language because it is
strongly typed, has a ownership model for memory safety,
and does not have a garbage collector (Balasubramanian
et al., 2017; Bugden & Alahmar, 2022). Many types of
errors can be detected by the Rust compiler and be fixed
before the code is run. However, generating runnable Rust
code is challenging for LLMs because the code must meet
strict compile-time requirements (Zhu et al., 2022)and be-
cause training data for Rust is relatively scarce compared to
Python or C/C++.

In this paper we describe RustGen, a prototype system that
augments an LLM such as GPT-3.5 or GPT-4. Given an
English-language description of the desired output code,
RustGen repeatedly invokes the LLM until it satisfied the
desired properties – e.g., error-free compilation – or a re-
source bound is reached. It tracks the entire history of
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interaction with the LLM, and uses this to generate new
requests to the LLM to improve the code in this direction.

This paper makes the following contributions:

• We describe RustGen, an architecture and prototype
for generating Rust modules from a natural language
description.

• We describe the techniques that let us achieve this –
history-based search of a candidate pool, and skele-
tonization to extract context.

• We show that in context learning utilizing compiler
output significantly improves the success rate (from
2/10 to 8/10) of the LLM at generating runnable Rust
source code.

2. Related work
AI-based models for program synthesis have been studied
extensively in the literature (Svyatkovskiy et al., 2019; Chen
et al., 2021; Li et al., 2022; Nijkamp et al., 2023), as well as
approaches to automatic editing (Li et al., 2023a; Fried et al.,
2023; Zhang et al., 2023) and bug identification (Allamanis
et al., 2021; Pradel & Sen, 2018).

There is also extensive work on LLMs’ code generation
and repair capability through training (Lachaux et al., 2021;
Chen et al., 2021; Li et al., 2022; Ciniselli et al., 2021;
Drain et al., 2021; Li et al., 2023b), fine-tuning (Peng et al.,
2023; Wei et al., 2022; Gao et al., 2021; Ouyang et al., 2022;
Le et al., 2022), as well as guides and patterns for human
prompting of LLMs for better code generation (DAIR.AI,
2023; Liu & Chilton, 2022; White et al., 2023; Reynolds
& McDonell, 2021). In contrast we focus on the specific
problem of automated repair using in-context learning using
an unmodified, state-of-the-art LLM.

Most previous work on code repair has focused on high-
resource languages such as Python, Java, and sometimes
C/C++ (Jin et al., 2023; Gupta et al., 2017; Prenner &
Robbes, 2021; Chen et al., 2023). Recent studies have
also explored fully automated code synthesis including code
repair for these high-resource languages, with LLMs using
mix of sampling, ranking, and searching (Liventsev et al.,
2023; Olausson et al., 2023).

We focus on Rust which differs in several key aspects. It
is resource-poor with respect to data sets for training and
fine-tuning. This also means that unit tests for generating
feedback are not widely available; in addition, the chal-
lenge in generating Rust code is that of compile-time errors
which are often difficult to understand and fix. Thus instead
of using example-based or testing-based feedback for in-
context learning, we focus on compiler errors as a source of
feedback.

Start with English 
description 

Generate 
initial code

Fix 
compilation 

errors

Runnable
Code

LLM

Review, test, 
and modify 
if needed

Figure 1. RustGen code generation workflow

3. Design
Broadly, RustGen allows a developer to turn a high-level
English description of a code module into runnable code
for that module. Fig. 1 shows the high-level workflow for a
developer writing a new piece of code using RustGen. After
the initial code generation from an English description, the
system repeatedly invokes the LLM and then the compiler
until the code compiles. Finally, the visible output is the
runnable code for testing. The initial code generation can
optionally include tests, which might produce more compile
errors, but it can make testing easier than writing tests from
scratch. In this paper we focus on making code compiled.

The following introduces the algorithm of the error-fixing
loop that makes the code compiled (§3.1), composing
prompts for generating and fixing code (§3.2), and two op-
tional features for improving RustGen’s success rate (§3.3).

3.1. The Error-fixing Loop

Starting from an English description, RustGen generates an
initial candidate program by prompting the LLM. In some
simple cases this code is already compile error free, and we
proceed to the next stage. Otherwise we repeatedly iterate
until we find a compile error-free candidate or exceed an
iteration bound. A pseudo code of the error-fixing process
is shown in Algo. 1. The prompt template used for error
fixing is discussed in §3.2, with examples in the appendix.

