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Abstract

Increasingly large datasets of robot actions and sensory observations are
being collected to train ever-larger neural networks. These datasets are
collected based on tasks and while these tasks may be distinct in their de-
scriptions, many involve very similar physical action sequences (e.g., ‘pick
up an apple’ versus ‘pick up an orange’). As a result, many datasets of
robotic tasks are substantially imbalanced in terms of the physical robotic
actions they represent. In this work, we propose a simple sampling strat-
egy for policy training that mitigates this imbalance. Our method requires
only a few lines of code to integrate into existing codebases and improves
generalization. We evaluate our method in both pre-training small models
and fine-tuning large foundational models. Our results show substantial im-
provements on low-resource tasks compared to prior state-of-the-art meth-
ods, without degrading performance on high-resource tasks. This enables
more effective use of model capacity for multi-task policies. We also further
validate our approach in a real-world setup on a Franka Panda robot arm
across a diverse set of tasks.

1 Introduction

Scaling robot datasets and model sizes has consistently improved performance on many
manipulation tasks (Team et al., 2025; Black et al., 2024). This scaling trend in dataset
development emphasizes quantity of data over precise curation of targeted datasets (Dasari
et al., 2019; Ebert et al., 2021; Walke et al., 2023; Khazatsky et al., 2024; Collaboration
et al., 2023). This development strategy mirrors that of large language models, which also
rely on transformer architectures. However, prioritizing scale over content curation produces
datasets that under-represent key skills. As a result, models trained on such datasets may
develop biased representations, reducing robustness and generalization.

In this work, we focus on learning under imbalanced datasets that mirror the distribu-
tions found in recent large-scale robot demonstration collections (Collaboration et al., 2023;
Khazatsky et al., 2024). While these datasets exhibit imbalances across multiple dimen-
sions—including language descriptions, camera viewpoints, action primitives, and visual
scenes—we argue that action-primitive imbalance deserves particular attention. Unlike vi-
sion and language variations, which can be partially addressed through foundation model
embeddings (Karamcheti et al., 2024), action-primitive imbalance directly affects the fun-
damental behavioral distribution of the learned policy. This type of imbalance can lead
to models that excel at over-represented actions while failing catastrophically on under-
represented but equally important skills, significantly limiting their practical deployment.

Two primary approaches exist for training unbiased models on biased datasets: data aug-
mentation and data reweighting. Given the scale of current robot datasets, data augmen-
tation faces practical limitations. For instance, the Open-X Embodiment Dataset spans
8964.94 GB (Collaboration et al., 2023), so very low resourced skills may require extremely
large amounts of generated training data (Garrett et al., 2024). Data reweighting offers a
more scalable alternative and has shown promise in robot learning for balancing task rep-
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Figure 1: Temperature-based sampling rebalances the distribution over tasks, enabling more
equitable training and improved generalization across both high- and low-resource domains.

resentation (Hejna et al., 2024). However, the reweighting in existing works is either based
on task complexity (Hejna et al., 2024) or human heuristics (Team et al., 2024) rather
than action-primitives. These approaches may still leave fundamental motor skills under-
represented, as complex tasks and primitive actions represent orthogonal dimensions of the
learning problem.

Contributions. We propose a sampling method for training or fine-tuning robotics poli-
cies under data-imbalance which is computationally efficient, simple to implement, and
outperforms alternate methods in resulting task success. We validate this method on a toy-
experimental setup which allows precise control over the task distribution to prove the mer-
its of temperature sampling when training deep learning methods on imbalanced data. We
then subsample artificially imbalanced datasets from two simulated robot learning datasets,
RoboCasa Nasiriany et al. (2024) and Libero Liu et al. (2023), to validate this approach for
robotic policy training in simulation. We demonstrate in simulation that our temperature
sampling approach also improves performance for fine-tuning foundation models for robotic
policy learning. Finally, we perform real-world experiments with a Franka Panda robot arm
using a policy trained from scratch on an imbalanced dataset we collect. We show that in
this real-world setting, our new training strategy also increases overall task success.

