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Abstract

Periodic signals play an important role in daily lives. Although conventional se-
quential models have shown remarkable success in various fields, they still come
short in modeling periodicity; they either collapse, diverge or ignore details. In
this paper, we introduce a novel framework inspired by Fourier series to generate
periodic signals. We first decompose the given signals into multiple sines and
cosines and then conditionally generate periodic signals with the output compo-
nents. We have shown our model efficacy on three tasks: reconstruction, imputation
and conditional generation. Our model outperforms baselines in all tasks and shows
more stable and refined results.

1 Introduction
Periodic signals exist in daily lives. In biomedical domain, electrocardiogram (ECG) [18] and
body temperature [16, 25] are critical periodic signals in examining patients health status. ECG,
in particular, is an important measure to diagnose patient heart diseases [14] such as Myocardial
Infarction, AV Block, and Ventricular Tachycardia. Despite its significance, most publicly open-
sourced ECG datasets [20, 2] are small in size and they all tend to have a severe data imbalance
problem [27]–normal or common disease ECG records make up the majority while rare diseases
barely exist. Therefore, generating ECG records conditioned on diagnosis can be beneficial in solving
data imbalance issue and further developing ECG deep learning models.

Sequential models, such as recurrent neural networks (RNNs) [15, 6], transformer decoder [31],
neural ordinary differential equations (NODEs) [4], and neural processes (NPs) [12, 13, 17] have
shown excellent results in various fields [7, 3, 22]. However, as shown in section 4, there is room for
improvement when it comes to generating periodic signals. These models either collapse, diverge or
ignore subtle periodic details. In theory, discrete Fourier series (DFS) or discrete Fourier transform
(DFT) can handle sampled periodic signals. In practice, however, DFS and DFT perform poorly
when signals are obtained in irregular timesteps or contain noise [28, 33], and are difficult to serve as
(conditional) generative models.

In this paper, we introduce a novel architecture that directly utilizes Fourier series for generating
periodic signals. By the definition of Fourier series, periodic signals are composed of sinusoids. Built
upon conditional variational autoencoder [29], we first obtain latent representation vector of the
signal with the encoder. The decoder then outputs Fourier coefficients, which represent how much
each sinusoid contributes to compose the original signal, using the sampled latent vector. We further
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Figure 1: Model architecture. Input x∗ti is a concatenation of input signal xti , time ti, and label c.
We sample z from N (µz, σz), and concatenate with label c, producing z∗. Then z∗ is added with
the basis embeddings Bkψ and passed through the decoder Dφ, which produces ak and bk, namely
the k-th approximate Fourier coefficients. With a set of Fourier coefficients A = {a0, . . . , an} and
B = {b0, . . . , bn}, we build an approximated Fourier series.

generate the label conditioned periodic signals by adding the class information to the sampled latent
vector. We evaluate our model on three tasks: reconstruction, imputation, and conditional generation
to demonstrate its usefulness. Our model outperforms baseline models in all tasks, suggesting a new
direction for modeling periodic data.

2 Related Work

Modeling Periodic Signals Previous research that tried to model periodic signals replaces non-
linear activation functions by sinusoids such as sin(x), cos(x) or the linear combination of the two
[28, 34, 21, 35]. However, due to the activations’ non-monotonicity, the periodic activation functions
induce numerous local minima, causing troubles in model optimization [21].

Fourier Neural Networks (FNNs) FNNs are neural networks that resemble Fourier series. Gallant
and White [11] suggest cosine squasher as an activation function. Silvescu [28] use cos(x) as an
activation function to mimic Fourier series. Liu [19] proposes a combination of cos(x) and sin(x)
as activation function, and showed comparable results on various datasets empirically. FNN had a
superior performance in practical tasks such as aircraft engine fault diagnostics [30], and control of a
class of uncertain nonlinear systems [36–38].

Conditional Time-Series Generation Previous conditional time-series generative work employ
convolutional neural networks (CNNs) [1, 5] and RNNs [10]. They often make use of generative
adversarial networks (GANs) to achieve a realistic-looking data [23]. Esteban et al. [10] achieve
conditional generation by setting RNNs in both generator and discriminator and concatenating a class
label for every time steps.

