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ExpressiveSinger: Multilingual and Multi-Style Score-based
Singing Voice Synthesis with Expressive Performance Control

Anonymous Authors

ABSTRACT
Singing Voice Synthesis (SVS) has significantly advanced with deep
generative models, achieving high audio quality but still struggling
with musicality, mainly due to the lack of performance control
over timing, dynamics, and pitch, which are essential for music
expression. Additionally, integrating data and supporting diverse
languages and styles in SVS remain challenging. To tackle these
issues, this paper presents ExpressiveSinger, an SVS framework that
leverages a cascade of diffusion models to generate realistic singing
across multiple languages, styles, and techniques from scores and
lyrics. Our approach begins with consolidating, cleaning, annotat-
ing, and processing public singing datasets, developing a multilin-
gual phoneme set, and incorporating different musical styles and
techniques. We then design methods for generating expressive per-
formance control signals including phoneme timing, F0 curves, and
amplitude envelopes, which enhance musicality and model consis-
tency, introduce more controllability, and reduce data requirements.
Finally, we generate mel-spectrograms and audio from performance
control signals with style guidance and singer timbre embedding.
Our models also enable trained singers to sing in new languages
and styles. Several listening tests reveal both musicality and con-
trollability of our generated singing compared with existing works
and human singing. We release the data for future research. Demo:
https://expressivesinger.github.io/ExpressiveSinger.

CCS CONCEPTS
• Applied computing→ Sound and music computing.

KEYWORDS
Singing Voice Synthesis, Expressive Performance Control, Singing
Style, Diffusion Model

1 INTRODUCTION
The Singing Voice Synthesis (SVS) task involves computer mod-
els automatically generating singing audio given symbolic music
scores with lyrics. It has been a long-standing area of research
since the 1930s [10, 21, 37, 40], with various applications in mu-
sic production, entertainment, and education. Recent progress in
deep learning has demonstrated remarkable potential in generating
audio [26, 27, 30, 35, 54], with impressive results in voice mod-
eling for Text-To-Speech (TTS) Synthesis [2, 38, 47, 48] and SVS
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[17, 31, 32, 56]. However, compared to the rapid advancements in
TTS, SVS continues to face significant challenges.

One of the primary challenges in current SVS is insufficient mu-
sicality. Synthesized singing often suffers from issues such as being
out of tune, unnatural techniques, and poor dynamics, which are
closely related to performance control from a musical perspective.
Music fundamentally relies on performance, where musicians inter-
pret scores with their personal styles and emotions. Performance
control encompasses critical music elements often missing in sym-
bolic scores, such as performance timing, dynamics, pitch contour,
timbre control, and playing techniques, which are key to making
generated music sound natural. This is comparable to a masterful
violin that, regardless of its high quality, will sound vastly different
in the hands of a professional compared to a novice, underscoring
the importance of skilled performance control.

Most deep learning-based SVS systems are directly adapted from
TTS models, where the synthesizers are designed for speech and
lack the capability to address challenges in music performance. For
instance, singing encompasses a broader pitch frequency range
and displays greater timbre texture diversity, including breathiness,
chest voice, and head voice, compared to speech. These aspects
are typically absent in speech synthesis. Most importantly, SVS
generates singing from symbolic scores instead of just text (lyrics),
requiring a significantly higher level of expressive performance
control mastery than speech. Many SVS systems borrowed from
TTS models cannot process actual sheet score input and instead
rely on ground truth performance control signals, such as perfor-
mance MIDI, phonetic timing, pitch and loudness curves, as input
conditions. Such systems that take advantage of real singing data
should not be considered full-stack score-based SVS.

Given the high audio quality of generated human voices, we
shift our focus towards musicality and expressive performance con-
trol, which we deem as the primary bottleneck in SVS. We design
a cascade of diffusion models [14, 42] to generate the three most
critical control signals in expressive performance: performance
timing, pitch (Fundamental Frequency (F0)) contour, and dynamics
(loudness curve). These control signals are generated according
to not only score and lyrics, but also music genre style, singing
technique, and singer identity. They serve as the foundation for
generating the final singing audio and controlling the musicality.
We choose diffusion models and related extensions as the model ar-
chitecture due to their strong performance in modeling continuous
representations, such as images and audio.

Besides expressive performance control, the current SVS sys-
tems face two other significant challenges. On the one hand, there
has been a consistent lack of high-quality public singing datasets
with annotations. Unlike the extensive datasets available for speech,
singing datasets are typically small, with considerable variation
in recording environments, data quality, singer proficiency, and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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annotations, making integration challenging. On the other hand, ex-
isting SVS systems still struggle to incorporate multiple languages,
diverse musical styles, different datasets, and inconsistent acoustic
environments simultaneously.

