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Abstract

Large multimodal models (LMMs) often strug-
gle to recognize novel concepts, as they rely on
pre-trained knowledge and have limited ability
to capture subtle visual details. Domain-specific
knowledge gaps in training also make them prone
to confusing visually similar, commonly mis-
represented, or low-resource concepts. To help
LMMs better align nuanced visual features with
language, improving their ability to recognize and
reason about novel or rare concepts, we propose
a Contrastive visual Data Augmentation (CoDA)
strategy. CoDA extracts key contrastive textual
and visual features of target concepts against the
known concepts they are misrecognized as, and
then uses multimodal generative models to pro-
duce targeted synthetic data. Automatic filtering
of extracted features and augmented images is im-
plemented to guarantee their quality, as verified
by human annotators. We show the effectiveness
of CoDA on low-resource concept and diverse
scene recognition datasets including INaturalist
and SUN. We additionally collect NovelSpecies, a
benchmark dataset consisting of newly discovered
animal species that are guaranteed to be unseen
by LMMs. LLaVA-1.6 1-shot updating results on
these three datasets show CoDA significantly im-
proves SOTA visual data augmentation strategies
by 12.3% (NovelSpecies), 5.1% (SUN), and 6.0%
(iNat) absolute gains in accuracy. Code and data
at contrastive-visual-data-augmentation.github.io

1. Introduction
Recent advancements in multimodal pre-training (OpenAI,
2023; Google, 2023; Hurst et al., 2024) and visual instruc-
tion tuning (Liu et al., 2023b;a; 2024c) have enabled impres-
sive LMM abilities. However, as shown in Figure 1, it still
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Figure 1. CoDA uses diffusion-generated synthetic data to help
LMMs recognize novel and confusing concepts in the wild. The
“Clouded Tiger Cat (L. pardinoides)” is a new animal species first
described in April 2024, while ”Resupply Base” is an example of a
confusing concept for LMMs. Based on model failures (collected
from GPT4o-2024-08-06 and LLaVA-NeXT 34B), CoDA extracts
contrastive visual and textual features to generate synthetic image
data for model updating.

remains a challenge for current state-of-the-art proprietary
and open-source models to robustly recognize novel visual
concepts (e.g.“Clouded Tiger Cat” Figure 1a) and confusing
/ low-resource / commonly misrepresented visual concepts
(e.g. “Resupply Base” Figure 1b).

In order to help models better acquire new visual concepts
and distinguish confusable concepts, existing approaches
straightforwardly 1). Fine-tune text decoder on new textual
corpora to expand the concept base; and 2). Fine-tune both
vision and text components on new web image-text pairs
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for visual concept acquisition. These approaches are inef-
fective due to data scarcity for certain concepts and data
inefficiency caused by not knowing what precisely confused
the models (3.1). As depicted in Figure 1, it can be difficult
to obtain ample high-quality real images for novel concepts
such as new animal species. While for confusing concepts,
the problem usually lies with biased concept representa-
tion in web image-text data. For example: online images
of “Resupply Base” mostly only consist of exterior views
of the architecture without the interior details, which may
cause the models to confuse it with a “Wholesale Store” that
shares some interior features.

To help LMMs recognize and reason about novel and con-
fusing concepts more robustly and efficiently, we propose
CoDA, a Contrastive Visual Data Augmentation technique.
For each target concept, CoDA first identifies a “confusable
concept” that the LMMs finds most similar to the target.
Then, it extracts contrastive textual and visual features of
the target concept with respect to the confusable concept.
The extracted features go through a filtering process based
on discriminability and generability to make sure that: 1).
The features are possessed by the target concept but not
the confusable concept; and 2). The feature can be reliably
generated by the text-to-image generative model and recog-
nized by the LMMs. Afterwards, the features are passed to
the text-to-image generative model to produce augmented
visual instances of the target concept. To make sure that
the features are indeed generated and recognizable by the
LMMs, CoDA again uses the LMMs’ zero-shot inference to
rank and filter the augmented images. Finally, the resulting
augmented images can be used to update the LMMs via
low-rank adaptation, basic fine-tuning, in-context learning,
or any other method of choice.

In addition to evaluating on existing datasets INaturalist and
SUN, we create NovelSpecies, an annotated image dataset
of newly discovered animal species in recent years. Novel-
Species allows the simple selection of species discovered
after any model’s latest knowledge cutoff date, ensuring the
selected species were never seen by the model. Therefore,
NovelSpecies is the perfect testbed for methods aimed at
improving LMMs’ novel concept recognition ability.

Comprehensive experiments with LLaVA-NeXT on the 3
datasets show CoDA performs surprisingly well in teach-
ing LMMs novel and confusing concepts, significantly im-
proving data efficiency compared to existing methods. In
additional experiments, we show that CoDA is also able
to improve novel concept recognition for traditional classi-
fiers like ViT and proprietary LMMs such as GPT4o-mini.
Finally, ablation experiments show that CoDA can be sig-
nificantly improved by simply replacing its off-the-shelf
components such as the text-to-image generation model
with superior versions of similar models.

Our key contributions include:

• CoDA, a simple plug-and-play contrastive visual data
augmentation method that can be used to effectively and
efficiently improve LMMs’ ability to recognize novel and
confusing concepts. CoDA is also the first widely suc-
cessful method using text-to-image generation for visual
data augmentation.

• NovelSpecies, a new benchmark dataset of novel animal
species discovered in recent years, providing an ideal
benchmark for novel concept recognition. NovelSpecies
currently consists of 2240 annotated images and will
continue to be updated with future discoveries.

2. Related Works
Few-shot image recognition is a long-standing problem in
the vision community. Early works in this area focused on
improving traditional image classifiers on classifying exist-
ing concepts (Vinyals et al., 2016; Finn et al., 2017; Nichol,
2018; Dhillon et al., 2019; Tian et al., 2020; Bhagat et al.,
2023; Afrasiyabi et al., 2022). On the other hand, while re-
cent advancements in the training of vision language models
(VLMs) and large multimodal models (LMMs) (OpenAI,
2023; Google, 2023; Hurst et al., 2024; Liu et al., 2023b;a;
2024c) have shown great promise and extensibility, they
still severely lag behind traditional models in image classi-
fication, especially for low-resource, novel, and confusing
concepts (Zhang et al., 2024; Cooper et al., 2024; Wu et al.,
2023b; Yang et al., 2024; Ha et al., 2025).