2 Temperature-Based Sampling for Imbalanced Data

2.1 Problem and Notations

We consider the setting of multitask learning on an imbalanced dataset i.e., we have a
dataset D containing m tasks of sizes D = D1 ∪D2 ∪ · · · ∪Dm, where we assume D1 >>>
D2 >> D3 . . . . We will refer to tasks with large number of samples as High-Resource Tasks
(HRT) and tasks with lower samples as Low-Resource Tasks (LRT). Our aim is to train
a policy πθ with parameters θ such that we obtain high average performance across the
distribution of tasks. For solving a particular task, we sample from our task-conditioned
policy, πθ(·|xi, zi) where xi is the ith input task and zi is the condition specifying the task;
here, a language description embedding of the task.
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The behavior cloning objective aims to minimize the negative log-likelihood of expert actions

under the task-conditioned policy. Given a dataset of state-action pairs {(xi, ai, zi)}Ni=1,
where ai is the expert action for input xi under task zi, the objective is:

L(θ) = − 1

N

N∑
i=1

log πθ (ai | xi, zi)

This objective encourages the policy to imitate the expert by assigning high probability
to the demonstrated actions. To optimize this objective using stochastic gradient descent
(SGD), we sample a minibatch B ⊂ D, and perform the parameter update:

θ ← θ − η∇θ

 1

|B|
∑

(xi,ai,zi)∈B

− log πθ (ai | xi, zi)


where η is the learning rate. In practice, the composition of B can significantly influence the
learning dynamics in the presence of task imbalance, since tasks with more data dominate
the gradient updates throughout the training.

2.2 Temperature-Based Sampling

To mitigate representation bias due to data imbalance across tasks, we employ temperature-
based sampling, a strategy that reshapes the sampling probabilities over tasks to up-
sample low-resource ones and downsample high-resource ones. Given task dataset sizes
{|D1| , |D2| , . . . , |Dm|}, the sampling probability for task i under temperature τ > 0 is:

p
(τ)
i = |Di|1/τ∑m

j=1|Dj |1/τ

This temperature τ acts as a knob controlling task balance:

• τ = 1 : recovers sampling proportional to dataset size (referred to as random
sampling method throughout the text; as this falls back to the most commonly
used random sampling strategy for training deep neural networks).

• τ > 1 : increases the relative probability of smaller (low-resource) tasks.

• τ < 1 : further biases sampling toward high-resource tasks.

This formulation is analogous to a Boltzmann distribution, where log |Di| represents the
”energy” of each task and τ acts as the temperature. Unless otherwise mentioned, we follow
a cosine warming temperature schedule over the training epochs formulated as, Twarmup(t) =

Tstart + (Tend − Tstart) · 1−cos(πt)
2 , with initial temperature of 1 and end temperature of

5, i.e., we upsample low-resource tasks near the end. We choose this temperature range
and schedule after a thorough hyper-parameter search, where cosine warming outperformed
cosine decay, both linear and exponential warmup, and both linear and exponential decay.

For one of the baselines we also use fixed temperature for upsampling low-resource tasks,
unless otherwise mentioned the temperature will be T = 5, which is chosen from among the
most-commonly used upsampling rates of 2, 3.3, 5 based on initial experiments. Random
sampling, which is most widely used can also be viewed as a special cases of temperature
sampling where T = 1.

3 Experiments

To prove the efficacy of this data sampling method, we evaluate it in three different settings.
Firstly, we show on a toy-experimental setup which allows precise control over the task
distribution to prove the merits of temperature-based sampling in the presence of data-
imbalance. After that, we create an imbalanced simulated data subsetted from Robocasa
and Libero to prove the same in robotic policy training from scratch as well as fine-tuning
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foundational models. And finally, we take a real-world imbalanced dataset to concretize the
efficacy of our method in real-world scenarios.

3.1 Toy Experiment: Sparse Parity

We use sparse parity task as a minimal, controlled multitask setting to study the impact
of temperature-based data sampling. Borrowed from computational learning theory, sparse
parity has been a long-standing benchmark for analyzing algorithm performance and fea-
ture selection. Each task corresponds to predicting the parity (even or odd) of a specific
subset of input bits in a binary vector. Importantly, the subsets used by different tasks
do not overlap, ensuring clear task boundaries and no shared information across tasks.
Although this separation may not reflect real-world datasets where positive transfer be-
tween skills often occurs, it provides a clean experimental environment for isolating the
effects of sampling strategies by controlling the exact task-distribution. This setup allows
us to independently vary the frequency of each task, making it well-suited for analyzing
how temperature scheduling affects learning dynamics in imbalanced multitask scenarios.
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Figure 2: Total training loss over
time for sparse parity tasks shows im-
provement in performance by over-
sampling low-resource tasks in imbal-
anced dataset. While also highlighting
the limitations of adaptive sampling
methods like ReMix due to sensitivity
to hyper-parameters.