RustGen maintains a current candidate program and its com-
pile errors that should be fixed (code and errors in Algo. 1).
At each iteration, it picks one error from the errors, which
is the first one by default, and provides the code and the
error message in an error-fixing template as a prompt to the
LLM to return a code with the error fixed. A new candidate
program is extracted from the LLM’s output and compiled.
Ideally, the LLM fixes the error and reduces the number
of errors by one. If the new candidate program does not
produce any compile errors, the loop will terminate success-
fully. Otherwise, the new candidate program will replace
the current one, and the next iteration will try to fix it.

2



RustGen: An Augmentation Approach for Generating Compilable Rust Code with Large Language Models

Algorithm 1 RustGen’s Error-fixing Loop
Input: initial code code, iteration budget budget, error-
fixing template template.
pool = {}
for in 1 to budget do

if code not in pool then
errors = Compile(code)
if len(errors) == 0 then

return code
t = 0 ▷Temperature of the request
i = 0 ▷Zero-based index of the error to fix

else
▷We have seen the code before.

▷Fixing errors[i] will likely fail again.
errors, i, t = pool[code]
i+ = 1 ▷Try to fix a different error
if i > len(errors) then

i = 0
increase t
if t > temperaturemax then

▷Every attempt failed, restart from a previous step.
code = RandomPick(pool)
Continue

Set pool[code] = errors, i, t
error = errors[i]

▷See §3.3 for the optional skeletonization, default=off
if Skeletonization then
code, bodies, error′ = Skel(code, error)
error = error′ ▷Use the updated error message.

code = AskLLM(template, code, error, t)
if Skeletonization then
code = DeSkel(code, bodies)

▷If multiple answers are requested, deskeletonize all answers
if necessary, pick one as code, and add the rest to the pool.

return Failed

When being asked for a fix, the LLM may return the same
code. This can cause RustGen to get stuck in a loop, repeat-
edly failing to fix the same candidate. Similarly, when the
LLM suggests a fix that has already been seen, the fixing
loop can also struggle to make progress. To address these
issues, RustGen maintains a candidate pool to record all
the candidates that have been seen. The pool is indexed by
code contents and stores each candidate’s compile errors
and information about which errors have been tried to fix.
This lets us detect a second attempt with the same candidate
and error.

To avoid infinite loops, we implement three mechanisms
to improve the search when a second attempt is detected.
Firstly, we retry the current candidate but attempt to fix a
different error. If we have looped through all errors for a
given candidate then we increase the LLM’s temperature
for that candidate. Temperature is an LLM API parameter

Figure 2. Example of prompt used to generate code

which controls the level of non-determinism of the output.
The initial temperature of a candidate is always set to zero,
which in our experience gives a deterministic LLM infer-
ence – identical inputs give identical outputs. Secondly, if
a candidate fails to compile even after trying it at the high-
est temperature, a different candidate is selected at random
from the pool to continue the fixing. Finally, We config-
ure an LLM API parameter to request multiple fixes at a
time. When multiple fixes are returned, we pick one as the
new candidate for fixing and add the other candidates to the
pool for later use. The temperature schedule, the number of
attempts at each temperature, and the number of fixes per
attempt, are configurable parameters.

3.2. Prompt Engineering

Prompt engineering is often required to design and refine
prompts for LLMs to generate accurate and relevant re-
sponses (White et al., 2023; Liu & Chilton, 2022; Reynolds
& McDonell, 2021; Gao et al., 2021). Prompts usually
require four elements (DAIR.AI, 2023): instruction, con-
text, input data, and output indicator. In Fig. 2 which is
a prompt used to do the code generation from an English
written description, contains these 4 elements. The first line
is the context, the instruction and input data are in bold text,
and the last part is the instruction regarding the output for-
mat. The output format is particularly important because the
LLM’s response needs to be processed programmatically.
The appendix contains another example of an error-fixing
prompt and its LLM response.

These prompts are based on templates (text in thin font), that
can be programmatically filled to generate a code according
to an English description or to fix a compile error. In our
experience, having a single main instruction leads to better
results. For example, generating the code and comments at
the same time creates codes that are harder to fix compared
to generating the code only.

