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Abstract

Langevin dynamics sampling suffers from extremely low generation speed, fun-
damentally limited by numerous fine-grained iterations to converge to the tar-
get distribution. We introduce PID-controlled Langevin Dynamics (PIDLD), a
novel sampling acceleration algorithm that reinterprets the sampling process us-
ing control-theoretic principles. By treating energy gradients as feedback signals,
PIDLD combines historical gradients (the integral term) and gradient trends (the
derivative term) to efficiently traverse energy landscapes and adaptively stabilize,
thereby significantly reducing the number of iterations required to produce high-
quality samples. Our approach requires no additional training, datasets, or prior
information, making it immediately integrable with any Langevin-based method.
Extensive experiments across image generation and reasoning tasks demonstrate
that PIDLD achieves higher quality with fewer steps, making Langevin-based
generative models more practical for efficiency-critical applications. The imple-
mentation can be found at https://github.com/tsinghua-fib-lab/PIDLD.

1 Introduction

Langevin dynamics has emerged as a fundamental sampling technique for generating samples
across various implicit generative models, including Energy-based Models (EBMs) [8], Score-based
generative models (SGMs) 33|34} [35]], and Diffusion models [15]. This sampling method gradually
approaches the target distribution through stochastic walks along energy gradients (or score functions),
visualized as particles moving under the influence of energy potential field gradients, while being
affected by random fluctuations that correlate with step size.

Despite its theoretical elegance and broad applicability, Langevin sampling suffers from a critical
limitation: extremely low generation speed that necessitates multiple fine-grained iterations of the
discretized Langevin dynamics process (e.g., NCSNv2 requires 1000+ Neural Function Evaluations
(NFE) for image sampling [34]]). This stands in contrast to GANs [[17,|18]], which enable efficient one-
step sampling. During sampling, particles often encounter regions with near-zero gradient "forces"
(such as local minima or unstable equilibria), necessitating the addition of random noise to escape
these regions, which consequently increases the required number of sampling steps (Fig[T] left).
While reducing sampling steps and increasing step sizes seems like a straightforward acceleration
approach, it inevitably introduces larger noise fluctuations that significantly degrade sampling quality
(23] 24].
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Figure 1: PID-controlled systems eliminate errors (e;) at steady-state through the integral term while
dampening overshoot via the derivative term. In the Langevin sampling context, we reinterpret PID’s
value: vanilla Langevin samples can be trapped at non-optimal equilibrium points with zero gradients,
requiring noise &; and additional iterations to escape (dashed lines). The integral term provides a
momentum-like effect that helps samples quickly escape these suboptimal points, though it introduces
overshoot. The derivative term adds awareness of real-time tendencies, accelerating descent while
reducing overshoot. Together, these mechanisms enhance both sampling speed and quality.

Inspired by control theory, we reinterpret the Langevin sampling process by conceptualizing en-
ergy gradients as feedback signals, establishing a correspondence between sampling and feedback
control systems [10]. This approach treats particles as dynamic systems under designed feedback
control rather than passive stochastic entities, allowing us to efficiently guide sampling toward
high-probability regions while substantially reducing required iterations.

Specifically, we innovatively consider the historical dynamics and tendency information of potential-
field gradient signals (feedback signals) during sampling. We thus propose integrating Langevin
sampling with the prominent PID (Proportional-Integral-Derivative) [1] technique from feedback
control to enhance and accelerate sampling in the following aspects. Firstly, gradient history (the inte-
gral term) creates momentum-like effects by accumulating gradient information, providing sustained
directional forces that reduce ineffective random walks. These forces form inertial properties that
help sample particles traverse energy barriers and unstable equilibria in complex multimodal distribu-
tions, thereby exploring more critical regions and significantly accelerating convergence to minimum
energy states of the distribution [23]] (Fig middle). Secondly, gradient tendency (the derivative
term) dynamically adjust sampling by responding to real-time gradient change rates, accelerating
movement toward directions of consistently decreasing energy gradients while suppressing movement
where gradients consistently increase, effectively mitigating overshoot issues by anticipating and
counteracting excessive momentum, enabling the overall sampling process to reach potential wells
rapidly and stably, thereby improving sampling speed (Fig[I] right).

In this work, we make the following contributions:

(1) By combining PID control methodology with Langevin dynamics, we propose a novel Langevin
sampling acceleration algorithm: PIDLD (Proportional-Integral-Derivative Langevin Dynamics).
It offers a brand new insight into applying control theory in the sampling domain. Our method is
simple, easy to implement, requires no additional datasets or prior information, and eliminates
the need for retraining, making it compatible with any method that uses Langevin dynamics
sampling.

(2) Through theoretical analysis and empirical toy experiments, we establish the convergence and
effectiveness of our algorithm, validating the reliability of the proposed sampling method.

(3) We further conduct multiple comparative experiments on Langevin sampling-based models
(EBMs, SGMs) across various tasks (images, solutions of reasoning tasks), demonstrating that
our proposed sampler generates faithful samples faster. In particular, PIDLD achieves at least
10x sampling speedup over baselines under SGM model.



2 Background and Related Work

2.1 Langevin Dynamics in Generative Models

Langevin dynamics (LD) is a mathematical framework describing particle motion in a potential energy
field with thermal fluctuations, and has been widely applied in molecular dynamics simulations,
statistical physics, and Bayesian inference [36} 26} 39]. Due to its convergence properties, it plays a
crucial role in sampling for both Energy-based Models (EBMs) and Score-based Generative Models
(SGMs).

EBMs have evolved significantly over the past decade, with seminal contributions from Restricted
Boltzmann Machines [14], discriminative EBMs [20], and development of improved training
techniques for deep EBMs [8]. These models represent probability distributions in the form
po(x) = e /o) | Zy, where fy() is the energy function parameterized by 6, and Zj is the normaliz-
ing constant. For sampling from EBMs, perhaps the most popular sampling algorithm is Unadjusted
Langevin dynamics (ULA) [29,[8l 27]: z111 = @t — eV, fo(xs) + \/ﬂ&, where x; is the state at
iteration ¢, € is the step size, and &; is standard Gaussian noise. Starting from a randomly chosen x,
we can generate a sample by iterating the above Markov transition for a specified number of steps 7.

SGMs originated from Song and Ermon’s Noise-Conditional Score Networks (NCSN) [133]], which
established the core paradigm of score matching at multiple noise scales {o;}7 ;. Their subse-
quent NCSNv2 [34]] improved stability through noise scaling and architectural improvements, while
NCSN++ [135]] unified score-based and diffusion approaches via stochastic differential equations.
Unlike energy models, SGMs learn the gradient of the log probability density function of the noise cor-
rupted distribution p(x|x) := N (X; x, ;1) through a family of score-matching methods [16] (x fol-
lows the underlying true data distribution), yielding the score function: s¢(x, ;) = V, log pe(x, 0;).
After training the score function, we can sample from the model using annealed Langevin dynamics
(ALD) [133]]: xiﬂ = x% + 6,V logpe (s, 0;) + /2€;€;, where ¢; is relevant to the noise schedule.
Notably, under the energy model assumption, V, logpg(z) = =V fo(x) — Vi Zs = =V, fo(z).
Therefore, the sampling processes are essentially identical, and we will use Uy (x) to represent both
log pg(x) and — fy(x) in subsequent discussions. The Langevin dynamics in both methods work in
that as 7" — +o0, the distribution of z; converges to a steady-state distribution [11].