While commonly used text-side VLM data augmentation
strategies (Yuksekgonul et al., 2022; Yang et al., 2023; Liu
et al., 2024e; Sharifzadeh et al., 2024) have little effect
on this issue, a more promising technique to solve this is
through visual data augmentation. This includes basic visual
manipulations such as cropping, flipping, and rotation (Yang
et al., 2022; Kumar et al., 2024); and more advanced model-
based augmentation such as style transfer (Zheng et al.,
2019; Chun & Park, 2021) and image mixing (Uddin et al.,
2020; Xie et al., 2021; Hao et al., 2023). More recently, with
the rise of controllable and promptable visual generative
models, knowledge and feature editing-based augmentation
methods (Liu et al., 2022; Wu et al., 2023a; Jin et al., 2024)
have gained in popularity. Such methods generally focus
on using multimodal data and general knowledge bases to
guide image-editing models in creating augmented visual
data based on existing images.

One main issue with current methods is that the augmented
images they produce must be closely based on existing real
images, which makes them unhelpful for novel concepts
where real images are extremely rare, and mis-represented
concepts where existing real images do not accurately depict
the concept. Additionally, due to their close connection
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to existing images, such augmented images usually lack
visual frame structure and view variation. In contrast, our
method CoDA can extract accurate and meaningful features
from extremely limited multimodal data, and use text-to-
image generative models to produce diverse high-quality
augmented data for LMM updating.

3. Methods
As shown in Figure 2, CoDA consists of 4 major steps
including contrastive textual and visual feature extraction,
feature filtering, feature-controlled image generation, and
augmented image filtering. Together these steps ensure
CoDA reliably generates informative and high-quality aug-
mented images that help LMMs recognize novel and con-
fusing concepts.

3.1. Feature Extraction

Textual Feature Extraction In our exploratory experi-
ments, we find that significant mis-recognition errors occur
on low-resource or commonly mis-represented concepts in
vision-language instruction fine-tuning and multimodal pre-
training datasets, which the LMMs are trained on. For exam-
ple, the LLaVA 1.6 (34B) model (Liu et al., 2024c), mainly
tuned on LAION-GPT-4V(LAION, 2024) and ShareGPT-
4V (Chen et al., 2023) datasets, has a strong tendency to mis-
recognize interior images of “Resupply Base” as “Wholesale
Store” (Figure 1). Unsurprisingly, we find that all related ref-
erences of “Resupply Base” across the 3 instruction-tuning
datasets only depict exterior views of the concept rather than
interior views. While the concept itself is not a low-resource
concept in existing text corpora, it is severely low-resource
and also commonly mis-represented in vision-language in-
struction fine-tuning datasets.

To address this issue, we prompt LLMs to directly generate
feature attributes of the target concept based on their existing
knowledge, focusing on visual appearance, and avoiding
hallucination for unfamiliar concepts. For this task, we use
the cost-efficient GPT4o-mini model with chain of thought
reasoning. Generally, textual feature extraction is most
applicable for concepts that are high-resource in existing
textual corpora, yet low-resource and/or commonly mis-
represented in vision-language instruction-tuning and pre-
training datasets. Here we do not try to classify which
concepts fall under this criteria, but rather apply this step for
all concepts. To ensure extracted feature quality and filter
out hallucinated and/or non-visually-recognizable features,
we pass all extracted features through an automatic filtering
step, as described in 3.2.

We also considered other methods for textual feature ex-
traction, including using knowledge bases (Jin et al., 2024),
retrieval augmented generation, and LLMs with internet

search. However, we believe currently the advantages
brought by these methods do not out-weigh their complexity
overhead, thus we opt for simplicity.

Visual Feature Extraction While textual feature extrac-
tion generally works well for pre-existing and non-hyper-
domain-specific concepts that are prevalent in textual data
sources, it tends to fail when either of the conditions are not
met. For example, a large language model with a knowledge
cutoff prior to June 2023 would not be able to provide mean-
ingful features regarding the Apple Vision Pro device an-
nounced in July, or the new animal species “Clouded Tiger
Cat (L. pardinoides)” first described by scientists in April
2024 (Figure 1). In addition to this weakness, LLM-based
textual feature extraction is also unreliable when asked
to provide detailed information regarding hyper-domain-
specific concepts like the “Mazda MX-5 Miata RF” or the
“Lear’s Macaw (Anodorhynchus Leari)”. In practice, we
observe that for novel and hyper-domain-specific concepts,
most of the LLM extracted textual features end up being
filtered out by our automatic feature filtering module.

To address this weakness, we implement an additional vi-
sual feature extraction module based on VLMs. Given a
single image of the target concept, the VLM is asked to
extract its key visual features. When there is more than
one image containing the target concept available, we use a
LM to de-duplicate and summarize the combined extracted
visual features from all images. For simplicity and cost-
efficiency, we use the GPT4o-mini model for both visual
feature extraction and feature de-duplication.

In contrast to textual feature extraction, visual feature extrac-
tion is most effective for hyper-domain-specific and novel
concepts that are very rare or non-existent in textual cor-
pora but have a limited number of visual examples. Thus,
it well-complements textual feature extraction. Similarly,
we do not attempt to classify which concepts fall under this
criterion; instead, we apply this step to all concepts and rely
on automatic filtering (3.2) to remove low-quality features.

Contrastive Feature Extraction While basic textual and
visual feature extraction both aim to exhaustively list iden-
tifying features of the target concept, this is essentially an
intractable task for complex concepts as it usually requires
a huge number of features to fully describe them. For novel
or low-resource concepts the LMM has likely never seen
before, it is extremely difficult to teach the LLM the new
concept using an incomplete description.