An LLM has a constraint, or a token budget, on how many
tokens that can be used to represent a prompt and its answer.
For example, GPT-3.5 has a limit of 4 K tokens. To estimate
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the token budget of a request we run the tokenizer locally
on the prompt (with source code) and estimate the response
size to be the same as the source code since we request for
the fixed source code to be returned. In our experience, a
line of code uses about 10 tokens on average, which means
that fixing compile errors is limited to codes with less than
200 lines with GPT-3.5. GPT-4’s token budget is signifi-
cantly higher at 32 K, potentially enabling the generation
and correction of larger codes.

3.3. Optional Features

RustGen also supports two pluggable features for improving
the code fixing quality. The first feature is automatically gen-
erating comments to the original source code. The source
code generated by the original prompt often does not con-
tain any commments. This feature uses a separate prompt
to ask the LLM to add comments to the code in hope to
improve the quality of the context for fixing.

The second feature is skeletonization, which is to reduce
prompt sizes by removing code that is irrelevant to the error
in question, e.g., bodies of other functions than the ones
with the error. On the one hand, it reduces the cost of using
the LLM. On the other hand, it enables larger codes to be
generated and fixed. The skeletonization approach retains
all context that might be required for a given code snippet
to compile correctly. This is a more conservative approach
than more general context extraction approaches such as
eWASH (Clement et al., 2021).

The skeletonization is implemented based on static syn-
tax parsing. RustGen invokes the Rust parser (using the
syn crate) to produce a syntax tree, from which it extracts
the function signatures, their bodies, and the line numbers
they cover. From this and the compile error messages Rust-
Gen identifies the functions involved in each error. All
other functions have their body replaced by the macro
unimplemented!() (an example can be found in the
appendix). The replaced function bodies are stored and in-
dexed by function name. This ensures that the unmodified
functions generates the same compile errors as the origi-
nal code, but with different line numbers. A skeletonized
code returned by the LLM should be deskeletonized be-
fore it can be used locally. We run the Rust parser on the
returned code to locate the functions that were changed
to unimplemented!() and revert them to the original
state. Algo. 1 shows where skeletonization is used.

4. Evaluation
We evaluate RustGen with a set of ten programming tasks
and two LLM models, namely GPT-3.5 and GPT-4. This
section aims to answer the following questions: Does the
automated error-fixing loop improve the compilation suc-

cess rate? How does each of the additional features help
compared to the default configuration? What type of errors
are easy or hard to be fixed?

We implement the baseline as asking the LLM to generate
one sample of the source code without any error fixing. It
is worth noting that asking the LLM to generate multiple
samples of the initial source code may improve success rate
for both the baseline and RustGen. However, sampling the
initial source code is out of the scope of our evaluation on
the effectiveness of the error-fixing loop.

The default RustGen implementation includes all the mech-
anisms described in §3.1. Additionally, we evaluate three
RustGen configurations: (1) asking the LLM for ten fixes in
each fixing interaction, (2) skeletonization, and (3) gener-
ating comments for the initial code. The ten programming
tasks are Sorted array, Binary tree, Self-balancing binary
tree, Red-black tree, Skip list, Prefix tree, Chaining hash
table, Cuckoo hash table, Hopscotch hash table, and LRU
cache.

The experimental results are shown in Fig. 3, with detailed
number of interactions in the Appendix. Without asking
for fixings (Baseline), GPT-3.5 produced one compilable
source code, while GPT-4 produced only two. These re-
sults contrast with prior experiences with generating C and
Python code (Liventsev et al., 2023), where the generated
code is presumably already compilable. In our observation,
the low baseline success rate for Rust is mainly due to the
strict type and ownership requirements in Rust than C and
Python. For example, common error types include missing
trait annotations and breaking the immutability of variables.
The Rust compiler often suggests correct fixes for missing
trait annotations errors, and the LLM is often able to fix
these errors based on the suggestions. However, many other
errors, such as a type mismatch, are not easy to fix.

RustGen (default) was able to generate compilable source
code for 6 tasks for both GPT-3.5 and GPT-4. Among the
successful results, RustGen needs at least three LLM fixing
interactions with GPT-3.5 when there were errors in the
initially generated source code. For all but one task, GPT-4
fixed the errors with only one or two LLM interactions.

