
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ExpressiveSinger: Multilingual and Multi-Style Score-based
Singing Voice Synthesis with Expressive Performance Control

Anonymous Authors

ABSTRACT
Singing Voice Synthesis (SVS) has significantly advanced with deep
generative models, achieving high audio quality but still struggling
with musicality, mainly due to the lack of performance control
over timing, dynamics, and pitch, which are essential for music
expression. Additionally, integrating data and supporting diverse
languages and styles in SVS remain challenging. To tackle these
issues, this paper presents ExpressiveSinger, an SVS framework that
leverages a cascade of diffusion models to generate realistic singing
across multiple languages, styles, and techniques from scores and
lyrics. Our approach begins with consolidating, cleaning, annotat-
ing, and processing public singing datasets, developing a multilin-
gual phoneme set, and incorporating different musical styles and
techniques. We then design methods for generating expressive per-
formance control signals including phoneme timing, F0 curves, and
amplitude envelopes, which enhance musicality and model consis-
tency, introduce more controllability, and reduce data requirements.
Finally, we generate mel-spectrograms and audio from performance
control signals with style guidance and singer timbre embedding.
Our models also enable trained singers to sing in new languages
and styles. Several listening tests reveal both musicality and con-
trollability of our generated singing compared with existing works
and human singing. We release the data for future research. Demo:
https://expressivesinger.github.io/ExpressiveSinger.

CCS CONCEPTS
• Applied computing→ Sound and music computing.

KEYWORDS
Singing Voice Synthesis, Expressive Performance Control, Singing
Style, Diffusion Model

1 INTRODUCTION
The Singing Voice Synthesis (SVS) task involves computer mod-
els automatically generating singing audio given symbolic music
scores with lyrics. It has been a long-standing area of research
since the 1930s [10, 21, 37, 40], with various applications in mu-
sic production, entertainment, and education. Recent progress in
deep learning has demonstrated remarkable potential in generating
audio [26, 27, 30, 35, 54], with impressive results in voice mod-
eling for Text-To-Speech (TTS) Synthesis [2, 38, 47, 48] and SVS

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

[17, 31, 32, 56]. However, compared to the rapid advancements in
TTS, SVS continues to face significant challenges.

One of the primary challenges in current SVS is insufficient mu-
sicality. Synthesized singing often suffers from issues such as being
out of tune, unnatural techniques, and poor dynamics, which are
closely related to performance control from a musical perspective.
Music fundamentally relies on performance, where musicians inter-
pret scores with their personal styles and emotions. Performance
control encompasses critical music elements often missing in sym-
bolic scores, such as performance timing, dynamics, pitch contour,
timbre control, and playing techniques, which are key to making
generated music sound natural. This is comparable to a masterful
violin that, regardless of its high quality, will sound vastly different
in the hands of a professional compared to a novice, underscoring
the importance of skilled performance control.

Most deep learning-based SVS systems are directly adapted from
TTS models, where the synthesizers are designed for speech and
lack the capability to address challenges in music performance. For
instance, singing encompasses a broader pitch frequency range
and displays greater timbre texture diversity, including breathiness,
chest voice, and head voice, compared to speech. These aspects
are typically absent in speech synthesis. Most importantly, SVS
generates singing from symbolic scores instead of just text (lyrics),
requiring a significantly higher level of expressive performance
control mastery than speech. Many SVS systems borrowed from
TTS models cannot process actual sheet score input and instead
rely on ground truth performance control signals, such as perfor-
mance MIDI, phonetic timing, pitch and loudness curves, as input
conditions. Such systems that take advantage of real singing data
should not be considered full-stack score-based SVS.

Given the high audio quality of generated human voices, we
shift our focus towards musicality and expressive performance con-
trol, which we deem as the primary bottleneck in SVS. We design
a cascade of diffusion models [14, 42] to generate the three most
critical control signals in expressive performance: performance
timing, pitch (Fundamental Frequency (F0)) contour, and dynamics
(loudness curve). These control signals are generated according
to not only score and lyrics, but also music genre style, singing
technique, and singer identity. They serve as the foundation for
generating the final singing audio and controlling the musicality.
We choose diffusion models and related extensions as the model ar-
chitecture due to their strong performance in modeling continuous
representations, such as images and audio.

Besides expressive performance control, the current SVS sys-
tems face two other significant challenges. On the one hand, there
has been a consistent lack of high-quality public singing datasets
with annotations. Unlike the extensive datasets available for speech,
singing datasets are typically small, with considerable variation
in recording environments, data quality, singer proficiency, and

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

annotations, making integration challenging. On the other hand, ex-
isting SVS systems still struggle to incorporate multiple languages,
diverse musical styles, different datasets, and inconsistent acoustic
environments simultaneously.

To address the data issue and expand the capacities of SVS sys-
tems, we first clean up and consolidate publicly available singing
datasets, adding necessary annotations, refining approaches to ex-
tracting acoustic features for singing, and categorizing datasets to
optimize their utilization across different stages of our SVS system.
Second, we develop a multilingual phoneme set, merging phoneme
sets from different datasets to enable multilingual generation. More-
over, we introduce a range of musical styles and techniques into
the system and employ speaker/singer embedding instead of the
traditional singer ID to utilize the training data efficiently.

In all, we aim to explore expressive performance control in
singing and generate multilingual and multi-style singing voices
with both high musicality and audio quality. Our solution, Expres-
siveSinger, involves three modules: expressive performance control
signal generation, mel-spectrogram generation, and audio wave-
form generation. Evaluations include multiple subjective assess-
ments to demonstrate the effectiveness of our system compared to
previous works and human singing.

We summarize our contributions as follows: (1) Introduce a
comprehensive SVS system that generates expressive and realis-
tic singing from scores and lyrics with multiple languages, styles,
techniques, and singers from symbolic music scores with lyrics.
(2) Design a set of methods for generating expressive performance
controls, which not only improve musicality and consistency of
the synthesized singing, but also allow more controllability and
reduce data requirements. (3) Combine, clean, annotate, and pro-
cess various public singing datasets, and release the integrated data
for future research. (4) Demonstrate the zero-shot capabilities of
our models by enabling singers from the training data to sing in
languages and styles they have not previously attempted.