There are two potential solutions to this problem: (1). Lever-
aging hierarchical information to narrow down concept cat-
egory and reduce descriptional features. (2). Illustrating
the new concept based on contrastive differences from a
similar existing concept the LMM already understands. Pre-
vious works in language and visual data augmentation (Jin
et al., 2024) tend to use solution (1). However, its feasibility
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Figure 2. The CoDA method. Including Feature Extraction, Feature Filtering, Feature-controlled Augmentation, and Augmented
Image Filtering. The target concept and misidentified concept are highlighted respectively. Specific feature filtering scores are for
illustration only. Here the example concepts Anodorhynchus Leari (Lear’s Macaw) and Cyanopsitta Spixii (Spix’s Macaw) are from the
iNaturalist (Van Horn et al., 2018) dataset, and augmented images are produced by the Recraft V3 model (Recraft.AI, 2024).

is contingent on the existence of a comprehensive textual
knowledge base or tree-like structure that already includes
the target concept. As discussed in Section 3.1, this is of-
ten not the case for novel concepts such as new electronic
products (e.g. Apple Vision Pro) or new animal species (eg.
Clouded Tiger Cat).

To enable the handling of novel concepts and remove the
need for external databases, we adopt solution (2) and per-
form contrastive multimodal feature extraction for all target
concepts. First, we use the LMM’s zero-shot inference on
the target concept CT to obtain the misidentified concept
CM. Then, we perform contrastive textual and visual fea-
ture extraction by querying LLMs and VLMs for visually
identifying features that belong to CT but not CM.

3.2. Feature Filtering

Automatic Feature Filtering After obtaining visually
identifying features from contrastive textual and visual fea-
ture extraction, we filter them based on two key criteria:

1. Discriminability (D(f, CT , CM )) : measures whether
a feature f indeed differentiates the target class CT
from the misidentified concept CM (check whether f
is a valid feature of CT but not CM) .

2. Generability (G(f, CT , CM )) : measures whether a
feature f can be properly generated by the text-to-
image generative model.

To calculate the Discriminability of a feature f given the tar-
get concept CT and misidentified concept CM, we compute
the likelihood that CLIP (Radford et al., 2021) associates
this feature with real images of the target concept compared
to the likelihood that it is associated with real images of the
misidentified class:

D(f, CT , CM ) =
∑
i∈I

CLIP(f, ireal
CT

)

CLIP(f, ireal
CT

) + CLIP(f, ireal
CM

)

Here we use an equal number of images of the target and
misidentified concepts. A score below 0.5 indicates that the
feature is more likely to be associated with the misidentified
class rather than the target class. To ensure that selected
features are more strongly associated with the target class,
we filter out all features with Discriminability below 0.6.
This method avoids the CLIP score bias against smaller
features by only comparing feature association with the two
classes and not relying on the absolute CLIP score.

Generability is calculated for all features that pass the Dis-
criminability threshold. We prompt the T2I generative
model g to generate synthetic images of the target con-
cept that contains the feature f , and then compare the aver-
age CLIP similarity between f and those generated images
against the average CLIP similarity between f and ireal

CM
:

G(f, CT , CM , g) =
∑
i∈I

CLIP(f, isynthetic
CT

)

CLIP(f, isynthetic
CT

) + CLIP(f, ireal
CM

)

4



Contrastive Visual Data Augmentation

Here we rank all remaining features by their Generability
score and select the top 5 features to be passed to the text-to-
image generative model (as current diffusion models usually
have limited text encoder attention span). This step identifies
features that not only help distinguish the target concept,
but also can be effectively rendered by the text-to-image
generative model in synthetic images, which is critical to
the success of synthetic data augmentation.

Our automatic feature filtering module based on Discrim-
inability and Generability ensures feature quality and limits
the information loss between features and the generated
augmented images. The remaining features are used for
image generation and improving in-context recognition abil-
ity in inference prompts. We further verify the quality of
remaining features with human evaluation in Sec.3.4.

3.3. Image Generation and Verification

Image Generation After feature extraction and filtering
based on Discriminability and Generability, we pass the
selected features to a text-to-image generative model to
generate augmented visual data. We experiment with both
SOTA open-weights (Esser et al., 2024; Stability AI, 2024)
and proprietary (Recraft.AI, 2024) models.

Verification To ensure final images for augmentation con-
tain our extracted and filtered target concept features, we
propose a simple automatic verification metric that checks
whether desired features are recognized in the augmented
images by the LMM we want to update: Given the vanilla
LMM M, a set of features F , and an augmented image
isynthetic, the feature satisfaction rate S(isynthetic, F,M) for
each augmented image:

S(isynthetic,F ,M) =

∑
f∈F 1{M(f, isynthetic)}

|F|

Here M(f, isynthetic)} returns true if the feature f is recog-
nized in the image isynthetic. Afterwards, we filter out all im-
ages with S(isynthetic, F,M) <1.0, keeping only augmented
images that fully match all target concept features.

3.4. Human Evaluation

Image Target Misidentified Inter-Annotator
Type Concept (%) Concept (%) Agreement (κ)

Real 92.51 14.32 0.87
Synthetic 83.97 - 0.82

Table 1. Human eval of extracted features and augmented im-
ages. 3 external annotators are asked to answer (yes/no) to whether
the extracted and filtered features are present in the corresponding
real and synthetic images. IAA based on Fleiss’ Kappa.

To verify the reliability of our feature filtering and aug-
mented image verification modules, we conduct human eval-
uation on a subset of iNaturalist and the novel animal species
dataset. For target concepts, we select 100 image-feature
pairs for both real and augmented synthetic images. We also
select 100 image-feature pairs for real images of misiden-
tified concepts. 3 external human annotators are asked to
label whether they believe the given feature belongs to the
concept in the corresponding image.