3 Proposed Methods

3.1 Problem Definition

In this section, we will clarify notations to be used throughout the paper and define our task. Let
T = {t1, t2, . . . , tL} be a set of L ordered timesteps with ti ∈ R, and XT = {xt1 , xt2 , . . . , xtL}
be a corresponding input sequence, where xti ∈ R. We note that the intervals among T can be
irregular. Additionally, the input sequence XT has its own one-hot vector label c ∈ Rnc , where nc is
the number of unique labels. Given a label c, the goal of conditional generation is to generate XS
with another ordered timesteps S = {s1, s2, . . . , sM} that maximizes P (XS | c).
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3.2 Background: Fourier Series
Fourier series approximates any periodic function f(t) as an infinite sum of sines and cosines with
increasing frequency as written in eq. (1). Here, P is the period of function f(t).

f(t) =

∞∑
k=0

Akcos

(
2πkt

P

)
+Bksin

(
2πkt

P

)
(1)

Ak ∈ R, Bk ∈ R are Fourier coefficients. They represent how much each sine and cosine is
contributing to formulate the given function. Hereafter, we will name the set of sines and cosines
sharing the same frequency as basis and we will assume all signals have a period of 1. Originally,
Fourier coefficients are acquired by integrating the original function f(t) with corresponding sines or
cosines. However, this calculation is infeasible when the data points are discrete and irregular.

For the most of the real signals, finite numbers of basis are sufficient to model a function f(t). As
such, we will predefine the number of basis, denoted as n. In our model, given an input sequence XT ,
we approximate the true value of Ai and Bi. We denote the approximations as A = {a0, . . . , an}
and B = {b1, . . . bn}: ai and bi approximate Ai and Bi, respectively.

3.3 Model Architecture
Our model is built upon conditional variational autoencoder [29]. The overall architecture is illustrated
in fig. 1. We construct the input sequence X ∗T = [x∗t1 ,x

∗
t2 , . . . ,x

∗
tL ] where x∗ti is a concatenation of

xti ∈ XT , ti ∈ T , and label c as follows:
x∗ti = [xti ; ti; c] (2)

Encoder Eθ produces µz ∈ Rz and σz ∈ Rz from the input sequence X ∗T and we sample the
latent variable z ∈ Rz from q(z|X ∗T ) := N (µz, diag(σz)). Eθ can be any type of model (e.g., 1-D
CNNs, RNNs, transformer encoder) capable of producing an informative representation of the input
sequence.

Decoder z ∈ Rz is sampled from q(z|X ∗T ) and concatenated with c ∈ Rnc , producing z∗ ∈ Rz+nc

as z∗ = [z; c]. We have a basis embedding lookup table denoted as Bψ ∈ Rn×(z+nc), where n is the
predefined number of bases. The k-th row of Bψ, Bkψ, represents the embedding vector for the k-th
frequency basis. In order to obtain the k-th Fourier coefficient, ak and bk, we add Bkψ to the latent
variable z∗. Note that this addition is done in parallel, so we can compute it efficiently even when n
is large. The decoder Dφ produces ak and bk as follows:

ak, bk = Dφ(z
∗ +Bkψ) (3)

With A = {a0, . . . , an} and B = {b1, . . . bn}, we build an approximated Fourier series in eq. (4).

f̂(t) =

n∑
k=0

(
akcos(2πkt) + bksin(2πkt)

)
(4)

Finally, we construct a sequence of predictions as X̂T = [x̂t1 , x̂t2 , . . . , x̂tL ] where x̂ti = f̂(ti).
We optimize our model by the summation of reconstruction loss between the true observations XT
and the predicted observations X̂T , and the Kullback–Leibler divergence loss (DKL) between the
posterior distribution q(z|X ∗T ) and the prior distribution p(z) = N (0, I). The overall loss is:

L =

L∑
i=1

‖xti − x̂ti‖22 + βDKL(q(z|X ∗T )||p(z)), (5)

where β > 0 is a hyperparameter. After training, to generate XS conditioned on label c, we sample z
from the prior distribution p(z) and concatenate with c. Then we can generate XS by decoding the
concatenated vector. Currently, our model assumes all input signals have the period of 1. Extension of
this model to dynamically deal with signals of varying periods is our primary future research interest.

