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ABSTRACT

Backdoor attacks have seriously threatened deep neural networks (DNNs) by em-
bedding concealed vulnerabilities through data poisoning. To counteract these
attacks, training benign models from poisoned data garnered considerable interest
from researchers. High-performing defenses often rely on additional clean subsets,
which is untenable due to increasing privacy concerns and data scarcity. In the ab-
sence of clean subsets, defenders resort to complex feature extraction and analysis,
resulting in excessive overhead and compromised performance. In the face of these
challenges, we identify the key lies in sufficient utilization of the easier-to-obtain
target labels and excavation of clean hard samples. In this work, we propose a
Bi-perspective Splitting Defense (BSD). BSD splits the dataset using both semantic
and loss statistics characteristics through open set recognition-based splitting (OSS)
and altruistic model-based data splitting (ALS) respectively, achieving good clean
pool initialization. BSD further introduces class completion and selective dropping
strategies in the subsequent pool updates to avoid potential class underfitting and
backdoor overfitting caused by loss-guided split. Through extensive experiments on
benchmark datasets and against representative attacks, we empirically demonstrate
that our BSD is robust across various attack settings. Specifically, BSD has an aver-
age improvement in Defense Effectiveness Rating (DER) by 16.29% compared to 5
state-of-the-art defenses, achieving clean-data-free backdoor security with minimal
compromise in both Clean Accuracy (CA) and Attack Success Rate (ASR).

1 INTRODUCTION

Recent studies exposed the vulnerabilities of deep neural networks (DNNs) to various attacks (Carlini
& Wagner, 2017; Moosavi-Dezfooli et al., 2016; Kurakin et al., 2018; Zeng et al., 2019; Ilyas
et al., 2018), among which backdoor attacks (Li et al., 2022; Wenger et al., 2021; Zhang et al.,
2021; Wang et al., 2020) have emerged as a significant threat due to their ease of execution and
profound impact. Owing to their non-model-manipulation property and congruence with actual
model training scenarios, data-poisoning-based backdoor attacks (Goldblum et al., 2022; Shafahi
et al., 2018) stand out as prevalent and impactful threats, highlighting the importance of backdoor
defense research. Taking facial recognition as an example (Figure 1), poisoned data may induce the
DNNs to erroneously learn a strong correlation between the adversary-defined trigger pattern (e.g.,
sunglasses) and the target label (e.g., a high-authority individual). While behaving normally without
the trigger, the backdoored model predicts any individuals wearing sunglasses as the pre-determined
high-authority person. Following the current mainstream research on backdoor attacks, we focus on
image classification tasks as the entry point for studying backdoor defenses.

Recently, a branch of in-training defenses has focused on training benign models directly from
poisoned data, which is particularly significant when developing our own models using untrustworthy
datasets. They primarily adhere to a data-splitting paradigm that differentiates between benign
and poisoned samples, and disrupts the association between trigger patterns and target labels to
mitigate backdoor behaviors. To name a few, Anti-backdoor learning (ABL) (Li et al., 2021a)
isolates poisoned samples through local gradient ascent and unlearns the underlying malicious pattern.
Decoupling-based defense (DBD) (Huang et al., 2022) utilizes self-supervised learning for a secure
feature extractor to identify unconfident samples as malicious. Adaptive splitting-based defense
(ASD) (Gao et al., 2023) further introduces meta-split to identify clean hard samples.
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Figure 1: Illustration of data-poisoning-based backdoor attacks.

Intuitively, clean subsets play a vital role in various backdoor defenses (Zhu et al., 2024; Liu et al.,
2018; Wu & Wang, 2021; Zeng et al., 2021; Li et al., 2023a), as they could provide insight into
the decision-making features of clean samples (e.g., as long as we know the facial characteristics
of people, we can accurately recognize them without being misled by accessories). In-training
defenses rely on clean seed samples for better performance (Gao et al., 2023). However, recollecting
a clean subset can be extremely expensive when the training set has a large number of classes
(e.g., collecting new benign facial records for millions of people within the facial database), and
manually checking a large training set to select a clean subset is time-consuming and risky for privacy
leaks. In addition, the potential presence of stealthy malicious ’clean sets’ can further undermine the
effectiveness of these defenses, as triggers like sunglasses and image warping are hard to identify.
While certain in-training defenses seek to work without clean subsets, they may involve complicated
feature extraction and analysis, suffering from significant training costs (Huang et al., 2022) and
compromised performance (Li et al., 2021a; Chen et al., 2022a; Tran et al., 2018; Weber et al., 2023;
Liu et al., 2023).

In this work, we focus on improving the state-of-the-art in-training defense under the challenging
non-clean-seed-involved scenario. We identify the insufficient utilization of the easier-to-obtain
target labels and clean hard samples of existing methods, and propose a Bi-perspective Splitting
Defense (BSD) that splits the dataset using both semantic and loss statistics characteristics of poisoned
samples.

Specifically, BSD first initialize the clean and poison pools through open set recognition-based
splitting (OSS) and altruistic model-based data splitting (ALS). OSS reframes the identification of
poisoned samples within the target class as an open-set recognition problem. Non-target classes are
designated as known-known classes (KKCs) to warm up the main model, thus true clean samples
within the target class are distinguished as an unknown-unknown class (UUC) because their semantic
information is unseen to the model. ALS utilizes an altruistic model to reveal reliable clean hard
samples with high loss difference to the main model. Since the above two mechanisms complement
each other by employing different judgment perspectives, the intersection of their results provides a
robust initialization.

Subsequently, to prevent potential underfitting of certain classes (i.e., clean pools do not encompass
all the classes) and to capture evasive poisoned samples (i.e., clean pools include some poisoned
samples), BSD adopts class completion and selective dropping strategies during subsequent pool
updates, ameliorating the loss-perspective-only splitting result.

In summary, our main contributions are:

• We investigate the realistic and challenging task of training time backdoor defense without
clean seed samples, and identify two main breakthrough points of the problem.

• We propose two novel pool initialization mechanisms in BSD, namely ALS and OSS. They
leverage the loss statistics of clean hard samples based on altruistic models and reframe the
splitting as an open set recognition task for better initialization respectively, accomplishing
effective backdoor defense free from the clean seed samples.

• We introduce two new pool update strategies based on the altruistic model to address the
potential collapse. Class completion and selective dropping deal with the missing classes
and evaded poison samples respectively.

• Extensive experiments demonstrate that BSD has an average improvement in Defense
Effectiveness Rating (DER) by 16.29% compared to 5 state-of-the-art defenses.
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2 RELATED WORKS

Currently, the countermeasures for backdoor attacks fall into two main categories:

Post-training backdoor defenses focus on repairing a backdoored model with a set of locally
prepared clean training sets. Trigger inversion (Sur et al., 2023) is a popular method to reconstruct
the trigger pattern and then unlearn it to renovate the model. In addition to trigger-synthesis defenses,
pruning, distillation, finetuning, and model connectivity analysis (Liu et al., 2018; Wu & Wang, 2021;
Li et al., 2023a) are widely applied in the realm of backdoor defense as well. Despite the promising
results, most post-training methods assume using an extra clean set for defense, which introduces
potential limitations.

In-training backdoor defenses aim at training a benign model from the polluted dataset, which holds
considerable practical significance (Chen et al., 2022a; Tran et al., 2018; Weber et al., 2023; Liu et al.,
2023). Following an intuitive idea of splitting the dataset into clean and poison pools and treating them
separately, several representative training-time defenses, namely Anti-backdoor learning (ABL) (Li
et al., 2021a), Decoupled-based defense (DBD) (Huang et al., 2022), and Adaptive splitting-based
defense (ASD) (Gao et al., 2023), have garnered attention. Anti-backdoor learning (ABL) (Li et al.,
2021a) isolates a small ratio of poisoned samples through local gradient ascent and unlearns these
samples to neutralize the effect of remaining poisoned samples in the clean pool. Decoupling-based
defense (DBD) (Huang et al., 2022) utilizes self-supervised learning to acquire a benign feature
extractor and uses a clean subset to initialize the classifier head. Then, it separates the suspicious
according to the loss magnitude and breaks the link between the trigger and the target label through
semi-supervised learning. Adaptive splitting-based defense (ASD) (Gao et al., 2023) further improves
the initialization based on clean seed samples and introduces meta-split to identify clean hard samples,
achieving higher clean accuracy (CA). Besides these defenses, adopting differential-privacy SGD (Du
et al., 2019) and strong data augmentation (Borgnia et al., 2021) can also defend against backdoor
attacks to some degree. Our BSD belongs to the data-splitting in-training defenses and makes further
adaptions.

3 PRELIMINARIES

3.1 THREAT MODEL

Following Gao et al. (2023), We adopt the poisoning-based threat model used in previous works
(Gu et al., 2017; Chen et al., 2017; Turner et al., 2018), where the training dataset contains a set of
pre-crafted poisoned samples provided by attackers. As a typical setting of training-time defenses in
previous works (Gao et al., 2023; Borgnia et al., 2021; Du et al., 2019; Huang et al., 2022; Li et al.,
2021a), we assume that defenders have control over the training process.

3.2 PROBLEM FORMULATION

The malicious training set from the adversaries can be denoted as D = Dc ∪Dp, where Dc is a subset
of the raw benign dataset Draw = {(xi, yi)}Ni=1. Each xi ∈ X ⊂ RC×W×H . The ground-truth
labels yi ∈ Y = {0, 1, . . . , C − 1}, with C being the number of categories. Given the poisoning rate
ρ, Dc has (1− ρ)N samples. The poisoned set Dp = {(G(x), T (y)) | (x, y) ∈ Draw\Dc}, where
G : X → X , T : Y → Y are the attack-specific poisoned image generator and label modifier. As an
example, G(x) = m⊙ x+ (1−m)⊙ t, T (x) = yt, where the mask m ∈ {0, 1}C×W×H , t ∈ X is
the trigger pattern, and yt is the target label. We call the {(x, y)|y ̸= yt, (x, y) ∈ D} as non-target
samples Dnt, and {(x, y)|y = yt, (x, y) ∈ D} as target samples Dt, {(x, y)|y = yt, (x, y) ∈ Db} as
clean target samples Dct.