Results in Table 1 show human annotators overwhelmingly
agree that the final extracted features belong to the target
concept (92%) but not the misidentified concept (14%). The
augmented synthetic images of the target concept also likely
contains the desired features (83%), though as expected,
there is some information loss between the text-to-image
generation step. In addition, the three independent annota-
tors generally agreed in their response (>0.8 IAA).

3.5. In-Context Inference for Enhanced Recognition

In addition to updating the LMM with augmented data, we
can further boost performance by integrating the extracted
features into the inference prompt. For each query, we can
append a concise list of the most discriminative and gen-
erable features of the target and confusable classes. These
features serve as an in-context guide, focusing the LMM’s
attention on critical distinguishing attributes. By explicitly
highlighting what to look for (and what not to mistake it
for), the model more reliably identifies the correct concept.

4. NovelSpecies Dataset
Proprietary LMMs like GPT4o (Hurst et al., 2024) and
Gemini (Google, 2023) are trained on vast online text-image
data and proprietary data, both non-public and impossible
to inspect. Some open-source and open-data LMMs such as
LLaVA (Liu et al., 2024b;d) are trained on publicly available
image-text datasets. However, the text encoders used by
such models are often not open-data, for example LLaVA-
1.6 34B uses the closed-data Yi-34B model as its language
backbone. Even in the rare cases where both image-text
training data and text encoder training data are publicly
available, it is still difficult to ascertain whether concepts in
your benchmark were seen by your LMM through indirect
data leakage (i.e. partial / paraphrased mentions). Due to
the above issues, it is difficult to evaluate true novel concept
recognition ability with existing datasets.

One way to bypass this problem with 100% guaranteed suc-
cess is to use a dataset that only contains concepts created /
discovered after the LMM’s knowledge cutoff, i.e. the latest
knowledge cutoff date among all of its textual / visual sub-
components. Based on this idea, we curate NovelSpecies,
a dataset of novel animal species discovered in each recent
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year, starting with 2023 and 2024. We provide detailed infor-
mation for each species, including time of discovery, latin
name, common name, family category, textual description,
and more. Data will be released upon publication.

To create NovelSpecies, we start by collecting the list of
species first described in each year by Wikidata (Wikidata,
2024). Then, to make sure we can curate a visual benchmark
of novel species, we manually annotate and filter out extinct
species and species with too few publicly available images.
After filtering, we end up with a dataset of 64 new species,
each consisting of 35 human-verified image instances, thus
a total of 2240 images. The images are split into training,
validation, and test sets. For each species, there are 5 train-
ing images, 15 validation images, and 15 test images. This
data split is consistent with our goal of creating a benchmark
dataset for novel concept recognition, where the maximum
number of training instances for a completely unseen con-
cept can range from 1 to 5.

5. Experiments
5.1. Datasets and Baselines

To evaluate CoDA’s ability to improve novel and confusing
concept recognition in LMMs, we experimented with CoDA
and other relevant baselines on three different datasets:

1. The iNaturalist Dataset (Van Horn et al., 2018) is a
challenging natural world concept recognition bench-
mark for LMMs due to its extensive highly domain-
specific and fine-grained species categories and inclu-
sion of rare and low-resource species classes.

2. The SUN Dataset (Xiao et al., 2010) is a widely used
large-scale scene recognition dataset that contains rich
and confusing visual scenes. Correctly recognizing
the scenes requires fine-grained visual reasoning and
understanding of the scenes.

3. NovelSpecies Dataset (Sec.4) is our new dataset con-
sisting only of novel animal species concepts that
LMMs are guaranteed to have never encountered in
their training or fine-tuning.

For each dataset, we use an automatic data selection strat-
egy A.2 to find a subset of challenging concepts that the
model fails to recognize. Then, we apply CoDA along with
3 other visual data augmentation baselines:

1. All Real uses an all real augmented image set. In the
Fixed Real Data setting, this means using the 5 real
images provided. In the Fixed Compute setting, this
means using unlimited real images to match the total
number of real + synthetic images in other settings.

2. Cropping and Flipping are widely used traditional
visual data augmentation strategies. We include them

here for direct comparison with CoDA and other exist-
ing feature-based augmentation methods.

3. ARMADA (Jin et al., 2024) is the current state-of-the-
art feature-based visual data augmentation strategy for
concept recognition and image classification.

In addition to these 3 baselines, we also include ablations
of CoDA with non-contrastive textual and visual features,
i.e. w/o contrastive guidance from confusable concepts (3.1)
nor discriminability-based feature filtering (3.2).

5.2. Main Experiment

For our main experiment, we consider two different resource
settings that correspond to common real-world scenarios:

Fixed Real Data Under the fixed real data setting, we only
have access to 5 real images for each concept. Each data
augmentation strategy may generate 1-5 synthetic images.
Then, the model is LoRA-adapted on the combined real
and synthetic images. This setting simulates real-world
scenarios, where there isn’t sufficient real training data for
certain concepts. This is common for novel concepts, hyper-
domain-specific concepts, and long-tail distributed datasets.
In these scenarios, the quality and effectiveness of synthetic
augmented data is especially instrumental to the updated
model’s performance.

Experiment results across the 3 datasets show that CoDA
consistently outperforms existing traditional and feature-
based data augmentation methods in the Fixed Real Data
setting. When augmenting the training set with just a single
synthetic image, CoDA is able to achieve 11.8% (Novel-
Species), 10.0% (SUN), and 17.8% (iNat) absolute gains in
accuracy compared to using all real images. It further out-
performs the best existing baseline augmentation methods
by 5-12% absolute gains. We also observe that the ablated
performance of CoDA (w/o contrastive) is still significantly
above traditional and image-editing-based augmentation
baselines while being almost consistently below CoDA’s
performance. This shows the benefits of text-to-image gener-
ative augmentation methods compared to existing methods,
as well as the benefits of fine-grained textual features dur-
ing inference. This also highlights the need for contrastive
feature selection and discriminability-based feature filtering.
We find that increasing the number of augmented synthetic
images does not necessarily improve updated model perfor-
mance; this may be attributed to the fact that all generated
images are ranked and selected from the same pool, with the
first image being of the highest quality. Finally, the largest
improvement over existing baselines can be seen in Nov-
elSpecies, where CoDA methods involving visual features
achieve the highest performance. This makes sense as the
visual feature extraction method is designed to be robust to
novel concepts with little textual documentation.
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Dataset
Augmentation