The two features, generating comments and skeletonization,
have played a positive role on GPT-4. On the one hand, they
help the LLM by either adding useful information about
the context, or removing unrelated information from the
context. On the other hand, GPT-4 was able to leverage the
improved context quality to generate correct code. However,
the same mechanisms negatively affected the results with
GPT-3.5 with success rates reduced. We speculate that main
reason is due to the limited capability, GPT-3.5 fails to take
advantage of the extra information in comments and had
difficulty dealing with the partial context format.
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Figure 3. RustGen evaluation results

The configuration with asking for multiple (10) fixes tied
with the default RustGen in terms of success rate. We have
observed cases where asking for multiple fixes can lead
to more or fewer LLM interactions. There is not a clear
evidence on if this feature can improve the outcome, as the
default RustGen is already carefully exploring the fixing
space by avoiding loops and adjusting the LLM parameters.

In summary, the best result is with GPT-4 by turning on the
skeletonization, which achieved a success rate of 8/10, a
significant improvement compared to the baseline result of
2/10. While testing is beyond the scope of this paper, we
manually inspect the generated codes and observed a few
logical issues. For example, the skip list has the correct
structure, but it works as a plain linked list at an O(N) time
complexity. Unfortunately, these logical issues cannot be
revealed by the Rust compiler or even simple tests.

5. Discussion and Future Work
We are still far from automatically generating a large system
such as an OS kernel. Our results show that the generated
code can have logic bugs and missing functionality that
can only be captured by human inspection or by human-
generated tests (Hendrycks et al., 2021). An important
future direction is to combine compile-error repair with test-
based repair (Jin et al., 2023; Gupta et al., 2017; Prenner &
Robbes, 2021; Chen et al., 2023). However automatic gener-
ation of correct tests in Rust is again a challenging problem
due to resource poverty. We have found that using the LLM
to generate tests poses a new challenge – buggy tests that
match buggy code (and hence pass). An interesting question
is whether ”asking the LLM to repair itself” (Olausson et al.,
2023), can solve this problem for a resource-poor language.

Context extraction remains a challenge at each step – as we
try to automate more complex coding tasks and generate
larger code bases, this will become increasingly important.
Syntax-based context extraction such as the skeletonization

used in RustGen, or eWASH (Clement et al., 2021), cannot
scale to large complex codes with complex relationships
spread throughout the source code. It is likely that more
powerful techniques based on whole-program analysis will
be needed here.
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A. Prompt Examples.
Fig. 4 shows an example of error-fixing prompt. The corresponding answer from the LLM is shown in Fig. 5. An example
of skeletonized code is shown in Fig. 6, where three functions have their body replaced with unimplemented!();.

CONTEXT:
You are an expert programmer. The language used is
Rust.

GOAL:
Return the entire code with the error corrected.

CODE:
...
impl<K, V> LruCache<K, V>
where

K: Hash + Eq,
{
...

// Attach the node to the head of the list
self.attach(node);
// Insert the node pointer into the hash map
self.map.insert(node.key.clone(), node);

...
}
ERROR:
error[E0599]: no method named ‘clone‘ found for type
parameter ‘K‘ in the current scope
--> src\\main.rs:86:38
|

22 | impl<K, V> LruCache<K, V>
| - method ‘clone‘ not found for this type parameter

...
86 | self.map.insert(node.key.clone(), node);

| ˆˆˆˆˆ method not found in ‘K‘
|
= help: items from traits can only be used if the type

parameter is bounded by the trait
help: the following trait defines an item ‘clone‘, perhaps
you need to restrict type parameter ‘K‘ with it:

|
24 | K: Hash + Eq + Clone,

| +++++++
REQUEST:
Makes changes to the code to fix the error.
In your response, use "RUST_BEGIN" and "RUST_END" to
delimit the Rust source code.

SOLUTION:

Figure 4. Example of prompt used to fix compilation errors. The source code was shortened for presentation and the indentation of code
and error was edited to fit in the paper.
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RUST_BEGIN
...
impl<K, V> LruCache<K, V>
where

K: Hash + Eq + Clone,
{
...
}
RUST_END

Figure 5. Response from the LLM to the request presented in figure 4. The source code was shortened for presentation.

struct SortedArray<T: Ord> {
data: Vec<T>,

}
impl<T: Ord> SortedArray<T> {

fn new() -> Self {
Self { data: Vec::new() }

}
fn insert(&mut self, value: T) {

unimplemented!();
}
fn lookup(&self, index: usize) -> Option<&T> {

unimplemented!();
}
fn lower_bound(&self, key: &T) -> Option<&T> {

unimplemented!();
}

}

Figure 6. Example of skeletonized code. All function bodies except for new() have been replaced by the macro unimplemented!();.
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B. Problem Descriptions
Descriptions of the ten problems are listed in the following ten figures.