Following the natural idea to exclude the poison samples from the training set, defenders can divide
D into a clean pool Dc̃ and a poison pool Dp̃. To prevent the model from being backdoored while
preserving the performance on benign samples, the core is breaking the link between triggers and
target labels, and making the best of the poison pool. We follow DBD and ASD to use semi-supervised
learning (Berthelot et al., 2019b) that only leverages visual features of samples in the poison pool:

Lsemi =
∑

(x,y)∈Dc̃

Ls (x, y; θ) + λ
∑

x∈Dc̃\Dp̃

Lu (x; θ) , (1)
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Figure 2: An overview of our BSD. BSD consists of two main initialize mechanisms, i.e., open set
recognition-based splitting (OSS) and altruistic model-based splitting (ALS). BSD use the intersection
of Dcoss and Dcals

from OSS and ALS as the clean pool initialization. In the next two stages of the
subsequent training, BSD dynamically updates the clean and poison pools based on a loss-guided
split strategy based on the loss discrepancy of the main model fθ and the altruistic model gφ. The
pseudo-code of BSD is provided in Appendix B.

where θ denote the weights of the main model f(x; θ) (fθ for simplicity), Ls is a common supervised
loss function such as cross-entropy loss, the unsupervised Lu is applied on the suspicious polluted set
Dc̃\Dp̃, with a trade-off coefficient λ. Appendix C.6 provides a detailed definition of semi-supervised
learning.

The main task under this framework lies in finding an appropriate indicator that helps maximize the
difference between benign and poisoned samples, thus returning a clean pool with high precision and
a poison pool with high recall, i.e.:

min
Dc̃

|Dp ∩ Dc̃| s.t. Dc̃ ⊂ D, max
Dp̃

|Dp ∩ Dp̃| s.t. Dp̃ ⊂ D. (2)

4 PROPOSED METHOD

Our BSD has three main components as illustrated in Figure 2. As we assume no extra clean subset
access, pool initialization is vital to the defense. To ensure a secure initialization, open set recognition-
based splitting (OSS) and altruistic model-based splitting (ALS) focus on the perspectives of image
semantic information and loss statistics respectively. Based on the altruistic model introduced in
ALS, we further improve the pool update with class completion and selective dropping strategy.

(1) OSS is motivated by the similarity between the open-set recognition task and poison sample
detection in backdoor defense. As the main model is warmed up using Dnt, poison samples are
unknown-known-classes (UKCs) whose semantic information is included in Dnt, thus having smaller
minimum distances to feature clusters of known-known-classes (KKCs). Clean target samples fall
into a new cluster and have larger minimum distances. Detailed description in Section 4.1.1.

(2) ALS highlights the clean hard samples with high loss values in the altruistic model, which could
filter out the overfitted poison samples. A detailed description of ALS is provided in Section 4.1.2.

(3) Subsequent training of BSD follow a loss-guided split, which uses the loss difference of a sample
between the main and altruistic model to distinguish samples. BSD compensates the less selected
categories and drops the evaded poison samples using class completion and selective dropping
strategies respectively. A detailed description of subsequent training is provided in Section 4.2.

4
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4.1 THE INITIALIZATION OF CLEAN AND POISON POOLS

The initialization of the clean and poison pool is then obtained by intersecting the consensual clean
samples in ALS and OSS:

Dc̃ = Dcals
∩ Dcoss , Dp̃ = Dpals

∪ Dposs
, (3)

where the Dcals
and Dpals

is the split result of ALS, Dcoss and Dposs is the split result of OSS. The
following two subsections will explain the two initialization mechanisms.

4.1.1 OPENSET RECOGNITION BASED SPLITING

Openset recognition (OSR) is a task that aims to identify whether a test sample belongs to one
of the semantic classes in a classifier’s training set. In the context of OSR, identifying unknown-
known classes (UKCs) and unknown-unknown classes (UUCs) are two major tasks. Here UKCs
refer to classes for which no samples are available in training, but their side information (such as
semantic/attribute information, etc.) can be obtained during training. UUCs refer to classes that do
not have any relevant information during the training process: not only have they not been seen, but
there is also no side information during the training process.

We notice that distinguishing the clean target samples and poison samples is related to the UKCs
and UUCs identification in OSR. The poison samples are sort of UKCs because the triggers do not
corrupt their semantic information. Hence, we set out to cast the clean target samples to UUCs, which
can reframe the splitting within the target class into an OSR problem.

To make the poison samples and clean target samples belong to the UKCs and UUCs respectively,
the known-known classes (KKCs, i.e. the training set) should contain the semantic classes of UKCs
(Dp), while information of the UUCs (Dct) is not included. Therefore, we construct the KKCs with
the non-target classes (Dnt) which satisfies both requirements above. Thus, we can train the main
model fθ on Dnt for its warm-up, i.e., θ = argminLsemi(Dnt; fθ).

Now the local detection of poisoned samples in Dt has been reframed as an open set recognition
problem. The clean pool identified by OSS can be acquired by adding the approximated UUCs (Dc̃t)
to the KKCs (Dnt = {(x, y)|y ̸= yt, (x, y) ∈ D}):

Dcoss = Dc̃t ∪ Dnt, Dposs
= D\Dcoss . (4)

To approximate the Dc̃t in the reframed problem, it’s ideal to have the known-unknown classes
(KUCs), which again indicates the need for clean seed samples. Fortunately, there have been a lot of
previous studies on solving this problem without KUCs. We approximate Dc̃t by:

Dc̃t =
{
(x, y) | S(x) ≥ Percentile

(
DS

t , 1− β
)}

, (5)

where β is a fixed ratio of samples in Dt to be added to Dnt, DS
t = {S (x) | (x, y) ∈ Dt} is the

mapped D using S . Motivated by OpenMAX (Bendale & Boult, 2016), we take the feature distance
to KKCs as a metric to measure the likelihood of a sample within Dt to be a true clean sample:

S(x) = min
i={0,1,...,C−1}\ỹt

{||fe (x)− µi||2} , (6)

where fe is the feature extractor of f , µi =
1
Ni

∑
fe(xi) it the cluster center of each KKC.

Approximating yt. It should be noted that it requires yt to constructDt andDnt. Although the target la-
bel yt used in the above process is unknown to the defender, it’s easy to approximate. There exist vari-
ous alternative methods to detect the yt (Gao et al., 2024; Zhu et al., 2024), we here adopt a lightweight
solution by just slightly modifying the warm-up of the altruistic model. We add local gradient as-
cent (Li et al., 2021a) and a local voting process: ỹt = argmaxc |{(x, y) | y = c ∧ (x, y) ∈ Dlga}| ,
whereDlga denotes the isolated 1% samples having the smallest loss values after local gradient ascent
training on the altruistic model. In common scenarios where the dataset is a large but well-known
benchmark dataset, the number of samples in each class is known to the public, yt can be just
approximated through label statistics. Appendix B provides a detailed description of this process.
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4.1.2 ALTRUISTIC MODEL BASED SPLITTING

In our BSD, we introduce an altruistic model g(x;φ) (gφ for simplicity), which is an independent
model having the same structure as the main model. It serves as a pathfinder of the main model by
exposing itself to the entire malicious training set, i.e., φ = argminLce(D, gφ), where Lce stands for
the cross-entropy loss.

We calculate the rest unsolved part in equation 3, i.e., Dcals
and Dpals

following the equation below:

Dcals
=

{
(x, y) |L(x, y, φ)≥Percentile

(
DL, 1− α

)}
, Dpals

= D\Dcals
, (7)

where L is the symmetric cross-entropy loss (Wang et al., 2019), DL = {L (x, y, φ) | (x, y) ∈ D} is
loss values using gφ of the training set, Percentile returns the α-percentile in DL, α is the ratio of
samples split to the clean pool.

Note that although here the altruistic model is just used for the pool initialization, it also plays a
significant role in the subsequent training.

4.2 SUBSEQUENT TRAINING

BSD adaptively updates the pools according to the loss discrepancy of fθ and gφ in the subsequent
training, ensuring balanced and robust learning

Class completion strategy. Despite securing good pool initialization without involving the clean seed
samples, the clean pools may have an unbalanced distribution of classes, hampering the model’s
performance on clean accuracy. This primarily stems from the imbalanced learning status of categories
and the cyclic positive feedback effect of loss-guided methods. We further revise the splitting strategy
of clean samples, adding samples in the class with the fewest samples:

Dc̃1 =
{
(x, y) |I(x, y)≥Percentile

(
DI , 1−α

)
∨
{
y = i,I (x, y)≥Percentile

(
DI

i , 1−n′
i/Ni

)}}
,

Dp̃1 = D\Dc̃1 ,
(8)

where I(x, y) is an loss based indicator, DI = {I (x, y) | (x, y) ∈ D} is the mapped D using I.
DI

i = {I (x, y) | y = i (x, y) ∈ D}, Ni = |DI
i |, n′

i = min{αni, NsecondFew}, NsecondFew is
number of samples in the second-fewest predicted class.

We do subtraction between the loss of samples on the main and altruistic models, as the poison
samples should also have high loss values on the unaffected main model and low loss values on the
backdoored altruistic model. Thus I is defined as:

I (x, y) = Lsce (x, y, φ)− Lsce (x, y, θ) , (9)

where Lsce denotes the symmetric cross-entropy loss (Wang et al., 2019).

