Under review as a conference paper at ICLR 2026

MITIGATING CONFLICTS IN MULTI-TASK REINFORCE-
MENT LEARNING VIA PROGRESSIVELY-TRAINED DY-

NAMIC PoLICY NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning is widely applied in various fields, including game playing,
robotic control and autonomous driving. However, we find that, when trained for
multi-tasking where there exist inter-task conflicts, the standard reinforcement
learning algorithm may yield limited performance on individual tasks. To mitigate
this, we introduce a dynamic policy network that incorporates diverse compu-
tational pathways of varying depths, along with gating modules that selectively
activate the appropriate pathways for different tasks. This design, equipped with
better flexibility, allows the network to achieve improved multi-task performance.
Second, we propose a progressive training technique to mitigate the conflicts among
tasks by leveraging proper training order and continual learning techniques. Using
the dynamic policy network design and the progressive training technique, we
successfully trained a policy capable of performing seven quadrupedal locomotion
tasks and a policy that achieved an improved final average reward on ten MiniHack

games.

1 INTRODUCTION

Reinforcement learning is currently widely ap-
plied in various fields, including game playing
(K. et al.,[2023; [W. et al., 2018} |S. et al.| |2023),
robotic control (R. et al., 2021} K. & T., 2021}
Luo et al., [2024) and autonomous driving (K|
et al., 2021} [Elallid et al., 2022} |Cao et al., [2022).
While reinforcement learning has achieved im-
pressive results across diverse domains, many
existing methods (Wang et al., 2024; |J. et al.
2024;S. & G.,[2021) are tailored to single-task
settings, where achieving high multi-task RL per-
formance remains a challenge (Vithayathil Vargh
ese & Mahmoud, [2020). Specifically, if multiple
RL tasks are naively trained together, due to con-
flicts between different tasks, an increase in the
performance of one task will commonly hurt the
performance of another.

To illustrate this problem, we took three walking

(=]
L

w
L

+a
L

Parallel

Pretrain

Pretrain + DPNet
Progressive training + DPNet

Mean Episode Terrain Level
%] w
.)

[
L

-

T
0 1000

T T T
2000 3000 4000 5000

Episode Index

Figure 1: Average training terrain-level curves for
quadrupedal robot locomotion tasks under various
configurations. Results are averaged across three
walking and four parkour tasks.

tasks and four parkour tasks that could be trained to gain good performance independently (shown
in Section {.T)) and performed naive parallel training on the seven tasks (detailed in Appendix [B).
The average terrain difficulty level curves during training are shown in Fig. [T where a higher terrain
difficulty level indicates better performance. Under naive parallel training for all walking and parkour
tasks (blue curve), the policy reached a limited average terrain difficulty level of approximately 4.0.
When the agent underwent pretraining on all walking tasks before being trained concurrently on
both walking and parkour tasks (orange curve), a slight performance improvement was observed.
However, this approach introduced training instability. The policy initially showed enhanced parkour
performance, but at around 150 training episodes, conflicts between the two task types caused a
degradation in walking performance, resulting in a significant drop in overall performance.

Under review as a conference paper at ICLR 2026

The primary cause for this negative transfer problem is that the policy network architecture used is
ineffective for multi-tasking. A common solution is to propose network architectures that allow more
flexible decision making, where different parallel network branches can be selected for different
tasks (Shazeer et al.l [2017} [Yang et al., 2020a), allowing the conflict to be reduced. Building on
this idea, we found it also important to increase network decision flexibility by including various
pathways with different depths, allowing tasks with different difficulties to be processed by pathways
with corresponding depths. To this end, we propose a dynamic policy network (DPNet) design.
That is, in the feedforward stage within the policy network, for each feature, we assign multiple
auxiliary branches that connect the current feature to both itself and different preceding layer features
to incorporate additional computation pathways into the network, allowing decision pathways with
different depths to be included. To allow the network to dynamically select pathways with different
depths for different tasks, we include gating modules within the auxiliary branches. As shown by the
green curve of Fig.[T] by using the DPNet design for the policy network, we obtained a substantial
reduction in training instability and an improvement in performance.

Furthermore, contrary to the common belief that parallel training sets the performance upper bound
for continual learning (J. et al., 2017; |R. et al., |2019), our integration of continual learning with
atomic-to-compositional task ordering and action frequency constraints achieved improved perfor-
mance by mitigating inter-task conflicts. Specifically, with this technique, conflict is avoided by
restricting the policy network to generate low-frequency actions suitable for atomic tasks, while
performing compositional tasks by imposing high-frequency actions. This deliberate separation of
action frequencies avoids conflicts between the two types of tasks and leads to a notable boost in
performance. We name this technique progressive training. The effect of integrating progressive
training and DPNet is shown by the red curve in Fig.

In this work, by training DPNet using progressive training, we successfully trained a single policy
network that can simultaneously perform three walking and four parkour tasks. Additionally, we have
applied this method to a continual learning benchmark known as MiniHack (Samvelyan et al., 2021),
where we obtained improved multi-task performance compared to several baseline RL methods.

2 RELATED WORK

Parallel training with curriculum. Multi-task reinforcement learning methods typically employ
parallel training across tasks, such as parkour (X. et al.,[2024)), robotic control (J.S. & D.|2024), and
autonomous driving (M. et al.,|2020). During training, curriculum learning (B. et al.,|2009; |(Chamorro
et al.| 20245 X. et al.| 2024)) is often employed to assist the agent to acquire skills, where it typically
trains the agent starting from simple to more difficult tasks.

Continual Reinforcement Learning. Continual learning is often employed to achieve multi-task
reinforcement learning in scenarios where, for example, training data is only available in the future (L|
et al.,[2024), computing resources are limited (E. et al., [2018)), task boundaries are unclear (O et al.,
2018)), or parallel training is otherwise infeasible. Continual learning research mainly centers on
regularization, replay, architectural methods, and hierarchical reinforcement learning. For example,
Elastic Weight Consolidation (EWC) (J. et al., 2017) and P&C (S. et al., [2018) are employed to
mitigate catastrophic forgetting by preserving the critical weights. SANE (S. et al.| [2022)) expands
the network to learn new tasks and integrates data replay that is similar to CLEAR (R. et al.,2019) to
alleviate catastrophic forgetting.

Combining curriculum learning with continual learning. In the field of natural language process-
ing, there are already studies that combined curriculum learning with continual learning to improve
continual learning performance (Tee & Zhang| 2023) or perform non-compositional expression
generation (Zhou et al.l 2023). Here we emphasize that, in our proposed progressive training method,
instead of treating curriculum learning and continual learning as core methods for improving perfor-
mance, we use them (together with an additional action frequency constraint) as tools to achieve our
objective of restricting the policy to use different action frequency bands to perform different tasks.

Compositional Networks for Multi-Task Learning. In the field of multi-task learning, there exist
various works that aim for resolving the negative transfer problem (Teh et al., 2017; |Wu et al., |[2020)
by leveraging parallel pathways (Shazeer et al.,[2017; Huang et al.,[2025} |Yang et al., 2020b)) or by
performing parameter composition (Sun et al.,[2022). Moreover, similar to our design, D2R network
(He et al., 2024)) also leveraged short-cut connections to form decision pathways with different depths

Under review as a conference paper at ICLR 2026

-——

Backbone computation
pathways

Auxiliary branch
computation pathways

Backbone
layer
Backbone
Module
] Processing
module

Gating
module

Figure 2: An illustration of applying auxiliary branches (with span N = 2) to features
F,_ 4, F,_3, ... F; of a the feed-forward backbone of a policy network to form a DPNet. The
computation pathways involved in computing F'; are highlighted in red and the modules involved are
visualized in the dotted box.

to gain better multi-task RL performance. However, we wish to point out that, since the D2R design
does not expand the policy network as in our DPNet, its learning ability is limited by its backbone.

3 METHODS
3.1 PRELIMINARIES

Markov Decision Process. Reinforcement learning is commonly formulated as the Markov Decision
Process (MDP, |Sutton & Barto|(2018)). An MDP is typically defined as a tuple (S, A, R,~), where
the agent selects action a based on state s, receives a corresponding reward R (s, a), and transitions
to the next state based on the environment dynamics. v € [0, 1] denotes the discount factor. The
overall goal of an MDP is to find an optimal policy 7 (s,) with parameter 6, which is a mapping
from states to actions that maximizes the expected cumulative reward over time:

] K
R(G,S,Oq,.-.,OZK) =]Ea~7r(9) [Z ’Yt Zaka,t] (1)
t=0 k=0

where K is the number of different rewards 7, ; to be maximized to perform the current tasks, oy, is
the weight for the k'" reward. In this work, the policy 7(s, 6) is a neural network with parameter 6.