2 RELATEDWORK
2.1 Singing Voice Synthesis
Voice modeling can be traced back to Bell Labs [10], and vocal syn-
thesizers like VOSIM [21] and FOF [40] have beenwidely used in the
industry. Recently, deep learning approaches in audio generation
and TTS, starting from Wavenet [35], deep acoustic models [38]
and neural vocoders [24–26, 28], to audio codecs [27, 54], have also
become the mainstream in SVS. Score-based SVS systems [12, 32]
process symbolic scores and lyrics as input, while other SVS sys-
tems [31, 39] input lyrics with some ground-truth performance
controls, such as performance timing for each word or phoneme,
pitch and loudness curves. The significant difference between per-
formance MIDI and the actual sheet music score is often overlooked
and misunderstood in SVS research. Performance MIDI contains
expressive performance timings rather than the regular beat-based
note durations in scores. Also, pitches in the performance MIDI
including techniques like grace notes, ornaments, and glissandos,
may differ from those in the score. Using performance MIDI for
SVS while claiming it to be score-based is misleading. In this paper,
our system takes scores instead of performance MIDI as input.

A widely used architecture in TTS and SVS is a two-step syn-
thesis process: an acoustic model that converts the input to an
acoustic representation, and a vocoder that synthesizes the final
audio output from this representation. The acoustic representation
can be standard formats like spectrograms or mel-spectrograms,
or other pre-trained representations and templates such as audio
Encodec codes [17] and DDSP harmonic representations [56]. Com-
mon practices for acoustic models include transformer-based models
[16, 31, 38], as well as WaveNet and FFT (Fast Fourier Transform)-
based methods [32, 57]. These models are often effectively paired
with GANs [57] or diffusion processes [31]. For vocoders, deep learn-
ing [24, 25, 53] has made significant progress. For instance, BigV-
GAN [28] integrates periodic activation functions and anti-aliased
multi-periodicity composition, yielding high-fidelity speech and
music synthesis. Diffwave [25], leveraging a Denoising Diffusion
Probabilistic Model (DDPM) [14] with a WaveNet backbone, offers
ease of training and high-quality. To improve pitch sensitivity in
singing, some studies [57] have incorporated quantized F0 curves
as additional input for the vocoder. This paper uses BigVGAN as the
vocoder with both inputs of the generated mel-spectrograms and F0
curves. We also take inspiration from the architecture of Diffwave
for the acoustic model and performance control generation.

Current deep-learning-based SVS systems struggle to incor-
porate multiple languages, diverse genre styles, various singing
techniques, and inconsistent acoustic environments from different
datasets. First, due to data scarcity and non-unified representations,
most SVSmodels can only handle one language at a time, with an ex-
tremely unbalanced focus on Chinese Mandarin [12, 32, 56, 57]. Sec-
ond, existing models are limited to one music genre, predominantly
popular music, with only a small portion focusing on other gen-
res [22, 58]. Third, they cannot generate singing based on singing
technique prompts, such as lip trill and vibrato [50]. In addition,
most models employ no more than three datasets, and it remains
unknown how to handle the varying acoustic environments of
different singing datasets while generating consistent and high-
quality audio. Finally, models have not explored enabling singers to
sing in languages or styles that they have never sung by themselves
in the training set. In this paper, we introduce solutions to all these
challenges.

Some SVS systems have explored generating multiple singer
voices [39, 57]. However, they use a numerical representation of
Singer ID to differentiate between singers in the training set, which
hinders the model’s extensibility and needs retraining the ID en-
coder when adding new singers. Moreover, it is difficult for the
model to share and generalize data across different singers, requir-
ing a notable amount of training data for each singer. Here we adopt
the Resemblyzer speaker embedding [46] instead of ID in the acous-
tic model, drawing inspiration from TTS and speech conversion
models [2, 44, 47].

2.2 Expressive Performance Control
Expressive performance controls can be mainly categorized into
timing, pitch, dynamics, and timbre control [8, 29], with significant
effects on music perception and expression [4, 20]. Besides a few
attempts at emotion expression control [23], most deep-learning-
based SVS models either implicitly model expressive performance



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ExpressiveSinger: Multilingual and Multi-Style Score-based Singing Voice Synthesis with Expressive Performance Control ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

controls or include these modules in an end-to-end training fashion
[31, 32, 56, 57]. This approach leads to various issues. First, the
results are inconsistent and lack musicality, often exhibiting issues
like out-of-tune, erratic timing and volume. Second, it is hard to
precisely control the corresponding performance attributes for dif-
ferent music styles and singers, such as swing timing and pitch
bends in jazz. Finally, it requires a large amount of high-quality
training data, and cannot fully utilize all types of available data. For
instance, data with low audio quality may still contain professional
performance data, making it unsuitable for training the acoustic
model or vocoder but ideal for the performance control model.

Before the advent of deep learning, rule-based [1] and tradi-
tional machine learning approaches [36, 43] made notable progress
in modeling expressive performance control for singing and in-
struments. First, performance timing, different from score timings,
often involves rhythm and tempo variations. Most studies model-
ing timing [41, 52] focus on piano, and use machine learning to
model deviations between note onsets in performance timing and
the original score timing. Second, continuous pitch variation curves
during performance are typically analyzed using Fundamental Fre-
quency (F0), and closely tied to playing techniques like vibrato,
glissando, and ornaments [15, 19]. Moreover, dynamics involve the
loudness and softness of notes, and researchers often use amplitude
envelopes (curves) extracted from audio performance to represent
dynamics control based on music context [5, 6, 9, 15, 51]. This pa-
per is the first work that utilizes the diffusion process with deep
learning architectures to explicitly model expressive performance
control from scores and styles, including timing onset deviations,
F0 curves, and amplitude envelopes. We leave timbre control to the
model implicitly due to lacking timbre recognition algorithms and
annotations.

3 DATA PREPARATION
3.1 Dataset Integration and Categorization
First, we utilize the publicly available singing datasets that contain
solo singing with minimal noise, despite varying acoustic environ-
ments and sound quality, including SingStyle111 [7], Opencpop
[49], M4Singer [55], Children Song Dataset (CSD) [3], VocalSet
[11, 50], PopCS [31], and OpenSinger [16].

