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Abstract

A diverse range of large language models001
(LLMs), e.g., ChatGPT, and visual question002
answering (VQA) models, e.g., BLIP, has been003
developed for addressing text and visual ques-004
tion answering tasks. However, both LLMs005
and VQA models encounter challenges when006
applied to out-domain datasets. Fine-tuning007
these models for domain adaptation is either008
impossible (only accessible by APIs as black-009
box models) or computationally expensive (big010
model size), and often only limited labeled011
out-domain data is available. Under these con-012
straints, ensemble techniques provide a com-013
pelling alternative. In this paper, we aim to im-014
prove out-domain model performance by utiliz-015
ing the capabilities of existing black-box mod-016
els with limited computational cost and labeled017
data. To address this challenge, we introduce a018
novel data-efficient ensemble method, InfoSel,019
which trains small-size (<120M parameters) en-020
semble models to select the best answers with-021
out relying on prediction confidences for both022
text and visual question answering tasks. Our023
results demonstrate that InfoSel improves the024
performance compared to the ensembled base025
models over four mini datasets sampled from026
SQuAD-V2, NQ-Open, GQA and VizWiz.027

1 Introduction028

Large language models (LLMs) have demonstrated029

remarkable proficiency across a wide range of tasks,030

predominantly attributed to their ability to compre-031

hend instructions and tap into vast repositories of032

high-quality data (Bubeck et al., 2023; Laskar et al.,033

2023). A representative model – ChatGPT1 finds034

extensive utilization in daily question answering035

(QA) tasks, rendering substantial convenience to036

a myriad of users (Malik et al., 2023). For visual037

question answering (VQA) tasks, VQA models038

have exhibited exceptional versatility, primarily039

1https://chat.openai.com/

due to their capability to comprehend both visual 040

and textual context (Gong et al., 2023). 041

However, Laskar et al. (2023); Kocoń et al. 042

(2023) evaluate state-of-the-art LLMs and conclude 043

that ChatGPT solves various tasks to some degree 044

but consistently falls short of state-of-the-art per- 045

formance, highlighting its limitations to specific 046

datasets. Similarly, the same issue applies to VQA 047

models (Li et al., 2022, 2021a,b; Bao et al., 2022). 048

These models, when trained on in-domain data and 049

tasks, can encounter challenges in generalizing to 050

out-domain data due to variations in format or struc- 051

ture (Arora et al., 2018). Unfortunately, fine-tuning 052

on out-domain data is not an option, as ChatGPT2 053

and its similar models (e.g., GPT-3.5 text-davinci- 054

0033) are proprietary and only accessible via APIs 055

(black-box models) to users, thereby limiting our 056

access to detailed insights regarding their architec- 057

tural intricacies, model weights, training data and 058

even prediction confidences (Jiang et al., 2023). Be- 059

sides, even though few models such as LLaMA-2- 060

70b-chat (Touvron et al., 2023) are recently accessi- 061

ble through online platforms4, it is computationally 062

expensive to fine-tune due to its large model size 063

(70B parameters). 064

In the context of possessing limited computa- 065

tional resources and labeled data, a reliable and 066

robust strategy for maximizing the utility of exist- 067

ing black-box models is to obtain predictions from 068

multiple models and subsequently ensemble the 069

predictions (Dietterich, 2000). Figure 1 demon- 070

strates our motivation for developing an ensemble 071

method to help users select the best answers from 072

all the answers generated by different black-box 073

models. However, standard ensemble methods like 074

stacking, weighted averaging (Sagi and Rokach, 075

2018), or recent LLM-Blender (Jiang et al., 2023) 076

2https://chat.openai.com/
3https://platform.openai.com/docs/introduction
4https://huggingface.co/meta-llama/

Llama-2-70b-chat-hf
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Figure 1: InfoSel learns to select the best answer from
the predicted answers of black-box models for new do-
main datasets.