In a deep-learning setup, sparse parity task
requires a model to compute the parity (sum mod-
ulo 2) of a subset of bits from a binary input string.
In our experiments, we use input strings of length
n=50 and randomly select k=4 positions for a task.
We extend this to a multi-task learning scenario
with five different parity tasks, where the model
receives both a one-hot encoded task identifier and
the binary input string, and must learn to com-
pute the correct parity function for each task. The
frequency of tasks for training follows a power law
distribution controlled by two hyperparameters, al-
lowing us to simulate realistic scenarios where some
tasks appear more frequently than others. A visual
description of the task and further details are given
in Appendix A. Fig. 2 shows the faster convergence
over the tasks as we over-sample low-resource tasks
using temperature based control. Although in this
environment, the loss benefits from higher upsam-
pling temperature rather than annealing process
like our proposed schedule in real-world environments this usually leads to overfitting. We
notice that ReMix (Hejna et al., 2024) fails to converge due to extreme sensitivity to hyper-
parameters like early-stopping and rapidly changing weights due to adaptive weights based
on loss, highlight the main limitations of adaptive sampling techniques.

3.2 Robotic Manipulation Simulation Experiments

Dataset: For evaluating our hypothesis in robot policy learning, we use two of the most
widely used simulation datasets in robotics, RoboCasa Nasiriany et al. (2024) and Libero
Liu et al. (2023).

Robocasa provides a large-scale dataset of 25 atomic tasks grounded in 8 foundational sen-
sorimotor skills, such as pick-and-place, door and drawer manipulation, pressing buttons,
and turning knobs. Each atomic task is accompanied by 50 human demonstrations and 3000
synthetic demonstrations, totaling 1,200 human-collected trajectories and 72000 synthetic
demonstrations. The tasks are embedded within 120 visually diverse kitchen scenes, featur-
ing randomized layouts, styles, and AI-generated textures, offering rich perceptual and in-
teraction diversity. While Libero provides 4-suite of tasks, Libero-SPATIAL, Libero-GOAL,
Libero-OBJECT, & Libero-10. Each task-suite contains 10 tasks, and are accompanied by
50 human-demonstrations for each task. More details about the tasks are in Appendix C.
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To simulate data imbalance, we construct a skewed distribution by selecting 3,000
demonstrations for seven pick-and-place tasks, while retaining only 50 demonstrations for
each of the remaining atomic tasks in Robocasa. For Libero, we use 50 demonstrations for
Libero-SPATIAL, 15 for Libero-OBJECT and GOAL, and 20 for Libero-10. We construct
these skewed distributions to represent common characteristics of current imbalanced robot
learning datasets which also align with real world imbalances. Specifically, pick-and-place
tasks are by far the most common in our skewed sampling of Robocasa, and spatial tasks
which vary the spatial configurations of repeating objects and goals are represented more in
our skewed sampling of Libero.

Baselines: We compare our sampling with 3 baselines. First, we use random sampling
which represents picking the datapoints randomly from the given dataset. Random sam-
pling is one of the most common methods used in robotic pre-training. We also upsample
tasks based on their size in the training dataset, i.e., less common tasks are sampled more
frequently throughout training. We also benchmark ReMix Hejna et al. (2024), which uses
a group-distributional robust optimization method to balance datasets. In contrast to our
method and other baselines, the weights for the datasets/tasks are not dependent on the
size but rather on the difficulty which is measured by training a reference model and a proxy
model and measuring relative loss of the datasets/tasks on these models to assign weights
for final model training. Hence, this method requires training two additional models before
training the target policy. ReMix is therefore sensitive to hyper-parameters such as model
sizes and gradients steps used for estimating weights.

Training and Evaluation: We train a single multi-task policy using the Behavior Cloning-
Transformer (BC-T) Nasiriany et al. (2024), with 512 embedding dimensions, 6 layers, and
8 attention heads on our imbalanced Robocasa dataset. On our imbalanced Libero dataset,
we fine-tune UniVLA, a robotics foundation model pretrained on human-videos (Ego4D
Grauman et al. (2021)) and large-scale robotic datasets (Cross-X embodiment Collaboration
et al. (2023) & Bride-V2 Walke et al. (2023)) on all the Libero-tasks. In both cases, we
perform 40k gradient steps; more details about hyper-parameters are in Appendix C.