To address the data issue and expand the capacities of SVS sys-
tems, we first clean up and consolidate publicly available singing
datasets, adding necessary annotations, refining approaches to ex-
tracting acoustic features for singing, and categorizing datasets to
optimize their utilization across different stages of our SVS system.
Second, we develop a multilingual phoneme set, merging phoneme
sets from different datasets to enable multilingual generation. More-
over, we introduce a range of musical styles and techniques into
the system and employ speaker/singer embedding instead of the
traditional singer ID to utilize the training data efficiently.

In all, we aim to explore expressive performance control in
singing and generate multilingual and multi-style singing voices
with both high musicality and audio quality. Our solution, Expres-
siveSinger, involves three modules: expressive performance control
signal generation, mel-spectrogram generation, and audio wave-
form generation. Evaluations include multiple subjective assess-
ments to demonstrate the effectiveness of our system compared to
previous works and human singing.

We summarize our contributions as follows: (1) Introduce a
comprehensive SVS system that generates expressive and realis-
tic singing from scores and lyrics with multiple languages, styles,
techniques, and singers from symbolic music scores with lyrics.
(2) Design a set of methods for generating expressive performance
controls, which not only improve musicality and consistency of
the synthesized singing, but also allow more controllability and
reduce data requirements. (3) Combine, clean, annotate, and pro-
cess various public singing datasets, and release the integrated data
for future research. (4) Demonstrate the zero-shot capabilities of
our models by enabling singers from the training data to sing in
languages and styles they have not previously attempted.

2 RELATEDWORK
2.1 Singing Voice Synthesis
Voice modeling can be traced back to Bell Labs [10], and vocal syn-
thesizers like VOSIM [21] and FOF [40] have beenwidely used in the
industry. Recently, deep learning approaches in audio generation
and TTS, starting from Wavenet [35], deep acoustic models [38]
and neural vocoders [24–26, 28], to audio codecs [27, 54], have also
become the mainstream in SVS. Score-based SVS systems [12, 32]
process symbolic scores and lyrics as input, while other SVS sys-
tems [31, 39] input lyrics with some ground-truth performance
controls, such as performance timing for each word or phoneme,
pitch and loudness curves. The significant difference between per-
formance MIDI and the actual sheet music score is often overlooked
and misunderstood in SVS research. Performance MIDI contains
expressive performance timings rather than the regular beat-based
note durations in scores. Also, pitches in the performance MIDI
including techniques like grace notes, ornaments, and glissandos,
may differ from those in the score. Using performance MIDI for
SVS while claiming it to be score-based is misleading. In this paper,
our system takes scores instead of performance MIDI as input.

A widely used architecture in TTS and SVS is a two-step syn-
thesis process: an acoustic model that converts the input to an
acoustic representation, and a vocoder that synthesizes the final
audio output from this representation. The acoustic representation
can be standard formats like spectrograms or mel-spectrograms,
or other pre-trained representations and templates such as audio
Encodec codes [17] and DDSP harmonic representations [56]. Com-
mon practices for acoustic models include transformer-based models
[16, 31, 38], as well as WaveNet and FFT (Fast Fourier Transform)-
based methods [32, 57]. These models are often effectively paired
with GANs [57] or diffusion processes [31]. For vocoders, deep learn-
ing [24, 25, 53] has made significant progress. For instance, BigV-
GAN [28] integrates periodic activation functions and anti-aliased
multi-periodicity composition, yielding high-fidelity speech and
music synthesis. Diffwave [25], leveraging a Denoising Diffusion
Probabilistic Model (DDPM) [14] with a WaveNet backbone, offers
ease of training and high-quality. To improve pitch sensitivity in
singing, some studies [57] have incorporated quantized F0 curves
as additional input for the vocoder. This paper uses BigVGAN as the
vocoder with both inputs of the generated mel-spectrograms and F0
curves. We also take inspiration from the architecture of Diffwave
for the acoustic model and performance control generation.

Current deep-learning-based SVS systems struggle to incor-
porate multiple languages, diverse genre styles, various singing
techniques, and inconsistent acoustic environments from different
datasets. First, due to data scarcity and non-unified representations,
most SVSmodels can only handle one language at a time, with an ex-
tremely unbalanced focus on Chinese Mandarin [12, 32, 56, 57]. Sec-
ond, existing models are limited to one music genre, predominantly
popular music, with only a small portion focusing on other gen-
res [22, 58]. Third, they cannot generate singing based on singing
technique prompts, such as lip trill and vibrato [50]. In addition,
most models employ no more than three datasets, and it remains
unknown how to handle the varying acoustic environments of
different singing datasets while generating consistent and high-
quality audio. Finally, models have not explored enabling singers to
sing in languages or styles that they have never sung by themselves
in the training set. In this paper, we introduce solutions to all these
challenges.