are not applicable in this case, since they either re-077

quire to train their own base models independently078

(have access to the model architecture) or demand079

prediction scores and thus do not fulfill the black-080

box setting (where only the predicted answer is081

available). Majority voting, on the other hand, is082

applicable but provides limited performance im-083

provement (Chan and van der Schaar, 2022).084

To address the limitations of previous meth-085

ods, we propose our new ensemble method named086

InfoSel (Informed Selection), a sample-level ap-087

proach that trains an ensemble model to select the088

best answer regarding different input samples with089

a limited computational cost and labeled data in a090

black-box setting. Specifically, the ensemble model091

learns to solve a multiple choice text or visual QA092

task by considering all the predicted answers as093

choices and performing it as a classification task.094

Three LLMs (ChatGPT, LLaMA-2-70b-chat and095

GPT3.5 text-davinci-003) and three VQA models096

(ALBEF (Li et al., 2021a), BLIP (Li et al., 2022)097

and VLMo (Bao et al., 2022)) are used as ensemble098

base models to provide answers for text and visual099

QA task respectively.100

To simulate a realistic application scenario, we101

sample limited labeled data from public datasets102

for (out-domain) training and/or ensembling, and103

test the ensemble of (pre-trained, black-box, in-104

domain) models on the corresponding (out-domain)105

test dataset. We refer to this setting with lim-106

ited labeled data in the out-domain as "mini-*".107

For text QA task, we created mini-SDv2 and 108

mini-NQ by randomly sampling 1k samples from 109

SQuAD v2 (Rajpurkar et al., 2018) and NQ-Open 110

(Kwiatkowski et al., 2019) train dataset respec- 111

tively; mini-GQA and mini-Viz for VQA task con- 112

tain only the development dataset of GQA (Hud- 113

son and Manning, 2019) and VizWiz (Gurari et al., 114

2018)). 115

Specifically, two different architectures are ap- 116

plied for text and visual QA tasks respectively. In- 117

foSel-BERT simply uses BERT-Base (110M pa- 118

rameters) (Devlin et al., 2019) as the backbone to 119

process the question with predicted answers as a 120

multiple choice textual QA task. Differently, In- 121

foSel-MT employs a multimodal transformer (MT) 122

(115M parameters) (Li et al., 2019) to create fused 123

contextual representations of input data (image, 124

question, and the predicted answers). The fused 125

representations are then used to train a dense layer 126

for selecting the best answer. To address the lim- 127

itation of the max capability of base models, we 128

introduce InfoSel+, which further ensemble the 129

trained InfoSel model with a fine-tuned model us- 130

ing BERT or MT with the same amount of labeled 131

data. 132

Our results demonstrate that InfoSel and 133

InfoSel+ improve the performance in mini-SDv2 134

(58.44% to 63.71%) and mini-NQ (71.54% to 135

73.37%) for textual QA task, and also mini-GQA 136

(50.60% to 55.16%) and mini-Viz (21.28% to 137

52.91%) for VQA task compared to the ensembled 138

base models. 139

Our contributions are: (1) We propose, InfoSel, 140

a new approach to ensembling black-box ques- 141

tion answering models. Our approach is the first 142

that does not rely on access to model architec- 143

ture, weights or prediction confidences. InfoSel 144

is lightweight in parameters and data-efficient. (2) 145

We study InfoSel in textual and viual question an- 146

swering and demonstrate its effectiveness on four 147

benchmark datasets; (3) Analysis shows that on 148

some datasets InfoSel already achieves better per- 149

formance than the best of the base models with 150

only as little as 10 samples; (4) We investigate 151

the impact of selecting different modality of input 152

information for ensemble training in the VQA task. 153

2 Related Work 154

Domain adaptation methods aim to improve the 155

performance of a model on a target domain by 156

leveraging knowledge from a source domain (Zhou 157
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et al., 2022). Methods such as fine-tuning (Yosin-158