Method
Feature

Type
Fixed Real Data (Real:Syn) Fixed Compute (Real:Syn)

5:0 5:1 5:3 5:5 20:0 10:10 0:20

NovelSpecies
(Sec.4)

Baselines

All Real 61.2 - - - - - -
Cropping - 60.4 60.4 59.5 - - -
Flipping - 60.7 62.9 60.1 - - -

ARMADA - 60.7 60.2 61.2 - - -

CoDA (w/o
contrastive)

Textual - 69.1 68.6 70.5 - - -
Visual - 71.8 72.6 71.7 - - -
T+V - 70.3 65.1 70.1 - - -

CoDA
Textual - 72.0 69.2 70.3 - - -
Visual - 73.0 72.8 71.8 - - -
T+V - 70.1 72.6 73.0 - - -

SUN
(Xiao et al., 2010)

Baselines

All Real 73.4 - - - 74.3 - -
Cropping - 78.3 75.8 76.3 - 77.3 76.4
Flipping - 75.7 78.4 74.8 - 75.2 76.1

ARMADA - 75.9 78.3 77.6 - 76.2 76.8

CoDA (w/o
contrastive)

Textual - 80.6 79.7 79.4 - 81.3 80.8
Visual - 81.3 81.6 79.3 - 80.0 80.8
T+V - 82.7 80.7 80.4 - 82.8 82.1

CoDA
Textual - 79.2 83.2 82.3 - 82.8 82.1
Visual - 82.3 81.7 82.2 - 81.8 83.1
T+V - 83.4 81.7 82.6 - 83.3 82.1

iNaturalist
(Van Horn et al., 2018)

Baselines

All Real 49.2 - - - 64.3 - -
Cropping - 59.7 58.8 62.2 - 61.4 63.9
Flipping - 61.0 61.1 62.3 - 62.1 62.7

ARMADA - 60.1 60.7 61.1 - 61.6 58.5

CoDA (w/o
contrastive)

Textual - 63.9 64.6 66.5 - 65.6 63.2
Visual - 65.0 64.7 64.3 - 65.6 63.2
T+V - 62.8 64.4 62.3 - 64.4 63.4

CoDA
Textual - 63.9 67.8 62.6 - 65.0 64.9
Visual - 67.0 66.0 65.1 - 62.5 60.9
T+V - 63.5 65.0 64.6 - 67.0 64.1

Table 2. Main experiment results on INaturalist, SUN, and NovelSpecies under Fixed Real Data and Fixed Compute settings:
Experiments are defined by the number of Real:Synthetic images used. For example, 5:1 means the model uses 5 real images and 1
synthetic image for each concept class at training time. All results are in terms of LLaVA-1.6 34B concept recognition accuracy (%). Best
performance scores for each setting and scores using all real data are highlighted in Red and Green, respectively.

Fixed Compute Under the fixed compute setting, we as-
sume access to unlimited real and synthetic images. How-
ever, the fine-tuning budget can only support a total of 20
images, allowing different percentages of real and synthetic
images, from 0% synthetic (20:0) to 100% synthetic (0:20).
This setting simulates real-world scenarios, where there is
abundant real data. In such cases, the question is whether to
just use all real data to update the model, or to include a non-
trivial amount of augmented synthetic data. Traditionally,
real data is always preferred due to perceived higher-quality.
However, CoDA’s effectiveness in the Fixed Real Data set-
ting prompts us to test the possibility of it being beneficial to
include synthetic data even when real data is abundant. This

hypothesis is tested by whether any of the models fine-tuned
with mixed real/synthetic data can outperform the model
fine-tuned with all real data.

Experiments on iNaturalist show diverging results between
CoDA and other baseline augmentation methods: While
including synthetic images generated by baseline methods
generally led to lower performance, using CoDA augmented
images can actually lead to improvements over using all real
data. Furthermore, a 50-50 real-synthetic data mix gener-
ally outperforms all real or all synthetic data. We attribute
the success of mixing synthetic and real data to the fact
that CoDA generated synthetic data is aimed to highlight

7



Contrastive Visual Data Augmentation

Augmentation
Method

Feature
Type

LLaVA-NeXT GPT4o-mini ViT

5:0 5:1 5:3 5:5 5:0 5:1 5:3 5:5 5:0 5:1 5:3 5:5

Baselines

All Real 61.2 - - - 84.3 - - - 75.4 - - -
Cropping - 60.4 60.4 59.5 - 84.8 86.3 85.9 - 78.3 77.6 79.6
Flipping - 60.7 62.9 60.1 - 83.2 83.5 84.3 - 76.9 77.9 78.2

ARMADA - 60.7 60.2 61.2 - 84.1 84.3 83.9 - 76.3 76.4 78.6

CoDA (w/o
contrastive)

Textual - 74.8 75.1 74.7 - 87.6 87.2 87.0 - 82.5 84.5 84.7
Visual - 76.5 77.9 76.2 - 88.3 89.6 88.2 - 82.5 83.0 82.6
T+V - 77.6 78.9 78.8 - 89.5 91.2 87.9 - 84.3 84.9 82.5

CoDA
Textual - 76.4 75.9 76.8 - 87.1 87.9 87.4 - 84.6 85.0 84.5
Visual - 77.5 78.1 77.9 - 91.3 90.8 92.6 - 85.5 84.6 85.7
T+V - 78.8 78.7 79.2 - 91.6 90.8 91.4 - 85.3 85.8 86.3

Table 3. Experiments on NovelSpecies with open-weight VLM (LLaVA-NeXT), proprietary LMM (GPT4o-mini), and traditional
classifier (ViT) under the Fixed Real Data setting. Results are in terms of accuracy (%). Synthetic image data generated by Recraft V3.
Best performance scores for each setting and scores using all real data are highlighted in Red and Green, respectively.

discriminable features of the confusing / novel concepts,
making them more prominent and visible compared to real
images. On the other hand, real images provide valuable
style information and is a more accurate reflection of the test-
time distribution, helping to “ground” the updated model.