Action Frequency. In this work, we analyze action sequences through a spectral lens. To avoid
ambiguity, across the entire paper, the term “action frequency” refers not to an action’s rate of
occurrence, but to its spectral properties derived via the Discrete Fourier Transform (DFT). That
is, in the frequency spectrum obtained with DFT, low-frequency (smooth) actions exhibit dominant
energy in low-frequency bands, while high-frequency (abrupt) actions manifest dominant energy in
high-frequency bands.

3.2 THE DPNET DESIGN

A common approach to improve multi-tasking performance is to design network architectures that
incorporate parallel pathways, allowing different pathways to be selectively activated for different
tasks (e.g. MoE, Shazeer et al.|(2017))), thereby reducing conflicts. However, since different tasks
have different difficulties, pathways with a pre-determined depth might be too shallow for some
difficult tasks, causing poor decisions to be made. While it might also be unnecessarily deep for some
simple tasks, making the capacity of the network to be wasted. Consequently, to enhance multi-task
RL capabilities, as illustrated on the left of Fig.[2] we propose to integrate auxiliary branches into
the feed-forward backbone layers of the policy network, forming a dynamic policy network (DPNet)
with various intertwined parallel decision pathways of different depths. That is, for every backbone
layer, we assign IV + 1 auxiliary branches to it. Within them, N auxiliary branches are shortcuts
that connect feature F'; with preceding backbone layer features F;,_o, ..., F;_n_1, allowing decision
pathways with shallower depths (suitable for simpler tasks) to be incorporated. Moreover, we also
include a self-dilation auxiliary pathway which maps F;_; to itself, allowing decision pathways with
larger depths (suitable for harder tasks) to be incorporated. In this way, when tasks with different

Under review as a conference paper at ICLR 2026

=\ A& ¥
B 2 SE AT
AR X ¥ e =

Figure 3: Conflicts in low-frequency actions between walking and parkour tasks. Gaze visualization
of the policy (a) trained only on parkour tasks, (b) trained only on walking tasks, (c) trained on both
walking and parkour tasks.

difficulties are encountered, pathways with corresponding depth can be used, allowing the network
capacity to be more effectively utilized.

To demonstrate the designs within the DPNet, in the dotted box of Fig. 2] we illustrate how DPNet
computes a backbone feature F'; with its corresponding backbone computation pathway and shortcut
auxiliary branches. In each shortcut auxiliary branches, we incorporate two feed-forward modules
Si,m and G7 ,,,. Si 1 18 processing module included to allow the auxiliary branch to perform feature
processing. G, is gating module with a Sigmoid activation function (M.A. et al., 2019) on its
output layer. With this design, its output has values between zero and one, allowing it to dynamically
activate the pathway for different tasks. Formally, in each auxiliary branch, both S; ,,, and G7 ,,
process the same input F'; and compute the auxiliary branch output My, by

M;,, = Sim(Fi) © G}, (Fi), 2

where © denotes the element-wise product between two vectors. In the backbone computation
pathway, the backbone input F;_; is first enhanced through a self-dilation auxiliary branch. Formally,
the input F,_; is preprocessed by the computation of F;_1 = S;_1 o(F;_1) ® Gi_1o(Fic1) +Fi1.
Here, G_, o controls if the depth increasing self-dilation pathway through S;_1 ¢ is taken. The
preprocessed feature F,_1 then flows through the backbone module formed by the backbone layer
B; and a corresponding gating G
M? = GY(F;_1) ® Bi(F;_1). 3)
With the outputs from the shortcut auxiliary branches and the backbone computation pathway, we
compute F; by
N
F,=M/+> M, . “4)

n=1

Additionally, we also propose to initialize the different processing modules (.S; ,,) so that their outputs
have near-zero values. With this initialization, if a processing module disrupts the decision of the
network, it can be trained to continue to generate near-zero outputs, not interfering with the decision
of the rest of the network. Similarly, when initializing the gating modules, we propose to initialize
different G? so that their outputs are close to ones, while initializing different G’ to have output
values near zero. With this initialization, when it is disadvantageous to include the computation
pathways added by the auxiliary branches, the gating modules can be trained to maintain their initial
outputs.

3.3 PROGRESSIVE TRAINING

Empirically, we found that when employing our proposed network to optimize both atomic and
compositional tasks jointly, a conflict in performance emerges between the two task types. We
conjecture that the conflict arises due to two characteristics of these task types:

* For atomic tasks, the inherent simplicity allows the policy network to complete the tasks pri-
marily relying on low-frequency actions (smooth actions). For example, when a quadrupedal
robot performs walking, only smooth actions are needed to control its various joints effec-
tively.

» For compositional tasks, to achieve fine-grained control, it requires the policy network
to leverage both high-frequency actions (abrupt actions) and low-frequency actions. For

Under review as a conference paper at ICLR 2026

example, when a quadrupedal robot engages in parkour, low-frequency actions facilitate
basic walking movements, while abrupt, high-frequency joint adjustments are required for
executing delicate actions such as climbing and jumping.

Consequently, conflicts arise when the low-frequency actions required for compositional tasks are
different from those needed for atomic tasks.

To provide an intuitive visual example of the conflict, we trained three policies for quadrupedal robot
locomotion. The first policy was trained for only parkour tasks (compositional tasks), the second
policy was trained for only walking tasks (atomic tasks) while the third was trained with both walking
and parkour tasks. During training, we did not impose gaze restrictions and we restricted the policy
networks to leverage only low-frequency actions to perform the tasks. The forward walking gaze
for the policy networks is shown in Fig.[3] By comparing Fig. [3p and Fig. 3p, it can be seen that, to
achieve better parkour performance, the policy in Fig. 3h had a tendency to tilt the head up more
intensely, so that it is more convenient to climb and reaches further when crossing gaps. In Fig.3p,
the policy tends to maintain the body of the robot level so that it is easier to move in all directions.
This demonstrates that a conflict exists in low-frequency action (the gaze of the quadrupedal robot).
As a consequence, when we naively trained the walking and parkour tasks in parallel, due to the
conflict, the policy obtained a poor gaze, causing the robot to crawl forward (Fig. [3c).

To mitigate this issue, we propose a progressive training technique. This training technique encourages
the policy network to generate low-frequency actions appropriate for atomic tasks while performing
compositional tasks by applying high-frequency actions on top of them. We achieve this goal
by properly combining continual learning restriction, atomic-to-compositional training and action
frequency constraints (smoothness rewards).

Specifically, in the early stages, the policy network is trained in atomic tasks restricted with a strong
smoothness reward (reward that penalizes policy output acceleration (Haarnoja et al.| 2018; Raffin
et al.,[2022))) to acquire the corresponding low-frequency actions. That is, we optimize the policy
network parameter 6 by

argmaxy ESNP,aNTr(G) [R(ga S, Qq, CVsmooth” s (5)

where o, is the weight for the atomic task rewards, agmooth 1S the weight for action smoothness
reward. When performing subsequent training on compositional tasks, we apply continual learning
techniques (such as EWC (J. et al.,|2017) or CLEAR (R. et al.,[2019)) to the policy network so that
we constrain its low frequency actions learned from atomic tasks to be unchanged while training the
policy network to perform the compositional tasks. During compositional task training, we reduce
the strength of the smoothness reward. That is, we optimize the policy network parameter 6 by
maximizing

argimaxy ESNP,CLNTK‘(H) [R(97 S, Qg, O, 6asmooth)] - Lc(e>7 (6)
where ¢ is an empirically selected value smaller than 1, o, is the weight for compositional task
rewards, L. is the loss function for continual learning. With this design, given that the low-frequency
actions remain relatively unchanged, while the high-frequency actions are modifiable, the policy is
forced to perform the compositional tasks by applying high-frequency actions onto the low-frequency
actions learned for the atomic tasks.

Distinguishing Compositional Tasks from Atomic Tasks. Since compositional tasks often require
pretraining on atomic tasks for efficient learning (O et al., 2018 M. et al., [2022)), we empirically
identified direct training reward as an effective metric for differentiation. That is, within the same
type of task, those tasks that yield higher rewards through direct training tend to be atomic, whereas
tasks with lower rewards are more likely to be compositional.