ski et al., 2014), feature adaptation (Long et al.,159

2015)), and data augmentation (Choi et al., 2019)160

aim to improve the performance of individual mod-161

els and thus require access to the model architec-162

ture, weights, or in-domain training data.163

Ensemble learning entails the generation and164

combination of multiple learners (ML models) to165

address a particular machine learning task (Sagi166

and Rokach, 2018). Classical ensembling ap-167

proaches like boosting (Schapire, 2013) and bag-168

ging (Breiman, 1996) are designed to train and169

combine a large number of individual models with170

numerous high-quality training data and are thus171

computationally expensive. Snapshot ensemble172

method (Huang et al., 2017) uses several local min-173

ima from one single model for ensembling, which174

requires full access to model weights and architec-175

ture. Stacking methods (Wolpert, 1992; Pascanu176

et al., 2014) uses a meta-learner to learn the pre-177

dictions from base models and provides the final178

output. However, the predictions usually consist of179

probability scores generated by base models.180

LLMs/VQA models ensembling methods pro-181

posed by Jiang et al. (2023) uses a PairRanker to182

rank the best top K answers generated by LLMs.183

(Puerto et al., 2021) introduces MetaQA to com-184

bine models from different domains. (Han et al.,185

2021) and (Clark et al., 2019) aim to avoid dataset186

biases, while (Xu et al., 2019) learns joint feature187

embeddings across different domains. However,188

these methods either rely on the model’s prediction189

confidences or have access to in-domain training190

data and model architecture.191

Ensembling black-box models can be achieved192

by majority voting which selects a final answer193

with the most votes, but it can only provide limited194

improvement in performance (Chan and van der195

Schaar, 2022). To address the limitation of the196

above methods, InfoSel provides a computation-197

and data-efficient ensemble solution for black-box198

models without relying on knowledge of model199

architecture, weights, in-domain training data, and200

model prediction confidences.201

3 Informed Selection Ensemble Training202

The left half of Figure 2 illustrates the InfoSel203

framework for ensemble LLMs in QA tasks, while204

the right half presents the ensemble framework for205

VQA models in VQA tasks.206

3.1 InfoSel Training for Textual QA 207

Data Preparation. We randomly sampled N
(N=103) content-question pairs {(Ci, Qi)}Ni=1

from training data of different benchmark datasets.
(Ci, Qi) is then formed as a prompt with certain
rules (explained in Table 8 in Appendix) Pi =
R(Ci, Qi) for getting high-quality answers from
LLMs. Ãl

i denotes the ground-truth answer of
Pi. 5 K (K=3) state-of-the-art black-box LLMs
{M l

j(Pi) → Al
ij}Kj=1 are chosen to predict on the

N prompts, and thereby provide N ∗K candidate
answers. We calculate the token-based F1 scores
(Rajpurkar et al., 2018) of all candidate answers
{Al

ij}Kj=1 predicted on Pi and use it as the target
label Y l

i for training answer-selection.

Y l
i = {F1(Al

ij , Ã
l
i)}Kj=1, Y

l
i ∈ RK

Pi is later concatenated with {Al
ij}Kj=1 respec-

tively as input {X l
ij}Kj=1 for ensemble training,

while Y l
i contribute as label for the training op-

timization. We denote the concatenation of vectors
or strings by the notation [·, ·].

X l
ij = [Pi, A

l
ij ]

InfoSel-BERT. BERT-Base is used as the back-
bone of InfoSel-BERT to generate K sentence rep-
resentations {hxij}Kj=1 of {X l

ij}Kj=1 respectively.

hxij = BERT (X l
ij), h

x
ij ∈ R768

A dense layer (DL) is followed to classify {hxij}Kj=1 208

to label Y l
i with a binary cross entropy loss BCE. 209

We denote θ to be the set of trainable parameters 210

and formulate the training objective of InfoSel- 211

BERT as: 212

minθ

N∑
i=1

BCE(DLθ([BERTθ(X
l
ij)]

K
j=1), Y

l
i )