5.3. Additional Experiments

For additional experiments, we focus on NovelSpecies as
it most closely resembles real-world scenarios, where over
time, models are required to learn novel concepts without
access to sufficient real training data.

Advanced T2I Model As explained in Sec.3, off-the-shelf
model components used in CoDA can be easily swapped
for superior versions of similar models to improve perfor-
mance. To demonstrate this, we replace the open-weight
Stable Diffusion 3.5 Large Turbo model (Stability AI, 2024)
with the SOTA proprietary Recraft V3 Model (Recraft.AI,
2024) and run the same LLaVA-updating experiments as in
Table 2. Here we note that Recraft V3 has better instruction-
following ability as well as better image generation quality
compared to Stable Diffusion 3.5 Large Turbo. More details
on these differences can be found in Sec.6. Our experiment
results in Table 3 show a significant performance boost
when LoRA fine-tuning LLaVA with Recraft V3 produced
synthetic images compared to fine-tuning on all-real data
(28.7%) and also compared to fine-tuning on Stable Diffu-
sion 3.5 Large Turbo produced synthetic data (7.9%). This
demonstrates the potential increase of CoDA’s effective-
ness along with improvements in Text-to-Image generative
models. We believe it is also possible to achieve similar
improvements by replacing the LLM/VLM components of
CoDA with superior models in the future.

Proprietary LMM While proprietary LMMs like GPT4o-
mini (Hurst et al., 2024) tend to have relatively strong 0-
shot performance on existing datasets such as SUN and

iNaturalist, their performance significantly degrades on
NovelSpecies due to having never encountered the novel
concepts. To test whether CoDA can effectively improve
novel concept recognition performance for such proprietary
LMMs, we fine-tune the gpt-4o-mini-2024-07-18 model us-
ing CoDA and relevant augmentation baselines. Results in
Table 3 demonstrate a significant performance gain (9.5%)
for GPT4o-mini after being fine-tuned on CoDA augmented
synthetic images. While this improvement is not as signifi-
cant compared to the LLaVA-1.6 model (20.3%), it is due
to GPT4o-mini’s better base performance.

Traditional Classifier In addition to evaluating CoDA
on LMMs which take image-text input and produce text
output, we also test whether it can help traditional image
classifiers recognize novel concepts. We run the widely-
used ViT classifier (Alexey, 2020) on NovelSpecies with
CoDA and other augmentation baselines. Results in Table 3
show that CoDA is able to achieve a consistent performance
gain over existing baselines for ViT-base (9.1% for single-
shot augmentation). The ViT classifier provides stronger
base performance compared to general VLMs, thus offering
less room for improvement. However, we note here that our
main focus on improving LMMs instead of such traditional
classifiers stems from LMMs’ superior extensibility and
generalizability to other related tasks such as recognition-
based reasoning and explanation.

6. Discussions
In Figure 3, we compare example synthetic images gener-
ated by CoDA and baseline visual data augmentation meth-
ods including Cropping and ARMADA (Jin et al., 2024).
While providing localized feature emphasis, Cropping of-
ten results in the loss of crucial visual details necessary for
concept identification. For instance, for Phyllobates Sam-
peri, cropping occludes the black spots on the frog’s skin,
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Real Images Cropping ARMADA CoDA
(SD-3.5)

CoDA
(Recraft V3)

Phyllobates
Samperi

CoDA Features: Prominent orange stripes, Dark shiny coloration, Black spots on legs, …

Tail-Spot 
Wrasse

CoDA Features: Vibrant horizontal stripes along body, Greenish-yellow cyan accents, …

Figure 3. Qualitative Comparison of CoDA and baseline visual data augmentation methods. Phyllobates Samperi and Tail-Spot
Wrasse are example concepts from the NovelSpecies dataset. All CoDA images are generated using contrastive textual + visual features.

an essential distinguishing feature. Without such essential
distinguishing features, the cropped images provide less
helpful learning signals compared to other methods.

Unlike Cropping, ARMADA successfully retains some
structural features of the target concept, using WikiData
text features to guide its image-editing backbone (Brooks
et al., 2023). However, this setup also induces two signif-
icant issues: (1) Leveraging only existing textual features
present in WikiData leads to an incomplete feature set, es-
pecially for novel concepts. This is apparent in images
generated for Phyllobates Samperi, where generated images
contained ”black spots” but failed to specify their location
on the legs of the frog instead of the body. In addition, the
model completely failed to generate Phyllobates Samperi’s
iconic ”orange stripes” due to the feature not being recorded
in WikiData. (2) Image-editing models are not as strong
in depicting precise details compared to text-to-image gen-
erative models. In the case of the Tail-Spot Wrasse, the
ARMADA generated image fails to accurately depict ”vi-
brant horizontal stripes along the body,” leading to a visually
inconsistent and less biologically accurate representation.

In contrast to existing baselines, Figure 3 shows that CoDA
is much better at generating high quality synthetic images
of the target novel concept that depict accurate and realistic
details. Both versions of CoDA using different backbone
models (Esser et al., 2024; Recraft.AI, 2024) are able to
produce significantly more realistic images compared to the
two baselines, maintaining general biological consistency.
However, we should note that CoDA’s performance is in-
herently bounded by the instruction-following ability of its
image generation backbone model, more specifically the

ability to accurately generate multiple feature details in a
single image. For example, while CoDA-Recraft-V3 is able
to accurately generate all three extracted features including
”prominent orange stripes”, ”dark shiny coloration”, and
”black spots on legs”; CoDA-SD-3.5 is only able to generate
the first two features while failing to capture ”black spots
on legs”. With such limitations in mind, we give CoDA an
extremely modularized design. This allows each pre-trained
model component in CoDA to be easily replaced for newer
and stronger versions of similar models, including more
perceptive VLMs and T2V generative models with stronger
instruction-following ability and higher generation quality.