4 Experiments
4.1 Experimental Setup
We conduct experiments with two periodic datasets: toy sinusoid dataset and Physionet2021 [26].
Toy dataset is a simple mixture of three sine and cosine functions:

∑3
i=1m2i−1cos(2πd2i−1t) +
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m2isin(2πd2i). We put four class conditions for the toy dataset based on amplitudes M =
{m1, . . . ,m6} and frequencies D = {d1, . . . , d6}, resulting in four amplitude-frequency class
labels: ‘Low Amp. & Low Freq.’, ‘Low Amp. & High Freq.’, ‘High Amp. & Low Freq.’, and ‘High
Amp. & High Freq.’. ‘Low Amp.’ classes sample m from a uniform distribution U(1, 4) whereas
‘High Amp.’ classes sample m from U(6, 9). ‘Low Freq.’ classes sample d from U(1, 4), whereas
‘High Freq.’ classes sample d from U(8, 11). Each signal has a total of 500 timesteps.

Physionet2021 [26] contains 12-lead ECG recordings collected from six separate datasets. We cropped
each record into one second consisting of 500 timesteps and extracted samples with three diagnoses,
namely ‘Right Bundle Branch Block’ (RBBB), ‘Left Bundle Branch Block’ (LBBB), and ‘Atrial
Fibrillation’ (AF) from the V6 lead. These diagnoses are selected because they can be examined
within one second record [9]. After preprocessing, there were total 36,110 cropped ECG samples. We
split the data into train, validation and test sets with the ratio of 8:1:1. More details on preprocessing
are in appendix A.

We sampled 20% of the timesteps during training to insure the irregularity of time. 1 For all experi-
ments, we employ 5-layer 1D CNN as an encoder Eθ and 6-layer MLP as a decoder Dφ. We evaluate
our model on three tasks: (1) reconstruction (for the sampled 20%), (2) imputation for missing
timesteps (for the non-sampled 80%) and (3) conditional generation. For the tasks (1) and (2), we
use sampled time points and make the model perform both reconstruction and imputation in parallel
by generating X̂T for all timesteps. For the task (3), we sample z from the prior distribution N (0, I)
and pass through the decoder Dφ. With the same 5-layer 1D CNN encoder, we compare our model
with four different baseline decoders: Gated Recurrent Units (GRU), Transformer decoder, Neural
ODE (NODE) and Neural Processes (NP). Further model implementation details are explained in
appendix B.

4.2 Experiment Results of Toy Dataset

Table 1: Reconstruction and imputation MSE on
Toy Dataset

Reconstruction Imputation
GRU 72.454 74.711

Transformer 183.203 172.338
NODE 15.905 19.896

NP 3.813 4.615
Fourier (Ours) 0.649 0.686

We report reconstruction and imputation results
in table 1. Our model shows the lowest MSE on
both reconstruction and imputation compared
to other baseline models. We illustrate the re-
construction results in fig. 5 in the appendix C.
Based on fig. 5, we found both GRU and Trans-
former to perform very poorly, though GRU was
able to capture partial periodicity. NODE and
NP showed better performance on low frequency
samples, but they were not able to reproduce sub-
tle details for high frequency samples. In contrast, our model showed superior performance across all
amplitude-frequency classes.

We conditionally generate 2,000 samples from the sampled z for each amplitude-frequency class,
and for each decoder. As visualized in fig. 2, NODE produced flattened samples and NP generated
non-periodic signals with a large amplitude regardless of the class conditions. GRU and Transformer
were able to produce periodic signals, but all 2,000 samples were nearly identical with minimal
sample diversity. In contrast, our model was able to generate diverse periodic signals.

In order to verify whether the generated samples correctly reflect the class conditions, we conduct
Fourier series analysis, which decomposes a given signal into multiple sines and cosines as expressed
in eq. (1). From the analysis, we can calculate which frequency is used to compose the signal and
its corresponding coefficients (i.e. amplitude). We plot histograms on both amplitude and frequency
for the toy dataset, and compare the baselines with our model. The results are shown in fig. 3 for
‘Low Amplitude & High Frequency’ and ‘High Amplitude & High Frequency’, the rest two class
conditions are described in fig. 6 in the appendix C. In all baseline models, their amplitude and
frequency histograms are similarly shaped across the two classes, which implies that those models
fail to reflect the class conditions when generating samples. Our model overlaps with the dataset

1We also conduct experiments without sampling to compare model performance in two scenarios (sparse
irregular timeseries VS dense regular timeseries). The results are reported in appendix D, where our model
outperforms the baselines. However, our model is particularly more powerful when input sequences are irregular,
indicating its usefulness in handling real signals where irregularities exist due to missing timesteps [32].
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Low Amplitude Low Frequency

Low Amplitude High Frequency

High Amplitude Low Frequency

High Amplitude High Frequency

Figure 2: Conditionally generated samples in toy dataset. We draw five generated samples for each
model plotted in different colors. Our model is able to generate diverse samples while assimilating
class conditions whereas baseline models either collapse, diverge, or have a low sample diversity.

distribution most precisely compared to the other baselines, suggesting that the periodic signals
generated by our model are properly conditioned on the class.