Implement a simple sorted array data structure in Rust.
The data structure supports insert(), lookup(), and lower_bound() operations.
The lower_bound operation returns the smallest key greater than or equal to the given input key in the array, or

returns None if no such key exists.

Figure 7. Problem 1: sorted array

Implement a simple binary tree data structure in Rust.
The binary tree supports insert, remove, lookup, and lower_bound operations.
The lower_bound operation returns the smallest key greater than or equal to the given input key in the tree, or

returns None if no such key exists.

Figure 8. Problem 2: binary tree

Implement an self-balancing binary tree data structure in Rust.
The binary tree supports insert, remove, lookup, and lower_bound operations.
The lower_bound operation returns the smallest key greater than or equal to the given input key in the tree, or

returns None if no such key exists.

Figure 9. Problem 3: self-balancing binary tree

Implement a red-black tree data structure in Rust.
In addition to the requirements imposed on a binary search tree the following must be satisfied by a red-black tree:
Every node is either red or black.
All NIL nodes are considered black.
A red node does not have a red child.
Every path from a given node to any of its descendant NIL nodes goes through the same number of black nodes.
The red-black tree supports insert, lookup, remove, lower_bound operations.
The lower_bound operation returns the smallest key greater than or equal to the given input key in the tree, or

returns None if no such key exists.

Figure 10. Problem 4: red-black tree

Implement a skip list data structure in Rust.
The skip list supports insert, lookup, remove, lower_bound operations.
The lower_bound operation returns the smallest key greater than or equal to the given input key in the skip list, or

returns None if no such key exists.

Figure 11. Problem 5: skip list

Implement a hash table in Rust from scratch. The hash table contains an array of hash buckets. Each hash bucket is a
linked list. The hash table supports insert, remove, and lookup operations.

Figure 12. Problem 6: chaining hash table

Implement a Rust structure for LRU caching. Given a key, it should be able to look up quickly whether the key is in
the cache. If not it should install in the cache. If the cache size exceeds a limit, the least recently touched
item should be evicted.

Figure 13. Problem 7: LRU cache
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Implement a prefix tree (trie) to store strings of arbitrary length. The strings are sorted in alphabetical order in
the trie.

Each trie node contains a fixed-size vector to store child nodes and a boolean value to indicate if the node is the
end of a key.

The trie should support the following operations: add, remove, contains, lower_bound, and prefix_match_count. The
lower_bound operation returns the smallest key greater than or equal to the given input key in the tree, or
returns None if no such key exists. The prefix_match_count method returns the count of keys in the trie that
matches a prefix.

Figure 14. Problem 8: prefix tree

As an expert Rust programmer, follow these instructions to implement a Hopscotch hash table from scratch:
Create a HopscotchHashTable struct containing a usize field hop_range, a usize field table_size, and a Vec of size

table_size+hop_range to store key-value pairs.
Initialize the Vec with Option types set to None for empty slots.

Implement the hash function using std::collections::hash_map::DefaultHasher, taking the key and table size as
parameters. This function will apply the hash function and return the hashed index for the key.

Implement the insert_helper method, taking a key-value pair as parameter.
a. Calculate the hash index of the key.
b. Search for an empty slot in the range from hash_index to hash_index + hop_range.
c. If an empty slot is found, insert the key-value pair to the slot and return None.
d. randomly pick a slot in the search range and swap the key-value pair in the slot with the input key-value pair.
e. return the swapped-out key-value pair.

Implement the try_insert method, taking a key-value pair as parameter.
a. Initialize the current key-value pair to be the input key-value pair.
b. Call insert_helper with the current key-value pair.
c. If None is returned from insert_helper, return None.
d. Otherwise, update the current key-value pair with the one returned from insert_helper.
e. repeat from step b. if maximum number of retries has not been reached. Otherwise, return the current key-value

pair.

Implement the insert_method, taking a key-value pair as parameter.
a. Initialize the current key-value pair to be the input key-value pair.
b. Search for the current key in the range from hash_index to hash_index + hop_range. If the key is found, return

false.
c. Call try_insert with the current key-value pair.
c. If None is returned, return true. Otherwise, update the current key-value pair with the returned one, call the

resize method, and repeat from step c.

Implement the resize method: Double the table_size. Put the current table aside and replace it with a new table of
the new table_size+hop_range.

For every key in the original table, initialize the current key-value pair, call try_insert repeatedly with updating
the current key-value pair, until None is returned.