3.3 Robotic Manipulation Hardware Experiments

Dataset: In the real-world, we perform table-top manipulation experiments with a Franka
Panda Emika 7-DoF robot arm, setup as shown in Fig. 3a. We train a diffusion policy with
a UNet-based architecture and a ResNet-50 visual encoder from scratch on an imbalanced
dataset consisting of 8 tasks with a total of 588 demonstrations. The exact distribution of
the tasks is given in Fig. 3b. This policy is trained with RGB observations from three cam-
eras—two wrist-mounted and one egocentric—along with proprioceptive state and language
embeddings.

(a) Setup for the real world Experiments.

Bread in Toaster

20.4%

Put the Cup on the
Coffee Machine 20.4%

Put the Egg Inside
the Carton

25.7% Put All the Fruits
from Basket to Box

13.1%

Put the Pen in
the Red Mug

5.1%

Slide the Cube
Towards the Cup

5.1%

Fold the Cloth in Half
from Right to Left

5.1%

Press the Blue Button

5.1%

(b) Tasks distribution for the real world exper-
iments. With highlighted tasks chosen for eval-
uation

Figure 3: Real-world experiment setup as well as task distributions.
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Training and Evaluation: We train a single multi-task, CNN-based Diffusion Policy Chi
et al. (2024) for 40k gradient steps and evaluate performance on four tasks (one high-resource
and three low-resource tasks): 1) Egg in Carton (a highly represented pick-and-place task),
2) Pen in Mug (a less represented pick-and-place task), 3) Fold Towel (a less represented
folding task), and 4) Slide Cube (a less represented sliding task). Each policy is rolled out
for 10 trials per task, and we report the average success rate. Further training details are
provided in Appendix B.

4 Results & Discussion

4.1 Does Temperature-based sampling improve the performance on
low-resource tasks?

Does temperature-based sampling of training data improve robotic policy performance
compared to naively sampling, basic upsampling, or sophisticated distributional weighing
schemes in the presence of data-imbalance? To answer this question, we look at our eval-
uations across training and fine-tuning on three different datasets in both simulation and
real-world environments. Fig. 4, Table 1 and Fig. 5 show that temperature sampling al-
lows an absolute increase in policy performance compared to other methods. Most of the
improvement comes from low-resource tasks, but when comparing to constantly upsampling
low-resource tasks, temperature-sampling allows for better utilization of the model capac-
ity. This highlights the importance of an annealing process, which we hypothesize leads to
diverse gradients throughout training and thus better generalization.

Figure 4: Average subtask success rates in simulation for high- and low-resource tasks under
different sampling strategies. Temperature sampling provides the highest performance on
low-resource tasks while preserving high performance on high-resource ones.

Libero Spatial Libero Goal Libero Object Libero 10 Overall
Random 0.90 0.74 0.80 0.60 0.76
Upsample 0.96 0.63 0.80 0.68 0.77

Temperature 0.96 0.86 0.84 0.73 0.85

Table 1: Fine-tuning on UniVLA on an imbalanced Libero-dataset with data ratio of {1.0,
0.3, 0.3, 0.4} for Libero Spatial, Goal, Object and Libero-10 respectively. Temperature sam-
pling outperforms randomly sampling or fixed upsampling without hurting the performance
on high-resource tasks.

4.2 Ablation Studies:

We perform ablation studies on Robocasa dataset to evaluate robustness of our method
across varying model sizes, imbalance distribution, and schedules.
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Figure 5: Real-world performance on a Franka Panda robot across four tasks, comparing
random, cosine decay, and cosine warming schedules. Cosine warming consistently improves
success rates, particularly for low-resource tasks.

To better understand the mechanism for better performance of temperature sampling and
robustness of the method under varied situations, we design a series of ablation studies with
Robocasa dataset.

How does the performance vary with model sizes? Transformer models have a
fixed capacity that scales with their model size. We would like to understand how dif-
ferent sampling methods affect the use of these model capacities. Fig. 6 shows different
sampling methods with transformer sizes of Small (3.1M), Base (19M), Large (56.7M).