Recent research has focused on accelerating Langevin sampling. Dockhorn et al. [3]] enhanced SGMs
by incorporating Hamiltonian Monte Carlo methods [26] and proposed critically-damped Langevin
diffusion (CLD) based SGMs that demonstrated remarkable performance improvements. However,
this approach necessitates additional learning of the diffusion velocity. In contrast, our method is
learning-free. Ma et al. [23| 24] introduced a matrix preconditioning technique that equalizes the
curvature rates across all directions, thereby achieving faster sampling for high-resolution images.
However, this technique relies heavily on target dataset statistics for preconditioning, which restricts
its generalization to data-scarce or structurally diverse domains. Our approach eliminates the need for
additional prior knowledge or dataset statistics, requiring only a pre-trained energy model or score
model. Wen et al. [40] and Shetty et al. [31]] developed momentum-enhanced Langevin dynamics to
expedite sampling. Our method treats Langevin sampling from a control perspective, delivering more
stable results while enhancing interpretability. We provide a detailed comparison of related works in

Appendix

2.2 PID controller

Feedback control represents the cornerstone of modern control theory, with the fundamental objective
of stabilizing systems and enhancing their performance through continuous error correction [1]].
Among the various feedback control strategies, Proportional-Integral-Derivative (PID) controllers
remain one of the most widely adopted mechanisms in industrial applications due to their remarkable
balance of simplicity and effectiveness. The standard PID control law is formulated as: u(t) =
Kpe(t)+ K; fot e(r)dr+ K4 dz(tt) , where e(t) = r(t) —y(t) represents the error between the desired
reference signal r(¢) and the measured output y(¢). The control input u(¢) combines three terms with
their respective tuning parameters: K, (proportional gain), K; (integral gain), and K (derivative
gain). The elegance of PID design lies in its intuitive interpretation: the proportional term responds to
present errors, the integral term addresses accumulated past errors, and the derivative term anticipates
future error tendency [9].




The PID framework has transcended traditional control applications to inspire innovations in deep
learning architectures [25,41]] and optimizer [37} 2]. In particular, for the optimizer, Chen et al. [2]]
accelerate gradient descent optimization in deep learning via a PID controller, thereby achieving faster
convergence and improved robustness against local optima. Our work is an innovative application of
PID feedback control in generative models sampling.

3 Methods

To accelerate Langevin sampling, we reinterpret the method through the theoretical lens of feedback
control. By leveraging fundamental principles from the field of feedback control, we then propose
an innovative approach that integrates the Proportional-Integral-Derivative (PID) controller with
Langevin sampling. Finally, building upon this framework, we validate the effectiveness of our method
through toy experiments, analyze its performance characteristics, and formulate a comprehensive
algorithmic framework.

3.1 Controlling Langevin Sampling

While LD serves as a crucial sampling method in generative modeling, it faces significant practical
challenges. Firstly, standard LD suffers from slow convergence due to its random-walk behavior,
requiring numerous iterations to reach the target distribution. Secondly, in multimodal distributions,
sampling points rely heavily on stochastic noise to either overcome energy barriers between local
minima or escape positions at unstable equilibrium points—critical locations with near-zero gradients
between potential wells. Finally, its lack of dynamic response to gradient changes leads to unstable
sampling across varying potential landscapes. Fundamentally, these limitations stem from the
equilibrium-based nature of standard Langevin dynamics, which is ill-suited for the evolving dynamics
of complex systems [22]].

From a physical perspective, Langevin dynamics can be interpreted as a particle moving through

a potential field —Upy(x) while subject to thermal fluctuations. The standard discrete LD update

corresponds to the continuous-time stochastic differential equation: ‘é—f = V.Ug(z) + V2£(1).

In this physical system, the gradient V,Uy(z) can be seen as the basic feedback control signal
driving the particle toward high-probability regions. However, this simple feedback mechanism
proves insufficient for complex high-dimensional landscapes. Drawing inspiration from control
theory|[2], we can enhance this physical system with a more sophisticated control force that utilizes
not only the current gradient but also its gradient history (accumulated record of past gradient values,
representing the integral of gradient trajectory over time) and gradient tendency (temporal derivative
of the gradient, capturing the direction and rate of gradient change):

d
d—f = Uconirol (Ve Up (), Gradient History, Gradient Tendency) + v/2£(t) ¢h)

This enhanced control approach directly addresses the key challenges of Langevin dynamics through
the following mechanisms:

* For sampling efficiency: Accumulated gradient history creates a momentum-like effect,
providing a persistent directional force that reduces random walk behavior and accelerates
convergence. Meanwhile, gradient tendency information allows the system to adapt its
movement strength based on local landscape properties, accelerating movement towards
directions where gradients consistently increase, thereby further improving efficiency.

* For energy barrier and unstable equilibria: The accumulated gradient history forms an
inertial force that helps particles traverse energy barriers and unstable equilibria between
modes. This substantially reduces reliance on random noise for mode exploration and
enables more systematic discovery of all significant modes in a multimodal distribution[2].

* For dynamic response: Gradient tendency information captures the rate of change in
the potential landscape, allowing the system to stabilize its behavior in different regions
dynamically. When the gradient changes abruptly, this term provides damping effects that
reduce unnecessary overshoot [[1].

The Proportional-Integral-Derivative (PID) controller offers an ideal framework for implementing
this enhanced control approach. With the gradient V,Uy(z) as the error signal, each component



serves a distinct purpose: the proportional term provides basic gradient guidance, the integral term
accumulates gradient history to create persistent acceleration and barrier-penetration capabilities, and
the derivative term captures gradient change rates to enable adaptive response to different landscape
regions [1]]. Based on this framework, we propose integrating a PID controller into Langevin
dynamics:

ki o
weg1 =2+ e | kpValsp(ae) + = D Valp(ws) + ka(VaUp(ar) = Valp(wr1)) | + V26,
s=0
)

where k,, k;, and kg are the proportional, integral, and
derivative coefficients, respectively. Empirically, to pre-
vent the integral term from dominating the sampling pro-
cess over time, we apply a % normalization factor. This 100
balances the magnitudes of P, I, and D terms, maintaining
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3.2 Method Analysis

Analysis of parameter effect. To quantitatively assess the effects of the newly added terms (integral,
derivative) on sampling efficacy, we extended our analysis using the toy experiment from Section [3.1]
We set k;, = 1 to correspond with standard Langevin dynamics, while examining how varying values
k; and k4 influence distributional convergence measured by the KL divergence.
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Figure 3: KL divergence during sampling with different parameter configurations.