Implement the lookup, remove, update methods.

Figure 15. Problem 9: hopscotch hash table
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As an expert Rust programmer, follow these instructions to implement a cuckoo hash table with two hash functions and
a single table structure:

Choose or implement two distinct hash functions that accept a seed value, such as using std::collections::hash_map::
DefaultHasher with different seeds or implementing your own hash functions.

Create a CuckooHashTable struct with a single Vec to store key-value pairs and two seeds for the hash functions.
Initialize the Vec with Option types set to None for empty slots.

Implement the hash method, taking the key, hash seed, and table size as parameters. This method will apply one of
the hash functions based on the seed and return the hashed index for the key.

Implement the insert method:
the current key to be inserted is the input key.
a. Calculate the two positions for the current key using the two hash seeds.
b. Check if any of the positions contains the key. If the key exists, return FailureExists.
c. Check if any of the positions is empty. If an empty position is found, directly insert the new key-value pair

into that position and return Success.
d. Call a helper method insert_internal to handle the insertion. If insert_internal returns Success, return Success.
e. Otherwise, a key-value pair to be inserted back to the table is returned by insert_internal. Call the resize

method, and then repeat from step d. with the returned key-value pair as the input.

Implement the insert_internal method:
a. Calculate the two positions for the current key using the two hash seeds.
b. Check if any of the positions is empty. If an empty position is found, directly insert the new key-value pair

into that position and return Success.
c. If both positions are occupied, pick one position using a random number, swap the current key-value pair with the

existing key-value pair in the picked position.
d. Repeat the process from step a. with the new current key-value pair, until an empty slot is found. When a maximum

number of iterations is reached, return FailureRetry with the current key-value pair.
The insert_internal method should also has a boolean retry_indefinitely parameter which force ignoring the maximum

number of iterations check.

Implement the resize method for the CuckooHashTable struct: Put the current table aside and replace it with a new
table twice as large. Call insert_internal with retry_indefinitely=true for all the key-value pairs to the new
table. Then discard the old table.

Implement the search, update, and delete methods.

Figure 16. Problem 10: cuckoo hash table
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C. Evaluation Results
The following table shows the detailed number of fixing interactions and final result of each task. Having zero fixing
interactions means that the initially generated source code is already compilable. Termination with failure can be a result of
reaching a dead end with an empty candidate pool or exceeding the maximum number of fixing interactions.

Table 1. Summary of Fixing interactions and final compilable results
LLM Problem RustGen default +comments +skeletonization +multiple fixes

Interact. Succ. Interact. Succ. Interact. Succ. Interact. Succ.

GPT-3

Binary tree 404 FALSE 404 FALSE 792 TRUE 303 FALSE
Chaining hash table 8 TRUE 43 FALSE 18 FALSE 5 TRUE
Cuckoo hash table 3 TRUE 156 FALSE 5 TRUE 3 TRUE
Hopscotch hash table 16 TRUE 146 TRUE 22 TRUE 35 TRUE
LRU cache 404 FALSE 404 FALSE 1111 FALSE 404 FALSE
Red-black tree 6 TRUE 5 TRUE 1111 FALSE 6 TRUE
Self-balancing binary tree 3 TRUE 8 TRUE 1111 FALSE 3 TRUE
Skip list 404 FALSE 299 FALSE 1111 FALSE 303 FALSE
Sorted array 0 TRUE 1 TRUE 0 TRUE 0 TRUE
Prefix tree 5 FALSE 1 FALSE 4 TRUE 303 FALSE

GPT-4

Binary tree 38 TRUE 85 TRUE 131 TRUE 28 TRUE
Chaining hash table 237 FALSE 75 TRUE 64 TRUE 65 FALSE
Cuckoo hash table 1 TRUE 9 TRUE 1 TRUE 1 TRUE
Hopscotch hash table 0 TRUE 1 TRUE 0 TRUE 0 TRUE
LRU cache 1 TRUE 2 TRUE 1 TRUE 1 TRUE
Red-black tree 99 FALSE 0 FALSE 27 TRUE 29 FALSE
Self-balancing binary tree 22 FALSE 7 FALSE 53 TRUE 0 FALSE
Skip list 65 FALSE 68 FALSE 257 FALSE 55 FALSE
Sorted array 0 TRUE 1 TRUE 0 TRUE 0 TRUE
Prefix tree 2 TRUE 22 TRUE 33 FALSE 2 TRUE
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