Some SVS systems have explored generating multiple singer
voices [39, 57]. However, they use a numerical representation of
Singer ID to differentiate between singers in the training set, which
hinders the model’s extensibility and needs retraining the ID en-
coder when adding new singers. Moreover, it is difficult for the
model to share and generalize data across different singers, requir-
ing a notable amount of training data for each singer. Here we adopt
the Resemblyzer speaker embedding [46] instead of ID in the acous-
tic model, drawing inspiration from TTS and speech conversion
models [2, 44, 47].

2.2 Expressive Performance Control
Expressive performance controls can be mainly categorized into
timing, pitch, dynamics, and timbre control [8, 29], with significant
effects on music perception and expression [4, 20]. Besides a few
attempts at emotion expression control [23], most deep-learning-
based SVS models either implicitly model expressive performance
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controls or include these modules in an end-to-end training fashion
[31, 32, 56, 57]. This approach leads to various issues. First, the
results are inconsistent and lack musicality, often exhibiting issues
like out-of-tune, erratic timing and volume. Second, it is hard to
precisely control the corresponding performance attributes for dif-
ferent music styles and singers, such as swing timing and pitch
bends in jazz. Finally, it requires a large amount of high-quality
training data, and cannot fully utilize all types of available data. For
instance, data with low audio quality may still contain professional
performance data, making it unsuitable for training the acoustic
model or vocoder but ideal for the performance control model.

Before the advent of deep learning, rule-based [1] and tradi-
tional machine learning approaches [36, 43] made notable progress
in modeling expressive performance control for singing and in-
struments. First, performance timing, different from score timings,
often involves rhythm and tempo variations. Most studies model-
ing timing [41, 52] focus on piano, and use machine learning to
model deviations between note onsets in performance timing and
the original score timing. Second, continuous pitch variation curves
during performance are typically analyzed using Fundamental Fre-
quency (F0), and closely tied to playing techniques like vibrato,
glissando, and ornaments [15, 19]. Moreover, dynamics involve the
loudness and softness of notes, and researchers often use amplitude
envelopes (curves) extracted from audio performance to represent
dynamics control based on music context [5, 6, 9, 15, 51]. This pa-
per is the first work that utilizes the diffusion process with deep
learning architectures to explicitly model expressive performance
control from scores and styles, including timing onset deviations,
F0 curves, and amplitude envelopes. We leave timbre control to the
model implicitly due to lacking timbre recognition algorithms and
annotations.

3 DATA PREPARATION
3.1 Dataset Integration and Categorization
First, we utilize the publicly available singing datasets that contain
solo singing with minimal noise, despite varying acoustic environ-
ments and sound quality, including SingStyle111 [7], Opencpop
[49], M4Singer [55], Children Song Dataset (CSD) [3], VocalSet
[11, 50], PopCS [31], and OpenSinger [16].

Next, we have dedicated substantial effort to data cleanup and
correction, adding essential annotations. For instance, we manually
correct the frequently incorrect pitch annotations in Opencpop,
which were often off or up by an octave. We also manually anno-
tate the tempo for half of the songs in M4Singer, as all the pro-
vided performance MIDI files used a uniform tempo of 120 bpm. In
CSD dataset, we segment each song’s complete audio and perfor-
mance MIDI into shorter phrases based on the lyrics’ syntax, for
model batch training. We complete the missing lyrics, phonemes,
and their corresponding audio position and duration annotations
for the songs in VocalSet. For datasets like M4Singer, CSD, and
Opencpop that have performance MIDI but no scores, we quantize
the performance MIDI to a minimum grid of 32nd notes based on
each song’s tempo, creating quantized scores aligned with lyrics
phonemes and words1 for each phrase.

1In Chinese Mandarin and Korean, “word” refers to character.

Finally, we categorize the datasets and map them to three mod-
ules of our system: expressive performance control, acoustic model,
and vocoder. The vocoder training use all seven datasets (in total
118.67 hours, 121 singers); the acoustic model and expressive perfor-
mance control (F0 and amplitude curve) training use SingStyle111,
Opencpop, M4Singer, CSD, and VocalSet (in total 62.78 hours, 50
singers) due to their better sound quality and phoneme/word du-
ration annotations. The performance timing model only utilizes
SingStyle111, Opencpop, and part of M4Singer data (in total 30.6
hours, 22 singers), as score input and phoneme duration annota-
tions are required. After integration, all data were resampled to
both 44.1 kHz and 22.05 kHz audio waveforms and segmented into
short phrases ranging from 2 to 20 seconds in length.