Next, we have dedicated substantial effort to data cleanup and
correction, adding essential annotations. For instance, we manually
correct the frequently incorrect pitch annotations in Opencpop,
which were often off or up by an octave. We also manually anno-
tate the tempo for half of the songs in M4Singer, as all the pro-
vided performance MIDI files used a uniform tempo of 120 bpm. In
CSD dataset, we segment each song’s complete audio and perfor-
mance MIDI into shorter phrases based on the lyrics’ syntax, for
model batch training. We complete the missing lyrics, phonemes,
and their corresponding audio position and duration annotations
for the songs in VocalSet. For datasets like M4Singer, CSD, and
Opencpop that have performance MIDI but no scores, we quantize
the performance MIDI to a minimum grid of 32nd notes based on
each song’s tempo, creating quantized scores aligned with lyrics
phonemes and words1 for each phrase.

1In Chinese Mandarin and Korean, “word” refers to character.

Finally, we categorize the datasets and map them to three mod-
ules of our system: expressive performance control, acoustic model,
and vocoder. The vocoder training use all seven datasets (in total
118.67 hours, 121 singers); the acoustic model and expressive perfor-
mance control (F0 and amplitude curve) training use SingStyle111,
Opencpop, M4Singer, CSD, and VocalSet (in total 62.78 hours, 50
singers) due to their better sound quality and phoneme/word du-
ration annotations. The performance timing model only utilizes
SingStyle111, Opencpop, and part of M4Singer data (in total 30.6
hours, 22 singers), as score input and phoneme duration annota-
tions are required. After integration, all data were resampled to
both 44.1 kHz and 22.05 kHz audio waveforms and segmented into
short phrases ranging from 2 to 20 seconds in length.

3.2 Data Representation
We create a multilingual phoneme set covering English, Chinese,
Italian, and Korean. We merge phoneme sets from different datasets,
such as the International Phonetic Alphabet (IPA), Advanced Re-
search Projects Agency (ARPA) Phonetic Set, CMU Pronouncing
Dictionary, Mandarin Pinyin, etc. Converting between phoneme
sets is not straightforward; for example, one Mandarin Pinyin
phoneme may correspond to multiple IPA phonemes, and splitting
Pinyin into IPA would result in losing the original phoneme dura-
tion annotations. To address this, we manually merge phonemes
with the same pronunciation from different sets while retaining the
distinct phonemes. Even though this is not a standard phoneme
set, we have made it flexible to ingest different languages. The fi-
nal set contains 95 phonemes indexed by number, including three
non-phonetic sounds: AP (aspirate), SP (silence), and NS (noise and
other unknown sounds).

We design style and technique tokens for style control. The six
style genres are pop, children, Western opera, traditional Chinese
folk, jazz, and Teresa (singer Teresa Teng). Each song can have
multiple styles, represented by a six-dimensional binary vector. For
instance, a song combining jazz and traditional Chinese folk would
have 1s in those dimensions and 0s elsewhere. Similarly, musical
theater songs typically blend pop and Western opera styles. For
techniques, we adapt the 16 opera techniques from VocalSet (e.g.,
lip trill, trillo, belt) plus a “normal” indicating no specific technique,
using one-hot encoding. For other datasets besides VocalSet, we
only use “vibrato” and “normal” labels. Initially, we included more
detailed style genres (e.g., rock, country, musical) and four emotion
types (normal, happy, lyrical, and exaggerated), but found that
overly detailed and inaccurate classifications confused the model,
especially with a relatively small data scale. We retain these detailed
labels in the released data for future research.

Our acoustic model uses data with manually annotated phoneme-
audio alignment, including each phoneme’s start time and duration
in seconds. For datasets with only word-level alignment, a rule-
based algorithm (detailed in Section 4.2.1) splits the word-level
duration into phoneme-level durations. Performance MIDI informa-
tion is added to the phoneme alignment, including each phoneme’s
corresponding note pitch (MIDI pitch numbers 1-127) and word
boundaries (also performance MIDI note boundaries).

The score representation is a list of notes, each containing a
MIDI pitch number (0 means rest note) and a duration in 32nd note



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

units, which may differ in length from the phonemes. For instance,
{(60, 4), (62, 4), (64, 8), (0, 16)} represents two eighth notes (C4 and
D4) followed by a quarter note (E4) and a half note of rest. We
also provide the alignment between notes and words in the score,
allowing for one-to-many and many-to-one correspondences.

Lastly, singer information in the acoustic model is represented
by a 256-dimensional speaker embedding vector [46]. However,
we continue to use singer ID in expressive performance control
models since performance control signals should be disentangled
from voice timbre. The song’s original dataset is described as a
one-hot encoded ID vector.

3.3 Acoustic Feature Processing
We extract mel-spectrograms from 22.05 kHz audio using the Short-
Time Fourier Transform (STFT) with a window size of 1024, FFT
size of 1024, hop size of 256, and bin size of 80. To obtain amplitude
envelopes (loudness), we calculate the root-mean-square (RMS)
amplitude values from audio using the same STFT settings and
convert them to decibels. A moving average window of frame size
30 is applied to smooth the amplitude curve.

To analyze accurate F0 curves from singing, we combine pYIN
[33], PENN [34], and Parselmouth [18]. pYIN and Parselmouth are
used to determine unvoiced parts (breaths, silence, consonants). For
voiced parts, we choose the PENN result if it differs from Parsel-
mouth or pYIN by no more than one semitone; otherwise, we select
the Parselmouth result. Smoothing is applied to address common
octave errors in high-frequency components.

4 METHOD
For each data segment (typically a musical phrase), our SVS system,
ExpressiveSinger, takes score, lyrics, style tokens, and singer infor-
mation as input and generates expressive and realistic singing in the
audio waveform. As shown in Figure 1, the pipeline involves three
main modules: (1) three expressive performance control models
that generate three types of control signals: performance timing at
phoneme level, amplitude envelopes, and F0 curves; (2) an acoustic
model that generates the mel-spectrograms conditioning on per-
formance control signals; (3) a vocoder to generate the waveform
from mel-spectrograms and F0 curves.

Figure 1: Pipeline of ExpressiveSinger.

4.1 Model Architecture
The three expressive control models and the acoustic model share
a similar architecture inspired by Diffwave [25] and WaveNet [35],
but with notable differences. We employ diffusion-based training
and inference. In the training stage, diffusion process is defined
as a Markov chain gradually converting real data 𝑥0 to whitened
latent variable 𝑥𝑇 , with Gaussian transitions parameterized by a
decreasing sequence 𝛼1:𝑇 ∈ (0, 1]𝑇 in Eq.(1). We can also express
𝑥𝑡 as a linear combination of 𝑥𝑡−1 and a noise variable 𝜖 in Eq.(2).