(1) 213

FT-BERT. Motivated by a situation where a tun- 214

able QA model (BERT-Base) and limited labeled 215

data are available, we fine-tune the BERT Base 216

model with the same amount of the labeled data 217

(103) and name the fine-tuned model as FT-BERT. 218

In particular, FT-BERT aims to locate the start and 219

end token position of the answer from the con- 220

text C. Therefore, the start token and end token 221

5We distinguish components in textual QA with language
models and visual QA with superscripts l and v.
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Figure 2: InfoSel framework. Trainable models are in red color, while blue represents the frozen models.

position of Ãl
i is provided as the label for token222

classification optimization.6223

InfoSel+-BERT. To address the limitation of the224

max capability of base models, InfoSel+-BERT225

performed a further ensemble training of FT-BERT226

and InfoSel-BERT with the same training scheme227

as InfoSel-BERT. We expect InfoSel+-BERT can228

capture the unseen labels of base models from FT-229

BERT and thus improve the overall performance.230

3.2 InfoSel Training for VQA231

Data Preparation. Assume we have N image-
question pairs {(Ii, Qi)}Ni=1 from development
data of VQA benchmark datasets. K (K=3) pre-
trained VQA models {Mv

j ((Ii, Qi)) → Av
ij}Kj=1

learned to predict N ∗K candidate answers over
{(Ii, Qi)}Ni=1. Ãv

i is the ground-truth answer of
(Ii, Qi). A binary vector, i.e., label Y v

i , is then con-
structed by the accuracy scores of the K candidate
answers.

Y v
i = {Acc(Av

ij , Ã
v
i )}Kj=1Y

v
i ∈ RK

A concatenation of question and answer denotes
as text segment Tij = [Qi, A

l
ij ]. Text embeddings

htij are generated by the BERT embedding layer,
which means each subword embedding is the sum
of its token, position, and segment embedding.

htij = embedding(Tij), h
t
ij ∈ R768

Visual embeddings hvi generated by a pre-trained
R-CNN model (Anderson et al., 2018) include the
image region embeddings hIi and the detector tag
(i.e., object labels of the image) embeddings htagi .

6The training scheme is adapted from https://
huggingface.co/learn/nlp-course/chapter7/7?fw=pt
with the additional option to allow the model to return empty
answers for unanswerable questions.

Each region embedding is the sum of a visual fea-
ture vector from the detector and a spatial box coor-
dinate embedding (Tan and Bansal, 2019; Li et al.,
2021b). We linearly map the size of hIi from 2048
to 768 for concatenation with tag embeddings.

hIi , tags = RCNN(Ii), h
I
i ∈ R2048

htagi = embedding(tags), htagi ∈ R768

hvi = [Linear(hIi ), h
tag
i ], hvi ∈ R768

In summary, The text and visual embeddings 232

{(htij , hvi )}Kj=1 are served as inputs for ensemble 233

training, while Y v
i is used as the label for training 234

optimization. 235

InfoSel-MT. A Multimodal Transformer (MT) (Li
et al., 2021b) is employed as the backbone for
InfoSel-MT to generate a fused contextual repre-
sentation hcij of (htij , h

v
i ). Finally, a dense layer

(DL) is followed for the classification by mapping
{hcij}Kj=1 to label Y v

i .

hcij = MT (htij , h
v
i ), h

c
ij ∈ R768

The training objective function can be formalized 236

as follows: 237

minθ

N∑
i=1

BCE(DLθ([MTθ(h
t
ij , h

v
i )]

K
j=1), Y

v
i )

(2) 238

FT-MT. Similar to FT-BERT, the trainable MT in
this framework is also fine-tuned with the devel-
opment dataset as a VQA model which is able to
predict answers. Different from InfoSel-MT, the
input only contains the question embedding hqi (in-
stead of text embeddings) and visual embedding
hvi .

hqi = embedding(Qi), h
q
i ∈ R768
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Dataset Source Dataset Num.
mini-SDv2 train SQuAD-V2 train 800
mini-SDv2 validation SQuAD-V2 train 200
mini-SDv2 test SQuAD-V2 dev 11,873
mini-NQ train NQ-Open train 800
mini-NQ validation NQ-Open train 200
mini-NQ test NQ-Open dev 3,499
mini-GQA train GQA dev 105,640
mini-GQA validation GQA dev 26,422
mini-GQA test GQA test 12,578
mini-Viz train VizWiz dev 3,456
mini-Viz validation VizWiz dev 863
mini-Viz test VizWiz test 8,000

Table 1: Details of datasets used for InfoSel ensemble
training.