As illustrated in Fig. within a specific range (k; € {0,0.1,0.2}), introducing progressively
increasing integral control terms facilitates faster convergence of the KL divergence while reaching
lower terminal values, suggesting that the integral term effectively assists sampling points in traversing
energy barriers and unstable equilibria, thereby enhancing sampling quality. However, when k;
reaches 0.3, we observe a rebound phenomenon in the KL divergence, indicating failure to converge
to the stationary distribution.

To address this limitation, we implement a time-dependent decay coefficient for the integral term:
ki(t) = ~* - k;, where t denotes the sampling step and v < 1 represents the decay rate. This
mechanism stands as a principled implementation of continuous gain scheduling [19], a classic
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Figure 4: Effect validation on [ term and D term. The result for each hyperparameter setting is
averaged over 100 independent runs with different random seeds.

control strategy well-suited for the time-varying nature of Langevin sampling. The process requires
conflicting gains: a high integral gain is beneficial in the early exploration phase to build momentum
and traverse energy barriers, but becomes detrimental in the late convergence phase, causing the
instability seen in Fig. [3a

Our exponential decay acts as an effective gain schedule, smoothly transitioning the controller’s
behavior from aggressive exploration to stable convergence by ensuring the integral term’s influence
diminishes as equilibrium is approached. Critically, this design guarantees that the sampling dy-
namics asymptotically reduce to standard Langevin dynamics (k;(t) — 0), thus ensuring theoretical
convergence. As confirmed by results for k; = 0.3 and v = 0.9 in Fig. [3b] this principled approach
preserves the initial acceleration while resolving the instability.

Further validation on Computer Vision tasks is provided in Appendix [D.3]

From Fig. we observe that introducing a larger D term facilitates faster convergence of the KL
divergence to lower values without exhibiting the rebound phenomenon. This indicates that the
D term effectively helps sampling points navigate around distribution barriers, enabling them to
converge more rapidly to lower points in the energy landscape representing the distribution within a
finite number of steps, thereby enhancing sampling efficiency.

Analysis of control-theoretic effect. To empirically validate the control-theoretic effect [[1] of the
integral term on mitigating bias and the derivative term on reducing oscillation, we conducted further
experiments (description of settings and metrics can be found in Appendix and Appendix [D.2).
For the bias-mitigating effect, we manually add a constant perturbation to the gradient and run
annealed Langevin dynamics sampling. From Fig[4al we observe that increasing k; helps to decrease
d; and ds, a measure of the final bias of cluster centers, while increasing k, yields the opposite
effect, which demonstrates it is the integral term that makes the sampling algorithm robust to gradient
bias. For oscillation-reducing effect, we run the toy experiments with different k; and k4 again, and

record the summed Eucledian distance to the final cluster centers, dg&% and dﬁf,{ as a measure of

oscillation. From Fig we observe that dﬁ&,)n and d§§31 decrease as k, increases, while they do not
show a comparable decreasing trend as we increase k;. The result echoes the PID control theoretic
insight that the derivative term has the advantage of reducing the oscillation in the sampling process.

Analysis of convergence guarantee. To provide theoretical justification for the stabilizing effect of
the derivative term, we analyze its impact on convergence under the standard assumption of local
strong convexity—a tractable setting for studying behavior near a potential minimum. We formally
establish that the D-term preserves the convergence guarantees of standard Langevin dynamics,
confirming it acts as a proper stabilizing component without disrupting the sampling process:

Proposition 1 (Stability of Langevin Dynamics with Derivative Term). Consider the discrete-time
modified Langevin dynamics:

o1 = ¢+ € (Voo (1) + ka(VaUg () — VaUg(we-1))) + V2¢Es, (©)
where —Uy(x) is m-strongly convex (V2Uy(z) < —ml), & ~ N(0,1), and €, kq > 0. In the
deterministic case (§; = 0), the system is asymptotically stable at x* (where VUy(z*) = 0) if

1



Algorithm 1 PIDLD

Require: Score function V,Uy(z) = Vlog pe(z) = V(- fo(x)), number of steps T, step size €, control
parameters ky, k;, kq, decay rate y < 1, initial point x

1: Initialize integral term Ip = O

2: Compute initial score so = VoUyg(x0)

3: fort =0to7T — 1do
t st = VaUg(ae)
P, = s {Proportional term}
I, = 1&4%1 - (It—1 - t + s¢) {Integral term}
D, = (st — s¢—1) {Derivative term}
us = kpP; + kily + kqD; {Compute control signal}

9 @yp1 = ¢+ € ur + V2e - &, where & ~ N(0,I) {Update state}
10: ki = ki e
11: end for
12: return z = zp

AN

Then with the random noise (& # 0), the system admits a unique stationary distribution, i.e.
Too ~ T

The proof is provided in Appendix [B] This proposition establishes that under appropriate step size
and k4 constraints, our modified Langevin dynamics preserves the fundamental convergence property.
Specifically, in locally strongly convex energy landscapes, convergence to the stationary distribution
is ensured with properly calibrated parameters.

3.3 The Proposed Algorithm

Based on our empirical findings and theoretical analyses, we propose PIDLD (Proportional-Integral-
Derivative Langevin Dynamics, Algorithm|[T), a novel sampling algorithm that effectively combines
the strengths of PID control theory with Langevin dynamics. This approach aims to address the
limitations of traditional Langevin-based samplers, particularly in efficiently navigating complex
energy landscapes characterized by multiple modes and energy barriers.

An application of PIDLD’s training-free, modular design is its seamless integration with annealed
Langevin Dynamics (ALD) [33]]. This integration preserves ALD’s beneficial annealing structure
while enhancing efficiency at each noise level. The implementation is straightforward: the PIDLD
controller replaces the vanilla Langevin steps within each noise level ;. Crucially, to maintain
a smooth trajectory across noise scales, the final accumulated I; and gradient (V,Uy(x;) for the
derivative term) from the previous scale are carried over as the initial state for the next scale o;_.
This ensures that historical information is leveraged continuously throughout the sampling process.

4 Experiments

In the experiments, we evaluated our method against standard Langevin sampling on mainstream
generative models (SGM, EBM). We focused on the effectiveness in classical image generation tasks
and investigated PIDLD’s efficacy in reasoning task solutions via energy model sampling.

4.1 Image Sampling for Generation Tasks

In this section, we evaluate how off-the-shelf generative models that use an LD-based sampling
method can be accelerated by the proposed PIDLD whilst maintaining, or even enhancing, image
sampling quality, without retraining or post-training the base model.