3.2 Data Representation
We create a multilingual phoneme set covering English, Chinese,
Italian, and Korean. We merge phoneme sets from different datasets,
such as the International Phonetic Alphabet (IPA), Advanced Re-
search Projects Agency (ARPA) Phonetic Set, CMU Pronouncing
Dictionary, Mandarin Pinyin, etc. Converting between phoneme
sets is not straightforward; for example, one Mandarin Pinyin
phoneme may correspond to multiple IPA phonemes, and splitting
Pinyin into IPA would result in losing the original phoneme dura-
tion annotations. To address this, we manually merge phonemes
with the same pronunciation from different sets while retaining the
distinct phonemes. Even though this is not a standard phoneme
set, we have made it flexible to ingest different languages. The fi-
nal set contains 95 phonemes indexed by number, including three
non-phonetic sounds: AP (aspirate), SP (silence), and NS (noise and
other unknown sounds).

We design style and technique tokens for style control. The six
style genres are pop, children, Western opera, traditional Chinese
folk, jazz, and Teresa (singer Teresa Teng). Each song can have
multiple styles, represented by a six-dimensional binary vector. For
instance, a song combining jazz and traditional Chinese folk would
have 1s in those dimensions and 0s elsewhere. Similarly, musical
theater songs typically blend pop and Western opera styles. For
techniques, we adapt the 16 opera techniques from VocalSet (e.g.,
lip trill, trillo, belt) plus a “normal” indicating no specific technique,
using one-hot encoding. For other datasets besides VocalSet, we
only use “vibrato” and “normal” labels. Initially, we included more
detailed style genres (e.g., rock, country, musical) and four emotion
types (normal, happy, lyrical, and exaggerated), but found that
overly detailed and inaccurate classifications confused the model,
especially with a relatively small data scale. We retain these detailed
labels in the released data for future research.

Our acoustic model uses data with manually annotated phoneme-
audio alignment, including each phoneme’s start time and duration
in seconds. For datasets with only word-level alignment, a rule-
based algorithm (detailed in Section 4.2.1) splits the word-level
duration into phoneme-level durations. Performance MIDI informa-
tion is added to the phoneme alignment, including each phoneme’s
corresponding note pitch (MIDI pitch numbers 1-127) and word
boundaries (also performance MIDI note boundaries).

The score representation is a list of notes, each containing a
MIDI pitch number (0 means rest note) and a duration in 32nd note
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units, which may differ in length from the phonemes. For instance,
{(60, 4), (62, 4), (64, 8), (0, 16)} represents two eighth notes (C4 and
D4) followed by a quarter note (E4) and a half note of rest. We
also provide the alignment between notes and words in the score,
allowing for one-to-many and many-to-one correspondences.

Lastly, singer information in the acoustic model is represented
by a 256-dimensional speaker embedding vector [46]. However,
we continue to use singer ID in expressive performance control
models since performance control signals should be disentangled
from voice timbre. The song’s original dataset is described as a
one-hot encoded ID vector.

3.3 Acoustic Feature Processing
We extract mel-spectrograms from 22.05 kHz audio using the Short-
Time Fourier Transform (STFT) with a window size of 1024, FFT
size of 1024, hop size of 256, and bin size of 80. To obtain amplitude
envelopes (loudness), we calculate the root-mean-square (RMS)
amplitude values from audio using the same STFT settings and
convert them to decibels. A moving average window of frame size
30 is applied to smooth the amplitude curve.

To analyze accurate F0 curves from singing, we combine pYIN
[33], PENN [34], and Parselmouth [18]. pYIN and Parselmouth are
used to determine unvoiced parts (breaths, silence, consonants). For
voiced parts, we choose the PENN result if it differs from Parsel-
mouth or pYIN by no more than one semitone; otherwise, we select
the Parselmouth result. Smoothing is applied to address common
octave errors in high-frequency components.

4 METHOD
For each data segment (typically a musical phrase), our SVS system,
ExpressiveSinger, takes score, lyrics, style tokens, and singer infor-
mation as input and generates expressive and realistic singing in the
audio waveform. As shown in Figure 1, the pipeline involves three
main modules: (1) three expressive performance control models
that generate three types of control signals: performance timing at
phoneme level, amplitude envelopes, and F0 curves; (2) an acoustic
model that generates the mel-spectrograms conditioning on per-
formance control signals; (3) a vocoder to generate the waveform
from mel-spectrograms and F0 curves.

Figure 1: Pipeline of ExpressiveSinger.