4 EXPERIMENTS

Quadrupedal Robot Locomotion Task Environment. In our experiments, we leveraged the
Isaacgym environment (Makoviychuk et al., [2021)) to evaluate our design on quadrupedal robot
locomotion tasks. We included seven tasks, three were categorized as walking tasks, while the other
four were categorized as parkour tasks. For the walking tasks, we trained the policy to control the
robot to walk on three terrains, namely flat ground, hills and stairs (Rudin et al., 2021). For the
parkour tasks, we trained the robot to walk forward to cross four types of terrains, the gap terrain, the
box climbing terrain, the hurdle terrain and the tilted ramp terrain (X. et al.,2024)). Visualization on
terrains in our experiments is included in Appendix [B]

Under review as a conference paper at ICLR 2026

Quadrupedal Robot Locomotion Task Training Configuration. Within our experiments, we used
the existing walking (Rudin et al., 2021)) and parkour (X. et al.,[2024) curricula and integrated our
progressive training technique. For progressive training, we treated the walking tasks as atomic
tasks, while treating the parkour tasks as compositional tasks since the robot must walk properly to
perform parkour. So we divided the training into two major stages. In the first stage, we trained the
robot to walk in all directions with randomly selected linear and angular velocity. The training was
performed on the three walking terrains in parallel. In this stage, a smoothness reward (Tan et al.)
was applied. In the second stage, we removed the smoothness reward, added EWC and trained the
agent on walking and parkour terrains in parallel. In this stage, we maintained a 4-to-6 actor number
ratio between walking and parkour training. In all stages, we included 4500 agents in the Isaacgym
environment to perform training in parallel. More training configuration details are described in

Appendix

Quadrupedal Robot Locomotion Task Policy Network Architecture. For the policy network in
quadrupedal robot locomotion tasks, we used a multi-layer perceptron architecture. Specifically, we
leveraged a simple MLP backbone in the first training stage and added the auxiliary branches at the
beginning of the second stage to make the policy network a DPNet. The detailed architecture configu-
ration is described in Appendix [B] We leveraged a lightweight version (described in Appendix |C)) of
the gating module and set the span parameter N of the auxiliary branch to 3.

Evaluation Metric for Quadrupedal Robot Locomotion Tasks. To evaluate the performance of
a quadrupedal robot control policy on walking and parkour, following the convention in Extreme
Parkour (X. et al.| [2024), we evaluated the average terrain level reached (Avg.TLR) of the policy
across the seven types of terrains. To calculate the TLR on a certain kind of terrain, we initialize a
matrix of 3 x 10 terrains. In each column, the terrains have the same difficulty but with different
randomly initialized details. For different columns, the terrain difficulty increases from level 1.0 to
10.0 as the column index increases. Then we initialize around 250 agents on the terrains and find
the highest difficulty level where 90% of agents could cross more than 75% of the terrain’s length.
We define this difficulty level as the TLR of the current policy on the current kind of terrain. The
Avg.TLR is the average of TLR across all seven terrains. We averaged all results over three trials.

MiniHack Environment. MiniHack is built upon the NetHack learning environment (K. et al., 2020)),
which serves as one of the training environments for our experiments. Specifically, we utilize the
navigation tasks within MiniHack. The MiniHack navigation task challenges the agent to reach a des-
ignated goal location while navigating various obstacles, including avoiding monsters and traversing
intricate mazes. We selected 10 distinct tasks from the MiniHack navigation environment for training.
The agent performs actions such as searching, door opening and eating based on environmental
conditions. A reward is granted when the agent successfully reaches the goal. Otherwise, the agent
receives either no reward or a penalty. The destination can only be reached when certain conditions
are fulfilled. Please refer to Appendix [D]for a detailed description of the MiniHack tasks involved.

Experiment Configuration in MiniHack. In terms of policy network architecture, we leveraged a
convolutional neural network (CNN) architecture as our backbone and included auxiliary branches
with a span of 2 to make the policy network a DPNet. In addition, we adopted the IMPALA method
(E. et al., |2018)) to perform training and integrated our progressive training technique. During
training, we iterated through 10 tasks (Room-Random-5x5-v0, Corridor-R2-v0, Room-Dark-5x5-v0,
Corridor-R3-v0, Room-Monster-5x5-v0, CorridorBattle-v0, Room-Trap-5x5-v0, HideNSeek-vO0,
Room-Ultimate-5x5-v0, HideNSeek-Lava-v0, described in Appendix D)) twice during training. We
have also set o, to be 0, since we found that without explicit smoothness restriction, under the
current training order, the policy naturally generated low-frequency actions for atomic tasks. Detailed
architecture and training parameter configuration are described in Appendix

Evaluation Metric in MiniHack. The final average reward Rg,,,) across all tasks is used as the
evaluation metric for policy performance. The specific calculation process is as follows:

1
Rﬁnal = ?(Rl,ﬁnal + R2,ﬁnal +---+ RK,ﬁnal)> (7)

where K is the number of tasks, R, fina: is the final reward of the K th task. In MiniHack, we
performed all experiments three times to calculate the average and standard deviation of the results.

6

Under review as a conference paper at ICLR 2026

Table 1: Evaluating the performance of our method against task-specific policies and policies trained
with parallel training. TLR of 10.0 indicates that a policy reached the highest difficulty level on the
task. Config. indicates RL algorithm configuration.

. . Tilted Avg.
Config. Flat Stair Slop Gap Climb Hurdle Ramps TLR
Parkour 9.7+£0.5 10.0£0.0 10.0+0.0 8.7£0.8 -

Walking | 10.0£0.0 9.3£0.5 10.0+0.0 - - - - -
Parallel 1.0+£0.0 1.0+£0.0 1.0+£0.0 5.7+1.2 5.740.8 6.7£0.8 5.7+0.5 | 3.840.3
Pretrain | 9.7+£0.5 5.0+0.0 9.7+£05 43+05 9.0£0.0 8.0+£0.0 7.3+0.5 | 7.6%0.1

Ours | 10.0+£0.0 9.0+0.8 10.0£0.0 8.0+0.8 10.0+£0.0 9.7+0.5 8.040.0 | 9.240.1

Table 2: Ablation study on different components. B-Gating and A-Gating indicates the presence of
gating module on backbone layers and auxiliary branches respectively. A2C indicates atomic-to-
compositional training, Smooth indicates presence of the smoothness rewards during training.

Train. Type | Arch | Shortcut —Self-dilation B-Gating A-Gating | A2C EWC Smooth | Avg.TLR

Pretrain MLP - - - - v - - 7.64+0.1
Pretrain DPNet v v X X v - - 7.84+0.1
Pretrain DPNet v v v X v - - 7.9+0.1
Pretrain DPNet v X v v v - - 7.840.1
Pretrain DPNet v v v v v - - 8.0+0.1
Progressive | DPNet v v v v v v X 8.6+0.1
Progressive | DPNet v v v v v v v 9.2+0.1

4.1 COMPARISON AGAINST PARALLEL TRAINING

To demonstrate that our method is effective for boosting multi-task RL performance under a parallel
training setting, we evaluated our method on the three walking and four parkour tasks in the Isaacgym
environment.

As demonstrated in Table[I] by performing naive parallel training across the seven locomotion tasks
with an MLP policy network architecture, a low Avg.TLR of 3.8 was obtained. Specifically, it failed
to perform walking-related tasks. By introducing pretraining on walking, then performing parallel
training on walking and parkour, the walking performance of the policy increased, obtaining an
Avg. TLR of 7.6. In contrast, by training a DPNet with the progressive training technique (Ours
in Table [I)), an Avg. TLR of 9.2 was obtained. Specifically, it can be seen that our model had a
performance comparable to models trained specifically for walking and parkour on all tasks. That
is, our method successfully achieved multi-tasking.Demo videos are included in our supplementary
material.

4.2 DESIGN ANALYSIS

Ablation Study. Table[2]presents an ablation study examining the impact of various design choices.
As a baseline, an MLP policy network trained in parallel across the seven quadrupedal robot tasks
(preceded by walking pretraining) yielded an average TLR of 7.6. Next, we integrated the DPNet
design into the configuration. Specifically, by sequentially incorporating auxiliary branches (without
gating), gating modules for the backbone layers, and gating modules for the auxiliary branches,
the average TLR improved incrementally from 7.6 to 7.8, 7.9 and 8.0. Moreover, when the self-
dilation auxiliary branches were removed, the average TLR fell from 8.0 to 7.8, demonstrating the
importance of enabling the DPNet to choose deeper pathways. Furthermore, by employing EWC
and the smoothness reward from progressive training on top of atomic-to-compositional training
(pretraining followed by parallel training), the average TLR of the DPNet increased from 8.0 to
8.6 and 9.2 respectively. This demonstrates that each component within progressive training has a
contribution to the final performance.

