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Abstract

In certain situations, neural networks will repre-
sent environment states in their hidden activations.
Our goal is to visualize what environment states
the networks are representing. We experiment
with a recurrent neural network (RNN) architec-
ture with a decoder network at the end. After
training, we apply the decoder to the intermedi-
ate representations of the network to visualize
what they represent. We define a quantitative
interpretability metric and use it to demonstrate
that hidden states can be highly interpretable on
a simple task. We also develop autoencoder and
adversarial techniques and show that benefit inter-
pretability.

1. Introduction

When trained to predict the end state of a given sequence,
neural networks (NNs) may learn to predict intermediate
states even if not explicitly trained to do so. For example, a
network trained to predict the end state of an environment
where the easiest way is to predict it one step at a time will
most likely generate hidden representations of the interme-
diate steps. Consider a NN trained to predict the 4th state
of Conway’s Game of Life (GoL) (Conway, 1970) given
an initial state. GoL is a cellular automata with simple de-
terministic rules to obtain the next state from the previous.
The network could learn the GoL rules and apply them to
the 1st state to obtain a representation of the 2nd state, to
the 2nd state to obtain the 3rd state and so on. The states
before the 4th state would be represented only internally in
the network, since it is only trained to output the 4th state.
Another case where the network might represent environ-
ment states is when making a decision. For example, if a
reinforcement learning (RL) agent needs to decide whether
to go left or right in a maze, the NN might predict what
the state of the environment will be after going left. The
network may represent this state in its hidden activations
and use it to decide how to turn. Our goal is to visualize the
environment states that a network is representing. In this
case, it is like the network is imagining the consequence of
its action. When a network is making a decision, visualizing
the states it is considering can help evaluate if the network is

making a safe and correct decision and for the right reasons.
To our knowledge, this interpretability problem has not been
explored before.

An important motivation for visualizing the intermediate
states represented by a neural network is to better understand
mesa optimization (Hubinger et al., 2019). Mesa optimiza-
tion occurs when a neural network is trained to perform
some objective but ends up implementing an internal search
process to achieve that objective. The network essentially
learns to perform optimization “inside the model” - hence
the term “mesa” optimization. If the learned internal objec-
tive of this optimization does not align with the intended
training objective, it can lead to unintended and potentially
dangerous behavior. For example, a reward-hacking mesa-
optimizer may find an undesirable way to maximize its
reward that goes against the intended goal. By visualizing
the intermediate states considered by the network during its
decision-making process, we may gain insight into whether
mesa-optimization is occurring, what internal objective is
being pursued, and whether it aligns with the intended ob-
jective. This could be an important tool for creating safer
and more robust Al systems.

In this paper, we first focus on visualizing the network’s
intermediate representations when predicting GoL states
using a recurrent neural network (RNN). We then apply
the technique to an LSTM trained to predict the number
of living cells in GoL after a certain number of timesteps.
Finally, we experiment with an AlphaZero chess model
to see if we can uncover the states the model considers
when planning the next move. We use an encoder-decoder
architecture, where we train the encoder and decoder as an
autoencoder on the input states, and apply the decoder to the
intermediate hidden states to visualize what they represent.

The GoL provides a good testbed because we know the
ground truth of the intermediate GoL states so we can ac-
curately evaluate our technique. Chess, on the other hand,
represents a more challenging case where the model’s in-
ternal representations may be more abstract and harder to
interpret.

1.1. Contributions

Our main contributions in this work are:



1. We introduce the task of visualizing the intermediate
environment states represented by a neural network
and motivate its importance for understanding mesa
optimization and improving Al safety.

2. We develop an autoencoder and adversarial training
method for visualizing intermediate representations in
an encoder-decoder architecture.

3. We present results on applying this technique to RNNs
and LSTMs trained on the Game of Life cellular au-
tomata, showing that intermediate states can be recov-
ered in these simple environments.