4.1 Model Architecture
The three expressive control models and the acoustic model share
a similar architecture inspired by Diffwave [25] and WaveNet [35],
but with notable differences. We employ diffusion-based training
and inference. In the training stage, diffusion process is defined
as a Markov chain gradually converting real data 𝑥0 to whitened
latent variable 𝑥𝑇 , with Gaussian transitions parameterized by a
decreasing sequence 𝛼1:𝑇 ∈ (0, 1]𝑇 in Eq.(1). We can also express
𝑥𝑡 as a linear combination of 𝑥𝑡−1 and a noise variable 𝜖 in Eq.(2).

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1) =
𝑇∏
𝑡=1

N(
√︂

𝛼𝑡

𝛼𝑡−1
𝑥𝑡−1, (1 −

𝛼𝑡

𝛼𝑡−1
)𝐼 ),

(1)
𝑥𝑡 =

√
𝛼𝑡𝑥𝑡−1 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝐼 ) (2)

In the reverse process, instead of DDPM,we utilize Denoising Dif-
fusion Implicit Models (DDIM) [42] which allows non-Markovian
(implicit) generation and accelerates the inference. We select a sub-
sequence 𝜏 out of [1, · · · ,𝑇 ] with length 𝑆 and 𝜏𝑆 = 𝑇 , then reverse
process denoising from 𝑥𝑇 to 𝑥0 parameterized by 𝜃 is:

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝𝜃 (𝑥𝑇 )
𝑆∏
𝑖=1

𝑝
(𝜏𝑖 )
𝜃

(𝑥𝜏𝑖−1 |𝑥𝜏𝑖 ) ×
∏
𝑡 ∈𝜏

𝑝
(𝑡 )
𝜃

(𝑥0 |𝑥𝑡 ),

where 𝑝𝜃 (𝑥𝑇 ) = N(0, 𝐼 ), 𝜏 = [1, · · · ,𝑇 ]\𝜏, (3)

Since 𝑝 (𝑡 )
𝜃

(𝑥0 |𝑥𝑡 ) only involves in the variational objective, we are
able to speedup sampling with fewer steps S rather than T. Similarly,
we can express the closed form equation in DDIM as:

𝑥𝜏𝑖−1 =
√
𝛼𝜏𝑖−1

(
𝑥𝜏𝑖 −

√︁
1 − 𝛼𝜏𝑖 𝝐𝜃 (𝑥𝜏𝑖 )√

𝛼𝜏𝑖

)
+

√︁
1 − 𝛼𝜏𝑖−1𝝐𝜃 (𝑥𝜏𝑖 ), (4)

Different from DDPM, in DDIM, the forward process becomes
deterministic given 𝑥𝑡−1 and 𝑥0, except for 𝑡 = 1; and the generation
also becomes a fixed procedure from latent variables.

Figure 2 illustrates the model architecture for predicting noise
𝜖𝜃 at each diffusion step 𝑡 . The input 𝑥𝑡 varies depending on the
model, ranging from control signals to mel-spectrograms. Addi-
tional inputs include the diffusion step, 𝑡 , and contextual conditions
like singer information, lyrics, and style tokens, which also vary by
model. These inputs are processed through encoders to enhance
embeddings before entering residual layers. Inspired by Wavenet
[35], each residual layer incorporates a bi-directional dilated con-
volution and a gated-tanh activation function. The output from
each layer is routed in two directions: to the final output through
skip connections aggregating with other layers’ outputs, and to the
next residual layer as the subsequent embedded input, 𝑥𝑡+1. The
diffusion step encoder uses the Diffwave[25] design, followed by
two fully connected layers with swish activation. All convolution
layers are initialized using Kaiming normal distribution [13], while
the last layer before the final output utilizes zero initialization.

The condition context encoder also shares a similar architecture
(Figure 3) but with varied inputs (detailed context input items for
each model in supplementary materials). Each context item is pro-
cessed through distinct embedding architectures before being con-
catenated and projected together. The lyric phonemes, consistently
included in the condition context, are encoded using six Trans-
former [45] encoder layers with multi-head attention, followed by a
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Figure 2: Architecture for three performance control models
and the acoustic model.

Figure 3: Architecture for condition context encoder.

fully connected layer. Given the model’s non-autoregressive nature,
we integrate necessary positional encodings to capture sequential
dependencies, such as frame/beat position within each segment
phrase, each phoneme, and each score note. Details on embedding
layers for various condition contexts are provided in supplementary
materials.

4.2 Expressive Performance Control
In this module, we generate expressive performance timing at the
phoneme level using score, lyrics, singer, and style tokens as input.
The generated timing is then used in models to generate F0 curves
and amplitude envelopes.