Specifically, FT-MT solves a multi-label classifica-239

tion task by mapping the fused question and visual240

representation to a label vector formalized by the241

accuracy of a list of frequent answers extracted242

from the training data. The training scheme is243

adapted from (Li et al., 2021b).244

InfoSel+-MT. Similar to InfoSel+-BERT,245

InfoSel+-MT ensembles the predictions from246

FT-MT and InfoSel-MT using the same training247

scheme of InfoSel-MT.248

4 Experiments249

Datasets. To address the constraint of having a lim-250

ited amount of labeled data, we created smaller QA251

datasets by randomly sampling 1,000 samples from252

public benchmark datasets for QA. Specifically,253

we established Mini-SDv2 and Mini-NQ, contain-254

ing samples from the SQuAD-V2(Rajpurkar et al.,255

2018) and NQ-Open (Kwiatkowski et al., 2019)256

training datasets respectively. For Mini-NQ, we257

used the long answer as the context and the short258

answer as the ground-truth answer like (Fisch et al.,259

2019). The 1,000 samples of each dataset were260

divided into train and validation data using an 8:2261

ratio, while the test data was set to the dev data of262

the original datasets (since the original test data is263

not publicly available). For VQA tasks, we con-264

structed Mini-GQA and Mini-Viz datasets using265

only the development dataset of GQA (Hudson and266

Manning, 2019) and VizWiz (Gurari et al., 2018))267

respectively. These dev data were divided into train268

and validation data using an 8:2 ratio, while the test269

data remained the same as the test data of the orig-270

inal datasets. Table 1 demonstrates the details of271

these datasets. More descriptions about the datasets272

are shown in Appendix A.1.273

Base Models. ChatGPT, LLaMA-2-70b-chat (Tou-274

vron et al., 2023) and GPT3.5 text-davinci-003,275

which are state-of-the-art LLMs, are chosen to 276

provide candidate answers for our QA ensemble 277

training. Three VQA models (VLMo (Bao et al., 278

2022), ALBEF (Li et al., 2021a) and BLIP (Li et al., 279

2022)) which are pre-trained on VQA v2 dataset 280

(Antol et al., 2015) with different architectures are 281

selected as base models for VQA ensemble training. 282

All base models either can only return predictions 283

without any logits or scores, or this restriction is 284

assumed for the purpose of our study. More details 285

about the model description are shown in Appendix 286

A.2. 287

The Oracle represents the maximum capability of a 288

combination of base models. Specifically, for each 289

input, the oracle always selects the best answer, 290

i.e., the answer with the highest agreement with 291

the ground truth, among all the candidate answers 292

predicted by base models. Thus, the oracle score 293

represents the performance of an ideal ensemble 294

model. 295

Baselines. Majority voting (MV) makes a collec- 296

tive decision by considering the predicted answers 297

as a group of individuals voting on a particular in- 298

put. The answer that receives the most votes is the 299

winner, otherwise, a random one is picked. Simi- 300

lar to (Schick and Schütze, 2020), which uses the 301

model accuracy of the training set before training 302

as the weight for average weighting, we use the 303

model’s corresponding out-domain accuracy as the 304

weight for weighted voting (WV). 305

Evaluation Metric. LLMs intend to generate con- 306

textual answers which lead to lower scores in ex- 307

tract match (EM) even when with high recall scores 308

(number of common tokens / number of ground 309

truth answer tokens). Therefore, we mainly use the 310

F1 score as the main evaluation metric for QA per- 311