4.3 Experiment Results of Electrocardiogram

Table 2: Reconstruction and imputation MSE on
Physionet2021

Reconstruction Imputation
GRU 77.393 75.327

Transformer 68.823 35.692
NODEs 4.937 3.262

NP 2.630 1.840
Fourier (Ours) 2.164 1.519

We report reconstruction and imputation results
in table 2. Our model shows the lowest MSE in
both reconstruction and imputation. The results
are visualized by fig. 7 in appendix C. Based on
fig. 7, GRU and Transformer cannot capture the
peak of given ECG records. Although NODE
and NP could grasp the peak point, they dis-
regard details such as subtle waves in the iso-
electric line, the straight line on the ECG. Our
model can both capture the peak and the subtle
fluctuations clearly.

We conditionally generate 3,000 samples for each diagnosis and decoder. As visualized in fig. 4,
our model generates samples that are highly similar to the real dataset. According to Rawshani [24],
RBBB diagnostic characteristics include a deep and broad depression after the peak while LBBB
has a wide peak and a shallow depression after the peak. AF has a f-wave, a fibrillatory wave in the
isoelectric line, and does not have a P-wave, a little uprising before the peak.

As shown in fig. 4, our model captures the necessary characteristics of each diagnosis, and in the
figure, its significance is highlighted in red. GRU generates similar samples regardless of the given
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Low Amplitude High Frequency
Amplitude

Frequency

High Amplitude High Frequency
Amplitude

Frequency

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

Figure 3: Fourier series analysis on conditionally generated samples. We plot histograms on amplitude
and frequency for each model from Fourier analysis. Blue color represents the original dataset
histogram and orange color represents each model. Note that the Transformer and NP cover more
space than original dataset meaning that those models use more sinusoid to generate a single sample
than the original dataset.

diagnosis, whereas Transformer draws flat lines after a certain time point. NODE and NP tend to
generate smooth ECG signals ignoring all fluctuations in ECG. Also, they could not synthesize
necessary characteristics of the given diagnosis.

We quantitatively evaluate the generated samples by using a pre-trained ECG classifier. The classifier
is trained beforehand on the real dataset to classify the three diagnosis. We use total of five classifiers
trained with a different parameter initialization seed. We run the classifier on our generated samples
in order to confirm whether our samples are classified to their given diagnosis. We report our results
in table 3.

Our model outperforms all other baselines for diagnosis-averaged overall scores, showing notable
performance in AF. We speculate the reason for this improved performance is that our model is the
only model that can synthesize f-wave, a main feature of AF, while other models fail to generate such
fine oscillations.

5 Conclusion

In this work, we introduce a new Fourier-based model architecture that can generate periodic signals.
Conventional sequential models collapse, diverge, or ignore subtle details even if they modeled the
periodicity successfully. In contrast, our model outperforms all baseline models in all tasks across
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Right Bundle Branch Block

Left Bundle Branch Block

Atrial Fibrillation

F-wave
No 
P-wave

Wide
Peak

Shallow 
Depression

Deep & Broad
Depression

GRU Transformer NODE NP Fourier (Ours) Real Dataset

GRU Transformer NODE NP Fourier (Ours) Real Dataset

GRU Transformer NODE NP Fourier (Ours) Real Dataset

Figure 4: Conditionally generated ECG samples for each diagnosis. Real dataset samples are from
Physionet2021. Main characteristics for each diagnosis and corresponding spots in generated samples
are marked in red.