4.2.1 Expressive Timing. Our expressive timing model inputs the
score along with word-level aligned lyrics, generating performance
timing onsets for each phoneme. Style tokens and singer informa-
tion are also included in the input condition context to incorporate
personalized style control. Notice here we focus on modeling on-
sets, omitting durations and offsets, as rests are treated the same as
regular notes. This implies a note’s offset is the same as the subse-
quent note’s onset, allowing a sequence of note onsets to implicitly
define durations and offsets.

As illustrated in Figure 4, the generation process contains two
stages. First, a rule-based algorithm splits the score-word timings
counted in beats, into each phoneme’s timing in seconds, with-
out changing word boundary timings. It primarily accounts for
the differences between vowel and consonant phonemes, detailed
in supplementary materials. In the second stage, instead of di-
rect modeling onset timing, we employ the diffusion model in
Section 4.1 to generate the onset deviations between the rule-
based score phoneme timings and the final phoneme timing out-
puts, which simplifies training under the assumption of a diffusion
Gaussian distribution. In particular, model input 𝑥 refers to onset
deviations [𝜎 (1), · · · , 𝜎 (𝑛)], where 𝜎 (𝑖) = 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖) −
𝑠𝑐𝑜𝑟𝑒_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖), 𝑖 ∈ [1, 𝑛], 𝑛 = length of phonemes in the data seg-
ment. 𝑠𝑐𝑜𝑟𝑒_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖) is the rule-based phoneme onsets in the first
step, and 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖) is the final output of this expressive
timing model.

Figure 4: Pipeline for generating expressive timing.

4.2.2 F0 Curves and Amplitude Envelopes. The generation of F0
curves and amplitude envelopes is facilitated by two distinct yet
structurally identical models, as described in Section 4.1. Their
model condition context inputs are different from the timing model
by (1) substituting score timing with the generated performance
timing and (2) utilizing frame-wise positional encoding. To ensure
compatibility with subsequent mel-spectrogram and audio wave-
form synthesis, we generate F0 curves and amplitude envelopes
with the same lengths corresponding to the frame lengths of tar-
geted mel-spectrograms. Consequently, the condition context for
each phoneme needs to be expanded to mel-spectrogram frame
length based on the generated phoneme timing. For the F0 model,
input 𝑥 is defined as [𝐹0(1), · · · , 𝐹0(𝑚)], where𝑚 represents the
frame length of the target mel-spectrogram. Similarly, for the am-
plitude model, 𝑥 = [𝑎𝑚𝑝 (1), · · · , 𝑎𝑚𝑝 (𝑚)]. Prior to training, F0
data is linearly transformed to the range [−1, 1] and amplitude
data is normalization toN(0, 𝐼 ) in order to conform to approximate
Gaussian distribution in the diffusion process, and are denormalized
during the sampling.

4.3 Acoustic Model
The acoustic model adheres to the same architecture in Section
4.1, incorporating lyrics, style tokens, and singer timbre along with
performance control signals (phoneme timing, F0 curves, and am-
plitude envelopes) generated by the previous module. This model
excludes score information and purely depends on expressive per-
formance control. Moreover, it notably benefits from the inclusion
of quantized F0 curves, where F0 values in Hz are quantized into 256
discrete bins. Furthermore, the model utilizes singer embeddings,
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which capture the unique timbre of each singer’s voice, rather than
singer IDs, enhancing the model’s ability to generalize across dif-
ferent singers. Positional encodings remain consistent with those
used in the F0 and amplitude generation models. Specifically, the
input 𝑥 is represented as a 2D mel-spectrogram with 80 bins. Each
bin of the mel-spectrograms is min-max normalized independently
to the range [−1, 1] before training.

4.4 Vocoder
We adapt BigVGAN [28] as the vocoder to synthesize the final audio
waveform from mel-spectrograms. We incorporate quantized F0
curves as an additional conditioning input, using the same quanti-
zation methods as in the acoustic model. Furthermore, we modify
BigVGAN’s F0 frequency range to 11kHz to include high-frequency
components present in singing.

5 EXPERIMENT AND EVALUATION
5.1 Experiment Settings
The data used in our experiments are detailed in Section 3. We
selected 89 minutes of test data from different dataset sources in
our collection, ensuring proportional representation and excluding
any songs from the training set. The experiments were conducted
using audio with a sample rate of 22.05 kHz.