Datasets and Base Models. Following NCSN [33]], we test image generation quality on CIFAR10
(32x32) and CelebA (64x64) datasets (both are unconditional datasets). For the score-based generative
model (SGM), we adopt the NCSNv2 [34] architecture and initialize the score network with its official
pretrained checkpoint. For the energy-based model (EBM), we leverage the Implicit Generative
Energy-Based Model (IGEBM) [8]], which has established itself as a seminal framework in the energy-
based modeling literature. We initialize the model with its official pretrained checkpoint on CIFAR10
and retrain the model on CelebA. Please refer to the Appendix for detailed implementation.



Table 1: FID comparison for SGM and EBM models across different datasets and NFEs. Note that
NCSNv2 uses L noise levels. and in each noise level, we perform 71" Langevin update steps, so the
NFE is given by L x T. The configuration where L > T follows the setting in [34].

Dataset Method SGM [34] EBM [8]
NFEs 25x1  100x1  232x1  232x3  232x5 10 20 30 40

CIFAR10 Vanilla [331[8] 46.8 17.2 16.0 12.8 12.5 135.8 58.1 403 353
MILD / / 15.5 13.6 13.0 1114 499 389 344
Ours 18.3 12.1 11.7 11.6 114 99.0 46.1 32.8 332
NFEs 50x1  250x1  500x1 5003  500x5 15 20 25 30

CelebA Vanilla 25.0 13.6 14.0 11.3 9.5 109.1 635 413 354
MILD / / 9.0 9.4 11.0 60.1 41.1 353 329
Ours 8.0 5.7 59 59 5.6 580 389 322 30.0

(a) CIFAR10 samples with 25 sampling steps. (b) CelebA samples with 50 sampling steps

Figure 5: Image generation quality comparison of ALD and PIDLD under low NFEs.

Baselines and Metrics. We choose the vanilla ALD [33] [8] and momentum-imbued Langevin
dynamics (MILD,[31]]) as our baselines. Note that vanilla ALD is the degenerate version of our
PIDLD algorithm when we set k, = 1,k; = 0,kq = 0. Accordingly, we fix k; and kg to 0 and
tune only k), to get the best FID score of vanilla ALD on each NFE. For MILD, we directly use the
published results of NCSNv2 from the original paper, and additionally evaluate its performance in
IGEBM. We report FID scores [13]] computed on 10000 samples for each test.

Experiment Results. The results are shown in Table[I} demonstrating that PIDLD consistently
outperforms both vanilla and momentum ALD across all NFEs on CIFAR10 and CelebA datasets,
regardless of the base model used. Compared to the best-performing baseline, our method achieves
significant performance gains of 7.6% (SGM) and 3.4% (EBM) on CIFAR10, and even more substan-
tial improvements of 38.3% (SGM) and 8.8% (EBM) on CelebA. Notably, when using SGM, PIDLD
achieves FID scores of 12.1/8.0 with only 100/50 NFEs on CIFAR10/CelebA, exceeding the best
performance of baselines. This demonstrates at least a 10x speedu;ﬂ compared to the baselines, which
reach optimal performance at much larger NFEs, highlighting PIDLD’s computational efficiency
alongside quality improvements.

Further, we have the following findings. First, SGM outperforms EBM in absolute performance,
indicating more accurate score prediction. This suggests that PIDLD’s effectiveness in enhancing
sampling performance and efficiency correlates directly with the accuracy of the underlying pre-
trained score prediction model. Second, when compared to the baseline MILD algorithm, our
approach exhibits consistently superior and more stable performance across varying inference budgets.
This enhancement results from our extension of MILD’s momentum-based acceleration idea through
the integration of PID-based feedback control, which simultaneously incorporates both historical
feedback and current trend signals. This comprehensive control mechanism substantially improves
upon the robustness of purely momentum-driven methods, yielding advancements in both sampling
quality and computational efficiency.

3Regarding the reasonability of using NFE as a measure of computation cost, please refer to Appendix@



Table 2: Accuracy comparison for baseline and our models across harder Sudoku and Connectivity
tasks [[7]] under different NFEs.

Task Method EBM[7] Accuracy (%)
NFEs 5 10 15 30 40 80

Sudoku Vanilla 4599 51.00 5093 5077 53.63 55.02
MILD 4975 5482 5355 5525 5656 56.64
Ours  50.54 5548 5555 5594 57.02 56.64
NFEs 1 2 3 4 5 10

Connectivity vy, ila 86,16 8722 87.22 8748 8738 87.49
MILD  86.16 8854 8921 8975 90.15 90.33
Ours 8616 91.32 9231 92.82 9295 93.28

Visualization. From the experiment results, we find that compared to vanilla ALD, PIDLD delivers
markedly higher image quality, especially under low NFEs. We illustrate this contrast in Fig [5}
whereas ALD outputs appear muted and blurred, PIDLD samples exhibit richer color fidelity and
sharper detail. This visualization underscores PIDLD’s superior performance in resource-constrained
sampling regimes.

Ablation Study. We conducted a comparative analysis of PIDLD’s performance under ablation
settings involving the integral and differential terms, as shown in Fig[6] We observe that while
both terms prove effective, the differential term is the primary contributor to quality improvement.
This phenomenon results from the nature of annealed Langevin dynamics. The early-stage potential
landscapes are smoothed by noise and exhibit shallow barriers between wells. In such scenarios, the
integral term’s ability to traverse local minima becomes less effective. In contrast, the differential
term enables rapid convergence toward the centers of local wells at each noise scale, providing better
initializations for subsequent sampling steps.

4.2 Solution Sampling for Reasoning Tasks

CIFAR1O0

Given PIDLD’s capacity to traverse local optima and sample from
global energy minima, we evaluate the effectiveness of the proposed
PIDLD when performing inference tasks using energy-based mod-
els. Such methods formulate reasoning problems as iterative energy
minimization problems over learned energy functions that parame-
terize an energy landscape across all possible solutions. By applying
PIDLD to the sampling process, we aim to address the limitations
of conventional Langevin dynamics in navigating complex energy
landscapes, thereby improving the overall performance and accuracy
of energy models in solving reasoning tasks.

NFEs
. P+D

CelebA

- P+ P+I+D

FID

Tasks and Base Model. We follow existing work [6, 7] by selecting
challenging reasoning tasks for our experiments. Specifically, we
evaluate the performance of IRED [7]] on Harder Datasets for Su-

NFEs

doku [38, 28] and Connectivity [5] problems. These Harder Datasets
consist of out-of-distribution data relative to the training distribu-
tion, requiring models to utilize additional computational resources
during inference to achieve effective generalization. In Sudoku, the
model must complete a partially filled grid by predicting values that
satisfy both Sudoku rules and the given constraints, with IRED using
the SAT-Net [38] dataset (31-42 given numbers) for training, while
evaluating generalization on the more challenging RRN dataset [28]
(17-34 given numbers). The connectivity task requires a model to
determine whether paths exist between node pairs in a graph given
only the adjacency matrix, with IRED’s training using graphs of
up to 12 nodes, while the harder dataset challenges the model with
larger 18-node graphs requiring more complex reasoning steps.