Selective dropping strategy. Approaching the end of the training, we drop the samples that are
predicted to be ỹt by both models:

Dc̃2 = Dc̃1\ {(x, y) | (f (x) = ỹt ) ∧ (g (x) = ỹt )} , Dp̃2 = D\Dc̃2 , (10)

There exist two probable situations for a sample that will be dropped: 1) the sample is poisoned; 2)
the sample is a clean sample with the original label being ỹt. For situation 1, it is the correct decision
to drop poisoned samples; for situation 2, the agreement between the two models indicates the sample
is already well-fitted by both models and is less important. As a result, the dropping of these samples
generally helps improve model performance.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and DNN models. We adopt three benchmark datasets for the evaluation of the back-
door defenses, namely, CIFAR-10 (Krizhevsky et al., 2009), GTSRB (Stallkamp et al., 2012),
and Imagenet (Deng et al., 2009). The results are conducted with ResNet-18 (He et al., 2016)
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and MobileNet-v2 (Sandler et al., 2018) as the backbone models for their representativeness and
widespread use.

Attack Baselines. We implement seven representative attacks, i.e., BadNets (Gu et al., 2017),
Blended (Chen et al., 2017), WaNet (Nguyen & Tran, 2021), Label-Consistent(LC) (Turner et al.,
2019), ReFool (Liu et al., 2020), SIG (Barni et al., 2019), and Narcissus (Zeng et al., 2023b). All these
attacks are implemented based on open-source codebases of ASD (Gao et al., 2023), DBD (Huang
et al., 2022), Narcissus (Zeng et al., 2023b), backdoorBench (Wu et al., 2022), and BackdoorBox (Li
et al., 2023b). The first five attacks follow the same setting in settings in (Gao et al., 2023) unless
otherwise specified, SIG and Narcissus follow the setting with Li et al. (2021a) and Zeng et al.
(2023b) respectively, while the poisoning rate ρ and target label yt are the same as LC. A detailed
description of the attack implementations is provided in Appendix C.3.

Defense Baselines. We compare our proposed BSD with five existing backdoor defenses, namely Fine-
pruning (FP) (Liu et al., 2018), Neural Attention Distillation (NAD) (Li et al., 2021b), Anti-Backdoor-
Learning (ABL) (Li et al., 2021a), Decoupling-based Backdoor Defense (DBD) (Huang et al., 2022),
and Adaptive Splitting-based backdoor Defense (ASD) (Gao et al., 2023). The detailed settings for
all defense baselines are as suggested in ASD. For our BSD, we adopt the MixMatch (Berthelot
et al., 2019b) semi-supervised training framework for the main model, following Decoupling-based
Defense (DBD) and Adaptive Splitting-based Defense (ASD). The altruistic model undergoes a
warm-up phase with 25 epochs, utilizing the Adam optimizer, cross entropy loss, with a learning rate
of 0.001. The default warm-up epochs for the main model in OSS are set to 20 (T1 = 20), with a
default fixed β of 0.2. Class completion training spans 60 epochs (T2 = 90), and selective dropping
training spans 30 epochs (T3 = 120). The clean pool ratio α follows a sinusoidal growth curve
during class rebalance training, starts at 0.2, and reaches an upper limit of 0.6 at the end of the class
completion stage, after which it remains fixed. Additional details are available in Appendix C.4.

Evaluation metrics. We assess the effectiveness of backdoor defenses using two widely used metrics:
Clean Accuracy (CA) and the attack success rate (ASR). To be specific, the CA is the accuracy of
clean data, the ASR is defined as the proportion of poisoned samples that are misclassified as the
target class by the model. In the context of backdoor defense, superior performance is characterized
by higher CA and lower ASR. To comprehensively evaluate the performance of defense methods, we
include another metric named Defense Effectiveness Rating (DER) (Zhu et al., 2023a), higher DER
indicate better defense performance. The detailed definition of DER is provided in Appendix C.5.

5.2 MAIN RESULTS

We present a summary of CAs, ASRs, and DERs achieved by five backdoor defenses against three
most representative backdoor attacks on three benchmark datasets in Table 11. As illustrated in
Table 1, our BSD has the best average DERs on each dataset, being capable of maintaining high CAs
without compromising the robustness indicated by ASRs. In comparison with post-training defenses,
i.e., FP and NAD, which require thousands of clean seed samples, BSD consistently outperforms
them with lower ASRs when OSS is used as the alternative initialization. Additionally, the CAs of
BSD surpass those of FP and NAD. Concerning recently proposed training-time defenses, the BSD
has best result in general. ABL, which assumes no presence of clean subsets, has relatively close
performance under CIFAR-10 & BadNets, GTSRB & BadNets, and GTSRB & Blend. Nevertheless,
the CA under CIFAR-10 & WaNet indicates a class underfitting collapse (CAs on certain classes are
close to 0%) and its performance is inferior to that of BSD in general. For another representative
training-time defense DBD, although it has a slight edge in ASRs on CIFAR-10, its average ASRs
and CAs fall behind our BSD. ASD, which assumes an extra small clean seed set is characterized by
consistent high CAs and stable ASRs. However, BSD still surpasses it in general. In summary, our
BSD performance remains competitive and, in some cases, surpasses that of state-of-the-art methods.

1Since we strictly follow the same settings, we reference the baseline results for CIFAR-10 and GTSRB from
ASD (Gao et al., 2023). However, the exact 30 randomly selected classes from the Imagenet subset used are
unknown to us, so we ran all the baselines on Imagenet using our own randomly chosen 30 classes.
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Table 1: The clean accuracy (CA%), attack success rate (ASR%), and defense effective rating
(DER%) of 5 baseline backdoor defense methods and our BSD against 3 representative backdoor
attacks on 3 benchmark datasets. The baselines consist of two post-training defenses (FP, NAD) and
three state-of-the-art training-time defenses (ABL, DBD, ASD). ’Non’ stands for no defense. The
best and second best results are in bold and underlined.

DATASET ATTACK METRIC NON FP NAD ABL DBD ASD BSD(OURS)

CIFAR-10

BADNET
CA 94.9 93.9 88.2 93.8 92.3 93.4 95.1

ASR 100.0 1.8 4.6 1.1 0.8 1.2 0.9
DER - 98.6 94.4 98.9 98.3 98.7 99.6

BLENDED
CA 94.1 92.9 85.8 91.9 91.7 93.7 94.9

ASR 98.3 77.1 3.4 1.6 0.7 1.6 0.8
DER - 60.0 93.3 97.3 97.6 98.2 98.8

WANET
CA 93.6 90.4 71.3 84.1 91.4 93.1 94.5

ASR 99.9 98.6 6.7 2.2 0.0 1.7 0.8
DER - 49.1 85.5 94.1 98.9 98.9 99.6

AVERAGE DER - 69.2 91.0 96.8 98.3 98.6 99.3

GTSRB

BADNET
CA 97.6 84.2 97.1 97.1 91.4 96.7 97.6

ASR 100.0 0.0 0.2 0.0 0.0 0.0 0.0
DER - 93.3 99.7 99.8 96.9 99.6 100.0

BLENDED
CA 97.2 91.4 93.3 97.1 91.5 97.1 96.9

ASR 99.4 68.1 62.4 0.5 99.9 0.3 0.0
DER - 62.8 66.6 99.4 46.9 99.5 99.6

WANET
CA 97.2 92.5 96.5 97.0 89.6 97.2 97.2

ASR 100.0 21.4 47.1 0.4 0.0 0.3 0.2
DER - 87.0 76.1 99.7 96.2 99.9 99.9

AVERAGE DER - 81.0 80.8 99.6 80.0 99.6 99.8

IMAGENET

BADNET
CA 75.7 71.4 51.7 68.1 76.1 81.1 78.3

ASR 99.5 2.6 2.5 7.6 1.2 100.0 1.1
DER - 96.3 86.5 92.2 99.2 50.0 99.2

BLENDED
CA 74.5 73.1 42.8 61.9 77.9 79.7 80.1

ASR 97.7 81.9 0.2 100.0 35.0 51.0 0.2
DER - 57.2 82.9 42.6 81.4 73.4 98.8

WANET
CA 77.1 76.9 74.0 74.9 77.2 78.4 78.7

ASR 81.0 0.4 1.3 1.1 5.2 14.0 0.0
DER - 90.2 88.3 88.9 87.9 83.5 90.5

AVERAGE DER - 81.2 85.9 74.5 89.5 69.0 96.2

5.3 RESISTANCE TO MORE ATTACKS

In addition to the representative attacks presented in the main results, we investigated four more
attacks that may be threatening to existing defenses. They consist of one invisible attack, ReFool (Liu
et al., 2020), and three clean-label attacks, LC (Turner et al., 2019), SIG (Barni et al., 2019), and
Narcissus (Zeng et al., 2023b). ReFool uses a physical yet stealthy reflection trigger, which makes
the backdoor hard to detect. LC, SIG, and Narcissus belong to the clean-label attack, which is a type
of tricky backdoor attack that does not change the label of samples, making most of the defenses
ineffective (where DBD has the most significant performance degradation). For our BSD, clean-label
attacks are less threatening. While the OSS mechanism can be evaded as the semantic information is
Dt is consistent. Fortunately, ALS still functions effectively with its loss-perspective splitting in this
scenario, compensating for the limitations of OSS. As shown in Table 2, BSD is not evaded by any
of the attacks and achieves the best average DER. Additional details of attack implementation are
available in Appendix C.3.

5.4 ROBUSTNESS TO DIFFERENT MODEL STRUCTURES

BSD makes no assumptions about model structures, ensuring both compatibility and versatility. To
validate this, we evaluated the defense performance of BSD using another widely adopted network,
MobileNet (Sandler et al., 2018). As shown in Table 3, BSD consistently outperforms the baseline
method with MobileNet-v2 as the backbone.

5.5 ROBUSTNESS TO DIFFERENT POISONING RATES

Despite the default poisoning rate ρ = 0.05 being a reasonable setting that is widely adopted in
either backdoor attack or backdoor defense research (Huang et al., 2022; Gao et al., 2023; Min et al.,
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Table 2: The clean accuracy (CA%), attack success rate (ASR%), and defense effective rating
(DER%) of 5 baseline backdoor defense methods and our BSD against 4 threatening backdoor attacks
on CIFAR-10. The best and second best results are in bold and underlined.