4. We experiment with an AlphaZero chess model and
discuss the challenges in uncovering abstract planning
representations in more complex domains.

2. Methodology

We conduct experiments on two main environments: the
Game of Life and Alpha Chess. The Game of Life serves
as a simple and controlled environment where the ground
truth dynamics are known, allowing us to validate our vi-
sualization technique and assess the impact of different
architectural choices and training procedures. Alpha Chess,
on the other hand, represents a more complex and realistic
environment where the network’s internal planning process
may be more sophisticated and challenging to interpret. By
applying our visualization technique to both environments,
we aim to demonstrate its generalizability and explore its
limitations in uncovering planning in more advanced net-
works.

2.1. Architecture Overview

The architecture used in our experiments consists of three
main components: an encoder, a recurrent neural network,
and a decoder. The encoder takes the initial state of the
environment as input and learns to compress it into a hidden
representation. This hidden representation is then processed
by a series of recurrent layers, which aim to capture the
temporal dynamics and potential planning steps of the net-
work. Finally, the decoder takes the hidden representations
from the recurrent layers and attempts to reconstruct the
corresponding environment states.

We experiment with different numbers of recurrent layers
and timesteps to investigate the impact of network depth
and temporal resolution on the interpretability of the in-
termediate representations. The encoder, recurrent layers,
and decoder are all implemented using convolutional neu-
ral networks (CNNG5) to efficiently process grid-like state
representations.

2.2. Training Procedure

The network is trained using pairs of initial and final en-
vironment states. The loss function used for training is a
combination of the L2 loss for predicting the final state, the
reconstruction loss for the autoencoder, and optionally, the
adversarial loss from the discriminator.

The primary objective is to minimize the L2 loss between
the predicted final state and the ground truth final state. This
encourages the network to learn to accurately predict the
outcome of the environment’s dynamics. Additionally, we
employ autoencoder training by minimizing the reconstruc-
tion loss between the input state and the decoder’s output
when applied to the encoder’s hidden representation. This
helps to ensure that the encoder learns a meaningful and
invertible representation of the environment state. In some
experiments, we also use adversarial training to encour-
age the decoder to generate realistic and valid environment
states, even when applied to the intermediate hidden repre-
sentations of the recurrent layers.

2.3. Network Visualization and Evaluation Metrics

To visualize the intermediate states of the network, we apply
the decoder network to the intermediate hidden states of the
recurrent layers during inference. By doing so, we aim to
visualize the states that the network may be representing
or considering during its potential planning process. This
approach is motivated by the hypothesis that the network
may use a similar representation format for the states it
considers during planning as it does for the encoder’s output.
By visualizing these intermediate representations, we can
gain insight into the network’s internal decision-making
process and assess whether it is engaging in some form of
planning or state search.

For GoL, we define a metric to determine how closely the
network represents the intermediate GoL states. We con-
sider a GoL sequence with m states {s; ... $;,, } and feed s1
into the inference network to generate {h; ... h,} outputs
from the n hidden states of the network. We threshold each
pixel of network outputs at .5 so they become either O or
1, since GoL states have binary pixel values. Finally, we
count the number of h; outputs that match any s; GoL state
and divide it by the minimum between n and m — 2 (not m
since we exclude s; and s,,,) as shown in this equation:
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f is a function which determines if two states match. If less
than 95% of the pixels in the two inputs of f(h;,s;) are
equal f gives 0. Otherwise, f gives .5 if another generated
state already matched the GoL state, and 1 if it did not. This
gives credit for states in any order matching, because when
the number of model and GoL timesteps are different it is



not clear which states should match. Note that the calculated
metric could be greater than 1 if n > m — 2. Each metric
value that we report is the average over ten thousand GoL
sequences for each run. See appendix A for examples of
metric values of state sequences.

3. Results
3.1. Game of Life (RNN)

We first apply our visualization technique to a recurrent
neural network (RNN) trained on GoL.