Figure 6: Impact of temperature-
based sampling across different model
sizes in simulation. Cosine warm-
ing maintains its advantage in both
smaller and larger transformer archi-
tectures, indicating robustness across
model capacity regimes.

We observe that when having limited capacity,
randomly sampling datapoints leads to under-
utilization of the model capacity and the model
fails to generalize to any tasks. In such cases, us-
ing temperature sampling allows for efficient usage
of capacity leading to stronger models at smaller
scales, while also benefiting from increased model
scale.

How does performance vary with different
imbalance ratios? To understand how different
sampling methods perform under different imbal-
ance ratios, we evaluate them on two more imbal-
ance ratios (1000:50, 300:50) in addition to our pre-
vious imbalance ratio (3000:50). Fig. 7 shows that
temperature sampling helps in low-resource tasks
over our random baseline, and the gap between per-
formance of baselines and temperature sampling in-
creases as the imbalance ratio increases, highlight
the need for temperature-sampling methods as im-
balance increases.

Does schedule matter over annealing process? We ask whether the reason behind the
success of temperature-based scheduling is the cosine schedule used in our experiments or
the temperature warming schedule (T=1 to T=5 over training). To answer this question, we
try two additional schedules (linear and exponential) with temperature warming (T=1 to
T=5) and temperature decay (T=5 to T=1). Table. 2 shows that while sampling the low-
resource tasks more at the end (warming) tends to perform better on low-resource tasks,
however, the type of schedule also effect the model’s final performance. Identifying the
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(a) 300:50 data imbalance distribution (b) 1000:50 data imbalance distribution

Figure 7: Average subtask success rates in simulation for high- and low-resource tasks
under different sampling strategies. Results are shown for two data imbalance distributions:
300:50 (left) and 1000:50 (right), representing the number of demonstrations for pick-and-
place versus other tasks. Cosine warming provides the highest performance on low-resource
tasks while preserving high performance on high-resource ones.

reasons for such difference in performance for different schedules is an important direction
for future work.

Summary: We study multi-task policy learning under severe task
imbalance and propose temperature-based sampling to train ro-
bust multi-task imitation learning policies for robotic manipulation.

Warming Decay

High-resource
Cosine 0.12 0.17
Exponential 0.02 0.04
Linear 0.02 0.02

Low-resource
Cosine 0.31 0.24
Exponential 0.28 0.24
Linear 0.24 0.16

Table 2: Comparison of task success rates
across scheduling strategies by resource
regime. Warming schedules which sample low-
resource tasks higher during the end of train-
ing allow for better generalization on low-
resource tasks.

Across toy domains, simulation, and
real-world robotics, our method substan-
tially improves performance on low-resource
tasks while maintaining accuracy on high-
resource tasks. Ablations show that gains
hold across model sizes for a fixed sched-
ule, but depend on the schedule shape, with
cosine schedules performing best. More-
over, the benefit of temperature-based sam-
pling grows with the imbalance ratio, under-
scoring the need to better understand tem-
perature scheduling for training multi-task
robot learning policies under skewed task
distributions.

5 Related Work

Training on Imbalanced Datasets.
Training unbiased models on biased
datasets is a widespread problem for machine learning practitioners. The two most
common methods for mitigating bias in models trained on biased datasets are data
augmentation and data reweighing. Data augmentation artificially enhances minority class
representations. To perform data augmentation on real world robotic datasets, generative
models have been used to generate additional photorealistic trajectories (Mandi et al., 2022;
Chen et al., 2023; Kapelyukh et al., 2023; Yu et al., 2023). This generated data is shown
to be effective in improving visuomotor policy performance. Data reweighing modifies
the training process by assigning higher weights to under-represented examples or tasks.
Recent work in visuomotor policy learning for robotics reweighs domains partitioned by
estimated task complexity (Hejna et al., 2024). This reweighing is performed through an
estimate of excess loss given by a trained reference model. In contrast, our work proposes
to address data imbalance in represented action sequences. We reweigh domains via simply
ordering data presentation to the model during training, more specifically this is usually
referred to as upsampling the dataset and is proven to induce lower variance gradients than
reweighing (Li et al., 2024). We also experiment on the order which matters for different
classes of models since the timing of the introduction of low resourced data did not yield

8
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the same result in different network architectures in natural language processing (Choi
et al., 2023) and computer vision applications (Li et al., 2024).