Figure 6: Ablation study of
PIDLD under image sampling
tasks. P+I+D denotes the com-
plete model, while P+I, P+D,
and P represent models with
the derivative term, integral
term, or both terms removed,
respectively. Figures on the
bar indicate performance im-
provements of each ablation
compared to P.

Baseline and Metrics. We compare with the vanilla sampling method [7]]. For both tasks, solution

accuracy serves as the primary evaluation metric.



Implementation. In our experiments, we change the number of optimization steps in the original
paper and finetune the hyperparameters to get the best accuracy. The step sizes are fixed and scheduled
in the base model.

Experiment Results. The results are presented in Table[2] demon-
strating that our proposed method consistently outperforms the base- Sudoku

line approach across varying NFEs on both Sudoku and Connectivity =~ % w1 s
reasoning tasks. For the Sudoku task, our method achieves signifi-  §%* =
cant performance improvements ranging from 4.55% t0 6.02% atlow g%

NFEs (5-15), while maintaining a stable advantage of approximately S o

+10.2%
9%

+9.!

3-5% at higher NFEs (30-80). Most notably, our approach reaches 4% -3¢ 15 40

an accuracy of 50.54% with just 5 NFEs, surpassing the baseline’s  wmr mm pe —_ PaleD
performance at 10 NFEs (51.00%), and demonstrating substantial Connectivity
computational efficiency. W s o ja

292%
For Connectivity, our method exhibits performance gains beginning §90%
at NFE=2 with improvements of 3.14%, 3.47%, 3.42%, 3.11%, and ~ <es% ’ < of
3.27% across the 2-10 NFE range. Notably, our method achieves 86%
91.32% accuracy at just NFE=2, already exceeding the baseline’s
maximum accuracy of 90.33% at NFE=10, representing a 5x im-
provement in computational efficiency. The overall results demon-
strate both quality improvements and computational advantages over
the baseline approach.

3 10

5
NFEs
Figure 7: Ablation study of
PIDLD under reasoning tasks.
P+I+D denotes the complete
model, while P+I, P+D, and
Ablation Study. We analyzed PIDLD performance through ablation P represent models with the
studies of integral and derivative components (Fig. . Results  derivative term, integral term,
indicate that combining both terms produces optimal performance  or both terms removed, respec-
across all sampling steps. The integral term provides consistent tively. Percentages indicate
performance gains, while the derivative term primarily enhances performance improvements of
early-stage convergence. As NFE increases, the derivative term’s each ablation compared to P.
benefits diminish substantially, whereas the integral term’s capacity
to navigate local optima becomes dominant. This stems from the
critical importance of attaining energy minima in reasoning tasks.

5 Discussion and Conclusion

We introduce PID-controlled Langevin Dynamics (PIDLD), a novel, training-free algorithm that
accelerates sampling for generative models by reformulating the process through the lens of control
theory. By leveraging an integral term for momentum and a derivative term for adaptive stabilization,
PIDLD efficiently navigates complex energy landscapes to produce higher-quality samples in fewer
steps. Its plug-and-play nature makes it immediately applicable to any pre-trained model reliant on
Langevin sampling.

It is important to position PIDLD’s contribution within the broader context of generative model
acceleration. While significant progress has been made with methods like DDIM [32] and other
ODE-based solvers [35]], our work’s primary focus is not to compete with these alternative generative
frameworks. Instead, our goal is to fundamentally improve the foundational Langevin Dynamics
sampler itself, which remains a cornerstone for many energy-based and score-based models. PIDLD
is designed as a direct, drop-in enhancement for the standard LD sampling procedure within these
models, whereas methods like DDIM alter the underlying diffusion process itself. The main applica-
tion of our work is therefore to serve as a general and highly efficient inference accelerator for any
pre-trained model that relies on Langevin-based sampling.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We claim our paper’s contributions and scope in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the complete assumptions and proof in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed algorithms in the method section, and experiment imple-
mentation details in both the main paper and the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We release the code in the link provided in the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental setting/details both in main paper and in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide our experimental environments in the appendix. But knowing such
detail is not required for reproducing the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work is a sampling method.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Comparison of Related Works

A.1 Comparison of Langevin Sampling Speedup Techniques

Table 3: Comparison of Langevin Sampling Acceleration Methods

Method No Retrain® No DtSts" Theory Basis® Simplicity? Stability®
Vanilla LD' N/A N/A Base Sampling Base X
CLD [3] X v Statistic Mechanics Low v
PDS [23124] v X Matrix Preconditioning Moderate X
Momentum-based [31} 140] v v Optimization (Momentum) High X
PIDLD(Ours) v v Control Theory (PID) High v

4 No Retrain: No retraining of the base generative model is required for acceleration.

® No DtSts: The core acceleration mechanism does not require dataset-specific statistics/priors.

¢ Theory Basis: The primary theoretical foundation of the acceleration method (or base method).

¢ Simplicity: Ease of modifying a standard Langevin sampler (or base method complexity).

¢ Stability: Employs an explicit or inherent mechanism to prevent common Langevin sampling instabilities (e.g.,
overshooting, oscillations).

! Vanilla LD: Standard Langevin Dynamics, serves as a baseline. "N/A" as it’s not an acceleration method itself.

Table 3] provides a comparative overview of several methods for accelerating Langevin sampling, in-
cluding our proposed PIDLD, against Vanilla Langevin Dynamics (LD) as a baseline. The comparison
highlights key practical and theoretical characteristics: the necessity of model retraining, reliance on
dataset-specific statistics for the core mechanism, underlying theoretical basis, integration simplicity,
and critically, the employment of an explicit or inherent mechanism for instability prevention (e.g.,
against overshooting or oscillations).

Our method, PIDLD, stands out by achieving high simplicity and flexibility, requiring no model
retraining and operating independently of dataset-specific statistics, similar to Momentum-based
approaches. However, PIDLD uniquely incorporates a control-theoretic (PID) framework that
provides an explicit mechanism for instability prevention through its derivative (D) term, which
adaptively damps updates based on gradient trends. This direct approach to stability contrasts with
Momentum-based methods, which lack such an adaptive damping feature and are thus marked as not
explicitly preventing these common Langevin instabilities. CLD also inherently prevents instability
through its critically-damped formulation within a retrained, augmented space. PDS, while not
requiring retraining, relies on dataset statistics for optimal performance and does not feature an
adaptive instability prevention mechanism in its sampling dynamics. Therefore, PIDLD offers a
compelling combination of ease of use, broad applicability, and enhanced stability through its novel
control-inspired design.