ATTACK METRIC NON FP NAD ABL DBD ASD BSD(OURS)

LC
CA 94.4 87.1 85.9 80.2 83.2 93.9 92.4

ASR 99.9 24.4 50.5 1.6 98.1 73.2 1.2
DER - 84.1 70.5 92.1 45.3 63.1 98.4

SIG
CA 95.0 87.1 85.8 67.6 80.1 93.5 93.8

ASR 95.2 60.8 83.0 5.1 99.9 96.5 0.0
DER - 63.3 51.5 81.4 42.6 49.3 97.0

REFOOL
CA 95.2 86.5 85.6 76.3 90.8 86.8 94.8

ASR 99.0 23.0 42.5 82.0 2.3 0.4 0.5
DER - 83.6 73.4 49.0 96.1 95.1 99.0

NARCISSUS
CA 95.2 87.2 86.5 79.3 87.3 93.9 94.3

ASR 99.5 63.4 81.0 7.1 99.5 0.0 0.0
DER - 64.0 54.8 88.2 46.0 99.1 99.3

AVERAGE DER - 73.8 62.6 77.7 57.5 76.6 98.4

Table 3: The clean accuracy (CA%), attack success rate (ASR%), and defense effectiveness rating
(DER%) on CIFAR-10 of different defenses using mobilenet v2 (Sandler et al., 2018) as the backbone.

ATTACK METRIC NON FP NAD ABL DBD ASD BSD(OURS)

BADNET
CA 94.3 77.9 78.5 79.7 65.5 93.2 91.1

ASR 100.0 8.3 11.7 13.6 0.0 100.0 0.4
DER - 87.7 86.2 85.9 85.6 49.4 98.2

BLENDED
CA 94.0 75.9 76.0 67.3 69.0 87.1 90.0

ASR 99.3 30.8 46.0 2.6 0.0 99.0 0.2
DER - 75.2 67.7 85.1 87.2 46.7 97.6

WANET
CA 94.0 82.2 81.5 50.9 58.4 83.0 90.1

ASR 95.7 2.4 3.2 0.5 12.4 97.7 0.6
DER - 90.7 90.0 76.1 73.9 44.5 95.6

AVERAGE DER - 84.5 81.3 82.3 82.2 46.9 97.1

(a) ρ = 0.01 (b) ρ = 0.05 (c) ρ = 0.10 (d) ρ = 0.20

Stable and low ASR!

Higher CA!Higher CA!

Faster 
convergence!

Figure 3: The performance of BSD in comparison with ASD (Gao et al., 2023) under different
poisoning rates. The experiment is conducted on CIFAR-10 against three attacks.

2024; Shi et al., 2023), it’s crucial to verify the robustness of our BSD under different poisoning rates.
As illustrated in Figure 3, although ASD performs well with respect to ASRs as well, the CAs of
ASD are conspicuously lower under non-default settings. However, our BSD consistently achieves
close-to-zero ASRs and satisfying CAs, emphasizing its robustness to different poisoning rates.

5.6 TRAINING COST

Our BSD incorporates an altruistic model to assist with pool initialization and updates, which may
raise concerns about increased training costs. However, as shown in Table 4, the training cost of BSD
is comparable to, or even lower than, that of ASD (Gao et al., 2023). This is due to three key factors:
1) The altruistic model is updated through standard training rather than MixMatch, significantly
reducing time. 2) The altruistic model is only updated before stage 3, and its training primarily runs
in parallel with the main model. 3) An imbalanced pool size, as seen in the early stages of ASD,
often triggers frequent dataloader updates in MixMatch, whereas the clean pool size in BSD is more
balanced and suitable during training.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Training cost (hours) of ASD, DBD, and BSD on CIFAR-10, GTSRB, and Imagenet.

METHOD CIFAR-10 GTSRB IMAGENET AVERAGE

DBD 11.96 10.09 53.21 25.09
ASD 4.81 2.55 12.09 6.48

BSD(OURS) 3.15 2.84 9.20 5.06

5.7 ABLATION STUDIES

Effectiveness of different stages. The major components of BSD are divided into pool initialization
and pool updates. We investigated the significance of each component on CIFAR-10 to demonstrate
their necessity, as shown in Table 5. OSS and ALS initialization are critical for avoiding backdoor
overfitting (ASR); class completion update helps prevent class underfitting (CA); and selective
dropping update acts as a final step to further reduce ASR, thereby achieving a higher DER.

Table 5: The ablation study on the strategies involved in BSD under CIFAR-10. ’Default’ represents
the result using all the proposed mechanisms, ’w/o Init’ represents the results using random initial-
ization. ’w/o Completion’ represents disabling class completion in both stages 2 and 3. ’w/o Drop’
represents disabling selective drop in stage 3.

SETTING↓ BADNET BLENDED WANET
CA ASR DER CA ASR DER CA ASR DER

DEFAULT 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6
W/O INIT 94.7 100.0 49.9 95.0 99.2 49.6 93.6 91.5 54.2

W/O COMPLETION 90.7 0.0 97.9 86.8 0 95.5 89.8 0.2 98.0
W/O DROP 94.6 1.1 99.3 94.2 1.1 98.6 94.5 1.9 99.0

Influence of parameters. We here present the influence of the main parameter, i.e., the parameters α
& β for pool size control. As revealed in Table 6, the performance is good near the default setting,
while an extreme setting will lead to degradation on DER.

Table 6: Performance of BSD under different α & β on CIFAR-10. The results that have more than
0.5% DER decrease are marked using ↓.

SETTING↓ BADNET BLENDED WANET
CA ASR DER CA ASR DER CA ASR DER

DEFAULT 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6

α = 0.3, β = 0.2 94.9 1.2 99.4 94.8 0.6 98.9 94.2 1.8 99.1↓
α = 0.4, β = 0.2 95.0 1.2 99.4 94.7 0.9 98.7 94.4 1.4 99.3
α = 0.5, β = 0.2 95.0 1.7 99.2 94.2 0.8 98.7 94.7 1.4 99.2
α = 0.7, β = 0.2 95.2 0.8 99.6 95.1 0.5 98.9 93.0 0.1 99.6
α = 0.8, β = 0.2 95.0 1.1 99.5 92.8 0.5 98.2↓ 91.7 1.0 98.5↓
α = 0.9, β = 0.2 93.6 0.7 99.0 ↓ 90.3 0.2 97.2↓ 90.0 0.9 97.7↓

α = 0.6, β = 0.1 94.8 0.7 99.6 90.9 0.5 97.3↓ 91.6 0.6 98.7↓
α = 0.6, β = 0.3 94.9 1.2 99.4 94.7 0.8 98.8 94.5 0.8 99.6
α = 0.6, β = 0.5 94.7 1.4 99.2 94.9 1.6 98.4 94.3 2.3 98.8↓
α = 0.7, β = 0.7 94.4 1.7 98.9↓ 94.3 3.7 97.3↓ 94.0 32.8 83.6↓

5.8 OTHER EXPERIMENTS

Additional experimental results, including visualizations, extended ablation studies, potential adaptive
attacks, performance in the absence of attacks, the OSS distance metric, and more, are provided in
Appendix E.

6 CONCLUSION

In conclusion, our proposed BSD effectively mitigates backdoor attacks through bi-perspective
splitting mechanisms, without relying on on extra clean data. By leveraging OSS and ALS for robust
dataset splitting, combined with class completion and selective dropping strategies, BSD achieves
superior backdoor defense performance. Extensive experiments confirm BSD’s robustness under
different attack/defense settings.
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A EXTENDED DISCUSSIONS

A.1 EXTENDED RELATED WORKS

With the advance of clean subset extraction and backdoor detection, many works tries to split clean
subset from poison training sets. Zeng et al. (2023a) proposed detecting poisoned data by identifying
shifts in data distributions, which results in high prediction loss when training on the clean portion
of a poisoned dataset and testing on the corrupted portion. They solve a relaxed of the splitting
optimization problem with the help of a weight-assigning network. Although promising empirical
results were presented, the proposed META-SIFT only guarantees a relatively small subset ((Zeng
et al., 2023a), page 10, Figure 5). As a result, META-SIFT still relies on effective downstream
defenses, such as NAD and ASD, included in our baselines, while also increasing the hyperparameter
search space. Pan et al. (2023) are motivated by the same distributional shift phenomenon and
proposed an effective splitting algorithm, ASSET. However, they assume that the defender has an
extra set of clean samples (named ”base set” in (Pan et al., 2023)), which doesn’t suit the background
of our paper, where no extra clean set is available. Plus, ASSET is faced with the same problem that
requires effective downstream defenses to conduct the defense.

In general, these works indeed provide valuable insights into the poisoned data splitting problem
and could inspire our future research. However, they are faced with two major problems. 1) Cannot
guarantee a 100% correct split that can be directly used for training; 2) Rely on an extra clean set
which violates the constraints of our scenario.

A.2 ADDITIONAL BASELINES

We added two recent defense, VaB (Zhu et al., 2023b) and D-ST/D-BR (Chen et al., 2022b). The
additional baselines are implemented based on the official implementation. We use CIFAR-10 as the
dataset. Since the label-consistent attack is not consistently implemented, we use SIG as a clean label
attack here. As shown in Table 7, VaB has the most competitive result against poison label attacks,
but struggles to defend against SIG.

Table 7: The clean accuracy (CA%), attack success rate (ASR%), defense effective rating (DER%)
and time cost (hours) of 2 additional backdoor defense methods and our BSD against 4 threatening
backdoor attacks on CIFAR-10. The best and second best results are in bold and underlined.