3.1.1. RESULTS WITH SAME NUMBER OF MODEL AND
GOL TIMESTEPS

First, we evaluate our technique with the same number of
GoL and model timesteps. For each run, we try our tech-
nique with and without adversarial training, and report the
maximum of two the metric values. We only include train-
ings in this analysis where the network reached 99% train-
ing accuracy in predicting the final GoL state. We measure
the mean metric value and impact of the following hyper-
parameters in table 1:

e The number of timesteps in GoL and model (Num
timesteps)

¢ Whether the network was trained with an autoencoder
loss (Use Autoencoder)

* Whether corresponding layers of different timesteps
share the weights (Use RNN)

Mean
Num Use Use | Number | Metric
timesteps | Autoencoder | RNN | of Runs | Value

2 True True 6 1.00

3 True True 42 0.99

4 True True 33 0.93

3 False True 22 0.56

3 True False 20 0.40

Table 1: The first 3 rows show that interpretability gets

slightly worse with more timesteps. The last two rows show
that the autoencoder and RNN are helpful. We average over
Number of runs different training runs of the network.

We also do an evaluation where we train 15 versions of the
network with 3 timesteps and measure how many training
steps it takes each predicted state to reach 98% similarity
with the corresponding ground truth state (the states should
correspond since the number of timesteps are equal). On
average, the 3rd state reaches 98% accuracy 2773 training
steps before the 4th state. The 2nd state reaches 98% accu-
racy 5533 training steps before the 4th state. The network

is learning to predict the intermediate states before the final
one, even though it was trained to predict the final state, but
not the intermediate ones. We think the network is learn-
ing to predict the intermediate states first because they are
necessary for predicting the final state.

We also measure the impact of other hyperparameters. We
find that having 20 channels in our CNN layers improves
the metric by 0.09 over larger numbers of channels. We also
find that having 1 layer in the encoder and decoder improves
the metric by 0.14 compared to 3 layers.

3.1.2. RESULTS WITH A DIFFERENT NUMBER OF MODEL
AND GOL TIMESTEPS

We also measure the results when the number of model and
GoL timesteps are different as shown in table 2. This is a
more difficult problem because the model cannot simply use
each model timestep to predict one GoL timestep.

GoL Model | Number Mean
timesteps | timesteps | of runs | metric value
2 3 16 0.73
3 2 22 0.74

Table 2: Results where the number of GoLL and model
timesteps are different. Note that the runs with 2 GoL
timesteps and 3 model timesteps can have a metric value
of 1.5 if both of their intermediate model states match the
single intermediate ground truth state. These runs use the
RNN and the autoencoder.

3.1.3. IMPACT OF ADVERSARIAL TRAINING

We measure the impact of our adversarial training technique
and show it in table 3. The technique usually improves
results, sometimes by about 4x. Adversarial training helps
more in the cases where the interpretability score is low
without it.

3.2. Game of Life (LSTM)

We also apply our visualization technique to an LSTM
trained on the Game of Life. The key differences from
the RNN setup are:

e The LSTM is trained to predict the number of living
cells after a certain number of timesteps, rather than
the full game state. This is a more challenging task for
our method since it is less obvious that the network will
need to predict the intermediate states. To do so, we
add a ’count cells” network after the LSTM to output
the predicted cell count.

* The decoder is only trained to reconstruct the initial
game state from the encoder output, not the final state.



GoL Model Use Use [ Number Mean Mean with
timesteps | timesteps | auto-encoder | RNN | of runs | without adversarial | adversarial
2 3 True True 16 0.58 0.65
3 2 True True 22 0.15 0.71
3 3 True False 20 0.11 0.40
3 3 False True 10 0.44 0.43

Table 3: Results on a subset of experiments with and without the adversarial training technique. The adversarial training
technique improves the results in every case except when we do not use the autoencoder.