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1) =
𝑇∏
𝑡=1

N(
√︂

𝛼𝑡

𝛼𝑡−1
𝑥𝑡−1, (1 −

𝛼𝑡

𝛼𝑡−1
)𝐼 ),

(1)
𝑥𝑡 =

√
𝛼𝑡𝑥𝑡−1 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝐼 ) (2)

In the reverse process, instead of DDPM,we utilize Denoising Dif-
fusion Implicit Models (DDIM) [42] which allows non-Markovian
(implicit) generation and accelerates the inference. We select a sub-
sequence 𝜏 out of [1, · · · ,𝑇 ] with length 𝑆 and 𝜏𝑆 = 𝑇 , then reverse
process denoising from 𝑥𝑇 to 𝑥0 parameterized by 𝜃 is:

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝𝜃 (𝑥𝑇 )
𝑆∏
𝑖=1

𝑝
(𝜏𝑖 )
𝜃

(𝑥𝜏𝑖−1 |𝑥𝜏𝑖 ) ×
∏
𝑡 ∈𝜏

𝑝
(𝑡 )
𝜃

(𝑥0 |𝑥𝑡 ),

where 𝑝𝜃 (𝑥𝑇 ) = N(0, 𝐼 ), 𝜏 = [1, · · · ,𝑇 ]\𝜏, (3)

Since 𝑝 (𝑡 )
𝜃

(𝑥0 |𝑥𝑡 ) only involves in the variational objective, we are
able to speedup sampling with fewer steps S rather than T. Similarly,
we can express the closed form equation in DDIM as:

𝑥𝜏𝑖−1 =
√
𝛼𝜏𝑖−1

(
𝑥𝜏𝑖 −

√︁
1 − 𝛼𝜏𝑖 𝝐𝜃 (𝑥𝜏𝑖 )√

𝛼𝜏𝑖

)
+

√︁
1 − 𝛼𝜏𝑖−1𝝐𝜃 (𝑥𝜏𝑖 ), (4)

Different from DDPM, in DDIM, the forward process becomes
deterministic given 𝑥𝑡−1 and 𝑥0, except for 𝑡 = 1; and the generation
also becomes a fixed procedure from latent variables.

Figure 2 illustrates the model architecture for predicting noise
𝜖𝜃 at each diffusion step 𝑡 . The input 𝑥𝑡 varies depending on the
model, ranging from control signals to mel-spectrograms. Addi-
tional inputs include the diffusion step, 𝑡 , and contextual conditions
like singer information, lyrics, and style tokens, which also vary by
model. These inputs are processed through encoders to enhance
embeddings before entering residual layers. Inspired by Wavenet
[35], each residual layer incorporates a bi-directional dilated con-
volution and a gated-tanh activation function. The output from
each layer is routed in two directions: to the final output through
skip connections aggregating with other layers’ outputs, and to the
next residual layer as the subsequent embedded input, 𝑥𝑡+1. The
diffusion step encoder uses the Diffwave[25] design, followed by
two fully connected layers with swish activation. All convolution
layers are initialized using Kaiming normal distribution [13], while
the last layer before the final output utilizes zero initialization.

The condition context encoder also shares a similar architecture
(Figure 3) but with varied inputs (detailed context input items for
each model in supplementary materials). Each context item is pro-
cessed through distinct embedding architectures before being con-
catenated and projected together. The lyric phonemes, consistently
included in the condition context, are encoded using six Trans-
former [45] encoder layers with multi-head attention, followed by a



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ExpressiveSinger: Multilingual and Multi-Style Score-based Singing Voice Synthesis with Expressive Performance Control ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 2: Architecture for three performance control models
and the acoustic model.

Figure 3: Architecture for condition context encoder.

fully connected layer. Given the model’s non-autoregressive nature,
we integrate necessary positional encodings to capture sequential
dependencies, such as frame/beat position within each segment
phrase, each phoneme, and each score note. Details on embedding
layers for various condition contexts are provided in supplementary
materials.

4.2 Expressive Performance Control
In this module, we generate expressive performance timing at the
phoneme level using score, lyrics, singer, and style tokens as input.
The generated timing is then used in models to generate F0 curves
and amplitude envelopes.

4.2.1 Expressive Timing. Our expressive timing model inputs the
score along with word-level aligned lyrics, generating performance
timing onsets for each phoneme. Style tokens and singer informa-
tion are also included in the input condition context to incorporate
personalized style control. Notice here we focus on modeling on-
sets, omitting durations and offsets, as rests are treated the same as
regular notes. This implies a note’s offset is the same as the subse-
quent note’s onset, allowing a sequence of note onsets to implicitly
define durations and offsets.

As illustrated in Figure 4, the generation process contains two
stages. First, a rule-based algorithm splits the score-word timings
counted in beats, into each phoneme’s timing in seconds, with-
out changing word boundary timings. It primarily accounts for
the differences between vowel and consonant phonemes, detailed
in supplementary materials. In the second stage, instead of di-
rect modeling onset timing, we employ the diffusion model in
Section 4.1 to generate the onset deviations between the rule-
based score phoneme timings and the final phoneme timing out-
puts, which simplifies training under the assumption of a diffusion
Gaussian distribution. In particular, model input 𝑥 refers to onset
deviations [𝜎 (1), · · · , 𝜎 (𝑛)], where 𝜎 (𝑖) = 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖) −
𝑠𝑐𝑜𝑟𝑒_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖), 𝑖 ∈ [1, 𝑛], 𝑛 = length of phonemes in the data seg-
ment. 𝑠𝑐𝑜𝑟𝑒_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖) is the rule-based phoneme onsets in the first
step, and 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚_𝑜𝑛𝑠𝑒𝑡𝑠 (𝑖) is the final output of this expressive
timing model.

Figure 4: Pipeline for generating expressive timing.

4.2.2 F0 Curves and Amplitude Envelopes. The generation of F0
curves and amplitude envelopes is facilitated by two distinct yet
structurally identical models, as described in Section 4.1. Their
model condition context inputs are different from the timing model
by (1) substituting score timing with the generated performance
timing and (2) utilizing frame-wise positional encoding. To ensure
compatibility with subsequent mel-spectrogram and audio wave-
form synthesis, we generate F0 curves and amplitude envelopes
with the same lengths corresponding to the frame lengths of tar-
geted mel-spectrograms. Consequently, the condition context for
each phoneme needs to be expanded to mel-spectrogram frame
length based on the generated phoneme timing. For the F0 model,
input 𝑥 is defined as [𝐹0(1), · · · , 𝐹0(𝑚)], where𝑚 represents the
frame length of the target mel-spectrogram. Similarly, for the am-
plitude model, 𝑥 = [𝑎𝑚𝑝 (1), · · · , 𝑎𝑚𝑝 (𝑚)]. Prior to training, F0
data is linearly transformed to the range [−1, 1] and amplitude
data is normalization toN(0, 𝐼 ) in order to conform to approximate
Gaussian distribution in the diffusion process, and are denormalized
during the sampling.