METHOD
BADNETS BLENDED WANET SIG AVG TIME

CA ASR DER CA ASR DER CA ASR DER CA ASR DER DER COST

VAB 94.0 1.3 98.9 94.2 1.1 98.6 93.6 1.7 99.1 94.0 66.6 63.8 90.1 5.5
D-ST 66.8 5.7 83.1 65.0 7.1 81.1 60.8 15.2 76.0 87.9 95.1 46.5 71.6 4.3
D-BR 87.5 0.8 95.9 83.0 80.7 53.2 16.9 14.6 54.3 85.7 0.1 92.9 74.1 -

BSD(OURS) 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6 93.8 0.0 97.0 98.7 3.2

A.3 DISCUSSION ON RESISTANCE TO CLEAN-LABEL ATTACK

The primary reason BSD can effectively resist clean-label backdoor attacks lies in how the MixMatch
algorithm processes unlabeled data. Specifically, MixMatch applies a mixup operation that visually
weakens the trigger and prevents it from being directly associated with the target label.

To better understand this phenomenon, we analyzed related semi-supervised defense methods like
ASD. ASD report good performance against label-consistent attacks. In successful cases of ASD,
poison samples were correctly classified into the poison pool, while failures often occurred when
poison samples remained in the clean pool (Table 8).

Table 8: Number of poison samples in the clean pool of failed runs of ASD (CIFAR-10, LC attack,
poisoning ratio 2.5%). The number of poison sample in clean pool exceeds 500 in average (poisoning
ratio 2% in clean pool), which is the main reason that it fails to resist LC attack.

EPOCH→ 111 112 113 114 115 116 117 118 119 120 MEAN STD

NUMOFPOISON(RUN 1) 405 567 683 321 695 280 303 595 391 910 515 208.4
NUMOFPOISON(RUN 2) 936 466 838 544 658 146 435 370 530 345 526.8 234.9
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This led us to hypothesize that the key factor influencing clean-label attack defense is still the accurate
classification of poison samples into the poison pool. Further investigation revealed that the mixup
operation in MixMatch plays a critical role. MixMatch not only removes original labels but also
mixes multiple inputs on the image level, effectively weakening the visual impact of the trigger. We
visiualzed the mixed samples together with the argmaxed mixed label in Figure 4 to better present the
mixup operation.

Figure 4: Visualization of the mixup operation in MixMatch. We take a random batch at the end of
training of our BSD against LC attack on CIFAR-10. Each group of three pictures has labeled data
on the left (original label), unlabeled data in the middle (predicted label by the model), and mixed
data on the right (mixed label).

Because of α = 0.75 in the default setting of MixMatch, λ′ has a mathematical expectation of
approximately 0.78, the mixed inputs diminish the prominence of the trigger in xu. We visiualzed
the mixed samples together with to better present the mixup operation. Furthermore, we follow ASD
to set a 5 times smaller λu value (15 vs. MixMatch’s recommended 75), reducing the influence of
unlabeled data and further mitigating clean-label attacks.

Finally, to verify this hypothesis, we manually enforced a secure clean-poison split where no poison
samples were included in the clean pool. Under this condition, MixMatch effectively nullified the
impact of clean-label attacks, as shown in Table 9.

Table 9: Train with MixMatch and secured clean pool against clean label attacks.

METHOD
LC-CIFAR LC-GTSRB SIG-CIFAR NARCISSUS CIFAR

CA ASR DER CA ASR DER CA ASR DER CA ASR DER

NO DEFENSE 94.4 99.9 - 97.3 100.0 - 95.0 95.2 - 95.2 99.5 -
MIXMATCH* 94.2 0.0 99.9 97.4 0.0 100.0 94.6 0.0 97.4 94.5 0.0 99.3

A.4 ROBUSTNESS AGAINST DIFFERENT TARGETS

We evaluated the robustness against different targets of our BSD in Table 10

Table 10: The clean accuracy (CA%), attack success rate (ASR%), and defense effective rating
(DER%) of our BSD against 3 representitive backdoor attacks with different target labels on CIFAR-
10.

TARGET
BADNETS BLENDED WANET

CA ASR DER CA ASR DER CA ASR DER

0 95.0 0.8 99.6 95.0 0.4 99.0 91.9 0.3 99.0
1 94.9 0.5 99.8 94.9 0.5 98.9 94.2 0.3 99.8
2 95.1 0.8 99.6 94.7 0.9 98.7 90.9 0.7 98.3
3 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6
4 95.0 0.2 99.9 94.8 0.6 98.9 92.4 0.2 99.3
5 95.1 1.7 99.2 95.0 0.5 98.9 91.9 0.4 98.9
6 95.1 0.6 99.7 93.9 0.6 98.8 92.6 0.3 99.3
7 94.7 0.3 99.8 92.6 0.4 98.2 90.3 0.0 98.3
8 92.0 0.3 98.4 95.1 0.5 98.9 91.8 0.3 98.9
9 94.9 0.3 99.8 94.0 0.4 98.9 94.0 0.2 99.9

AVG 94.7 0.6 99.5 94.5 0.6 98.8 92.5 0.4 99.1
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Figure 5: Visiualization fo the effectiveness of OSS against BadNet-all2all attack.

A.5 ROBUSTNESS AGAINST ALL2ALL ATTACKS

All-to-all (all2all) attacks may pose challenges to certain components of our defense, particularly
OSS and selective drop. However, all2all attacks are not typically considered essential scenarios in
backdoor defense research currently (Li et al., 2021a; Huang et al., 2022; Zhu et al., 2023b; Guan
et al., 2024; Zhang et al., 2023), for the following reasons: 1) The increased number of trigger-target
pairs in all2all attacks requires significantly more training epochs for success. And all2all attacks
reduce clean accuracy and exhibit slower convergence, making them easier to detect. (Huang et al.
(2024), Page 2: “As the number of classes increases, the accuracy and the attack success rate will
decrease.”) 2) Research on all2all attacks remains limited (Li et al. (2022), Page 10: “However, there
were only a few studies on all-to-all attacks. How to better design the all-to-all attack and the analysis
of its properties remain blank.”). 3) In practical applications, all2all attacks do not allow attackers to
arbitrarily control predictions to specific targets, limiting their real-world threat.

Nevertheless, we still conducted supplementary experiments on BadNets with an all2all setting.

Attack setting: Following BadNets, with yt = (y + 1)%nc, where nc is the number of classes.

Defense setting: To handle multiple target labels, BSD incurs additional computational costs by
iterating through all classes as pseudo-targets during OSS. Clean indices from each pseudo-target are
intersected to form the final OSS result. Additionally, we early stop at Stage 2 to avoid meaningless
cost in Stage 3.

Since all-to-all attacks do not fundamentally change the nature of poison-label attacks, OSS remains
effective for each individual classes. We visualized OSS spliting results in Figure 5, which reveals
effective separation of clean samples of OSS. The CA, ASR, and DER performance are presented in
Table 11, demonstrating a significant DER improvement compared to baseline methods. Notably,
while BSD’s ASR increases under all-to-all attacks, it effectively limits the attack success rate to the
level of random prediction (1/nc = 10%).

In conclusion, our BSD method remains effective against all-to-all attacks. Furthermore, the OSS
module can serve as a highly effective component for identifying clean samples in other backdoor
defense methods.

Table 11: The clean accuracy (CA%), attack success rate (ASR%), and defense effective rating
(DER%) of ASD and our BSD against BadNets-all2all on CIFAR-10.

METHOD
BADNETS-ALL2ALL

CA ASR DER

NO DEFENSE 91.8 93.8 -
ASD 70.2 2.4 84.9

BSD (OURS) 91.2 10.5 91.3

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 PSEUDO TARGET APPROXIMATION TEST

Pseudo target approximation test on GTSRB. We evaluated the approximation of yt on the
GTSRB dataset with various ground truth target labels, as shown in Table 12 (using the alternative
approximation method described in Appendix E.3). The results demonstrate that yt was successfully
approximated for all of the first 10 classes in GTSRB.

Table 12: Testing the yt approximation on different target labels (the first 10 classes) on GTSRB.
ATTACK 0 1 2 3 4 5 6 7 8 9

BADNETS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BLENDED ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Performance under forced incorrect pseudo target label. We conducted interesting additional
tests by forcing yt to be assigned to an incorrect class and observed the model’s performance (on
CIFAR-10, against BadNets). As illustrated in Figure 6, BSD retained partial defensive capabilities
even when the pseudo-label was deliberately set incorrectly. In most cases presented, BSD managed
to purify the model successfully, leveraging the loss-guided splitting based on the Altruistic model.

It is worth noting that in experiments where the ground truth target class was 5 (dog), forcibly setting
the pseudo-label to 3 (cat) led to a significant failure of the defense. This may be attributed to the
inherent difficulty in distinguishing between these two classes. Furthermore, when faced with broader
attack scenarios and dataset settings, relying solely on loss statistics may not be sufficient to ensure
effective defense. Fortunately, our experiments demonstrate the strong robustness of the proposed
Pseudo Target Approximation method. The OSS mechanism functioned as expected, enabling a
resilient bi-perspective defense under challenging conditions.
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Figure 6: The clean accuracy (CA%), attack success rate (ASR%), and robust accuracy (RA%) of
BSD when Forcing the pseudo target from x(ground truth) to 3.
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B ALGORITHM OUTLINE

The pseudocode of the proposed method BSD is listed as Algorithm 1.