A.2 Positioning PIDLD Among Sampling Acceleration Strategies

Beyond the momentum-based approaches discussed in the main text, the field of accelerating gen-
erative samplers encompasses several distinct strategies. A notable alternative paradigm involves
learning an entirely new, often near-optimal, sampling process, rather than modifying an existing
one. Methods grounded in Stochastic Optimal Control (SOC), for instance [4} [12], exemplify this
approach. They aim to learn a novel drift function that transports a base distribution to the target
distribution, a process that typically requires a full training or fine-tuning phase to optimize a specific
objective. In contrast, PIDLD is designed not to replace the sampling process, but to enhance it
as a training-free, inference-time accelerator. Instead of learning a new policy, PIDLD applies
principles from classical control theory to improve the numerical stability and convergence speed of
the existing Langevin dynamics update rule. This positions PIDLD as a general-purpose and readily
applicable tool for boosting the efficiency of any pre-trained model reliant on Langevin sampling,
complementing approaches that require dedicated training.
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B Proof of Proposition|I]

Lemma 1 (Convergence of Covariance Series). Let J € R™*" with spectral radius p(J) < 1, and
Q = 0. Then the series S = > p o J*Q(J*)T converges.

Proof. (Proof of Lemma Fix an induced matrix norm. By Gelfand’s formula, for any 6 > 0, there
exists C' > 0 such that || J*|| < C(p(J) + )¥ for all k > 0. Choose § = (1 — p(J))/2, ensuring
p(J) + 8 < 1. Applying submultiplicativity:

[T*QUIMTI < IT7¥1P1Q1 < C2QII(p(T) + 6)**.
The series converges absolutely by comparison with the geometric series >, (p(J) + 8)%*. O

Proof. (Proof of Proposition Deterministic Stability: Define the state vector v; = [xxtl} .
t7

Linearizing around z*, let §; = v; — B*} . Using VU (z) = —m(x — x*), the dynamics become:

1—e(l+kqg)m ekgm

6t+1:J6t7 J = |: 1 0

The characteristic equation det(A — J) = A2 — A\(1 — ¢(1 + kq)m) + ekgm = 0. Applying Jury’s
stability criteria:

1. |ekdm|<1
2. 1—€e(l+kgm+ekgm>0=em >0
3. 1+e(1+kd)m+ekdm>0:>2—6(1+2kd)m>0:>6<ﬁ

2
The above leads to € < T 2km:
Stochastic Case: The linearized system becomes:
2 2] 0
041 = Jo +wy, wy = [\/Eﬂ ~N(0,Q), @ = { 8 0} :

The stationary distribution covariance can be computed: Yoo = Y 7 J kQ(J*)T. By Lemma

with p(J) < 1 (guaranteed by € < 2/[(1 + 2kq)m)), the series converges. Hence ¢; converges to
N(0,X). O

Note that the m-strong convexity is a standard assumption for local stability analysis and does not
presume the global energy landscape is convex. The assumption in Proposition 1 is intentionally
narrow and serves a specific purpose: to provide a controlled, tractable setting to formally analyze
the local behavior of our sampler. Its goal is to prove that our novel derivative (D) term provides the
intended stabilizing effect near a potential minimum, without disrupting the fundamental convergence
properties of Langevin dynamics [[11} 29]]. It provides a theoretical justification for the stability
enhancements we observe empirically.

C Detailed Experiment Settings

C.1 Toy Experiment Settings

Our toy experiment generally follows the setting of NCSN [33]. We choose pgaa =
tN((=5,-5),1) + 2N((5,5),I). The score network is a 3-layer MLP with 128 hidden units
and softplus activation functions. We train the score network with anneal denoising score matching
for 60 epochs on 100000 training samples with a batch size of 128. We use Adam optimizer with a
learning rate of 0.0001, 51 = 0.9 and B = 0.999.
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For the sampling process, we choose 1280 initial samples uniformly in the square [—8, 8] x [—8, 8.
We use annealed Langevin dynamics where L = 8, T = 150 and € = 8 x 10~5. We choose {o;}1 ;
to be a geometric progression, with 0; = 20 and o = 0.01. We use the learned score function for
sampling.

C.2 Detailed Experiment Implementation of Image Generation

Table 4: Hyperparameter settings of PIDLD and ALD in image generation.
SGM EBM
PIDLD ALD PIDLD ALD
NFEs  k, ki ka k, NFEs k, ki kd kp

232x5 090 0.00 1.00 0.90 40 0.50 0.80 150 0.70
232x3  1.50 0.00 120 1.00 30 0.80 020 200 1.20
CIFAR10 232x1 2.00 0.00 3.00 1.75 20 1.20 0.50 250 2.00
100x1 2.00 0.50 4.50 2.50 10 1.50 1.00 3.50 3.00
251 3.75 025 4.00 6.00 - - - - -

500x5 1.00 0.00 3.00 0.90 30 060 0.50 250 0.80
5003 1.25 0.00 3.00 1.25 25 0.90 030 350 1.50
CelebA 500x1 2.00 0.00 3.00 2.00 20 1.50 0.80 4.00 2.50
250x1  2.00 0.50 3.00 2.50 15 1.80 120 5.00 3.50
50x1 375 1.00 375 5.50 - - - - -

Dataset

For SGM, we use the pretrained checkpoint provided by the official repository of NCSNv2 [34] to
initialize the weights of the score network. We also apply the exponential moving average trick to
the weights. The score network uses the RefineNet [21]] architecture. For details please refer to the
original paper [34]. For EBM, we use the pretrained checkpoint provided by the official repository of
IGEBM [8] for CIFAR10 dataset, and retrain the model for the CelebA dataset.

For the sampling process, we follow the setting of NCSNv2 to use o1 = 50.0, oy, = 0.01, L = 232,
T =5,e=6.2 x 107° for CIFAR10 and o1 = 90.0, o7, = 0.01, L = 500, T = 5, ¢ = 3.3 x 10~°
for CelebA. We also follow NCSNv2 to add an additional denoising step to the last sample, given by
Tfinal denoised = Lfinal + 0%59 (Zfinar, o1, ). For IGEBM, the sampling step corresponds to the NFE. We
decay k; at each step. For the step size, we use the default ¢ = 100 for CIFAR10 and € = 400 for
CelebA. We keep € fixed across all experiments.

We generate 10000 images in each run and use FID to evaluate the generation quality. We input the
raw generated images to the inception network without clipping the pixel values to [0, 1].

Since conventional ALD is the degenerate case of PIDLD where k; = kg = 0, we tune only k,
to get the best performance of vanilla ALD and tune k,, k;, kq to optimize PIDLD. We give our
hyperparameter settings in Table [

For convenience in parameter tuning, we tune only k, and k4 when the number of sampling steps is
high, because the derivative term is the dominant factor in anneal Langevin dynamics sampling, as
mentioned in the ablation study. We observe that when NFEs decrease, the optimal k,, k;, kq show
an increasing trend. This is intuitive since fewer steps necessitate more updates per step.