In the diffusion process, the acoustic model has 1,000 diffusion
steps; the F0 curve and amplitude envelope models both have 500
steps; and the performance timing model has 200 steps. The noise
schedule, 𝛽 , linearly increased from 0.0001 to 0.02. Diffusion step em-
beddings featured 128, 512, and 512 channels for the input, middle,
and final layers, respectively. Each model incorporated 50 residual
layers with a channel size of 256 and a dilated convolution cycle of
5. The acoustic model has trained over 2 million iterations with a
batch size of 4 per GPU on an 8x A100 GPU cluster machine (dis-
tributed training involved). The F0, amplitude, and timing models
were trained with 3 million iterations with the same batch size 4 on
a 4x V100 GPU cluster for each model. Vocoder follows the same
model and training setting with BigVGAN [28] but with additional
quantized F0 as input condition.

We conduct multiple subjective listening tests and opt not to
use the objective evaluation metrics typically employed in some
TTS models, as they do not align well with highly musical singing
voices. For example, F0 Root Mean Square Error (RMSE) measures
discrepancies between the ground truth and predicted F0 contours.
However, given the multiple expressive possibilities within a sin-
gle musical score, including techniques like vibrato, glissando, and
ornamentation, these can lead to distinctively different but equally
pleasing F0 curves. Although a high F0-RMSE is considered unfa-
vorable in speech, it may indicate a more expressive and musical
performance in singing, especially when we involve more music
styles and techniques in the model. Furthermore, RMSE for timing
suffers from a similar multi-mode nature to F0-RMSE, with even
more unreliability because singing lacks precise phoneme align-
ment algorithms like those in speech. Most musical timing data
are manually marked with significant inconsistency and ambiguity,
reducing accuracy. All these make RMSE comparison results in
singing not informative.

5.2 Subjective Evaluation
5.2.1 Comparison With Existing Works and Human Singing. We
compare our model against the current state-of-the-art models,
VISinger2 and DiffSinger, as well as with ground truth (GT) human
singing. Notably, our model can synthesize different styles, tech-
niques, languages, and multiple singers, which are not present in
VISinger2 and DiffSinger. For DiffSinger, we utilize its end-to-end
model available in their GitHub repository, where the F0 is gen-
erated implicitly, unlike the version described in their paper that
requires GT F0 input. Additionally, both models use performance
MIDI timing input from the OpenCpop dataset, rather than an ac-
tual quantized score timing. Consequently, our comparison has to
be confined to the Chinese pop data. Our model’s architecture re-
mained unchanged but was trained only on the OpenCpop dataset
for comparison. We use quantized OpenCpop scores as inputs, pos-
ing a bigger challenge to derive performance timing from score
timing compared to the other two models.

The results are evaluated using the Mean Opinion Score (MOS).
We conduct listening tests and collect valid feedback from 118
users, with over 90% being native Chinese speakers or those with a
Chinese Mandarin learning background. Each evaluated five sets of
results, with each set containing three audio samples of the same
musical phrase: one from our model and two randomly selected
from GT, VISinger2, and DiffSinger outputs. The five sets of phrases
were randomly chosen from 206 OpenCpop test phrases, and the
order within each set was also randomized.

The results are shown in Table 1. Our model significantly sur-
passes VISinger2 and DiffSinger in MOS and is close to the ground
truth human singing. We note that in fast-tempo phrases, the dif-
ference between our model and the others was relatively small.
However, in phrases that contain longer and more lyrical notes,
our model demonstrates better musicality compared to the other
models which frequently show erratic F0 control. This discrepancy
likely arises from two reasons: (1) the primary challenge in gener-
ating fast-tempo singing is timing control, and both VISinger2 and
DiffSinger use GT performance MIDI timing as input, instead of
quantized score timing, thus bypassing this issue; (2) fast-tempo
singing, being closer to speech, have lower musical demands for F0
and amplitude technique modeling, making them easier to handle.
In contrast, long notes often require precise F0 control like vibrato,
where our model consistently outperforms the others. Figure 5 dis-
plays the F0 control for a phrase having a long note. In the note
circled by a black dashed line, both GT and our model demonstrate
stable vibrato and accurate pitch. Conversely, VISinger2 and Diff-
Singer are notably out-of-tune with lower pitch and exhibit highly
unstable vibrato, resulting in unnatural and unmusical singing.

5.2.2 Quality Of Style, Language, Techniques. We evaluate our sys-
tem’s ability to generate different styles, languages, and techniques
through a listening test. Here, we used the Comparison Mean Opin-
ion Score (MOS) to compare the ground truth singing with the syn-
thesized singing from our system. The experiments are conducted
entirely based on the data configurations described in Section 3. We
test all four languages and six style genres. For singing techniques,
we select five representative ones for evaluation, including lip trill,
trill, vibrato, trillo, and breathy singing. According to the results
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Figure 5: Comparison of F0 curves from the generated singing of different models and human ground truth. The Y-axis
represents the frequency value in Hz. The X-axis is the time frame, each unit is half-second. Red lines denote F0 curves, 0 value
means unvoiced parts like consonants and breath events. Blue lines are score note pitches in frequency.