4.3 Acoustic Model
The acoustic model adheres to the same architecture in Section
4.1, incorporating lyrics, style tokens, and singer timbre along with
performance control signals (phoneme timing, F0 curves, and am-
plitude envelopes) generated by the previous module. This model
excludes score information and purely depends on expressive per-
formance control. Moreover, it notably benefits from the inclusion
of quantized F0 curves, where F0 values in Hz are quantized into 256
discrete bins. Furthermore, the model utilizes singer embeddings,



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

which capture the unique timbre of each singer’s voice, rather than
singer IDs, enhancing the model’s ability to generalize across dif-
ferent singers. Positional encodings remain consistent with those
used in the F0 and amplitude generation models. Specifically, the
input 𝑥 is represented as a 2D mel-spectrogram with 80 bins. Each
bin of the mel-spectrograms is min-max normalized independently
to the range [−1, 1] before training.

4.4 Vocoder
We adapt BigVGAN [28] as the vocoder to synthesize the final audio
waveform from mel-spectrograms. We incorporate quantized F0
curves as an additional conditioning input, using the same quanti-
zation methods as in the acoustic model. Furthermore, we modify
BigVGAN’s F0 frequency range to 11kHz to include high-frequency
components present in singing.

5 EXPERIMENT AND EVALUATION
5.1 Experiment Settings
The data used in our experiments are detailed in Section 3. We
selected 89 minutes of test data from different dataset sources in
our collection, ensuring proportional representation and excluding
any songs from the training set. The experiments were conducted
using audio with a sample rate of 22.05 kHz.

In the diffusion process, the acoustic model has 1,000 diffusion
steps; the F0 curve and amplitude envelope models both have 500
steps; and the performance timing model has 200 steps. The noise
schedule, 𝛽 , linearly increased from 0.0001 to 0.02. Diffusion step em-
beddings featured 128, 512, and 512 channels for the input, middle,
and final layers, respectively. Each model incorporated 50 residual
layers with a channel size of 256 and a dilated convolution cycle of
5. The acoustic model has trained over 2 million iterations with a
batch size of 4 per GPU on an 8x A100 GPU cluster machine (dis-
tributed training involved). The F0, amplitude, and timing models
were trained with 3 million iterations with the same batch size 4 on
a 4x V100 GPU cluster for each model. Vocoder follows the same
model and training setting with BigVGAN [28] but with additional
quantized F0 as input condition.

We conduct multiple subjective listening tests and opt not to
use the objective evaluation metrics typically employed in some
TTS models, as they do not align well with highly musical singing
voices. For example, F0 Root Mean Square Error (RMSE) measures
discrepancies between the ground truth and predicted F0 contours.
However, given the multiple expressive possibilities within a sin-
gle musical score, including techniques like vibrato, glissando, and
ornamentation, these can lead to distinctively different but equally
pleasing F0 curves. Although a high F0-RMSE is considered unfa-
vorable in speech, it may indicate a more expressive and musical
performance in singing, especially when we involve more music
styles and techniques in the model. Furthermore, RMSE for timing
suffers from a similar multi-mode nature to F0-RMSE, with even
more unreliability because singing lacks precise phoneme align-
ment algorithms like those in speech. Most musical timing data
are manually marked with significant inconsistency and ambiguity,
reducing accuracy. All these make RMSE comparison results in
singing not informative.

5.2 Subjective Evaluation
5.2.1 Comparison With Existing Works and Human Singing. We
compare our model against the current state-of-the-art models,
VISinger2 and DiffSinger, as well as with ground truth (GT) human
singing. Notably, our model can synthesize different styles, tech-
niques, languages, and multiple singers, which are not present in
VISinger2 and DiffSinger. For DiffSinger, we utilize its end-to-end
model available in their GitHub repository, where the F0 is gen-
erated implicitly, unlike the version described in their paper that
requires GT F0 input. Additionally, both models use performance
MIDI timing input from the OpenCpop dataset, rather than an ac-
tual quantized score timing. Consequently, our comparison has to
be confined to the Chinese pop data. Our model’s architecture re-
mained unchanged but was trained only on the OpenCpop dataset
for comparison. We use quantized OpenCpop scores as inputs, pos-
ing a bigger challenge to derive performance timing from score
timing compared to the other two models.

The results are evaluated using the Mean Opinion Score (MOS).
We conduct listening tests and collect valid feedback from 118
users, with over 90% being native Chinese speakers or those with a
Chinese Mandarin learning background. Each evaluated five sets of
results, with each set containing three audio samples of the same
musical phrase: one from our model and two randomly selected
from GT, VISinger2, and DiffSinger outputs. The five sets of phrases
were randomly chosen from 206 OpenCpop test phrases, and the
order within each set was also randomized.

The results are shown in Table 1. Our model significantly sur-
passes VISinger2 and DiffSinger in MOS and is close to the ground
truth human singing. We note that in fast-tempo phrases, the dif-
ference between our model and the others was relatively small.
However, in phrases that contain longer and more lyrical notes,
our model demonstrates better musicality compared to the other
models which frequently show erratic F0 control. This discrepancy
likely arises from two reasons: (1) the primary challenge in gener-
ating fast-tempo singing is timing control, and both VISinger2 and
DiffSinger use GT performance MIDI timing as input, instead of
quantized score timing, thus bypassing this issue; (2) fast-tempo
singing, being closer to speech, have lower musical demands for F0
and amplitude technique modeling, making them easier to handle.
In contrast, long notes often require precise F0 control like vibrato,
where our model consistently outperforms the others. Figure 5 dis-
plays the F0 control for a phrase having a long note. In the note
circled by a black dashed line, both GT and our model demonstrate
stable vibrato and accurate pitch. Conversely, VISinger2 and Diff-
Singer are notably out-of-tune with lower pitch and exhibit highly
unstable vibrato, resulting in unnatural and unmusical singing.