C.3 Detailed Experiment Implementation of Reasoning Tasks

We apply the original repository of IRED [7] to implement PIDLD. We use the pretrained checkpoint
provided. For the Sudoku task, the energy network uses ResNet as the backbone. For connectivity
task, the energy networks uses Graph Neural Network (GNN) as the backbone. Please refer to the
original paper for model details.

For both tasks, we sample 1000 labeled items for evaluation in the harder dataset, following the
original setting of IRED. We give our hyperparameter settings in Table[5]

23



Table 5: Hyperparameter settings of PIDLD and IRED sampling in reasoning tasks.

Dataset Method PIDLD IRED
NFEs ky ki ka kyp
Sudoku 5 1.20 4.00 0.50 1.50
10 1.00 4.00 0.50 1.50
15 090 4.00 0.50 1.00
30 0.80 4.00 0.50 1.00
40 0.80 3.00 0.50 0.80
80 050 3.00 0.50 0.80
NFEs kp k; ka kp
Connectivit 5 1.10 040 0.01 1.50
Y 10 1.00 040 0.01 1.50
15 0.90 040 0.01 1.50
30 0.80 0.30 0.01 1.00
40 0.80 030 0.01 1.00
80 0.80 0.20 0.01 1.00

D Additional Experiments on the Effect of Integral and Derivative Terms

D.1 Effect Validation on Integral Term

To validate the effect of integral term on mitigating bias, we provide more empirical evidence by
running toy experiments on two-dimensional points (see Appendix [C.I]for experiment settings) with
only P term, with P, I terms, and with P, D terms. To simulate a bias in gradient estimation, we add
a constant perturbation to the score that points to the direction of (—1, 1) and is scaled by 1,/20 of the
Frobenius norm of the gradient. We use d, the Euclidean distance of the final cluster center to the
true center, as the metric of bias. Here the subscript 1 and 2 corresponds to the cluster near (5, 5) and
(=5, —b), respectively. The results are shown in Table @ and Table|7} We run 100 experiments with
different random seeds under each hyperparameter setting. The number before and after + represents
mean and standard deviation, respectively.

Table 6: Effect of k; on bias Table 7: Effect of k4 on bias

ks dy do kq dy dy
0.00 0.0463 £+ 0.0237 0.2729 4 0.0840 0.0 0.0463 £0.0237 0.2729 4+ 0.0840
0.05 0.0414 +£0.0235 0.2711 = 0.0816 2.0 0.0445 £ 0.0223 0.2904 £ 0.0882
0.10 0.0379 = 0.0215 0.2559 = 0.0802 4.0 0.0448 £0.0226 0.2971 £+ 0.0909
0.15 0.0339 +£0.0190 0.2485 £+ 0.0781 6.0 0.0453 £0.0218 0.3090 4+ 0.0914
0.20 0.0326 £0.0192 0.2436 £+ 0.0756 8.0 0.0456 £0.0213 0.3250 £ 0.0871
0.25 0.0317 =0.0176 0.2356 = 0.0742 10.0 0.0455 £+ 0.0214 0.3387 £ 0.0914
0.30 0.03154+0.0184 0.2307 +0.0714 12.0 0.0466 £ 0.0204 0.3469 £+ 0.0873
0.35 0.0308 £ 0.0169 0.2330 4+ 0.0708 14.0 0.0522 £0.0230 0.3431 £0.0911

It can be observed that increasing k; helps to decrease d; and ds, the final bias of cluster centers,
while increasing k; won’t yield the same effect. This further demonstrates that the integral term
makes the sampling algorithm robust to gradient bias.

D.2 Effect Validation on Derivative Term

To validate the effect of derivative term on reducing oscillation, we provide more empirical evidence
by running toy experiments on two-dimensional points (see Appendix [C.I]for experiment settings)
with only P term, with P, I terms, and with P, D terms.

It is hard to measure the instability of the trajectory of a single point, because the Langevin dynamics
itself adds noise at each step, and the trajectory is intrinsically stochastic. But the randomness can be
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reduced by choosing a group of points. Since the generated data roughly follows a GMM distribution,
we use the centers estimated by Gaussian mixture model as representative objects, and study the
trajectories of the two centers.

We use 8 noise levels and 150 steps for each level (L = 8,7 = 150). We record the positions of the
two centers every 5 steps, so there are 240 recorded time steps in total. In the earlier stage the two
clusters does not separate and the mean estimation is not reliable, so we use the last 200 steps.

To quantify the amplitude of oscillation of a trajectory, we use the averaged Euclidean distance to
the final position, dgyy, = Z?iil (2; — Tfina)? + (Yi — Yfina1)2, as the major indicator. We also
report the maximum distance, dy,,x, Which can be seen as a measure of peak overshoot. Borrowing
from control theory, we also add the settling time metric, which is defined as the time index where
I p,(f] ) pt(fn;lH of all subsequent time steps are less than 0.1. Here pE] ) is defined as the position
of cluster center at time index ¢, and péﬁl is defined as the final position of the cluster center. The
superscript j = 1, 2 indicates the center near (5, 5) and (—5, —5), respectively.

We fix k, = 1.5 to boost oscillation, and change k; and k4. We run 100 experiments with different
random seeds under each hyperparameter setting. The number before and after & represents mean
and standard deviation, respectively. The results are shown in the following tables.

Table 8: Metrics for Cluster 1 with varying kg Table 9: Metrics for Cluster 2 with varying kg

kd dx(ulnz dlsiv)( s(eltging kd ds(\ﬁr)\ dl(n?nz s(ezuzing

0.0 34.97 £ 3.00 1.61 +£0.16 107.05 + 12.43 0.0 69.30 £ 7.81 3.11£0.72 145.88 +12.16
2.0 31.02 £2.67 1.35+0.13 105.26 + 12.30 2.0 48.74 £ 7.20 2.17+1.11 144.30 + 12.67
4.0 28.76 £ 2.67  1.25+0.52 105.10 + 12.76 4.0 39.42 +5.48 1.63 +1.53 144.13 £ 11.27
6.0 27.00 £+ 2.41 1.11 +£0.10 104.63 £+ 12.70 6.0 35.75 + 4.65 1.30 £ 0.28 143.29 + 13.69
8.0 25.79 + 2.37 1.08 £0.11 103.35 4 12.86 8.0 33.22 +4.12 1.25+0.22 142.09 + 13.38
10.0  26.40 + 2.61 1.18+£0.13 103.37 + 13.67 10.0 36.20 + 4.66 1.73+£0.35 141.42 +£12.55
12.0 34.54+4.56 3.69 £+ 2.01 102.44 + 12.97 12.0 70.52 +£12.14  8.45+4.46 139.96 + 12.60