formance. The base VQA models are not trained 312

for unanswerable visual questions and thus per- 313

form badly on the VizWiz dataset, which contains 314

∼28% of visual questions that are deemed unan- 315

swerable. Therefore, we consider data samples 316

with the ground-truth answers and predicted an- 317

swers not equal to "unanswerable", "unknown" or " 318

" as relevant samples and retrieved samples respec- 319

tively. Precision, recall and F1 score are reported 320

on relevant and retrieved samples. 321

Setup. We use a learning rate of 5×10−5 and batch 322

size of 4 for training InfoSel-BERT and FT-BERT 323

over 5 epochs. For InfoSel-MT and FT-MT, we use 324

a learning rate of 5×10−5 and batch size of 16, the 325

models are trained over 20 epochs. Experiments 326

are run on Nvidia DGX-1 with 1 GPU. 327
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mini-SDv2 mini-NQ
EM P R F1 EM P R F1

LLaMA-2-70b-chat 0.24 7.20 52.70 11.34 28.07 43.20 79.21 46.47
text-davinci-003 52.37 56.86 63.58 58.44 52.24 69.96 77.50 69.44
ChatGPT 30.89 40.53 68.54 44.95 57.53 74.15 75.81 71.54
Oracle 58.61 64.04 77.98 66.20 64.02 80.54 87.97 79.21
MV 26.95 34.23 61.22 37.75 46.07 62.56 77.66 62.43
WV 52.37 56.86 63.58 58.44 57.53 74.15 75.81 71.54
FT-BERT 46.80 47.70 48.86 47.68 36.52 42.81 43.46 40.60
InfoSel-BERT 52.36 56.85 63.59 63.71 58.45 75.99 77.75 73.37
InfoSel+-BERT 52.12 52.74 53.47 52.68 46.61 55.08 54.63 52.49

Table 2: Model performance on textual QA tasks. The best results are bolded.

5 Results and Analysis328

5.1 Main Result of InfoSel for Textual QA329

Table 2 shows the main results of InfoSel-BERT330

and the comparison with base models, baselines331

and FT-BERT for textual QA tasks. LLaMA-2-332

70b-chat performed the worst in F1 score among333

the base models, the main reason is that it usually334

provides a longer explanation text for the generated335

answers compared to the other two LLMs. All the336

models perform better in mini-NQ as mini-SDv2337

test data contains ∼50% of unanswerable ques-338

tions which increases the difficulty of the QA task.339

The oracle of the base model indicates an ideal340

ensemble method can only improve the F1 score341

of mini-SDv2 and mini-NQ from 58.44 to 66.20342

and 71.54 to 79.21. The results of the LLMs can343

be different from (Laskar et al., 2023) or (Kocoń344

et al., 2023) because we do not apply any post-345

processing, human evaluation or output constraints346

for the generated answers. Another factor is that347

LLMs are updating over time and thus can provide348

different responses for different users.349

Weight voting always selects the best model350

(in F1 score). Majority voting can randomly cap-351

ture the answers from a model with a lower F1352

score but a higher recall score (LLaMA-2-70b-353

chat), which is showcased by achieving a higher354

recall than weight voting in mini-NQ.355

With only 1,000 samples, InfoSel-BERT356

achieves 96.24% (63.71/66.20) of the oracle in357

mini-SDv2 and 93.06% (73.37/79.21) on mini-NQ.358

In contrast, FT-BERT falls obviously (more than359

10%) from InfoSel-BERT even when it outperforms360

two of the base models in mini-SDv2. InfoSel+361

does not bring an obvious improvement here due362

to the poor performance of FT-BERT.363

We studied the impact of training InfoSel-BERT364

and FT-BERT with different amounts of training365

Figure 3: Test performance of InfoSel-BERT (referred to
InfoSel in the figure) and FT-BERT (referred to FT) over
an increasing number of training data from SQuAD-V2
(left) and NQ-Open (right). The yellow dot highlights
the point when InfoSel outperforms base models.