Algorithm 1 Pseudocode for BSD
Input: Poisoned training set D; main model f ; main model warm-up ends at epoch T1, main model
training stage2 ends at epoch T2, main model training stage3 ends at epoch T3, max clean pool ratio
α, OSS split ratio β.
Output: Clean model fθ′

1: # Initialization & warm-up
2: Initialize the weights of f as θ
3: Generate an altruistic model g having the same architecture as f , initialize the weights as φ
4: # Prepare for ALS
5: for i = 1 to 25 do
6: for each sample (x, y) in D do
7: loss← Lce(x, y, gφ)
8: loss← sign(loss− 0.5)× loss # Default LGA
9: φ← φ−∇φloss

10: end for
11: end for
12: # Prepare for OSS
13: Set yt as the most frequent class among the 1% lowest Lce(gφ) samples in D
14: Calculate Dt and Dnt with yt according to Section 3.2
15: # Main Training Loop
16: while T < T3 do
17: if T < T1 then
18: # Data used for the main model warm-up
19: Dc ← Dnt

20: else if T = T1 then
21: # Pool initialization using ALS and OSS
22: Dc ← Dals ∪ Doss

23: else if T1 + 10 ≤ T < T2 then
24: # Pool update based on loss discrepancy of fθ and gφ, enabling class completion
25: T ′ ← T−T1−10

T2−T1−10T2

26: Current clean ratio αT ← β + (α− β)× (1− cos(π × T ′/T2))/2
27: Set α as αT in equation 8
28: Calculate Dc̃1 according to equation 8
29: Dc ← Dc̃1
30: else if T ≥ T2 then
31: # Pool update based on loss discrepancy of fθ and gφ, enabling class completion and

selective drop
32: Current clean ratio αT ← α
33: Set α as αT in equation 10
34: Calculate Dc̃2 according to equation 10
35: Dc ← Dc̃2
36: end if
37: Dp ← D \ Dc

38: # Models updating
39: θ ← θ −∇θLsemi # Train the model on Dc(labeled) and Dp by semi-supervised learning
40: if T < T2 then
41: φ← φ−∇φLce # Train the altruistic model by supervised learning
42: end if
43: end while
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C IMPLEMENTATION DETAILS

C.1 ENVIRONMENTS

We run all the experiments using PyTorch on a Linux server with an AMD EPYC 7H12 64-core
Processor, 256GB RAM, and 8× NVIDIA GeForce RTX 3090 GPU.

C.2 ILLUSTRATION OF THE POISONED SAMPLES

Figure 7 illustrates the seven attack types used in this study, displaying both the original and poisoned
images along with the corresponding trigger patterns. For attacks involving a different trigger in the
Imagenet dataset, the specific trigger is also shown at the bottom.

Figure 7: Illustation of the backdoor attacks. We present the examples on CIFAR-10, alternative
triggers (if used) on Imagenet are shown at the bottom.

C.3 ATTACK SETTINGS

Training settings. For all the attack implementations, we follow that in ASD (Gao et al., 2023). On
the CIFAR-10 and GTSRB datasets, we perform backdoor attacks on ResNet-18 for 200 epochs with
batch size 128. We adopt the stochastic gradient descent (SGD) optimizer with a learning rate of
0.1, momentum of 0.9, and weight decay 5× 10−4. The learning rate is divided by 10 at epoch 100
and 150. For attacks not achieving reported performance in ASD (Gao et al., 2023), we continue the
training for another 100 epochs, and the learning rate is divided by 10 at epoch 200 and 250. On
the Imagenet (Deng et al., 2009) dataset, we train ResNet-18 for 90 epochs with batch size 256. We
utilize the SGD optimizer with a learning rate of 0.1, momentum of 0.9, and weight decay 1× 10−4.
The learning rate is decreased by a factor of 10 at epoch 30 and 60. The image resolution will be
resized to 224× 224× 3 before attaching the trigger pattern.

Settings for BadNets. As suggested by Gu et al. (2017); Huang et al. (2022); Gao et al. (2023),
we set a 2× 2 square on the upper left corner as the trigger pattern on CIFAR-10 and GTSRB. For
ImageNet and VGGFace2, we use a 32×32 apple logo on the upper left corner. The poisoning rate ρ
is set to 0.05(5%).

Settings for Blended. Following Chen et al. (2017); Huang et al. (2022); Gao et al. (2023), we
choose“Hello Kitty” pattern on CIFAR-10 and GTSRB and the random noise pattern on ImageNet
and VGGFace2. The blend ratio is set to 0.1. The poisoning rate ρ is set to 0.05(5%).

Settings for WaNet. Following Gao et al. (2023); Huang et al. (2022), we directly use the default
warping-based operation to generate the trigger pattern. For CIFAR-10 and GTSRB, we set the noise

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

rate ρn to 0.2, control gird size k as 4, and warping strength s as 0.5. For Imagenet, we use the same
noise rate, but a larger grid size k = 224, and a warping strength s = 1.

Settings for Label-Consistent Attack. Following Gao et al. (2023); Huang et al. (2022); Turner
et al. (2019), the noisy versions of samples are generated using adversarially trained models. The
PGD parameters are as follows: for PGD training: ϵ = 16, α = 2, steps = 7, and the pixel range is [0,
255]; for PGD attack: ϵ = 16, α = 1.5, steps = 30, with the same pixel range [0, 255]. The same
trigger used in BadNets is applied for LC attacks, and the poison ratio is set at 25

Settings for Refool. Following Li et al. (2021a); Liu et al. (2020), we randomly choose 5,000 images
from PascalVOC (Everingham et al., 2015) as the candidate reflection setRcand and randomly choose
one of the three reflection methods to generate the trigger pattern during the backdoor attack.

Settings for SIG. Following Li et al. (2021a); Barni et al. (2019), we adopt the same sinusoidal
pattern in ABL as the trigger and set the poisoning rate to match LC, as SIG is a clean-label attack.

Settings for Narcissus. We also incorporate the recent attack proposed by Zeng et al. (2023b), which
is another clean-label attack. The parameter settings for generating the Narcissus trigger pattern are
as follows: the ℓ∞ ball bound is set to 16/255, the surrogate model is trained for 200 epochs with an
initial learning rate of 0.1 and a warm-up period of 5 rounds. The trigger-generation learning rate is
0.01, and the generation process lasts for 1000 rounds. The poisoning rate is the same as LC, given
that Narcissus is also a clean-label attack.

C.4 DEFENSE SETTINGS

Settings for FP. Following Gao et al. (2023), we set two steps of FP Liu et al. (2018) (i.e., pruning
and fine-tuning) as follows. (1) We randomly select 5% clean training samples as the local clean
samples and forward them to obtain the activation values of neurons in the last convolutional layer.
The dormant neurons on clean samples with the lowest α% activation values will be pruned. (2) The
pruned model will be fine-tuned on the local clean samples for 10 epochs. In particular, the learning
rate is set as 0.01, 0.01, 0.1 on CIFAR-10, GTSRB, and ImageNet. Unless otherwise specified, other
settings are the same as those used by Liu et al. (2018). For the hyper-parameters of FP, we search
for the best results by adjusting the pruned ratio α% ∈ 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%.
In addition, we add another default setting in backdoorbench (Wu et al., 2022).

Settings for NAD. NAD (Li et al., 2021b) is also a post trianing method that repairs the backdoored
model and needs 5% local clean training samples. We set the two steps of NAD as follows: (1) Use
the local clean samples to fine-tune the backdoored model for 10 epochs. Specially, the learning rate
is set as 0.01, 0.01, 0.1 on CIFAR-10, GTSRB, and ImageNet. (2) The fine-tuned model and the
backdoored model will be regarded as the teacher model and student model to perform the distillation
process. Unless otherwise specified, other settings are the same as those used by Li et al. (2021b).
For the sensitive hyper-parameter β, we find the search space used by Gao et al. (2023) too small.
We search for the best results by adjusting the hyper-parameter β from 500, 1000, 1500, 2000, 2500,
5000, 7500, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11. In addition, we add another default setting in
backdoorbench (Wu et al., 2022).

Settings for ABL. ABL (Li et al., 2021a) contains three stages: (1) To obtain the poisoned samples,
ABL first trains the model on the poisoned dataset for 20 epochs by LGA loss and isolate 1% training
samples with the lowest loss. (2) Continue to train the model with the poisoned dataset after the
backdoor isolation for 70 epochs. (3) Finally, the model will be unlearned by the isolation samples
for 5 epochs. The learning rate is 5e-4 at the unlearning stage. Unless otherwise specified, other
settings are the same as those used by Li et al. (2021a). ABL is sensitive to the hyper-parameter γ in
LGA loss. We search for the best results by adjusting the hyper-parameter γ from 0, 0.1, 0.2, 0.3, 0.4,
0.5, In addition, we add another default setting in backdoorbench (Wu et al., 2022).

Settings for DBD. DBD (Huang et al., 2022) contains three independent stages: (1) DBD uses
SimCLR to perform the self-supervised learning for 1,000 epochs. (2) Freeze the backbone and
fine-tune the linear layer by supervised learning for 10 epochs. (3) Adopt the MixMatch to conduct
the semi-supervised learning for 200 epochs on CIFAR-10 and GTSRB for 90 epochs on ImageNet
and VGGFace2. Unless otherwise specified, other settings are the same as those used by Huang et al.
(2022). Since DBD is a relatively stable backdoor defense and not sensitive to its hyper-parameter,
we only add another group of default setting in backdoorbench (Wu et al., 2022).
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Settings for ASD. We follow the exact settings for ASD as suggested by Gao et al. (2023). To name
a few settings, we adopt MixMatch as the semi-supervised learning framework and use the Adam
optimizer with a learning rate of 0.002 and a batch size of 64 for the semi-supervised training. The
temperature T is set to 0.5, and the weight of the unsupervised loss λu is set to 15. The training
stages are defined as follows: T1 = 60, T2 = 90, and T3 = 120 for CIFAR-10 and ImageNet, while
T3 = 100 for GTSRB. Similarly, other parameters are the same as used by Gao et al. (2023) as well.