Table 10: Metrics for Cluster 1 with varying k;  Table 11: Metrics for Cluster 2 with varying k;

ki i) i) seting ki i) dgz) g
0.00  34.97 £ 3.00 1.61 +0.16 107.05 4+ 12.43 0.00 69.30£7.81 3.11+£0.72 145.88 + 12.16
0.05  34.77 £2.92 1.60 £0.17 106.67 £ 12.42 0.05 70.95+£8.19 3.09+£0.67 146.24 £ 12.57
0.10 34.65+£2.92 1.60£0.18 106.73 £12.61 0.10 72.61+£8.41 3.15+£0.75 147.85 + 11.44
0.15 34.46 £2.88 1.60£0.18 105.96 £ 12.80 0.15 74.00£8.39 3.19+£0.73 147.20 +11.00
0.20  34.35 £2.82 1.59+£0.17 106.18 4+ 12.10 0.20 75.67+£7.84 3.20£0.65 148.30 + 11.94
0.25 34.24+2.84 1.62+0.37 106.59 + 12.61 0.25 77.05+£8.64 3.30+£1.04 148.29+10.75
0.30  34.09 £+ 2.80 1.58 £0.18 106.26 £+ 12.33 0.30 78.40£8.38 3.30£0.76 148.50 + 11.69
0.35 34.05+£2.85 1.63£0.56 106.29 £ 12.86 0.35 79.88+£8.59 3.39+1.31 148.46 + 10.75
0.40 33.88£2.74 1.58£0.18 106.11 £ 12.91 0.40 80.77+£8.16 3.34+£0.75 147.77 +10.30

It can be seen that for each cluster, the metrics decrease as ky increases, while they do not show
comparable decreasing trend as we increase k;. The results further validate our claim that compared
to the integral term, the derivative term has the advantage on reducing the oscillation in the sampling
process.

D.3 Effect Validation on Integral Term Decay

We use SGM image generation task to further validate the effect of decaying integral term coefficient.
For CIFAR10, we generate images with 100 noise levels and 1 step per level (NFE=100 x 1). We use
kp = 2.0, kq = 4.5, and change k; and y. For CelebA, we generate images with 50 noise levels and
1 step per level (NFE=50 x 1). We use k,, = 3.75, kq = 3.75, and change k; and . The results are
shown in Table[12]and Table

25



Table 12: CIFAR10 FID of 100 x 1 sampling steps (k,, = 2.0, kg = 4.5). Bold: best in column.
v\ k; 0250 0.375 0.500 0.625 0.750 0.875

1 12.29 1228 1232 1241 1253 12.69
0.99 1231 12.22 1221 1220 1224 12.27
098 1231 1228 1223 1220 1216 12.15
097 1236 1228 1225 1224 1220 12.18
096 1241 1233 1228 1225 1223 1222

Table 13: CelebA FID of 50 x 1 sampling steps (k, = 3.75, kg = 3.75). Bold: best in column.
v\ k; 0750 0.875 1.000 1.125 1.250 1.375

1 855 808 797 847 9.02 956
099 1067 801 753 7776 813  8.55
098 1652 1124 859 771 7.65 7.86
097 23.17 1687 1228 9.53 8.2l 7.75
096 2920 23.14 17.84 13.71 1086 9.14

We find that:

1. The best performance of tuning both k; and -y is better than the best performance of tuning
only k;;

2. The higher the k; is, the higher decay (lower y) should be applied to balance the effect of
larger integral gain, which aligns with common intuition.

The result is a strong evidence that the decay in integral term does improve sampling performance.

E Computation Cost Comparison

We show that our approach to measure computation cost by NFE is reasonable by conducting
experiments to compare the physical time consumption. For (non-degenerate) PIDLD, we use the
original code. For vanilla ALD, we modify our code implementation by deleting all PID related
terms in the sample updating function, which ensures no additional computation cost by PIDLD
is introduced. We run both algorithms on NVIDIA A800-SXM4-40GB. The results are shown in
Table [14]

Table 14: Physical time comparison of vanilla ALD and PIDLD.

Model Dataset NFE Time Consumed
PIDLD CIFAR10 100 x 1  7min54s

Vanilla ALD CIFAR10 100 x 1 7min43s

PIDLD CelebA 50 x 1 13min07s

Vanilla ALD CelebA 50 x 1 12min52s

It can be seen that there is no significant difference in the time cost between PIDLD and vanilla ALD.
For other numbers of NFE, the computation time changes proportionally with NFE, and the time
consumption of vanilla ALD and PIDLD is still close. The result is actually intuitive, since the main
computation cost is on the forward propagation of the score network, which involves a large amount
of matrix multiplications. Adding PID terms just brings some matrix addition operations, so there
wouldn’t be much increase in the computation time, and thus NFE is an accurate measure of real
computing time.
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F Inception Score Statistics

For CV task, apart from FID, we also report inception score [30] statistics of score based generative
models on CIFAR10 dataset in Table [T3]

Table 15: Inception score statistics of SGM on CIFAR10 dataset.
NFE ALD PIDLD

232 x5 845+£0.18 843+0.11
232 x3 847+0.25 8.58+0.21
232x1 792+£0.22 8.46+0.22
100 x1 7.77£0.25 8.26£0.26
25 x1 707+£024 7.65+0.21

In terms of inception score, we find that PIDLD still generally outperforms ALD under different
NFEs, which serves as another evidence of its advantage.

As for CelebA dataset, the inception score metric is not applicable, because the inception model is
trained on ImageNet dataset which consists of natural objects, while CelebA is a human face dataset.
The distribution shift is large, so it is not reasonable to apply ImageNet inception feature extractor. It
is actually a common practice to omit inception score for CelebA.

G Additional Examples of Generated Images

We provide more image samples generated by SGM using PIDLD as in Fig[§]and Fig.[9]

PIDLD Samples, FID=11.4 PIDLD Samples, FID=11.6

¥

b T

-

(a) CIFAR10 samples with 232x5 sampling steps. (b) CIFAR10 samples with 232x1 sampling steps.
Figure 8: Visualization of CIFAR10 images generated by SGM with PIDLD.
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PIDLD Samples, FID=5.6 PIDLD Samples, FID=5.7
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(a) CelebA samples with 500x5 sampling steps. (b) CelebA samples with 500x1 sampling steps.
Figure 9: Visualization of CelebA images generated by SGM with PIDLD.

H Limitations and Future Work

PIDLD presents a promising approach to accelerate Langevin-based sampling, and we identify
several avenues for future development. Firstly, while our parameter analysis offers guidance,
exploring adaptive or automated strategies for tuning the PID coefficients (k,, k;, k4, ) could further
enhance its plug-and-play capability across diverse models and datasets. Secondly, building upon
our initial stability analysis (Proposition[T)), a deeper theoretical investigation into the convergence
guarantees and acceleration properties of the full PID controller, especially in the context of non-
convex landscapes characteristic of EBMs [8] and SGMs [33]], would be valuable. Lastly, our
proposed method may be beneficial in extending the PID control principles to more general ODE
and SDE solvers, which are prevalent in recent score-based models [33]]. This represents an exciting
direction to broaden the applicability of PIDLD and potentially unlock further performance gains.
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