data from SQuAD-V2 and NQ-Open and demon- 366

strated the result in Figure 3. We observe that In- 367

foSel-BERT can achieve a higher F1 score than 368

base models even when only 10 samples from 369

SQuAD-V2 are used for training, while 300 sam- 370

ples are needed from NQ-Open to get a better re- 371

sult than base models. Additionally, we find that 372

a larger training data size benefits FT-BERT more 373

than InfoSel-BERT. The F1 score of FT-BERT in- 374

creased ∼200% and ∼500% from 10 to 10,000 375

training samples on SQuAD-V2 and NQ-Open re- 376

spectively, while InfoSel-BERT only increased only 377

∼3% and ∼4%. However, the result also confirmed 378

that fine-tuning requires numerous training data for 379

getting a comparable performance with InfoSel. 380

5.2 Main Result of InfoSel for VQA 381

Table 3 demonstrates the performance of base mod- 382

els, baselines and our methods for VQA task. All 383

the base models achieve close performance on both 384

datasets. mini-Viz contains ∼28% unanswerable 385

questions and thus gets worse scores than mini- 386

GQA. Fine-tuning (FT-MT) leads to overfitting on 387

GQA as the highest validation accuracy (68.86%) 388

does not guarantee any improvement on test data. 389
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mini-GQA mini-Viz
Model Val Test Val Test

Acc Acc Acc F1 Acc
ALBEF 54.82 50.60 21.92 20.51 21.28
BLIP 52.94 48.08 22.64 20.08 20.80
VLMo 54.00 48.21 21.95 20.10 19.77
Oracle 70.30 65.03 28.76 24.87 -
MV 55.85 51.05 23.64 21.48 21.47
WV 56.45 52.10 23.82 21.59 19.43
FT-MT 68.86 50.48 51.71 20.66 51.76
InfoSel-MT 63.00 55.16 25.13 22.60 23.16
InfoSel+-MT 70.06 52.54 55.92 32.18 52.91

Table 3: Validation and test performance on VQA tasks,
more details of the precision, recall, and F1 score are
shown in Table 7 in Appendix A. The test data annota-
tion of mini-Viz dataset is not accessible and thus the
oracle score on test data can not be reported.

While InfoSel-MT overcame this problem with an390

improvement of 9% ((55.16-50.60)/50.60) from391

base models and achieving 84.81%(55.16/65.03)392

of the oracle. However, FT-MT enhanced ∼ 240%393

(51.76/21.28) accuracy on mini-Viz, this is because394

fine-tuning introduced new labels (e.g., "unanswer-395

able") for FT-MT which base models have not seen396

during training. This statement is showcased by397

the higher F1 score of InfoSel-MT when compared398

with FT-MT. Finally, InfoSel+-MT perfectly blends399

the strengths of InfoSel and fine-tuning by ensem-400

bling InfoSel-MT and FT-MT, which improved401

upon both models from 51.76 to 52.91.402

Figure 4 demonstrates that InfoSel-MT can out-403

perform base models with only 5% (6603 samples)404

of training data from mini-GQA and 20% (864405

samples) from mini-Viz. Additionally, we notice406

that the increase in training data size does not guar-407

antee a performance improvement in fine-tuning408

(showcased by mini-GQA).

Figure 4: Validation and test performance of InfoSel-MT
(referred to InfoSel in the figure) and FT-MT (referred
to FT) over an increasing percentage of training data
from mini-GQA (left) and mini-Viz (right). The yellow
dot highlights the point when InfoSel outperforms base
models.

409

mini-GQA mini-Viz
Model Val Test Val Test
InfoSel-MT(V) 55.33 50.56 22.73 20.79
InfoSel-MT(Q) 57.70 51.11 23.23 21.21
InfoSel-MT(VQ) 57.75 50.83 23.33 20.06
InfoSel-MT(VA) 59.25 52.38 24.47 22.66
InfoSel-MT(QA) 62.84 54.76 25.02 22.89
InfoSel-MT(VQA) 63.00 55.16 25.20 23.26

Table 4: Accuracy of InfoSel-MT models using differ-
ent input information for training. V, Q, and A represent
visual, question, and answer information respectively.