Effect of Auxiliary Branch Span N. Empirically, we found it important to set a large value for IV,
since it provides more pathways with different depths for the gating modules to select. Specifically,
under progressive training, when we decreased the value of NV from 3 through 2, 1, to O (when N = 0,
we removed auxiliary branches for both shortcut and self-dilation modules), the Avg. TLR of the
policy network decreased from 9.2 to 8.7, 6.4 and 6.3.

Under review as a conference paper at ICLR 2026

Table 3: Comparing performance of DPNet against different multi-task RL architecture under
progressive training.
Model | MoE MoE-Loco D2R Soft-Modul. ~ PACO CARE | DPNet

AvgTLR | 8.6+0.2 7.3+0.1 6.6+0.3 8.41+0.2 7.84£0.1 6.8+0.1 | 9.2+0.1

Visualizing DPNet Effective Decision Depth. To demonstrate p——

that with the auxiliary branch design, the policy network can ——
55 A
50 A

select different pathways with different depths on different
tasks, we compared the effective decision depth (see Appendix
[F for its computation) between parkour and walking tasks. We
collected the effective decision depth from 250 agents on 25
random terrains per task type, with difficulties ranging from 1.0
to 10.0. For each agent, we recorded the effective decision depth
of 200 action steps. The boxplots of the collected results are
shown in Fig[d] The median effective decision depth for parkour
tasks (5.88) was higher than walking tasks (5.03). Additionally,
the first quartile (5.33) and the lower whisker (4.88) of the
parkour tasks were substantially higher than the corresponding
values for walking tasks (4.49 and 3.05, respectively). These
results confirm that the DPNet utilizes deeper pathways for more complex compositional tasks and
shallower pathways for the simpler atomic tasks, demonstrating its ability to adaptively select decision
pathways based on task demands. The boxplot for the effective decision depth of DPNet on the seven
individual tasks is analyzed in Appendix [F

Effective Decision Depth
w -
w w

(0]
Wa\l‘(ing Farléour
Figure 4: Boxplot for effective de-
cision depth of DPNet on walking
and parkour tasks.

w
=3

DPNet Action Frequency Spectrum for
Atomic and Compositional Tasks. Under pro-
gressive training, we analyzed if DPNet lever-
aged actions from different frequency bands to
perform atomic (walking) and compositional
(parkour) tasks in our locomotion environment.
In particular, we deployed 250 DPNet controlled

Average Magnitude

agents on 25 random parkour terrains (difficulty === parkour
levels 1.0-10.0), ran the agents for 800 simula- 150 | ! i i — Iwa'k'"?
tion steps and computed their action frequency 0o 5 1 15 20 25 30 35

spectrum via Fourier transform (details in Ap- Frequency (Hz)

pendix [E). Similarly, we also computed the ac-
tion frequency spectrum for walking terrains.
Figure[5] visualizes the resulting frequency spec-
trum. In the walking (atomic) scenario, the spec-
trum exhibits a single dominant peak around 8 Hz, whereas in the parkour (compositional) tasks we
observe pronounced peaks at both low and high frequencies. This demonstrates that with progressive
training, the DPNet is trained to use actions from different frequency bands to perform different tasks.

Figure 5: Policy action frequency spectrum of
atomic (walking) tasks and compositional (park-
our) tasks.

4.3 COMPARISON AGAINST EXISTING MULTI-TASK RL ARCHITECTURES

To evaluate DPNet against existing baseline architectures, we trained six existing multi-task RL
architectures under progressive training and under comparable parameter count and FLOPs (both
around 9.5M). The only exception was that, D2R failed to train under large parameter count, so we
leveraged the largest version (with a parameter count and FLOPs of 0.5M) that successfully learned to
perform the quadrupedal locomotion tasks. The results are presented in Table |3} Specifically, DPNet
had an Avg.TLR of 9.2. In comparison, MoE (Shazeer et al.| 2017), Soft-Modulation (Yang et al.,
2020a) and PACO (Sun et al.,|2022)) obtained relative high Avg.TLRs of 8.6, 8.4 and 7.8 respectively.
But for MoE-loco (Huang et al., 2025), D2R (He et al.||2024)) and CARE (Sodhani et al., [2021), even
under progressive training, without an architecture design that is sufficiently effective, they obtained
relative low Avg. TLRs of 7.3, 6.6 and 6.8 respectively.

4.4 EVALUATION IN MINIHACK

Analysis on the Influence of Training Order. We conducted three experiments with different
training orders and plotted the reward curves of different tasks (Fig[6). The corresponding average
reward curves are also plotted to better visualize how training order influences conflict avoidance.
The correspondence between the ID of different tasks , the name of the task and their direct training
reward is illustrated in Table In experiment (a), by ordering different tasks by their type (training

Under review as a conference paper at ICLR 2026

gl

— Taskl
0.25 — Task2
— Task3
0.00 Task4

0.50 8 '
— Taskl |
0.25 4 / —— Task2
J, —— Task3

—— Task3

9 o)

s S s

go £ 0.00 Taska | § 0.00 Taskd

2 S Tasks |2 /\/\— Tasks | B — Tasks
~0.25 —— Taské ~0.25 —— Taske 0.25 —— Tasks

— Task7 — Task7 — Task7
-0.50 Task8 —0.50 Task8 —-0.50 Task8

— Task9 — Task9 —— Task9
-0.75 —— Task10 -0.75 —— Task10 -0.75 —— Task10
—— Average —— Average —— Average
-1.00 -1.00 -1.00
o 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Steps Steps Steps

(a) (b) ()
Figure 6: Training reward curves for different training orders. The average curve over different tasks
is highlighted in red. All tasks were iterated once. Reward curves for ordering tasks by (a) type, (b)
atomic-to-compositional, (¢) compositional-to-atomic.

Table 4: Comparison of final average rewards of different continual learning methods on MiniHack.

EWC P&C CLEAR SANE
(J. etal.|[2017) (S.etal.|2018) (R.etal.J2019) (S. etal.|2022)

Final Avg. Reward ~ 0.445+0.001 0.405+0.003 0.538+0.005 0.502£0.003 0.578+0.001

Methods Ours

Room-related tasks first, then Corridor- and HideNSeek- related tasks), we obtained an task order
of 1,3,5,7,9, 2,4, 8, 10, 6. During training the average reward initially increased but dropped
after training the ninth task (indicating a conflict), resulting in a final reward value of approximately
0.40. Then, in experiment (b) we leveraged an atomic-to-compositional order (of 1, 6, 7, 4, 3, 2,
5, 8, 9, 10) obtained by first ranking the tasks within each type with decreasing direct training
reward, then form the overall sequence by interleaving the tasks from different types. As training
progressed, the average reward curve generally demonstrated an increasing trend, resulting in a higher
final reward value of 0.46. In experiment (c), we leveraged the reversed compositional-to-atomic
training order. As training progressed, the average reward curve first increased, then maintained at
a steady level of around 0.30, resulting in a low final reward of around 0.36. This confirms that an
atomic-to-compositional training order is important for resolving conflicts.

Comparison Against Continual Learning Baselines. Considering that continual learning is an
important technique for achieving multi-task RL, we compared our method with existing baselines
in MiniHack. We performed all experiments three times and reported the average and standard
deviation of the final average rewards. All policies were trained under identical task order and the
task sequence was iterated twice to train the models thoroughly. Table] shows a comparison of the
final average rewards of different continual learning methods. Specifically, the EWC method obtained
a final average reward of 0.445, which was 0.133 lower than our method that obtained an average
final reward of 0.578. Similarly, the average final reward of our method was also higher than the
final average rewards of P&C, CLEAR and SANE. The final rewards of different individual tasks are
detailed in Appendix [H]

5 LIMITATION

Our progressive training method uses direct rewards to identify atomic and compositional tasks, but
because these rewards are not comparable across task types, human expertise is needed to properly
interleave task sequence from different types together to form the overall sequence. This mirrors
complex human learning on tasks such as parkour or badminton, where instructors are required to
design appropriate progressions. Given this, we find this limitation to be acceptable.