Table 3: Averaged and standard deviation of classifier performance on generated ECG samples

Overall AF LBBB RBBB
Acc Recall Precision F1 Score Recall Precision F1 Score Recall Precision F1 Score Recall Precision F1 Score

GRU 0.448 0.448 0.419 0.408 0.143 0.260 0.184 0.816 0.475 0.600 0.383 0.522 0.441
(0.017) (0.017) (0.023) (0.022) (0.035) (0.050) (0.040) (0.015) (0.016) (0.009) (0.056) (0.020) (0.044)

Transformer 0.338 0.338 0.283 0.239 0.263 0.481 0.265 0.002 0.050 0.004 0.748 0.317 0.434
(0.022) (0.022) (0.028) (0.048) (0.279) (0.102) (0.175) (0.003) (0.103) (0.007) (0.266) (0.016) (0.082)

NODE 0.488 0.488 0.496 0.465 0.240 0.443 0.309 0.459 0.587 0.514 0.765 0.457 0.572
(0.008) (0.008) (0.050) (0.010) (0.034) (0.021) (0.023) (0.038) (0.006) (0.022) (0.024) (0.011) (0.004)

NP 0.722 0.722 0.742 0.719 0.546 0.748 0.631 0.757 0.853 0.802 0.863 0.625 0.725
(0.004) (0.004) (0.003) (0.004) (0.015) (0.009) (0.007) (0.013) (0.008) (0.005) (0.011) (0.010) (0.004)

Fourier
(Ours)

0.730 0.730 0.746 0.734 0.710 0.675 0.691 0.746 0.906 0.818 0.735 0.657 0.693
(0.005) (0.005) (0.004) (0.004) (0.056) (0.024) (0.014) (0.019) (0.017) (0.005) (0.040) (0.025) (0.008)

Real Dataset 0.816 0.796 0.816 0.805 0.737 0.756 0.746 0.777 0.850 0.812 0.873 0.841 0.857
(0.005) (0.004) (0.005) (0.004) (0.016) (0.014) (0.008) (0.002) (0.007) (0.004) (0.011) (0.009) (0.006)

two datasets, showing stable and refined results. We plan to extend out work to more diverse signals
with various periods, since we only examined the samples with a period of 1. We believe the periodic
structure inherited by the Fourier series will enable new possibilities to model various periodic signals
even beyond bio-signals in the future.
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A Dataset

A.1 Toy Dataset

The number of samples in each class is 20,000 in train set and 5,000 for validation and test sets.
We have total 80,000 samples in train set and 20,000 for validation and test sets. Each sample
lasts for three seconds and has total of 500 time steps. We added Gaussian noise sampled from
N (0, diag(0.3)) in all samples.

A.2 Physionet 2021

We filtered out those which sampling rate is not 500Hz and those that last less than 10 seconds, or
longer than 20 seconds. We utilized data between 5 to 10 seconds because the majority of samples
include extreme noise up to 5 second and stabilize afterward. With using ECG R-peak detectors2

[8], we maintain samples that have one or two detected R peaks within one second. This process
filters out extremely noisy samples, such as samples with all zero values or samples that do not show
any dominant QRS peaks but rather a random noise. The total number of diagnosis label in final
preprocessed dataset is shown in Table 4.

Table 4: Number of diagnosis labels in final dataset

# of Samples
RBBB 19,425
LBBB 5,270

AF 11,415
Total 36,110

B Experiment Details

B.1 Model Architecture

Table 5: Encoder architecture

Layer Layer Information
Layer 1 Conv(# of output channels=256, Kernel=3, Stride=1), MaxPool(2), SiLU
Layer 2 Conv(# of output channels=256, Kernel=3, Stride=1), MaxPool(2), SiLU
Layer 3 Conv(# of output channels=256, Kernel=3, Stride=1), MaxPool(2), SiLU
Layer 4 Conv(# of output channels=256, Kernel=3, Stride=1), MaxPool(2), SiLU
Layer 5 Conv(# of output channels=128, Kernel=3, Stride=1)

Table 6: Decoder architecture

Latent Dimension Hidden Dimension # of Layers # of Multi-Head Attention
Fourier (Ours) 128 256 6 -

NP 128 256 6 -
NODE 128 256 6 -

Transformer 128 256 2 4
GRU 128 256 2 -

B.2 Hyperparameters

We share a fixed hyperparameter set for Toy Datset and Physionet2021 as follows.

2https://github.com/berndporr/py-ecg-detectors
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• dropout = 0.1

• lr = 1e-4

• batch size = 512

• β = 1 for Toy Dataset, β = 30 for Physionet2021

B.3 Experiment environments

We train our models on NVIDIA GeForce RTX 3090. Also, CUDA version is 11.1 and torch version
is 1.8.1.