We measure the correlation between the ground truth GoL
states and the states reconstructed by applying the decoder
to the intermediate LSTM activations. We exclude the initial
state from the metric since the decoder is explicitly trained
on it, but include the final state. Table 4 shows the mean
correlation values averaged over multiple runs for different
combinations of GoL and LSTM timesteps. The high corre-
lations indicate that, even in this more challenging setup, the
LSTM still represents information about the intermediate
game states in its hidden activations, and our technique is
able to extract that information.

GoL LSTM Mean Number
timesteps | timesteps | correlation | of runs
2 2 0.79 8
2 3 0.81 5
2 4 0.73 9
3 2 0.93 7
3 3 0.76 8
3 4 0.76 4
4 3 0.86 3

Table 4: Results of applying our visualization technique to
an LSTM trained to predict the number of living GoL cells
after a given number of timesteps.

Figure 1 shows an example of the reconstructed states from
the intermediate LSTM activations compared to the ground
truth GoL states, which has correlation of 0.87.

3.3. Alpha Chess

We also apply our visualization technique to a pre-trained
AlphaZero chess model to investigate whether it represents
potential future board states during its decision-making pro-
cess. Chess represents a more complex and challenging
domain than the Game of Life, and the model’s internal
planning process, if it exists, may involve more abstract
representations.

The AlphaZero model uses a residual network architec-
ture with separate heads for predicting the value and policy
(move probabilities) from an input board state. We freeze
the pre-trained weights and train a decoder to reconstruct
the input state from the activations of the first convolutional
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Figure 1: Comparison of the reconstructed states from the
LSTM’s intermediate activations (top row) and the ground
truth GoL states (bottom row). Each column represents a
timestep. The first column always matches as the decoder
is trained to reconstruct the initial state. The 2nd and 3rd
reconstructed states closely match the 2nd GoL state, while
the 4th reconstructed state somewhat resembles the final
GoL state.

layer. We also train the decoder to predict the board state
after the model’s chosen move, using activations from the
final layer before the value and policy heads split. This aims
to encourage a consistent state representation throughout
the network.

However, when we apply the decoder to activations from
the intermediate residual blocks, we do not find consistent
evidence of human-interpretable board states or valid moves
in these reconstructions. Applying an adversarial loss does
not substantially improve the interpretability of the recon-
structions.

Figure 2 shows some examples of board states reconstructed
from the intermediate layer activations of the AlphaZero
model, along with the corresponding input states. In some
cases, pieces would disappear or appear in the reconstructed
states (Figure ??). While we occasionally observe recon-
structions that resemble valid moves, such as a set of queen
moves (Figure ??), these interpretable patterns are not con-



sistently produced across different input states, model layers,
or training runs.
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Figure 2: Examples of board states reconstructed from the
intermediate layer activations of the AlphaZero model. (a)
A reconstructed state where pieces disappear or appear com-
pared to the input state. (b) A reconstructed state resembling
a set of valid queen moves.

These results suggest two possible interpretations:

1. The AlphaZero model does not perform explicit inter-
nal planning or search, and instead relies on pattern
recognition and heuristics learned from its training
data.

2. The model does engage in some form of planning, but
represents the considered states in a higher-level, ab-
stract format that our decoder network fails to translate
into human-interpretable board states.

Human chess players often think in terms of abstract strate-
gies and objectives rather than explicitly visualizing future
board positions. It is plausible that the AlphaZero model
learns to plan using similarly high-level representations,
which would not necessarily map to valid board states when
decoded. If this is the case, uncovering the model’s in-
ternal planning process would require more sophisticated
interpretability techniques capable of visualizing abstract,
semantic information rather than just raw board states. It is
also possible that the model’s planning representations are
encoded in a format fundamentally incompatible with our
decoder-based approach.