5.2.2 Quality Of Style, Language, Techniques. We evaluate our sys-
tem’s ability to generate different styles, languages, and techniques
through a listening test. Here, we used the Comparison Mean Opin-
ion Score (MOS) to compare the ground truth singing with the syn-
thesized singing from our system. The experiments are conducted
entirely based on the data configurations described in Section 3. We
test all four languages and six style genres. For singing techniques,
we select five representative ones for evaluation, including lip trill,
trill, vibrato, trillo, and breathy singing. According to the results



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ExpressiveSinger: Multilingual and Multi-Style Score-based Singing Voice Synthesis with Expressive Performance Control ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 5: Comparison of F0 curves from the generated singing of different models and human ground truth. The Y-axis
represents the frequency value in Hz. The X-axis is the time frame, each unit is half-second. Red lines denote F0 curves, 0 value
means unvoiced parts like consonants and breath events. Blue lines are score note pitches in frequency.

Table 1: Synthesized quality comparison among our model,
GT human singing, and existing works. MOS score with 95%
confidence interval.

System Sample Rate MOS

GT 22kHz 4.145 ± 0.097
VISinger2 (MIDI timing) 22kHz 3.499 ± 0.115
DiffSinger (MIDI timing) 24kHz 3.209 ± 0.129

ExpressiveSinger (Ours, Score) 22kHz 3.956 ± 0.085

(see supplementary materials for details), our model achieves realis-
tic generated singing very close to human singing across different
languages and styles. However, opera singing quality is slightly
lower than other styles, and the techniques of trillo and breathy
sound are less successful compared to the other three.

5.2.3 Ablation Study For Expressive Performance Control. To verify
the effectiveness of expressive performance control in our system,
we conduct an ablation study. We modify the model by remov-
ing the expressive performance control module from the pipeline
shown in Figure ??. Instead, inputs such as score, lyrics, and style
tokens are fed directly into the acoustic model, using the same diffu-
sion process and model architecture for training. We evenly divide
phoneme durations within each word duration to provide the score
timing input to the modified system. The Comparative Mean Opin-
ion Score (CMOS) results from the listening tests, shown in Table
??, indicate a significant decline in model quality without explicit
expressive performance control. This decline is not observed in
erratic dynamics, frequent pitch instability, and inconsistent timing,
as well as in a more robotic timbre with artifacts, demonstrating
the crucial role of expressive performance control in achieving both
natural and musical singing.

Table 2: Ablation study for expressive performance control.

System CMOS

ExpressiveSinger with EPC 0.000
ExpressiveSinger w/o EPC -1.379

5.2.4 Zero-shot Synthesis Scenarios. Finally, we evaluate our sys-
tem’s ability to control and switch between different styles, lan-
guages, and techniques, particularly under zero-shot scenarios
where the training dataset’s singers had not previously attempted
these variations. For example, we questioned whether singers who
had only performed in Chinese pop could, with the system’s help,
sing in English, Italian, or Korean, or attempt opera, while retaining
their unique vocal timbre characteristics. Additionally, we investi-
gated whether our design of a combined multilingual phoneme set
and the replacement of singer ID with singer embedding enhanced
performance.

We design four ablation situations for these zero-shot scenarios,
noting that no ground truth singing is available for comparison.
The first scenario includes generated segments where the singer
had experience in the same language and style within the train-
ing data. The second is a zero-shot scenario where the singer had
no prior exposure to the segment’s language and style. The third
one uses traditional singer ID instead of singer embeddings un-
der zero-shot scenarios. The final situation is to use unmerged,
directly concatenated phoneme sets from all datasets instead of the
combined phoneme set.

Subjective evaluations are conducted using the Mean Opinion
Score (MOS), with detailed findings presented in the supplementary
materials. We find minimal quality differences between zero-shot
and non-zero-shot scenarios for some styles and languages, like Chi-
nese pop. However, opera and zero-shot performances in Italian and
Korean are less satisfactory, likely due to limited representations of
them in the training data, such as only one singer performing in
Korean, exclusively in children’s songs. Furthermore, our results
indicate that using singer embeddings in the acoustic model under
zero-shot conditions provided better quality than using traditional
singer IDs. The implementation of a combined phoneme set also
shows improvements in linguistic zero-shot scenarios.

6 CONCLUSION
ExpressiveSinger is a robust SVS system that processes scores with
lyrics to generate expressive and realistic singing across multiple
languages, styles, techniques, and singers. The key idea is to em-
phasize expressive performance control, including timing, pitch
contour, and dynamics, significantly enhancing the musicality and



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

naturalness of the synthesized singing, as demonstrated in our
experiments.

Our pipeline eschews an end-to-end approach in favor of a three-
stage process that offers greater controllability, more efficient use of
diverse types of training data, and reduced data requirements. The
effectiveness of our system and architectural design is validated
through subjective evaluations, illustrating our model’s capability
to generate new styles and languages previously unattempted by
the singers in the training data.

We also devote a significant amount of effort to data cleaning, an-
notation, combination, and processing, addressing the data scarcity
challenges inherent in SVS.

Looking forward, I aim to refine the modeling of expressive
performance controls and incorporate additional control signals
like explicit timbre control. I also plan to enhance the controllability
of styles and techniques in zero-shot scenarios. Ultimately, I aspire
to develop a model capable of generating singing without relying on
existing training data, pushing the boundaries of what is possible
with synthesized voices.

REFERENCES
[1] Gunilla Berndtsson. 1996. The KTH Rule System for Singing Synthesis. Computer

Music Journal 20, 1 (1996), 76–91. http://www.jstor.org/stable/3681274
[2] Hyeong-Seok Choi, Juheon Lee, Wansoo Kim, Jie Lee, Hoon Heo, and Kyogu Lee.

2021. Neural analysis and synthesis: Reconstructing speech from self-supervised
representations. Advances in Neural Information Processing Systems 34 (2021),
16251–16265.

[3] Soonbeom Choi, Wonil Kim, Saebyul Park, Sangeon Yong, and Juhan Nam. 2020.
Children’s song dataset for singing voice research. In International Society for
Music Information Retrieval Conference (ISMIR).

[4] Martin Clayton, Rebecca Sager, and Udo Will. 2005. In time with the music: the
concept of entrainment and its significance for ethnomusicology.. In European
meetings in ethnomusicology., Vol. 11. Romanian Society for Ethnomusicology,
1–82.