For our BSD, we adopt the MixMatch Berthelot et al. (2019b) semi-supervised training framework for
the main model, following Decoupling-based Defense (DBD) and Adaptive Splitting-based Defense
(ASD). The semi-supervised learning parameters align with ASD, including 1024 training iterations,
a temperature of 0.5, a ramp-up length of 120, and a learning rate of 0.002. The altruistic model
undergoes a warm-up phase with 25 epochs, utilizing the Adam optimizer, Cross Entropy loss, with a
learning rate of 0.001. The default warm-up epochs for the main model in OSS are set to 20 (followed
by a 10-epoch training on the initialized pools)(T1 = 20), with a default β of 0.2. Class completion
training spans 60 epochs (T2 = 90), and selective dropping training spans 30 epochs (T3 = 120).
The altruistic model update uses the same loss and optimizer as in the warm-up on CIFAR-10 and
Imagenet for efficiency, on lightweight datasets like GTSRB, we use the same semi-supervised loss
and optimizer as the main model for better performance. The clean pool ratio α follows a sinusoidal
growth curve during class completion training, starts at β, and reaches an upper limit of α = 0.6 at
the end of the class completion stage, after which it remains fixed:

T ′ =
T − T1 − 10

T2 − T1 − 10
T2

αT = β + (α− β)× (1− cos(π × T ′/T2))/2

(11)

The baselines are implemented using:

• BackdoorBench (Wu et al., 2022);

• BackdoorBox (Li et al., 2023b);

• Github repositories of corresponding papers.

We greatly appreciate these outstanding works.

C.5 DEFINITION OF DER

Defense Effectiveness Rating (DER) (Zhu et al., 2023a) is a comprehensive measure that considers
both ACC and ASR:

DER = [max(0,∆ASR)−max(0,∆ACC) + 1]/2, (12)

where ∆ASR denotes the decrease of ASR after applying defense, and ∆ACC denotes the drop
in ACC following the defense. Higher ACC, lower ASR and higher DER indicate better defense
performance.

C.6 DETAILS ABOUT SEMI-SUPERVISED LOSS

Semi-supervised learning (Berthelot et al., 2019a;b; Sohn et al., 2020; Xie et al., 2020; Zhu &
Goldberg, 2022) studies how to leverage a training dataset with both labeled data and unlabeled data
to obtain a model with high accuracy. In addition to its application in normal training, semi-supervised
learning also serves as a powerful means for the security of DNNs (Alayrac et al., 2019; Carmon
et al., 2019; Huang et al., 2022).

Here we adopt the MixMatch (Berthelot et al., 2019b). Given a batch X ⊂ DC of labeled samples,
and a batch U ⊂ DP of unlabeled samples, MixMatch generates a guessed label distribution q̃ for
each unlabeled sample u ∈ U and adopts MixUp to augment X and U to X′ and U′. The supervised
loss Ls is defined as:

Ls =
∑

(x,q)∈X ′

H(px, q) , (13)
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where px is the prediction of x, q is the one-hot label and H(·, ·) is the cross-entropy loss. The
unsupervised loss Lu is defined as:

Lu =
∑

(u,q̄)∈U ′

∥pu − q̄∥22 , (14)

where pu is the prediction of u.

Finally, the MixMatch loss can be defined as:

L = Ls + λ · Lu, (15)

where λ is a hyper-parameter for trade-off, we adopt the same λ = 15 as in ASD.

D SUPPLEMENTARY INFORMATION OF THE BACKGROUND

D.1 SUPPLEMENTARY OVERVIEW OF BACKDOOR ATTACK RESEARCH

The common implementation of backdoor attacks is realized by injecting a few poisoned samples into
the training dataset, i.e., data-poisoning-based backdoor attacks, inducing the model to build a link
between the trigger (i.e., a visual particular pattern) and target class (Gu et al., 2017). Thus the model
consistently outputs the target label once the trigger is attached to the inputs in the inference stage.

Poison-label backdoor attacks are currently the most common attack paradigm, where the trigger
pattern in the poisoned samples is directly connected to the target class by relabeling, inducing the
model to treat the trigger as a decision-making feature of the target class. Recent research (Hu et al.,
2022; Li et al., 2020; Qi et al., 2021) focuses on more invisible trigger designs through generative
models and feature space optimizations, as well as exploring backdoor attacks in wider tasks like
natural language processing.

D.2 ILLUSTRATION OF THE MODEL COLLAPSE

As presented in Figure 8, the splitting-based defenses (loss-guided ones specifically) encounter two
kinds of model collapse. In backdoor overfitting collapse, poison samples take effect and have low
loss values, which consistently corrupt the clean pool and lead to a backdoored model. Likewise,
in class underfitting collapse, the rareness of certain classes will lead to higher loss values, making
them less chosen to be clean samples, which forms a vicious cycle. Note that these two collapses
are common in other categories of defenses as well, while it’s more explainable in splitting-based
defense.

Figure 8: Typical model collapses in data-splitting backdoor defenses. I: Misclassification of low-loss
poisoned samples as clean leads to a steady increase in the poisoned sample proportion until 100%
ASR. II: Higher losses for challenging classes reduce their presence in the clean pool, rendering the
model unable to predict samples from those categories.

E MORE EXPERIMENTAL RESULTS

E.1 ILLUSTRATION OF POOL UPDATE

To showcase the healthy clean pool acquired by our BSD, we plot the number of poison samples in
the clean pool at each training epoch, as well as reveal the accumulated number of poison samples.
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As shown in Figure 9, our BSD generally have fewer poison samples in the clean pool during training,
with both the number of poisoned samples and the cumulative number of samples smaller than that fo
ASD under different poisoning rates.

In addition, we plot the loss/distance distribution of samples of our BSD in Figure 10. In Figure 10.(a)
and Figure 10.(b), the main mechanisms, i.e., ALS and OSS for the pool initialization, successfully
distinguished the poison samples. In Figure 10.(c), the poison samples are highlighted by the high loss
discrepancy between the main model and the altruistic model. The final result shown in Figure 10.(d)
reveals the high CAs (clean sample all having low loss values) and low ASRs (poison samples all
having high loss values) of BSD.
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Figure 9: The number of poison samples in the clean pool of BSD and ASD at each epoch, the accumu-
lated number in the dotted line. The subplots are the results on CIFAR-10, ρ = 0.01, 0.05, 0.10, 0.20.

Figure 10: The split visualization of BSD on GTSRB against the BadNet attack. (a) the loss
distribution on the altruistic model after the ALS warm-up; (b) the distance distribution on the main
model after the OSS warm-up; (c) the loss discrepancy at the last epoch; (d) the loss distribution on
the main model at the last epoch.

E.2 INFLUENCE OF DIFFERENT SETTINGS IN OSS

Ablation on distance metric of OSS. We investigate the influence of the number of runs for the
warm-up and three different distance calculations of OSS as shown in Figure 11. For the distance
calculation, we take three approaches, i.e., the minimal, the maximal, and the mean ℓ2 distance
to feature clusters of each non-target category. Intuitively, we set the minimal distance by default,
because the poisoned samples we consider are characterized by being far away from all existing
cluster centers, thus maximal and mean distances may misjudgment two categories whose original
clustering centers are far apart from each other as poisoned samples. Whereas, all three approaches
exhibit good separation under the default 20-epoch warm-up.

Ablation on warm-up epochs of OSS (T1). Concerning the number of warm-up epochs, we
investigate the score distribution of OSS under the min-distance calculation. As illustrated in
Figure 11, the result exhibits poor separation with an insufficient warm-up. As the number of epochs
goes up, it has a certain effect when the number of epochs equals 10, and perfectly separates some
benign samples with larger epochs.
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Figure 11 is the complete result of the ablation study on different settings of the warm-up process of
OSS. It verifies the effectiveness of all three distance metrics. Intuitively, the model should have a
more separable and reliable initialization of the two pools with a long warm-up, whereas the result of
a 40-epoch warm-up (especially when using the mean distance) violates this intuition by exhibiting
less satisfying separation. A potential reason is that the model overfitted the non-target classes, thus
the poison samples have less similarity to them.

Figure 11: The ablation results on the number of warm-up epochs and different distance calculation
methods for OSS.

In general, the default setting of BSD is a suitable choice.

E.3 INFLUENCE OF DIFFERENT SETTINGS IN ALS

Ablation study on warm-up epochs of the altruistic model. The warm-up of the altruistic model
will determine the correctness of yt. Instead of directly assuming yt being known to the defender,
we explored lightweight methods to approximate it. Zhu et al. (2024) uses the most frequent second
likely prediction as approximated yt, Gao et al. (2024) uses a likewise energy score, which is also
effective. Li et al. (2021a) proposes to isolate the poison samples through a local gradient ascent
process. If the detection precision exceeds 50%, it indicates that more than half of the isolated
samples are poison samples, thus we can obtain yt. Although the experimental results presented by Li
et al. (2021a) in their Figure 7, page 16 has already verified a more than 50% against most common
attacks, we further check its robustness to the warm-up epochs in Table 13.

Alternative method for approximating yt For unseen failures that the local gradient ascent (Li
et al., 2021a) can not correctly approximate yt, we provide an alternative method for approximating
yt against new backdoor attacks that may appear in the future. Here we follow Zhu et al. (2024) to
use the most frequent second likely prediction, i.e., yt = argsort(-logit)[1], where logit means the
logit output of a DNN. However, this prediction could be unstable, we further statistics the predicted
yt in each warm-up epoch and use the majority as the final prediction of yt. The effectiveness of the
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Table 13: The prediction of yt under different warm-up epochs. The ’num’ represents the number of
poison samples in the isolated set.

WARM-UP EPOCHS
BADNET BLENDED

NUM POISON y t NUM POISON y t

5 0 WRONG 0 WRONG
15 461 CORRECT 457 CORRECT
25 370 CORRECT 344 CORRECT
35 85 CORRECT 126 WRONG
45 177 CORRECT 114 CORRECT

alternative method is shown in Figure 12, where all the final majority predictions of yt are the same
(yt = 3), which is the ground truth target label.

Figure 12: The result of the alternative method for yt approximation. In the default 25 epochs of
warm-up, we count the pred yt at each epoch and the most pred yt by that epoch respectively. The
experiment is conducted on CIFAR-10, against BadNet, Blended, WaNat, and LC.