4. Related work

(nostalgebraist, 2020) also applies the decoder to intermedi-
ate layers to help interpretability. The difference with our
work is that they apply the technique to a different archi-
tecture and do not have the goal of visualizing intermediate
environment states. They also do not use an adversarial tech-
nique or have results showing how architecture decisions
impact interpretability. See appendix ?? for more related
work. NNs have produced unprecedented advances in recent
decades in a variety of tasks. However, their inner workings
are still unclear. A large number of previous works have
focused on visualizing NNs outputs, activation function and
hidden layers. For example, (Yosinski et al., 2015) provides
a tool to visualize neurons in pre-trained Convolutional NNs
(CNNs). Their method allows for deeper local understand-
ing of neuron computations. This tool only works for images
and videos.

Others such as (Szegedy et al., 2014) show that CNNs encod-
ing maintains photographically accurate information about
the original input several layers in the network. Their ap-
proach uses shallow and deep representation to invert an
objective function with Stochastic Gradient Descent (SGD)
that allows them to reconstruct the original input. Our
method also sheds light on what the intermediate layers
of a network represent.

Another popular approach for unpacking the inner-workings
of NNs has been via visualization. More specifically, the
use of saliency maps (Simonyan et al., 2014) highlights an
area (map) of the image such that the classifier (e.g. CNN)
can discriminate given a class. This method has proved to
be a powerful tool for image region segmentation.

More recently, (Mordvintsev et al., 2020) investigated learn-
ing a cellular automata update rule. They use a recurrent
network with simplified CNN-like layers, with ‘per-pixel’
dropout. They train it on the task of generating target im-
ages. Their visualizations show that the network also learns
interpretable intermediate representations. One difference
with our method is that we use a standard CNN architecture
instead of a modified one. We also use a decoder which
we apply to the intermediate representations, where they
treat the last 3 channels as the visualization instead of using
a decoder. We also apply our technique to a domain with
complex intermediate states, while their intermediate states
are usually subsets of the target image. We plan to further
test our technique by applying it in the domain of generating
target images.

Finally, the authors of (Zeiler & Fergus, 2013) consider
the task of visualizing the intermediate feature layers of a
CNN as well as the operation used for classification. Their
approach shows significant improvement on ImageNet. Our
work differs in that instead of trying to extract specific fea-



tures from the hidden states, we focus on reconstructing
environment states.

5. Conclusion and future work

In our research, we explore a new interpretability problem
of visualizing the hidden intermediate states that a network
represents. We show that in a simple environment using
an autoencoder and adversarial techniques, we can obtain
hidden states that closely match the ground truth states of
the environment. However, the idea didn’t end up working
out when we tried it on a larger neural network trained on
chess, highlighting the limitations of our approach for more
complex models and domains. In future work, we plan to
investigate ways to extend our technique to handle such
complex scenarios, where the network may represent the
consequences of a decision it is considering.
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A. Results samples

These are cherry picked examples to illustrate how our met-
ric works.

State: 1 2 3 4
LEd -d = AP
Ll SR ¥ !

states _ ? : I _I' \ F G 5

R
Model
predictions E'J.L?

Figure 3: An example with 3 GoL timesteps and 3 model
timesteps. The metric gets a value of .5 because the 3rd pre-
dicted state matches the ground truth, but the 2nd predicted
state does not. The 1st and 4th states are ignored because
the network is trained on them.
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Figure 4: The metric gets a value of .75 because both pre-
dicted states match the same ground truth state. So the 3rd
predicted state gets a half score.
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Figure 5: An example with 2 GoL timesteps and 3 model
timesteps. The metric gets a value of 1.0. The 2nd model
state matches the intermediate GoL state. The 3rd model
state matches the 3rd GoL state, but this is ignored because
the model was trained to predict the 3rd GoL state. The
denominator in the metric is 1 because min(2,3 —2) =1
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Figure 6: An example with 2 GoL timesteps and 3 model
timesteps. The metric gets a value of 1.5. The 2nd model
state matches the intermediate GoL state. The 3rd model
state also matches the intermediate GoL state, so the metric
gives .5 score for this state. Note that we ignore the last GoL
state and not the last model state, to this match is a valid one