Curriculum Learning. In multi-task and multi-lingual learning settings, which suffer
from similar problems of highly-imbalanced datasets, curriculum learning has been widely
studied to mitigate bias incurred from data imbalance (Jean et al., 2019; Wang et al.,
2020a; Kreutzer et al., 2021; Wang et al., 2020b; Choi et al., 2023).Notably, Wang et al.
(2020b), Choi et al. (2023) propose similar temperature-based scheduling approach as ours,
concluding very similar results as ours. Temperature sampling (Wang et al., 2020b; Choi
et al., 2023) provides a simple and efficient way to address imbalance in contrast to more
adaptive methods (Jean et al., 2019; Wang et al., 2020a; Kreutzer et al., 2021). This
prior work primarily evaluates temperature sampling approaches on multi-lingual datasets.
In contrast, our contribution is in robot learning, addressing an analogous problem in a
different domain, requiring a reformulation of the sampling problem and distinct evaluation.
In particular, our work proposes performing sampling over imbalanced primitive actions and
requires evaluation using a physical robot arm to validate impact on final task execution.

Skill Decomposition. Our domains are partitioned based on estimates of atomic skills.
Segmenting robot trajectories into atomic skills or primitives has been explored extensively,
with existing approaches falling into three main categories: predefined motion primitives
(Kober & Peters, 2009; Niekum et al., 2012; Peters et al., 2013), contact mode-based seg-
mentation (Toussaint et al., 2018; Su et al., 2018; Silver et al., 2022), and latent represen-
tation methods (Shankar et al., 2020; Kipf et al., 2018; Nasiriany et al., 2024; Zhang et al.,
2024; Memmel et al., 2024; Lin et al., 2024). Each approach presents distinct trade-offs.
Predefined primitives limit generalizability to new tasks, while contact-based methods re-
quire additional sensory data that is often missing from modern data collection pipelines.
In contrast, latent representation methods offer an attractive balance by flexibly encoding
both semantic and non-semantic characteristics needed by downstream tasks Nasiriany et al.
(2024); Zhang et al. (2024); Memmel et al. (2024); Lin et al. (2024). While these alterna-
tive segmentation methods should theoretically yield similar policy training results with our
temperature sampling approach, experimental validation is beyond the scope of this paper.
For our experiments, we assume clear task segmentation in our dataset based on skills.

6 Limitations & Future Work

In this paper, we propose a sampling method for training or fine-tuning robotics policies un-
der data-imbalance which is computationally efficient, simple to implement, and outperforms
alternate methods in results task success. We validate this method on a toy experimental
setup, simulated robot manipulation, and real world robot manipulation. We find across
all these settings that temperature-based sampling with cosine-warming achieves the overall
best task performance in scenarios where the target dataset is imbalanced.

Limitations. First, we applied temperature-based sampling with a fixed schedule which
requires determining and setting the training steps before launching the run. Further work
should investigate schedules which are less sensitive to training steps and allow for continual
learning of tasks. Furthermore, a significant limitation of our work is the assumption of
segmented tasks and knowing their frequency prior to training. This assumption hinders
adaptability of our method to wider training datasets with heterogeneous skills and no clear
segmentation between them. However, in our related work, we review the extensive research
on learning segmentations of these skills in unstructured datasets. This research direction
provides a promising path toward enabling automated labeling of data into decomposed
skills, allowing our approach to apply to any robotic dataset.
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say Gebreselasie, Cristina González, James M. Hillis, Xuhua Huang, Yifei Huang, Wenqi
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ANONYMIZED WEBSITE FOR VIDEOS: https://
temperature-sampling-robot-learning.github.io/temp-sampling-robot-learning.
github.io/

ANONYMIZED CODEBASE: https://github.com/
temperature-sampling-robot-learning/temp_samp.git

A Task Description and Training Details for Sparse Parity

Task Description: We evaluate our sampling strategies on the multi-task sparse parity
task, a synthetic benchmark where each task requires computing the parity (XOR) over a
task-specific subset of k = 3 bits from a binary input vector of length n = 50. We construct
T = 10 tasks using random task selection, where each task independently samples a distinct
subset of 3 input bits. To enable task-conditioned learning, each input is augmented with a
one-hot task identifier of dimension T , resulting in an input vector of dimension n+T = 60.
Fig. 8 provides an example for the case when n = 3, T = 10.