6 CONCLUSION

In this work, to improve multi-task RL performance, we propose two designs. First, the DPNet design
allows the policy network to dynamically select decision pathways with different depths on different
tasks, enhancing the network’s flexibility for multi-task RL. On the other hand, with progressive
training, we allowed the DPNet to better avoid conflicts between different tasks during training,
leading to improved final performance. Our method is also applicable across tasks and training
frameworks.

Under review as a conference paper at ICLR 2026

REFERENCES

Yoshua B., Jérdme L., Ronan C., and Jason W. Curriculum learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 09, pp. 41-48, New York, NY, USA, 2009.
Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553380.
URL https://doi.org/10.1145/1553374.1553380.

Zh. Cao, Sh. Xu, X. Jiao, H. Peng, and D. Yang. Trustworthy safety improvement for autonomous
driving using reinforcement learning. Transportation Research Part C: Emerging Technologies,
138:103656, 2022.

Simon Chamorro, Victor Klemm, Miguel de la Iglesia Valls, Christopher Pal, and Roland Siegwart.
Reinforcement learning for blind stair climbing with legged and wheeled-legged robots, 2024.
URLhttps://arxiv.org/abs/2402.06143.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768-774, 2024.

Lasse E., Hubert S., Remi M., Karen S., Vlad M., Tom W., Yotam D., Vlad E., Tim H., Iain D., Shane
L., and Koray K. Impala: scalable distributed deep-rl with importance weighted actor-learner
architectures. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 1407-1416. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/
espeholtl8a.html.

B.B. Elallid, B. Nabil, A.S. Hafid, T. Rachidi, and M. Nabil. A comprehensive survey on the
application of deep and reinforcement learning approaches in autonomous driving. Journal of King
Saud University-Computer and Information Sciences, 34(9):7366-7390, 2022.

Tuomas Haarnoja, Aurick Zhou, Sehoon Ha, Jie Tan, G. Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. ArXiv, abs/1812.11103, 2018. URL https://api.
semanticscholar.org/CorpusID:57189150.

Jinmin He, Kai Li, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Not all
tasks are equally difficult: multi-task deep reinforcement learning with dynamic depth routing.
In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth
Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on
Educational Advances in Artificial Intelligence, AAAT' 24/TAAT'24/EAAT’ 24. AAAI Press, 2024,
ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i11.29129. URL https://doi.org/10|
1609/aaai.v38111.29129.

Runhan Huang, Shaoting Zhu, Yilun Du, and Hang Zhao. Moe-loco: Mixture of experts for multitask
locomotion. arXiv preprint arXiv:2503.08564, 2025.

Kim J., Lee Y.J., Kwak M., Park Y.J., and Kim S.B. Dynasti: Dynamics modeling with sequential
temporal information for reinforcement learning in atari. Knowledge-Based Systems, 299:112103,
2024. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2024.112103. URL https:
//www.sciencedirect.com/science/article/pii/S0950705124007378.

Kirkpatrick J., Pascanu R., Rabinowitz N., Veness J., Desjardins G., Rusu A.A., Milan K., Quan
J., Ramalho T., Grabska-Barwinska A., Hassabis D., Clopath C., Kumaran D., and Hadsell R.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, 114(13):3521-3526, 2017. doi: 10.1073/pnas.1611835114. URL https://www,
pnas.org/doi/abs/10.1073/pnas.1611835114.

Roberts J.S. and Julia D. Projected task-specific layers for multi-task reinforcement learning. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pp. 2887-2893, 2024. doi:
10.1109/ICRAS57147.2024.10610483.

B Ravi K., Ibrahim S., Victor T., Patrick M., Ahmad A Al S., Senthil Y., and Patrick P. Deep
reinforcement learning for autonomous driving: A survey. [EEE transactions on intelligent
transportation systems, 23(6):4909-4926, 2021.

10

https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/2402.06143
https://proceedings.mlr.press/v80/espeholt18a.html
https://proceedings.mlr.press/v80/espeholt18a.html
https://api.semanticscholar.org/CorpusID:57189150
https://api.semanticscholar.org/CorpusID:57189150
https://doi.org/10.1609/aaai.v38i11.29129
https://doi.org/10.1609/aaai.v38i11.29129
https://www.sciencedirect.com/science/article/pii/S0950705124007378
https://www.sciencedirect.com/science/article/pii/S0950705124007378
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114

Under review as a conference paper at ICLR 2026

Heinrich K., Nantas N., A. H. M., R. Raileanu, M. Selvatici, E. Grefenstette, and Tim Rocktischel.
The nethack learning environment. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS, Red Hook, NY, USA, 2020. ISBN 9781713829546.

Samuel K., Mateusz O., Michal PawetB., Mateusz Z., Maciej W., Jack P.H., Stephen J. R., and Piotr
M. The effectiveness of world models forcontinual reinforcementlearning. In Sarath Chandar,
Razvan Pascanu, Hanie Sedghi, and Doina Precup (eds.), Proceedings of The 2nd Conference
on Lifelong Learning Agents, volume 232 of Proceedings of Machine Learning Research, pp.
184-204. PMLR, 22-25 Aug 2023. URL https://proceedings.mlr.press/v232/
kesslerz23a.html.

Zhu K. and Zhang T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua
Science and Technology, 26(5):674-691, 2021.

Wang L., Zhang X., Su H., and Zhu J. A comprehensive survey of continual learning: theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(8):
5362-5383, 2024. doi: 10.1109/TPAMI.2024.3367329.

S. Luo, S. Li, R. Yu, Zh. Wang, J. Wu, and Q. Zhu. Pie: Parkour with implicit-explicit learning
framework for legged robots. IEEE Robotics and Automation Letters, 2024.

Michael M., Mikayel S., Jack P., Edward G., and Tim R. Hierarchical kickstarting for skill transfer in
reinforcement learning. In Sarath Chandar, Razvan Pascanu, and Doina Precup (eds.), Proceedings
of The st Conference on Lifelong Learning Agents, volume 199 of Proceedings of Machine
Learning Research, pp. 856-874. PMLR, 22-24 Aug 2022. URL https://proceedings.
mlr.press/v199/matthews22a.html.

Zhai M., Xiang X., Lv N., and Abdulmotaleb E.S. Multi-task learning in autonomous driving
scenarios via adaptive feature refinement networks. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2323-2327, 2020. doi:
10.1109/ICASSP40776.2020.9054132.

George M.A., Apostolos T., Nikolaos P., Anastasios T., K V., and Nikolaos P. An all-optical neuron
with sigmoid activation function. Optics express, 27(7):9620-9630, 2019.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance gpu-based physics simulation for robot learning. In Thirty-fifth Conference on Neural
Information Processing Systems,2021. URL https://arxiv.org/abs/2108.10470.

Nachum O, Gu S., Lee H., and Levine S. Data-efficient hierarchical reinforcement learning. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’ 18, pp. 3307-3317, Red Hook, NY, USA, 2018. Curran Associates Inc.

David R., Arun A., Jonathan S., Timothy L. P., and Greg W. Experience replay for continual learning.
In Proceedings of the 33rd International Conference on Neural Information Processing Systems,

Red Hook, NY, USA, 2019.

Liu R., Florent N., Philippe Z., Michel de M., and Birgitta D.-L. Deep reinforcement learning for the
control of robotic manipulation: a focussed mini-review. Robotics, 10(1):22, 2021.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Aleksandra Faust, David Hsu, and Gerhard Neumann (eds.), 5th Conference on Robot Learning
(CoRL), volume 164 of Proceedings of Machine Learning Research, pp. 1634—1644. PMLR, 08-11
Nov 2022. URL https://proceedings.mlr.press/vl164d/raffin22a.htmll

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In 5th Annual Conference on Robot Learning,
2021. URL https://openreview.net/forum?id=wK2fDDJ5VCF.