C Additional Experiment Results

Low Amplitude Low Frequency

Low Amplitude High Frequency

High Amplitude Low Frequency

High Amplitude High Frequency

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

Figure 5: Illustrated examples of reconstruction and imputation on toy dataset. Green line indicates
the ground truth and blue points are sampled inputs. Red line is the model’s prediction.
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Low Amplitude Low Frequency
Amplitude

Frequency

High Amplitude Low Frequency
Amplitude

Frequency

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

Figure 6: Fourier anaylsis in ‘Low Amplitude & Low Frequency’ and ‘High Amplitude & Low
Frequency’

Right Bundle Branch Block

Atrial Fibrillation

Left Bundle Branch Block

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

GRU Transformer NODE NP Fourier (Ours)

Figure 7: Illustrated examples of reconstruction and imputation on Physionet2021. Green line is the
ground truth and blue points are the sampled inputs. Red line is the model’s prediction.

D Experiment Result without Sampling

This section describes the results from the experiments without sampling. That is, the model receives
all available input sequences.
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D.1 Experiment Results of Toy Dataset

Generated samples on each amplitude-frequency classes are visualized in fig. 8. The overall charac-
teristics are similar to fig. 2 except that GRU can model more diverse samples. we report histograms
on amplitude and frequency based on Fourier series analysis in fig. 9. The overall distributions are
alike to fig. 3 but GRU covers more wide space in frequency.

Low Amplitude Low Frequency

Low Amplitude High Frequency

High Amplitude Low Frequency

High Amplitude High Frequency

Figure 8: Conditionally generated samples in toy dataset without sampling. We draw five generated
samples for each model plotted in different colors.

D.2 Experiment Results of Electrocardiogram

Table 7: Averaged and standard deviation of classifier performance on generated ECG samples

Overall AF LBBB RBBB
Acc Recall Precision F1 Score Recall Precision F1 Score Recall Precision F1 Score Recall Precision F1 Score

GRU 0.333 0.333 0.110 0.167 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.330 0.500
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Transformer 0.557 0.557 0.552 0.446 0.000 0.200 0.000 0.670 1.000 0.714 1.000 0.455 0.623
(0.152) (0.152) (0.128) (0.158) (0.000) (0.447) (0.001) (0.456) (0.001) (0.409) (0.000) (0.070) (0.069)

NODE 0.531 0.531 0.574 0.515 0.306 0.476 0.371 0.454 0.773 0.572 0.832 0.471 0.601
(0.010) (0.010) (0.006) (0.013) (0.034) (0.020) (0.023) (0.021) (0.009) (0.015) (0.028) (0.011) (0.007)

NP 0.709 0.709 0.751 0.710 0.548 0.734 0.626 0.698 0.932 0.798 0.883 0.588 0.734
(0.012) (0.012) (0.004) (0.013) (0.046) (0.019) (0.024) (0.013) (0.011) (0.006) (0.022) (0.022) (0.068)

Fourier (Ours) 0.711 0.711 0.741 0.716 0.779 0.625 0.692 0.714 0.954 0.816 0.642 0.645 0.642
(0.011) (0.011) (0.006) (0.011) (0.053) (0.032) (0.005) (0.035) (0.011) (0.020) (0.052) (0.030) (0.016)

Real Dataset 0.816 0.796 0.816 0.805 0.737 0.756 0.746 0.777 0.850 0.812 0.873 0.841 0.857
(0.005) (0.004) (0.005) (0.004) (0.016) (0.014) (0.008) (0.002) (0.007) (0.004) (0.011) (0.009) (0.006)

Generated ECG samples from each model are visualized in fig. 10. GRU produces the same samples
across all diagnoses. We report the mean and standard deviation of classifier performance on generated
ECG samples in table 7. Similar to table 3, our model shows decent performance in diagnosis-averaged
overall score and impressive performance in AF. Since GRU generates the same samples regardless of
diagnosis, recall in RBBB is 1 and all scores in other diagnoses scores are 0. Likewise, Transformer
synthesize AF samples as RBBB, causing recall in RBBB 1 and scores in AF nearly 0.
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Low Amplitude Low Frequency

Amplitude

Frequency

Frequency

Low Amplitude High Frequency

Amplitude

Frequency

High Amplitude Low Frequency

Amplitude

Frequency

High Amplitude High Frequency

Amplitude

Frequency

Figure 9: Fourier series analysis on conditionally generated samples without sampling. Blue color
represents the original dataset whereas orange color represents each model.
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Right Bundle Branch Block

Left Bundle Branch Block

Atrial Fibrillation

F-wave
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P-wave
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Figure 10: Conditionally generated ECG samples for each diagnosis. Main characteristics for each
diagnosis and corresponding spots in generated samples are marked in red.
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