E.4 PERFORMANCE UNDER NO ATTACKS

Most backdoor defense research focuses on performance under attack, while it is concerning that
these defenses may degrade model performance in the absence of attacks. Therefore, we evaluated the
performance of BSD in scenarios without attacks. There are no poisoned samples in the training set,
we test the clean and poisoned samples (BadNets trigger) for inference. As shown in Table 14, it is
worth noting that even in the absence of attacks, there can be a low attack success rate (ASR), where
these samples are just being misclassified to the target label. As Table 14 reveals, our method achieves
a lower ASR compared to the baseline, effectively suppressing natural backdoors. Additionally, our
method shows significant improvements in accuracy over the baseline.

Table 14: The clean accuracy (CA%) and attack success rate (ASR%) of BSD and ASD under no
attacks.

METHOD
CIFAR-10 GTSRB

ACC ASR ACC ASR

NO DEFENSE 95.3 1.9 97.7 0.2
ASD 93.2 1.8 96.6 0.1

BSD (OURS) 94.9 0.6 97.6 0.0

E.5 RESISTANCE TO POTENTIAL ADAPTIVE ATTACKS

In the above experiments, we assume that attackers have no information about our backdoor defense.
In this section, we consider a more challenging setting, where the attackers know the existence of our
defense and can construct the poisoned dataset with an adaptive attack.

Threat model for the attackers. Following existing work (Gao et al., 2023; Chen et al., 2017; Gu
et al., 2017; Turner et al., 2018), we assume that the attackers can access the entire dataset and know
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the architecture of the victim model. However, the attackers can not control the training process after
poisoned samples are injected into the training dataset.

Method for adaptive attack. Our method initializes the clean pool using bi-perspective splitting
through OSS and ALS, which separate poisoned samples based on semantic and loss statistics,
respectively. In general, there is a contradiction between increasing the loss values of poisoned
samples (to bypass ALS) and achieving backdoor objectives. Furthermore, maintaining high semantic
similarity to the target class (to bypass OSS) adds to the complexity. To craft such a trigger pattern
that satisfies the above objectives, we use a PGD optimization to search for an average noise (among
non-target classes) that is semantically close (judged by a proxy model) to the target class (to bypass
OSS). Meanwhile, we control the ℓ∞ ball bound as 8/255 and the poisoning rate as 0.01 to prevent it
from being an obvious trigger that will be easily fitted (to bypass ALS).

Settings. We conduct experiments on CIFAR-10 with the following parameters: number of iterations,
15; step size, 1.5/255; perturbation magnitude, 8/255; trigger size, 32×32; and poisoning rate, 0.01.
Although the attacker is assumed to have no knowledge of the model structure, we adopt a more
challenging setting where the adversary uses the same model structure as the proxy model.

Results. The Clean Accuracy (CA) and Attack Success Rate (ASR) of this adaptive attack are
94.422% and 2.421%, respectively. While the ASR is slightly higher than that of other attacks on
CIFAR-10, our defense clearly demonstrates strong resistance to the adaptive attack. Furthermore,
when we increase the poisoning rate to 0.2 (20%), the CA and ASR remain at 91.040% and 0.903%,
respectively, which is still within an acceptable range.

E.6 SEARCHING THE BEST RESULT OF BASELINES

Notably, some baseline methods are sensitive to their hyper-parameter settings. The results reported
in Table 1 represent their best performance obtained through grid search, as outlined in ASD (Gao
et al., 2023). Similarly, for the additional attack settings, the results in Table 2 and Table 3 are based
on their best outcomes (ranking on DERs) after grid search. For DBD, which is not sensitive to
parameters, we report the best result using the default settings from BackdoorBench and the same
configuration as in ASD.

Table 15: Grid search for FP against additional attacks on ResNet18 (Default represents the result
under the default setting provided by backdoorbench).

RATIO
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 87.1 24.4 87.1 60.8 86.5 23.0 87.2 63.4
0.1 87.3 79.8 87.2 81.4 86.8 25.6 87.4 72.4
0.2 87.0 59.4 87.0 82.4 86.5 28.0 86.7 77.8
0.3 86.7 51.6 87.0 83.2 86.5 27.6 87.2 73.9
0.4 87.0 49.0 87.2 85.7 86.4 28.8 87.2 77.6
0.5 85.7 67.3 86.2 86.1 85.2 29.6 86.7 79.0
0.6 86.0 73.6 86.7 90.1 85.6 31.6 86.6 80.7
0.7 86.3 80.0 86.8 88.5 86.1 31.0 87.1 79.6
0.8 87.0 74.9 86.9 87.7 86.4 28.3 87.3 78.5
0.9 87.3 62.0 87.0 80.3 86.5 25.2 87.6 72.3
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Table 16: Grid search for FP against representative attacks on Mobilenetv2 (Default represents the
result under the default setting provided by backdoorbench).

RATIO
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 77.9 8.3 75.9 30.8 82.2 2.4
0.1 80.8 58.3 78.4 57.9 79.3 3.0
0.2 79.6 84.0 78.6 56.1 80.1 3.8
0.3 80.6 99.8 79.0 51.8 77.2 5.8
0.4 79.5 73.5 77.8 53.7 77.3 4.4
0.5 79.5 10.9 77.1 70.0 78.3 1.3
0.6 79.7 19.3 76.6 67.3 78.6 2.0
0.7 79.1 61.7 76.3 65.7 79.1 1.9
0.8 79.7 12.7 77.3 66.1 78.3 1.2
0.9 80.4 99.2 78.4 62.6 79.3 2.5

Table 17: Grid search for NAD against additional attacks on ResNet18 (Default represents the result
under the default setting provided by backdoorbench).

BETA
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
100 87.3 98.7 87.1 95.9 86.5 66.9 86.8 93.3
500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9

1000 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
1500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
2000 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
2500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
5000 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
7500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9

1.E+04 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
1.E+05 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
1.E+06 86.2 69.9 85.8 83.3 85.3 49.3 86.2 84.9
1.E+07 85.9 50.5 85.7 84.5 85.5 46.5 86.5 81.0
1.E+08 86.0 73.9 85.8 88.7 85.6 42.9 86.1 83.2
1.E+09 85.3 68.2 85.7 87.0 85.6 44.8 86.5 84.1
1.E+10 85.9 69.5 85.8 83.0 85.4 47.7 86.0 86.2
1.E+11 85.9 65.6 85.7 86.3 85.6 42.5 86.4 83.4

Table 18: Grid search for NAD against representative attacks on Mobilenetv2 (Default represents the
result under the default setting provided by backdoorbench).

BETA
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 78.5 11.7 76.2 51.6 81.1 4.2
100 79.7 99.1 79.5 56.8 77.3 3.4
500 78.5 11.7 76.2 51.6 81.1 4.2

1000 78.5 11.7 76.2 51.6 81.1 4.2
1500 78.5 11.7 76.2 51.6 81.1 4.2
2000 78.5 11.7 76.2 51.6 81.1 4.1
2500 78.5 11.7 76.2 51.6 81.1 4.1
5000 78.5 11.7 76.2 51.6 81.1 4.1
7500 78.5 11.7 76.2 51.6 81.1 4.1

1.E+04 78.5 11.7 76.2 51.6 81.1 4.1
1.E+05 78.6 29.1 76.1 51.3 79.8 4.0
1.E+06 78.5 23.0 75.9 49.4 81.5 3.2
1.E+07 79.3 25.4 76.8 47.6 81.0 3.8
1.E+08 78.8 14.8 76.8 58.9 81.0 3.2
1.E+09 78.9 17.9 76.0 46.0 80.7 5.4
1.E+10 79.2 25.0 76.5 51.8 81.6 4.1
1.E+11 78.8 41.5 76.7 56.9 81.3 4.3
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Table 19: Grid search for ABL against additional attacks on ResNet18 (Default represents the result
under the default setting provided by backdoorbench).

GAMMA
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 71.1 4.3 37.5 0.0 63.3 94.0 62.7 0.4
0.0 81.2 7.3 81.2 74.6 79.4 86.4 80.7 76.7
0.1 81.2 6.0 79.7 41.5 72.0 93.5 80.3 35.1
0.2 80.3 3.8 73.9 16.5 76.3 82.0 79.4 32.7
0.3 78.1 0.9 76.1 14.4 76.0 86.5 79.3 7.1
0.4 80.2 1.6 67.6 5.1 71.4 85.4 76.6 44.1
0.5 78.7 1.0 67.0 6.9 75.2 93.8 78.3 17.5

Table 20: Grid search for ABL against representative attacks on Mobilenetv2 (Default represents the
result under the default setting provided by backdoorbench).

GAMMA
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 68.0 24.4 67.3 2.6 50.9 0.5
0.0 81.3 36.9 77.3 21.6 68.9 74.8
0.1 81.3 36.9 77.3 21.6 68.9 74.8
0.2 81.3 36.9 77.3 21.6 68.9 74.8
0.3 81.3 36.9 77.3 21.6 68.9 74.8
0.4 79.7 13.6 78.4 15.1 68.9 74.8
0.5 81.3 48.1 80.4 33.4 68.9 74.8

Table 21: Result of DBD against additional attacks on ResNet18 (Default represents the result under
the default setting provided by backdoorbench, Default2 represents the recommended setting used in
ASD).

SETTING
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 83.2 98.1 77.6 99.9 87.0 0.1 87.3 99.6
DEFAULT2 82.46 99.42 80.12 99.9 90.84 2.34 80.73 99.61

Table 22: Result of DBD against representative attacks on Mobilenetv2 (Default represents the result
under the default setting provided by backdoorbench, Default2 represents the recommended setting
used in ASD).

SETTING
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 65.5 0.0 69.0 0.0 58.4 12.4
DEFAULT2 54.34 0 64.22 0 57.22 14.11
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