Alexander S. and Matthew G. Explaining deep reinforcement learning agents in the atari domain
through a surrogate model. In Proceedings of the Seventeenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, volume 17, pp. 82-90, Oct. 2021. doi: 10.
1609/aiide.v17i1.18894. URL https://ojs.aaai.org/index.php/AIIDE/article/
view/18894l

11

https://proceedings.mlr.press/v232/kessler23a.html
https://proceedings.mlr.press/v232/kessler23a.html
https://proceedings.mlr.press/v199/matthews22a.html
https://proceedings.mlr.press/v199/matthews22a.html
https://arxiv.org/abs/2108.10470
https://proceedings.mlr.press/v164/raffin22a.html
https://openreview.net/forum?id=wK2fDDJ5VcF
https://ojs.aaai.org/index.php/AIIDE/article/view/18894
https://ojs.aaai.org/index.php/AIIDE/article/view/18894

Under review as a conference paper at ICLR 2026

Jonathan S., Wojciech C., Jelena L., Agnieszka G.B., Whye T., Y., Razvan P,, and Raia H. Progress
& compress: A scalable framework for continual learning. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 4528-4537. PMLR, 10-15 Jul 2018. URL
https://proceedings.mlr.press/v80/schwarzl8a.html,

Konstantinos S., George K S., and George A P. Reinforcement learning in game industry—review,
prospects and challenges. Applied Sciences, 13(4):2443, 2023.

Powers S., Xing E., and Gupta A. Self-activating neural ensembles for continual reinforcement
learning. In Conference on Lifelong Learning Agents, CoLLAs 2022, Montréal, Québec, Canada,
volume 199 of Proceedings of Machine Learning Research, pp. 683-704, 2022. URL https
//proceedings.mlr.press/v199/powers22a.html.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Mingi Jiang, Eric Hambro, Fabio
Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktidschel. Minihack the planet: A
sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference on Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
skFwlyefkwd.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
CoRR, abs/1701.06538, 2017. URL http://arxiv.org/abs/1701.06538.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 9767-9779. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr,
press/v139/sodhani2la.html.

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Paco: Parameter-compositional
multi-task reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=LYXTPNWJLrk

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book—-2nd.
htmll

Hengkai Tan, Songming Liu, Kai Ma, Chengyang Ying, Xingxing Zhang, Hang Su, and Jun Zhu.
Fourier controller networks for real-time decision-making in embodied learning. In Forty-first
International Conference on Machine Learning.

Ren Jie Tee and Mengmi Zhang. Integrating curricula with replays: Its effects on continual learning,
2023. URL https://arxiv.org/abs/2307.05747.

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: robust multitask reinforcement learn-
ing. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’ 17, pp. 4499-4509, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Nelson Vithayathil Varghese and Qusay H. Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9), 2020. ISSN 2079-9292. doi: 10.3390/electronics9091363. URL
https://www.mdpi.com/2079-9292/9/9/1363.

Laurens W., Elise v.P., and Zeynep A. Visual rationalizations in deep reinforcement learning for atari
games. In Benelux conference on artificial intelligence, pp. 151-165. Springer, 2018.

Z. Wang, H. Yan, Y. Wang, Zh. Xu, Zh. Wang, and Zh. Wu. Research on autonomous robots
navigation based on reinforcement learning. In 2024 3rd International Conference on Robotics,
Artificial Intelligence and Intelligent Control (RAIIC), pp. 78-81, 2024.

12

https://proceedings.mlr.press/v80/schwarz18a.html
https://proceedings.mlr.press/v199/powers22a.html
https://proceedings.mlr.press/v199/powers22a.html
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ
http://arxiv.org/abs/1701.06538
https://proceedings.mlr.press/v139/sodhani21a.html
https://proceedings.mlr.press/v139/sodhani21a.html
https://openreview.net/forum?id=LYXTPNWJLr
https://openreview.net/forum?id=LYXTPNWJLr
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2307.05747
https://www.mdpi.com/2079-9292/9/9/1363

Under review as a conference paper at ICLR 2026

Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information transfer
in multi-task learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SylzhkBtDB.

Cheng X., Shi K., Agarwal A., and Pathak D. Extreme parkour with legged robots. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 11443-11450, 2024. doi:
10.1109/ICRAS57147.2024.10610200.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with
soft modularization. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS °20, Red Hook, NY, USA, 2020a. Curran Associates Inc. ISBN
9781713829546.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with
soft modularization. CoRR, abs/2003.13661, 2020b. URL https://arxiv.org/abs/2003.
13661

Jianing Zhou, Ziheng Zeng, Hongyu Gong, and Suma Bhat. Non-compositional expression gen-
eration based on curriculum learning and continual learning. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 43204335, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.286. URL |https://aclanthology.org/2023,
findings—-emnlp.286/.

13

https://openreview.net/forum?id=SylzhkBtDB
https://arxiv.org/abs/2003.13661
https://arxiv.org/abs/2003.13661
https://aclanthology.org/2023.findings-emnlp.286/
https://aclanthology.org/2023.findings-emnlp.286/

Under review as a conference paper at ICLR 2026

A DECLARATION ON LARGE LANGUAGE MODEL USAGE

When writing this paper, we used large language models (ChatGPT and DeepSeek) to polish the
grammar and writing. In addition, we employed these models to assist with literature search.
Specifically, we leveraged DeepSeek’s search capabilities to identify prior research that integrates
curriculum learning with continual learning (Tee & Zhang} 2023} Zhou et al.,|[2023)).

B DETAILS ON QUADRUPEDAL ROBOT EXPERIMENTS

The Seven Tasks Included. Fig. a, b, ¢, d and e, demonstrate the flat ground, hill (climbing), hill
(descending), stairs (climbing) and stairs (descending) terrains. On those terrains, the quadrupedal
robots were initialized at the middle of the terrain and were commanded to move in random directions
with random angular velocity commands. Moreover, in Fig.[ST|f, g, h and i,the gap crossing, box
climbing, the hurdle and tilted ramp terrains are demonstrated. On those terrains, the quadrupedal
robots were initialized on the platforms located in front of the parkour terrains. The robots were
commanded to move forward across the parkour terrains. As demonstrated in Fig.[ST]j, in the second
sub-stage of the walking training stage, we also modified the walking terrains to include gaps so that
the gaze of the robot could be pretrained for performing parkour. Here, we only demonstrate the
modified version of the stair terrain, but identical gaps were also added on flat and hill terrains.

—
—

AR
/ﬂ’“‘

T e ———

Figure S1: Different terrains included in the quadrupedal robot experiments. (a), (b), (c), (d) and (e)
illustrate the flat ground, hill climbing, hill descending, and stairs terrains, stairs climbing and stairs
descending terrains. (f), (g), (h) and (i) illustrate the gap crossing, box climb, hurdle and tilted ramp
terrains. (h) illustrates the stair terrain added with gaps.

Training Configuration Details. In practice, we further divided the two training stages, each stage
containing two sub-stages. In the first sub-stage of the first stage, we trained for all three walking
tasks and in the second sub-stage, we continued to train for the walking tasks but leveraged the
terrains with gaps added (illustrated in Fig.[STh) to pre-train for parkour. In the second stage, we
included gap crossing and box climbing tasks in the first sub-stage. In this sub-stage, 50% of terrains
were set to gap crossing and 50% of terrains were set to climbing. In the second sub-stage, we further
added training for hurdle and tilted ramps, where we set 25% for each type of terrain. Within the
second stage, we also included weight decay to increase network plasticity (Dohare et al.| 2024).

Network Architecture for Quadrupedal Robot Policy Network. In the quadrupedal robot ex-
periments, we leveraged the PPO algorithm to perform reinforcement learning. Within the PPO
algorithm, an actor network and a critic network is usually included. Fig.[S2]illustrates the design
of the actor network we used in our experiments, where it adopted an MLP architecture with two
stages. The first stage contains two modules, the first module was a scandot (vision) encoder, which
took in five sets of historical and one set of present scandots of the terrain in front of the robot to
encode scandots into a feature vector. The historical scandots were taken with an interval of 6 steps
relative to the present scandot. This module had two hidden layers with hidden dimensions of 64 and
20. The second module was a past action encoder. It took 8 sets of historical joint positions of the
robot (each with 16 values) and encoded them into a past actions feature vector with 32 dimensions.

14

Under review as a conference paper at ICLR 2026

[action

Past
action
encoder

Scandot
encoder

Policy network

. .) Past actions
Scandlot Proprioception Commands Past action
encoding

encoding

Scandot

Figure S2: The MLP-based actor network for the policy of the quadrupedal robot.

The encoding was performed with an MLP with a single hidden layer, where the hidden dimension
was 64. The second stage was the policy network, where it took in the scandot encoding, direction
commands, the past actions encoding and the inertial measurement unit (IMU) information. With
the inputs provided, the second block could predict an action. The policy network had 5 hidden
layers, with hidden dimensions of 402, 280, 295, 136 and 94. The critic network used in our research
had an identical architecture to the actor network, except it had an output layer for generating value
predictions. In our experiments, we only added the auxiliary branches to the policy block of the
actor network. In the auxiliary branches, we set processing modules to be MLPs with three layers,
where the hidden dimension was identical to the dimension of the feature vector to which it is routed.
We used the lightweight gating described in Appendix [C} where the gating modules were two-layer
MLPs with hidden dimensions of 80 and 40 at different depths.