Training data is drawn according to a Zipfian distribution to introduce imbalance across
tasks. Specifically, the probability of sampling task t ∈ {1, . . . , T} is given by

P (t) = (t)−α

/
T∑

i=1

(i)−α,

where α = 1.5. This results in a heavy-tailed distribution where earlier-indexed tasks are
sampled significantly more often.

Training Details: We use a two-layer multilayer perceptron (MLP) with 100 hidden units
per layer and ReLU activations. The model is trained using the Adam optimizer for 250,000
steps with a batch size of 10,000, learning rate of 0.001, and no weight decay. Evaluation is
performed on a balanced test set of 10,000 samples (1,000 per task). This setup provides a
controlled testbed for analyzing the effects of task imbalance and sampling policies.

Figure 8: A three-task sparse parity task with the parity bits for the tasks chosen at random
(top left). The figure shows five examples (Task Bits Numbers) for different tasks, which
are input to the network along with the one-hot Task IDs (colored column), and their
corresponding outputs based on the parity of the parity bits.
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B Task Descriptions and Training Details for Simulation
Experiments

Task Details

Robocasa: We construct a dataset using RoboCasa’s atomic tasks, which encompass eight
foundational sensorimotor skills including pick-and-place, opening and closing doors and
drawers, pressing buttons, twisting knobs, and other basic manipulations. To simulate
data imbalance, we curate a subset from RoboCasa consisting of 3,000 demonstrations from
seven pick-and-place tasks, and only 50 demonstrations each for the remaining atomic tasks.
This synthetic imbalance mirrors the skill distribution biases commonly found in large-scale
robotic datasets. Demonstrations consist of both high-quality human teleoperation data and
large-scale synthetic data generated via the MimicGen system, as described in Nasiriany et
al.,Nasiriany et al. (2024).

LIBERO A lifelong robot manipulation benchmark built via a procedural pipeline that gen-
erates language-conditioned tasks (instructions, PDDL initial states, and goal predicates),
providing 130 standardized tasks for studying architectures, algorithms, and pretraining.

• LIBERO-SPATIAL (10 tasks). Same objects/goals; two identical bowls differ
only by location/relations—tests continual acquisition of spatial-relational knowl-
edge.

• LIBERO-OBJECT (10 tasks). Same layout/goals; each task changes the target
object—tests continual learning of new object concepts for pick-and-place.

• LIBERO-GOAL (10 tasks). Same objects with fixed spatial configuration; only
the task goal changes—tests continual learning of new motions/behaviors.

• LIBERO-10 (long-horizon). A 10-task subset of LIBERO-100 containing only
long-horizon tasks; used for downstream evaluation after pretraining on the short-
horizon split.

Training Details: We train Behavior Cloning-Transformer (BC-T) similar to Nasiriany
et al. (2024), with an observation history of 10 and action prediction horizon of 10 and
executing 1 action before replanning. We optimize our policy network using the AdamW
optimizer with a weight decay regularization coefficient of 0.01. The initial learning rate
is set to 1e-4, and we employ a constant learning rate schedule with a warm-up phase
lasting for the first 100 epochs. This schedule ensures stable initial training dynamics before
transitioning into the main training phase. For the objective function, we use a weighted
combination of loss terms with an L2 loss coefficient of 1.0. We train our policy for 40,000
gradient steps with a batch size of 16.

C Task Descriptions and Training Details for Real-World
Experiments

Task Setup and Distribution: For the real-world experiments, we collect an imbalanced
data set consisting of a varying number of demonstrations for 8 tasks with a total of 588
demonstrations on a Franka Panda Emika 7-DoF arm.

Training Details: We train a Diffusion Policy model with a UNet-based architecture and
a ResNet-50 visual encoder using RGB observations from three cameras—two wrist-mounted
and one egocentric—along with proprioceptive state and language embeddings. Images are
resized to 128× 128 and augmented with color and crop randomization.

The UNet consists of three levels with downsampling dimensions [256, 512, 1024], a kernel
size of 5, and group normalization. It predicts 8-step action sequences over a 16-step predic-
tion horizon, conditioned on a single observation. Training is conducted for 50,000 gradient
steps with a batch size of 128, using the AdamW optimizer with an initial learning rate
of 1 × 10−5, no weight decay, and a constant learning rate schedule. We train with 100
denoising steps and use DDIM inference with 10 sampling steps and 8 noise samples per
training example.
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