Table 1: Synthesized quality comparison among our model,
GT human singing, and existing works. MOS score with 95%
confidence interval.

System Sample Rate MOS

GT 22kHz 4.145 ± 0.097
VISinger2 (MIDI timing) 22kHz 3.499 ± 0.115
DiffSinger (MIDI timing) 24kHz 3.209 ± 0.129

ExpressiveSinger (Ours, Score) 22kHz 3.956 ± 0.085

(see supplementary materials for details), our model achieves realis-
tic generated singing very close to human singing across different
languages and styles. However, opera singing quality is slightly
lower than other styles, and the techniques of trillo and breathy
sound are less successful compared to the other three.

5.2.3 Ablation Study For Expressive Performance Control. To verify
the effectiveness of expressive performance control in our system,
we conduct an ablation study. We modify the model by remov-
ing the expressive performance control module from the pipeline
shown in Figure ??. Instead, inputs such as score, lyrics, and style
tokens are fed directly into the acoustic model, using the same diffu-
sion process and model architecture for training. We evenly divide
phoneme durations within each word duration to provide the score
timing input to the modified system. The Comparative Mean Opin-
ion Score (CMOS) results from the listening tests, shown in Table
??, indicate a significant decline in model quality without explicit
expressive performance control. This decline is not observed in
erratic dynamics, frequent pitch instability, and inconsistent timing,
as well as in a more robotic timbre with artifacts, demonstrating
the crucial role of expressive performance control in achieving both
natural and musical singing.

Table 2: Ablation study for expressive performance control.

System CMOS

ExpressiveSinger with EPC 0.000
ExpressiveSinger w/o EPC -1.379

5.2.4 Zero-shot Synthesis Scenarios. Finally, we evaluate our sys-
tem’s ability to control and switch between different styles, lan-
guages, and techniques, particularly under zero-shot scenarios
where the training dataset’s singers had not previously attempted
these variations. For example, we questioned whether singers who
had only performed in Chinese pop could, with the system’s help,
sing in English, Italian, or Korean, or attempt opera, while retaining
their unique vocal timbre characteristics. Additionally, we investi-
gated whether our design of a combined multilingual phoneme set
and the replacement of singer ID with singer embedding enhanced
performance.

We design four ablation situations for these zero-shot scenarios,
noting that no ground truth singing is available for comparison.
The first scenario includes generated segments where the singer
had experience in the same language and style within the train-
ing data. The second is a zero-shot scenario where the singer had
no prior exposure to the segment’s language and style. The third
one uses traditional singer ID instead of singer embeddings un-
der zero-shot scenarios. The final situation is to use unmerged,
directly concatenated phoneme sets from all datasets instead of the
combined phoneme set.

Subjective evaluations are conducted using the Mean Opinion
Score (MOS), with detailed findings presented in the supplementary
materials. We find minimal quality differences between zero-shot
and non-zero-shot scenarios for some styles and languages, like Chi-
nese pop. However, opera and zero-shot performances in Italian and
Korean are less satisfactory, likely due to limited representations of
them in the training data, such as only one singer performing in
Korean, exclusively in children’s songs. Furthermore, our results
indicate that using singer embeddings in the acoustic model under
zero-shot conditions provided better quality than using traditional
singer IDs. The implementation of a combined phoneme set also
shows improvements in linguistic zero-shot scenarios.

6 CONCLUSION
ExpressiveSinger is a robust SVS system that processes scores with
lyrics to generate expressive and realistic singing across multiple
languages, styles, techniques, and singers. The key idea is to em-
phasize expressive performance control, including timing, pitch
contour, and dynamics, significantly enhancing the musicality and
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naturalness of the synthesized singing, as demonstrated in our
experiments.

Our pipeline eschews an end-to-end approach in favor of a three-
stage process that offers greater controllability, more efficient use of
diverse types of training data, and reduced data requirements. The
effectiveness of our system and architectural design is validated
through subjective evaluations, illustrating our model’s capability
to generate new styles and languages previously unattempted by
the singers in the training data.

We also devote a significant amount of effort to data cleaning, an-
notation, combination, and processing, addressing the data scarcity
challenges inherent in SVS.

Looking forward, I aim to refine the modeling of expressive
performance controls and incorporate additional control signals
like explicit timbre control. I also plan to enhance the controllability
of styles and techniques in zero-shot scenarios. Ultimately, I aspire
to develop a model capable of generating singing without relying on
existing training data, pushing the boundaries of what is possible
with synthesized voices.
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