C LIGHTWEIGHT AUXILIARY BRANCH

Backbone computation Auxiliary branch
pathways computation pathways

E] Backbone
layer
Backbone
Module

Processing
module

Gating
module

Figure S3: An illustration of applying lightweight auxiliary branches (with span N = 2) to features
F, 4, F, 3. F;, 5 F;, ;1 and F; of a feed-forward backbone to form an DPNet. The computation
pathways involved in computing F'; are highlighted in red and the modules involved are visualized in
the dotted box.

Considering that the auxiliary branch design described in the main paper might be computationally
prohibitive for some tasks, we also proposed a lightweight version. That is, instead of assigning
a gating module for each S; ,,,, we assigned a gating module H" for all shortcut auxiliary branch
outputs mapped to each backbone layer. Specifically, as demonstrated in Fig.[S3] H takes the same
input as its corresponding backbone layer and modulates all shortcut module outputs mapped to
the current backbone layer simultaneously. Formally, we let the input to " be F';_; modulated by
Si—1,0:

Fi_1=S-10Fi—1) +F;_1 (8)

15

Under review as a conference paper at ICLR 2026

and we let M7, the shortcut auxiliary branch output modulated by H; be

N
M =Y Sionn(Fion) © HI (Fioy). ©)

n=1

The computation for obtaining M? remains unchanged, but to obtain £}, we perform the computation
of

F; = M? + M/, (10)

With this design, although we have reduced the number of gating modules, but with remaining ones,
different pathways with different depths can still be selected, making the policy network a dynamic
policy network.

D MINIHACK TASKS AND EXPERIMENT DETAILS

The Ten Tasks Included. We selected 10 tasks from the MiniHack game environment as training
tasks, including 1.Room-Random-5x5-v0, 2.Corridor-R2-v0, 3.Room-Dark-5x5-v0, 4.Corridor-R3-
v0, 5.Room-Monster-5x5-v0, 6.CorridorBattle-v0, 7.Room-Trap-5x5-v0, 8.HideNSeek-v0, 9.Room-
Ultimate-5x5-v0, 10.HideNSeek-Lava-v0. We present examples of the initial observations that an
agent may encounter for each task in the MiniHack benchmark in Fig.|S4|and the detailed descriptions
on the tasks follow below.

1.Room-Random-5x5-v0 2.Corridor-R2-v0 3.Room-Dark-5x5-v0 4.Corridor-R3-v0 5.Room-Monster-5x5-v0
6.CorridorBattle-v0 7.Room-Trap-5x5-v0 8.HideNSeek-v0 9.Room-Ultimate-5x5-v0 10.HideNSeek-Lava-v0

Figure S4: Examples of initial observations for each task in the 10-task MiniHack sequence.

1.Room-Random-5x5-v0: Explore the randomly generated room to reach the goal. The layout,
player, and goal positions are random in each episode.

2.Corridor-R2-v0: Reach the exit by navigating through two connected corridors. The player and
exit positions are random in each episode.

3.Room-Dark-5x5-v0: Find the goal hidden in the dark room. The player’s position and the goal
location are random in each episode.

4.Corridor-R3-v0: Reach the exit by navigating through three connected corridors. The player and
exit positions are random in each episode.

5.Room-Monster-5x5-v0: Reach the goal while avoiding or defeating the monster in the room.
Player, monster, and goal positions are random in each episode.

6.CorridorBattle-v0: Fight monsters in the corridor and through the corridor to reach the exit.
Player, enemies, and exit positions are random in each episode.

7.Room-Trap-5x5-v0: Reach the goal while avoiding hidden traps scattered in the room. Player and
goal positions are random in each episode.

16

Under review as a conference paper at ICLR 2026

8.HideNSeek-v0: Find and reach the hidden target while avoiding detection. Player and goal
positions are random in each episode.

9.Room-Ultimate-5x5-v0: Reach the goal while navigating through a room filled with both monsters
and traps. Player, monsters, traps, and the goal are random in each episode.

10.HideNSeek-Lava-v0: Find and reach the hidden target while avoiding dangerous lava hazards.
The target’s position and the lava are random in each episode.

Training Configuration Details. In our experiments, we trained all RL agents in the MiniHack
environment for 2 epochs using the IMPALA(E. et al., |2018)-based training framework (unless
otherwise stated). In each epoch, EWC(J. et al., [2017) was incorporated to facilitate continual
learning across all tasks. Each task was trained for 1e6 steps, and during training, all tasks were
evaluated every le5 steps to record the reward performance. The training hyperparameters of our
proposed method on MiniHack are shown in Table[ST]

Table S1: The hyperparameters of our proposed method in MiniHack tasks.

Hyperparameters Ours
Num. actors 16
Learner threads 2
Batch size 25
Unroll length 20
Grad clip 40
Reward clip [-1,1]
Entropy cost 0.01
Discount factor 0.99
Learning rate 3e-4
EWC A 100
EWC, min. task steps le6
Fisher samples 100
Normalize Fisher No

Replay buffer size le6

Network Architecture for MiniHack Policy Network. For the actor network architecture, we
utilized the CNN framework illustrated in Fig. [S5] Specifically, we leveraged a CNN backbone
consisting of three CNN blocks and two MLP layers, each CNN block was connected with auxiliary
branches. For each backbone CNN block, the corresponding processing module within the auxiliary
branch contained two convolutional layers, while the gating module comprised two MLP layers
followed by a sigmoid activation function. As demonstrated by Fig. [S3] the dimension of the
MiniHack game image was 1 x 3 x 84 x 84. In the CNNBlock;, we added a maxpooling layer with
kernel size 3 and stride 2 between the CNN layers in CNNBlock; to reduce the feature size. The
dimensions of hidden features F'1, Fo, F'5 after CNN Blocks were 1 x 32 x 42 x 42. The auxiliary
branch pathways we leveraged are illustrated in Fig. 2b. Specifically, the span of the auxiliary
branches was 2 and we have only included auxiliary branches for the CNN blocks. After the first
MLP layer, the F; computed was a vector of dimension 512. The action prediction was obtained after
the last MLP layer. The critic network used in our research had an architecture identical to the actor
network, except that it had an output layer for generating value predictions.

E ACTION FREQUENCY SPECTRUM COMPUTATION

To compute the action frequency spectrum of a task, we executed the policy in the environment and
collected its output action curves. That is, we collected an action sequence matrix M € RV* KT
where

e N was the number of parallel sequences (samples),
* K was the number of action outputs for the policy network, and

* T was the length (number of time steps) of each sequence.

17

Under review as a conference paper at ICLR 2026

Backb tati -
—, ~ackbone compuiation Auxiliary branch
—_—

pathways .
computation pathways
- Backbone features

£
=
o)
5
«
o

Tyoo1g NND
&porg NND
£301d NNO

game image R ,/ action

Figure S5: The CNN architecture-based actor network for the policy of the MiniHack tasks.

In our implementation, we performed a real-valued fast Fourier transform (rFFT) along the temporal
dimension. To do so, the FFT was computed with a fixed transform length n (we set n = 100) so that
the number of frequency components was

F= {gJ F1. (11)

For each sequence n € {1,..., N} and for each action k € {1,..., K}, we defined the discrete
Fourier transform (DFT) of the time signal as

n—1 .

. omi ft

Mgy = Mn,k,texp(— ”;f) for f=0,1,...,F —1. (12)
t=0

Since the input was real-valued, we used the rFFT, which returned only the non-negative frequency
components.

Next, the magnitude of the Fourier coefficients was computed as

13)

)

, I
n,k,f — ‘Mn,k,f

which represented the absolute value (i.e., amplitude) of the frequency component f.
To obtain a robust frequency representation for each action, we averaged the magnitudes over all N

sequences:

N
1
Py =+ > M (14)

n=1

This yielded the per-action frequency distribution, with

P e REXF, (15)
where the element P, r corresponds to the average magnitude of the frequency component f for
action output k of the policy network.