[5] Manfred Clynes. 1984. Secrets of life in music: Musicality realised by computer.
In Proc. Intl. Comouter Music Conf., 1984. 225–232.

[6] Manfred Clynes and Edward C Carterette. 1984. Music, Mind, and Brain: The Neu-
ropsychology of Music edited by Manfred Clynes. The Journal of the Acoustical
Society of America 75, 4 (1984), 1308–1309.

[7] Shuqi Dai, Siqi Chen, Yuxuan Wu, Ruxin Diao, Roy Huang, and Roger B. Dan-
nenberg. 2023. SingStyle111: A Multilingual Singing Dataset With Style Transfer.
In in Proc. of the 24th Int. Society for Music Information Retrieval Conf.

[8] Roger B Dannenberg. 1993. Music representation issues, techniques, and systems.
Computer Music Journal 17, 3 (1993), 20–30.

[9] Roger B Dannenberg and Istvan Derenyi. 1998. Combining instrument and
performance models for high-quality music synthesis. Journal of New Music
Research 27, 3 (1998), 211–238.

[10] Homer Dudley. 1940. The vocoder—Electrical re-creation of speech. Journal of
the Society of Motion Picture Engineers 34, 3 (1940), 272–278.

[11] Behnam Faghih and Joseph Timoney. 2022. Annotated-VocalSet: A Singing Voice
Dataset. Applied Sciences 12, 18 (2022), 9257.

[12] Jinzheng He, Jinglin Liu, Zhenhui Ye, Rongjie Huang, Chenye Cui, Huadai Liu,
and Zhou Zhao. 2023. RMSSinger: Realistic-Music-Score based Singing Voice
Synthesis. In Findings of the Association for Computational Linguistics: ACL 2023.
Association for Computational Linguistics, Toronto, Canada, 236–248. https:
//doi.org/10.18653/v1/2023.findings-acl.16

[13] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In 2015 IEEE International Conference on Computer Vision (ICCV). 1026–1034.
https://doi.org/10.1109/ICCV.2015.123

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[15] Ning Hu. 2013. Automatic Construction of Synthetic Musical Instruments and
Performers. Ph. D. Dissertation. Carnegie Mellon University.

[16] Rongjie Huang, Feiyang Chen, Yi Ren, Jinglin Liu, Chenye Cui, and Zhou Zhao.
2021. Multi-singer: Fast multi-singer singing voice vocoder with a large-scale
corpus. In Proceedings of the 29th ACM International Conference on Multimedia.
3945–3954.

[17] Ji-Sang Hwang, Sang-Hoon Lee, and Seong-Whan Lee. 2023. HiddenSinger: High-
Quality Singing Voice Synthesis via Neural Audio Codec and Latent Diffusion

Models. arXiv preprint arXiv:2306.06814 (2023).
[18] Yannick Jadoul, Bill Thompson, and Bart De Boer. 2018. Introducing parselmouth:

A python interface to praat. Journal of Phonetics 71 (2018), 1–15.
[19] Nicolas Jonason, Bob Sturm, and Carl Thomé. 2020. The control-synthesis ap-

proach for making expressive and controllable neural music synthesizers. In 2020
AI Music Creativity Conference.

[20] Patrik N Juslin and Renee Timmers. 2010. Expression and communication of
emotion in music performance. Handbook of music and emotion: Theory, research,
applications (2010), 453–489.

[21] Werner Kaegi and Stan Tempelaars. 1978. Vosim-a new sound synthesis system.
Journal of the Audio Engineering Society 26, 6 (1978), 418–425.

[22] Kenta Katahira, Yuji Adachi, Kiyoto Tai, Ryoichi Takashima, and Tetsuya
Takiguchi. 2020. Opera Singing Voice Synthesis Considering Vowel Variations.
In 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE). 865–866.
https://doi.org/10.1109/GCCE50665.2020.9291895

[23] Sungjae Kim, Yewon Kim, Jewoo Jun, and Injung Kim. 2023. MuSE-SVS: Multi-
Singer Emotional Singing Voice Synthesizer that Controls Emotional Intensity.
IEEE/ACM Transactions on Audio, Speech, and Language Processing (2023).

[24] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020. Hifi-gan: Generative
adversarial networks for efficient and high fidelity speech synthesis. Advances in
Neural Information Processing Systems 33 (2020), 17022–17033.

[25] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2020.
Diffwave: A versatile diffusion model for audio synthesis. arXiv preprint
arXiv:2009.09761 (2020).

[26] Kundan Kumar, Rithesh Kumar, Thibault De Boissiere, Lucas Gestin, Wei Zhen
Teoh, Jose Sotelo, Alexandre De Brebisson, Yoshua Bengio, and Aaron C Courville.
2019. Melgan: Generative adversarial networks for conditional waveform syn-
thesis. Advances in neural information processing systems 32 (2019).

[27] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan
Kumar. 2023. High-Fidelity Audio Compression with Improved RVQGAN. arXiv
preprint arXiv:2306.06546 (2023).

[28] Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon.
2022. BigVGAN: A Universal Neural Vocoder with Large-Scale Training. In The
Eleventh International Conference on Learning Representations.

[29] Alexander Lerch, Claire Arthur, Ashis Pati, and Siddharth Gururani. 2019. Music
Performance Analysis: A Survey. In in Proc. of the 20th International Society for
Music Information Retrieval Conference.

[30] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu
Wang, and Mark D Plumbley. 2023. Audioldm: Text-to-audio generation with
latent diffusion models. arXiv preprint arXiv:2301.12503 (2023).

[31] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. 2022. Diffsinger:
Singing voice synthesis via shallow diffusion mechanism. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 36. 11020–11028.

[32] Peiling Lu, Jie Wu, Jian Luan, Xu Tan, and Li Zhou. 2020. Xiaoicesing: A
high-quality and integrated singing voice synthesis system. arXiv preprint
arXiv:2006.06261 (2020).

[33] Matthias Mauch and Simon Dixon. 2014. pYIN: A fundamental frequency estima-
tor using probabilistic threshold distributions. In 2014 ieee international conference
on acoustics, speech and signal processing (icassp). IEEE, 659–663.

[34] Max Morrison, Caedon Hsieh, Nathan Pruyne, and Bryan Pardo. 2023. Cross-
domain Neural Pitch and Periodicity Estimation. In Submitted to IEEE Transactions
on Audio, Speech, and Language Processing.