7. Conclusion
In this work, we propose CoDA, a contrastive visual data
augmentation approach that helps LMMs recognize novel,
confusing, and low-resource concepts through efficient and
effective model updating. CoDA is a plug-and-play method
which utilizes off-the-shelf models for contrastive feature
extraction, feature filtering, text-to-image generation, and
image filtering. We evaluate CoDA against four existing
baselines and self-ablations on three datasets: INaturalist,
SUN, and NovelSpecies, which we created in this work.
Consisting only of animal species discovered in recent years,
NovelSpecies offers an ideal testbed for LMMs’ novel con-
cept recognition. We provide comprehensive additional
experiments demonstrating CoDA’s effectiveness for tradi-
tional classifiers and proprietary LMMs. Finally, we show
that CoDA can be easily improved by replacing off-the-shelf
components, such as text-to-image generation model with
superior versions of similar models in the future.
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A. Appendix
A.1. Limitations and Future Work

Our work is not without limitations. First, in our experiments, we focus on the fine-tuning use case as it is the most general
and intuitive way to utilize our augmented visual data. In the future, we plan to investigate other conceivable use cases for
our augmented data, include model adaptation (Sung et al., 2022), test-time augmentation (Gidaris & Komodakis, 2018),
visual information retrieval (Wu et al., 2025), and more. Third, the modularity of our method also invites other researchers
to replace components of CoDA with superior models to achieve better performance. The NovelSpecies dataset, which can
be updated with new species in future years, may also be used to evaluate future VLMs’ novel concept recognition abilities.
Finally, we also expect improved versions of T2I generation-based visual data augmentation techniques to eventually surpass
CoDA in effectiveness and efficiency. Potential improvements may include more robust image / feature filtering and more
controllable text-conditioned image generation like multi-view synthesis. We hope our work can pave the way for future
downstream advancements by demonstrating effective uses of our augmented visual data for enhancing model capabilities.

A.2. Data Selection Strategy

For each dataset, we focus on a randomly selected subset of concepts that the model is unable to recognize. The data
selection strategy is as follows: In each iteration, we select a random subset of 15 species across different supercategories,
including ”Birds,” ”Mammals,” and ”Reptiles.” This strategy allows us to identify confusing pairs without overloading the
system, progressively building a collection of challenging cases from each subset. For each species within a subset, we
create prompts in a multiple-choice format, incorporating the image and a randomized list of options from all species in the
subset. Based on the response from the LMM, we are able to highlight specific species that are commonly mistaken for
each other, guiding us in selecting pairs for further analysis. In particular, misclassification happens when an image of one
species is identified by the LLM to be an image of another species. A pair (A,B) is considered as a confusing pair if rate of
misclassification on either direction is above the threshold 0.2. The process is repeated across new subsets, incrementally
building an ample dataset of concepts the model has difficulty recognizing.

A.3. Experiment Details

A.3.1. FEATURE EXTRACTION

For textual feature extraction, we use GPT-4o-mini with chain-of-thought reasoning, running with OpenAI API calls. Each
API call processes up to 2048 tokens, costing approximately 0.0025 per 1K input tokens and 0.005 per 1K output tokens.
Given an average of 500 tokens per query and 10 queries per concept, the estimated cost per concept is around $0.0375.

For visual feature extraction, we utilize GPT-4o-mini running with OpenAI API calls. Images are preprocessed to a
resolution of 336x336 pixels and normalized before feature embedding extraction. Each image query incurs a cost similar to
textual feature extraction. With an estimated 5 images processed per concept, the cost per concept amounts to approximately
0.1875.

With the rapid advancement of open-weights large language models and vision language models including DeepSeekV3 (Liu
et al., 2024a), DeepSeekVL2 (Wu et al., 2024), Llama 3.2 (Dubey et al., 2024), and more; we expect that feature extraction
LLMs and VLMs can be replaced with these models with none or minimal impact to performance. We plan to perform
experiments on some of these models and provide comparison results in the next updated version of our work.

A.3.2. FEATURE FILTERING

We employ CLIP for automatic feature filtering, evaluating Discriminability and Generability scores. Discriminability is
computed using cosine similarity between feature embeddings of target and misidentified concepts, with a threshold of
0.6. Generability is assessed by comparing feature presence in synthetic images using an ensemble of Stable Diffusion 3.5
Large and RecraftV3 models. The feature selection step is executed on an NVIDIA A100 GPU, processing features in
approximately 2 hours. Top 5 ranked features are selected per concept.

A.3.3. IMAGE GENERATION AND VERIFICATION

For synthetic image generation, we employ Stable Diffusion 3.5 Large, running on a single A100 GPU. Additionally, we
also integrate the RecraftV3 model through an API call. Image generation is performed at a resolution of 512x512 pixels
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with a guidance scale of 7.5. The pipeline generates 50 images per concept in approximately 1.2 seconds per image.

Post-generation, we perform automated verification using LLaVA V1.6-34b, running on an A6000 GPU. Each image would
take approximately 1 minutes to run for feature presence using a feature-matching confidence threshold of 0.85. Images
with a satisfaction rate S(isynthetic,F ,M) < 1.0 are discarded.

A.3.4. MODEL UPDATING

We train V1.6-34b with supervised fine-tuning (SFT) using LoRA with rank 128 and alpha 256, optimizing memory
efficiency while maintaining model expressiveness. The training runs on two NVIDIA A6000 GPUs, leveraging DeepSpeed
Zero-3 for distributed optimization and mixed precision (bf16) for efficiency. The vision encoder is CLIP-ViT-Large-
Patch14-336, with an MLP projector aligning visual and text features. We use a cosine learning rate scheduler with a 3%
warmup ratio, training for 30 epochs with a batch size of 5 and a learning rate of 2e-4. Images are padded for aspect ratio
consistency, and gradient checkpointing is enabled to reduce memory usage. Checkpoints are saved every 50,000 steps,
retaining only the most recent one.