To compute the overall action frequency spectrum for a task, we need to aggregate across the K
action dimensions by summing over the rows of P:

K
dy =Y Pey, forf=0,1,...,F—1

k=1

18

Under review as a conference paper at ICLR 2026

This resulted in a task-level frequency distribution,

d e RY,

where each element d s represents the total average amplitude of frequency component f across all
action outputs. This final representation captures the overall frequency characteristics of the policy
behavior for the given task type and we plotted it as the action frequency spectrum.

F COMPUTATION OF EFFECTIVE DECISION DEPTH

This section details the method for computing the effective decision depth (EDD) of a forward pass
through the Dynamic Policy Network (DPNet). The effective decision depth is a metric that quantifies
the cumulative processing depth for an input as it is propagated through the network.

Effective decision depth (EDD) is computed in a single bottom-up sweep through the network.
Starting from the input feature Fy (with EDD initialized to zero), we proceed layer by layer up to the
final feature F'1. At each layer ¢, we consider all pathways originating from earlier features F';,_,, and
compute the depth as the sum of the EDD of the source feature and the EED of the connecting module.
If the module is gated, its EED is given by the mean gate activation multiplied by the module’s depth.
If the module is not gated, its cost is computed as the mean absolute activation of the module. The
EDD of F; is then obtained by averaging the EDD of all incoming pathways. Repeating this process
for i = 0 through L yields the final value C'1,, which represents the overall effective decision depth of
the network.

Formally, we let C; denote the effective decision depth at the output of the i backbone layer. The
computation proceeds as follows:

1. Initialization: The effective decision depth for the initial input feature, Cy, is initialized to
0.

2. Iterative Update: For each subsequent backbone layer 7, the effective decision depth C;
is computed based on the previous N depths {C;_1,C;_2, ..., C;_n} and the activations
of the layer’s components connected to the current backbone layer output. The update is
performed in three steps:

* Base Depth Contribution: A base depth value, C’f, is calculated by incorporating
contributions from the current backbone layer and its self-dilation auxiliary branch:

G} = Ci1 +E[G]] - D} +E[[Si 0] - Di (16)
where:

— E[G?] is the mean output of the backbone gating module at layer i

— D% = 1is the depth of the current backbone layer

— EJ[|S; 0] is the mean absolute output of the self-dilation processing module

- Dj , is the depth of the self-dilation processing module

The products E[G?] - D? and E[|S; 0[] - D}, estimate the effective utilization of the
backbone layer and self-dilation processing module, respectively.

» Skip Connection Contribution: An average skip contribution Cf is computed by
considering influences from k previous layers (where & = min(é, V)) via shortcut

connections:
k

C: =" (B[H;)- D, + Cicy) (7)
j=1
where E[HY] is the mean output of the gating module governing shortcut auxiliary
branch to layer ¢, and D}, ; is the depth of the shortcut auxiliary branch processing
module from layer 7 — j to layer 7.
* Final Effective Decision Depth: The effective decision depth at the current backbone
layer output is obtained by averaging the base depth and skip contributions:
Ct+Cs

Ci =
T k1

(18)

19

Under review as a conference paper at ICLR 2026

5.5 1

[T]
L[]

Effective Depth
)
w

&
o

3.5 1 !

(0]
o]

3.0 4

T T T T T T T
Flat Slop Stair Tilt Climb Hurdle Gap

Figure S6: Boxplots for DPNet effective decision depth on the 7 quadrupedal locomotional tasks.

3. Termination: The process repeats iteratively until the effective decision depth C'r, for the
final backbone feature F'r, is computed.

The final value C'r, represents the overall processing complexity for a given input and is reported as
the effective decision depth of the forward pass.

G EFFECTIVE DECISION DEPTH RESULTS ON QUADRUPEDAL LOCOMOTION
TASKS

This section compares the effective decision depth of DPNet across different task types, examining
the three walking tasks (Flat, Slope, Stair) versus the four parkour tasks (Tilt, Climb, Hurdle, Gap).
The analysis reveals distinct depth utilization patterns between the two task categories.

For walking tasks, DPNet consistently employed shallower computational pathways, with median
effective depths clustering around 5.0. The lower distribution boundaries were substantially lower,
with first quartile values near 4.7 and lower whiskers extending to approximately 3.7. Additionally,
all three walking tasks exhibited outliers with effective depths as low as 3.2, indicating instances
where minimal computational depth sufficed.

In contrast, parkour tasks demonstrated systematically deeper pathway utilization. Median effective
depths were consistently higher (around 5.7), while the first quartile (approximately 5.3) and lower
whisker (around 4.8) values were significantly higher compared to walking tasks. This systematic
upward shift across all distribution metrics confirms that DPNet adaptively selects deeper compu-
tational pathways for compositional parkour tasks while employing shallower pathways for atomic
walking tasks.

H THE FINAL REWARDS OF DIFFERENT MINIHACK TASKS

The final individual MiniHack task rewards for different continual learning baseline algorithms
(analyzed in Section [£.4] of the main paper) are presented in Table [S3] Our proposed method
consistently outperformed the continual learning baseline across most tasks, where the highest
rewards reached 1.000. However, on Corridor-R2-V0, CorridorBattle-v0, and HideNSeek-vO0, the
rewards achieved were slightly lower than those of CLEAR. We attribute this to CLEAR’s use of
data replay to maintain individual task performance, an effective but hardware-intensive approach.
Overall, our proposed DPNet design and progressive training technique effectively mitigated conflicts,
thereby enhanced multi-task reinforcement learning performance on MiniHack.

20

Under review as a conference paper at ICLR 2026

Table S2: Direct training rewards of different MiniHack tasks.

Task ID Task name Direct training rewards
1 Room-Random-5x5-v0 0.845+0.003
2 Corridor-R2-v0 -0.862+0.035
3 Room-Dark-5x5-v0 0.78140.007
4 Corridor-R3-v0 -0.748+0.126
5 Room-Monster-5x5-v0 0.67740.021
6 CorridorBattle-v0 0.01840.002
7 Room-Trap-5x5-v0 0.816+0.003
8 HideNSeek-v0 0.01940.003
9 Room-Ultimate-5x5-v0 0.56540.023
10 HideNSeek-Lava-v0 0.02640.002

Table S3: The final rewards of different individual tasks in MiniHack.

EWC P&C CLEAR SANE

Tasks (T etall2017) (S.etall2018) (R etall2019) (S. etal.l2022}

Ours

Room-Random-5x5-v0 0.897£0.000 0.884+0.000 0.816+0.003 0.819+0.034 1.000+0.000

Corridor-R2-v0 0.049+0.062 0.224+0.018 0.505+0.049 -0.0704+0.140 0.480+0.014
Room-Dark-5x5-v0 0.588+0.000 0.850+0.016 0.633£0.019 0.892+0.023 0.744+0.003
Corridor-R3-v0 -0.468+0.001 -0.289+0.001 -0.596+0.003 -0.910+0.004 -0.34740.001
Room-Monster-5x5-v0 ~ 0.931£0.002 0.812+0.009 0.892+0.008 0.963+0.003 1.000+£0.000
CorridorBattle-v0 -0.320£0.001 -0.039£0.000 0.357+£0.049 0.008+0.161 -0.141£0.006
Room-Trap-5x5-v0 0.863+0.002 0.781+£0.000 0.780+0.032 0.999+0.000 1.00040.000
HideNSeek-v0 0.624+0.003 -0.014=£0.000 0.698+0.027 0.731+£0.002 0.298+0.010

Room-Ultimate-5x5-v0 0.694+£0.007 0.809+0.002 0.636+0.003 0.853+0.001 0.897+0.010
HideNSeek-Lava-v0 0.597+0.007 0.026+£0.002 0.664+0.015 0.731+0.009 0.847+£0.002

Final Average Reward 0.445+0.001 0.4045+0.003 0.538+0.005 0.502+0.003 0.578+0.001

21

	Introduction
	Related Work
	Methods
	Preliminaries
	The DPNet Design
	Progressive Training

	Experiments
	Comparison Against Parallel Training
	Design Analysis
	Comparison Against Existing Multi-Task RL Architectures
	Evaluation in MiniHack

	Limitation
	Conclusion
	Declaration on Large Language Model Usage
	Details on Quadrupedal Robot Experiments
	Lightweight Auxiliary Branch
	MiniHack Tasks and Experiment Details
	Action Frequency Spectrum Computation
	Computation of Effective Decision Depth
	Effective Decision Depth Results on Quadrupedal Locomotion Tasks
	The Final Rewards of Different MiniHack Tasks