[35] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[36] Keiichiro Oura, Ayami Mase, Tomohiko Yamada, Satoru Muto, Yoshihiko
Nankaku, and Keiichi Tokuda. 2010. Recent development of the HMM-based
singing voice synthesis system—Sinsy. In Seventh ISCA Workshop on Speech
Synthesis.

[37] Nathanaël Perraudin, Peter Balazs, and Peter L Søndergaard. 2013. A fast Griffin-
Lim algorithm. In 2013 IEEE workshop on applications of signal processing to audio
and acoustics. IEEE, 1–4.

[38] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan
Liu. 2020. FastSpeech 2: Fast and High-Quality End-to-End Text to Speech. In
International Conference on Learning Representations.

[39] Yi Ren, Xu Tan, Tao Qin, Jian Luan, Zhou Zhao, and Tie-Yan Liu. 2020. Deepsinger:
Singing voice synthesis with data mined from the web. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1979–1989.

[40] Xavier Rodet, Yves Potard, and Jean-Baptiste Barriere. 1984. The CHANT project:
from the synthesis of the singing voice to synthesis in general. Computer Music
Journal 8, 3 (1984), 15–31.

[41] Zhengshan Shi. 2021. Computational analysis and modeling of expressive timing
in Chopin’s Mazurkas.. In ISMIR. 650–656.

[42] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion
Implicit Models. In International Conference on Learning Representations.

http://www.jstor.org/stable/3681274
https://doi.org/10.18653/v1/2023.findings-acl.16
https://doi.org/10.18653/v1/2023.findings-acl.16
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/GCCE50665.2020.9291895


929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ExpressiveSinger: Multilingual and Multi-Style Score-based Singing Voice Synthesis with Expressive Performance Control ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[43] Marti Umbert, Jordi Bonada, Masataka Goto, Tomoyasu Nakano, and Johan Sund-
berg. 2015. Expression Control in Singing Voice Synthesis: Features, approaches,
evaluation, and challenges. IEEE Signal Processing Magazine 32, 6 (2015), 55–73.
https://doi.org/10.1109/MSP.2015.2424572

[44] Benjamin van Niekerk, Marc-André Carbonneau, Julian Zaïdi, Matthew Baas,
Hugo Seuté, and Herman Kamper. 2022. A comparison of discrete and soft speech
units for improved voice conversion. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 6562–6566.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser, and
I. Polosukhin. 2017. Attention is all you need. In Advances in neural information
processing systems. 5998–6008.

[46] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. 2018. Generalized
end-to-end loss for speaker verification. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 4879–4883.

[47] Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie
Liu, Zhuo Chen, Yanqing Liu, Huaming Wang, Jinyu Li, et al. 2023. Neural
codec language models are zero-shot text to speech synthesizers. arXiv preprint
arXiv:2301.02111 (2023).

[48] YuxuanWang, RJ Skerry-Ryan, Daisy Stanton, YonghuiWu, Ron JWeiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. 2017.
Tacotron: Towards end-to-end speech synthesis. arXiv preprint arXiv:1703.10135
(2017).

[49] Yu Wang, Xinsheng Wang, Pengcheng Zhu, Jie Wu, Hanzhao Li, Heyang Xue,
Yongmao Zhang, Lei Xie, and Mengxiao Bi. 2022. Opencpop: A high-quality open
source chinese popular song corpus for singing voice synthesis. arXiv preprint
arXiv:2201.07429 (2022).

[50] Julia Wilkins, Prem Seetharaman, Alison Wahl, and Bryan Pardo. 2018. VocalSet:
A Singing Voice Dataset.. In ISMIR. 468–474.

[51] Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle Kastner, Tim Cooij-
mans, Aaron Courville, Cheng-Zhi Anna Huang, and Jesse Engel. 2021. MIDI-
DDSP: Detailed Control of Musical Performance via Hierarchical Modeling. In
International Conference on Learning Representations.

[52] Gus Guangyu Xia. 2016. Expressive collaborative music performance via machine
learning. (2016).

[53] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. 2020. Parallel WaveGAN: A
fast waveform generation model based on generative adversarial networks with
multi-resolution spectrogram. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 6199–6203.

[54] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco
Tagliasacchi. 2021. Soundstream: An end-to-end neural audio codec. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 30 (2021), 495–507.

[55] Lichao Zhang, Ruiqi Li, ShoutongWang, Liqun Deng, Jinglin Liu, Yi Ren, Jinzheng
He, Rongjie Huang, Jieming Zhu, Xiao Chen, et al. 2022. M4singer: A multi-style,
multi-singer and musical score provided mandarin singing corpus. Advances in
Neural Information Processing Systems 35 (2022), 6914–6926.

[56] Yongmao Zhang, Heyang Xue, Hanzhao Li, Lei Xie, Tingwei Guo, Ruixiong
Zhang, and Caixia Gong. 2022. VISinger 2: High-Fidelity End-to-End Singing
Voice Synthesis Enhanced by Digital Signal Processing Synthesizer. arXiv preprint
arXiv:2211.02903 (2022).

[57] Zewang Zhang, Yibin Zheng, Xinhui Li, and Li Lu. 2023. WeSinger 2: fully
parallel singing voice synthesis via multi-singer conditional adversarial training.
In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 1–5.

[58] Meizhen Zheng, Peng Bai, Xiaodong Shi, Xun Zhou, and Yiting Yan. 2024. FT-
GAN: Fine-Grained Tune Modeling for Chinese Opera Synthesis. Proceedings of
the AAAI Conference on Artificial Intelligence 38, 17 (2024), 19697–19705. https:
//doi.org/10.1609/aaai.v38i17.29943

https://doi.org/10.1109/MSP.2015.2424572
https://doi.org/10.1609/aaai.v38i17.29943
https://doi.org/10.1609/aaai.v38i17.29943

	Abstract
	1 Introduction
	2 Related Work
	2.1 Singing Voice Synthesis
	2.2 Expressive Performance Control

	3 Data Preparation
	3.1 Dataset Integration and Categorization
	3.2 Data Representation
	3.3 Acoustic Feature Processing

	4 Method
	4.1 Model Architecture
	4.2 Expressive Performance Control
	4.3 Acoustic Model
	4.4 Vocoder

	5 Experiment and Evaluation
	5.1 Experiment Settings
	5.2 Subjective Evaluation

	6 Conclusion
	References