A.3.5. EVALUATION

Automatic evaluation measures zero-shot classification accuracy on a held-out test set. Inference runs on a single A6000
GPU with a batch size of 20, taking approximately 1 hour to complete. The prompt templates for evaluation are attached to
Appendix A.4

A.4. Prompt Construction

## Prompt for Visual/Text Feature Extractions:
# Contrastive Visual
GPT_Contrastive_Visual_Prompt = "You are an experienced and meticulously observant

biological scientist who is asked to carefully assess the provided image. As labelled
in the image, the left half of the image contains a picture of the animal {main_class}
and the right half contains a picture of the animal {confusing_class}. Now, your task
is summarize the key distinctive visual attributes possessed by {main_class} (on the

left of the image) that makes uniquely discernible from the {confusing_class} (on the
right half of the image). Reason step by step to produce an answer. Finally, output
the key visual attributes of a {main_class} (that make it distinct from a {
confusing_class}) in a python list format containing short phrases of less than 8
words each. Do not output any features of the {confusing_class} in your python list.
Make sure not to name the {main_class} or the {confusing_class} in any of the
attributes in your list. Also, please try not to use negation in the visual attributes
you generate: for example, change features like ’lack of facial markings’ to ’plain

brown face’. Additionally, do not use comparative form in any of the features you
output, for example, change features like ’thinner body than the other class’ to ’thin
body’."

# Visual
GPT_Visual_Prompt = "You are an experienced and meticulously observant biological

scientist who is asked to carefully assess the provided image. The image contains a
picture of the animal {main_class}. Now, your task is summarize the key distinctive
visual attributes possessed by {main_class}. Reason step by step to produce an answer.
Finally, output the key visual attributes of a {main_class} in a python list format

containing short phrases of less than 8 words each. Make sure not to name the {
main_class} in any of the attributes in your list. Also, please try not to use
negation in the visual attributes you generate: for example, change features like ’
lack of facial markings’ to ’plain brown face’. Additionally, do not use comparative
form in any of the features you output, for example, change features like ’thinner
body than the other class’ to ’thin body’."

# Contrastive Text
GPT_Contrastive_Text_Prompt = "You are an experienced and knowledgeable scene

classification specialist who is tasked to summarize the key distinctive visual
attributes possessed by {main_class} that makes uniquely discernible from the {
confusing_class} (just based on a visual image). First retrieve your knowledge about
the two different types of scenes, then reason step by step to produce an answer.
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Finally, output the key visual attributes of a {main_class} (distinct from a {
confusing_class}) in a python list format containing short phrases of less than 8
words each. Do not output any features of the {confusing_class} in your python list.
Make sure not to name the {main_class} or the {confusing_class} in any of the
attributes in your list. Also, please try not to use negation in the visual attributes
you generate: for example, instead of saying ’no bright lights,’ use ’dark

environment.’ Additionally, do not use comparative forms in any of the features you
provide. For instance, instead of saying ’smaller windows than the other place,’ use ’
small windows.’"

# Text
GPT_Text_Prompt = "You are an experienced and knowledgeable scene classification

specialist who is tasked to summarize the key distinctive visual attributes possessed
by {main_class}. First retrieve your knowledge about the {main_class}, then reason
step by step to produce an answer. Finally, output the key visual attributes of a {
main_class} in a python list format containing short strings of less than 8 words each
. Make sure not to name the {main_class} in any of the attributes in your list. Do not
output any features of the {confusing_class} in your python list. Also, please try

not to use negation in the visual attributes you generate: for example, instead of
saying ’no bright lights,’ use ’dark environment.’ Additionally, do not use
comparative forms in any of the features you provide. For instance, instead of saying
’smaller windows than the other place,’ use ’small windows.’"

## Text to Image Generation Prompt
Stable_Diffusion_Text_to_Image_Generation_Prompt = "Generate a 4K realistic image of {

main_class} that contains the following attributes: " + ’, ’.join(attributes)

## Feature Verification Prompt
llava_Verification_Prompt = "You are an image verification specialist. Your task is to

meticulously assess the image for specific attributes and confirm their presence. For
each attribute in the list, carefully check the image, examine visual elements such as
color, shape, texture, position, and context clues that might indicate whether the

attribute is present. Provide a binary python output list, where each element is
either 1 (attribute is present) or 0 (attribute is absent), corresponding exactly to
the order of attributes provided.\\n\\nAttributes to Verify:{attributes}\\n\\nExpected
Output: A list of 0s and 1s indicating the presence or absence of each attribute, in

the same order as listed. Here is an example output: [0, 1, 1]."

## Finetune and Evaluation Prompt
llava_Finetune_and_Evaluation_Prompt = "You are an image classification specialist with

expertise in categorizing images into specific groups. Given an image, identify its
category from the following options: " + ", ".join(provided_options_capitalized[:-1])
+ ", or " + provided_options_capitalized[-1] + ". Provide your answer as only one
category name for precise classification. Please response with the category name only.
"

## Deduplication Prompt
GPT_Deduplication_Prompt = "You are an experienced and knowledgeable biological scientist

who is tasked to summarize the key distinctive visual attributes possessed by {
main_class} into a coherent list. Given the following list of attributes describing
the animal species {main_class}: {attributes_list}. You task is to combine the
duplicate features (which have the same or very similar meanings) into one. Then, you
will order the remaining features in order of visual importance, the most visually
significant / observable features will be at the front of the list while the least
visually observable features will be at the back. Finally, output the key visual
attributes of a {main_class} in a python list format containing short phrases of less
than 8 words each. Make sure not to name the {main_class} in any of the attributes in
your list. Also, please try not to use negation in the visual attributes you generate:
for example, change features like ’lack of facial markings’ to ’plain brown face’.

Additionally, do not use comparative form in any of the features you output, for
example, change features like ’thinner body than the other class’ to ’thin body’."

## System Prompt
GPT_System_Prompt = "You are a helpful assistant."
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