5.3 Analysis of Model Disagreements 410

Figure 5 demonstrates the model disagreement 411

over different datasets. The number in the tables 412

presents the number of samples that column models 413

provide better predictions (with higher evaluation 414

scores) than the row models. That is model pairs 415

with dark cells have many disagreements and can 416

potentially benefit from ensembling. In particu- 417

lar, for a dark cell, the row model provides many 418

good answers that the column model does not find. 419

Hence, the column for the oracle contains all 0’s 420

when compared to the base models, but fine-tuning 421

(FT, InfoSel+) can find some answers that the base 422

models cannot find. 423

This analysis sheds light on the quality of models 424

and the effect of fine-tuning in the different settings. 425

For the textual QA datasets, LLaMA is clearly out- 426

performed in all comparisons (dark LLaMA col- 427

umn and light LLaMA row), but fine-tuning (FT, 428

InfoSel+) has difficulties contributing substantial 429

amounts of valuable answers. 430

For mini-GQA, the different models are able 431

to contribute more evenly. mini-Viz is the only 432

setting where fine-tuning finds substantial amounts 433

of answers not found by the base models (dark rows 434

for FT and InfoSel+). 435

5.4 Ablation Study 436

In an ablation experiment (Table 4), we compared 437

the effect of providing different information to 438

InfoSel-MT, and found that the best setting is to 439

combine the image, question and answer (V+Q+A) 440

information, and the second most useful is Q+A 441

information. The worst setting is to apply only 442

the image as the signal. The reason can be that a 443

single image usually has multiple corresponding 444

questions on GQA, and thus hard for the model to 445

learn discriminative features. 446
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Figure 5: Model disagreements over different datasets.

5.5 Case Study447

Table 5, 6 (in Appendix) demonstrate several in-448

teresting cases from the predictions of different449

models for textual and visual QA tasks. We ob-450

serve from Table 5 that InfoSel-BERT selects an-451

swers from different language models. However,452

InfoSel+-BERT may select wrong answers from 453

the overfitted FT-BERT model and underperforms 454

InfoSel-BERT in those instances. The last case 455

showcases a wrong ground-truth answer provided 456

by the original dataset. However, LLMs are still 457

able to generate the right answer with their contex- 458

tual comprehension ability, while FT-BERT limited 459

to classification tasks can only extract answer to- 460

kens from context and thus cannot provide the right 461

answer. Therefore, ensembling LLMs to utilize 462

their powerful comprehension ability can benefit 463

users more than fine-tuning small-size models. 464

Table 6 shows that InfoSel and InfoSel+ are able 465

to capture the right answer even though only one 466

of the base models provides the right answer. The 467

last case demonstrates that InfoSel+captures the 468

new label "unanswerable" introduced by FT-MT, 469

which can never be predicted by InfoSel-MT as the 470

base models always predict an answer. Therefore, 471

it is essential to include FT-MT for ensembling 472

training when out-domain datasets contain a high 473

percentage of new labels. 474

6 Conclusion 475

The rise of black-box AI services and hosted mod- 476

els demands for methods to choose an answer from 477

such systems when their responses disagree. Previ- 478

ous methods such as weighted voting are too sim- 479

plistic since they do not capture sample-specific 480

patterns that can help in determining which model 481

is the most reliable for one particular example type; 482

and/or they need access to components that can- 483

not be assumed to be available, such as prediction 484

confidences or tunable model parameters. 485

In this paper we propose InfoSel, a lightweight 486

method to select an answer from several dis- 487

tinct base models, considering question-, context- 488

/image- and predicted answer-information (but not 489

based on predicted answer confidences). In InfoSel, 490

only a small-size transformer for answer selection 491

is fine-tuned, and InfoSel consistently improves 492

over always choosing the answer from the overall 493

best model. 494

Extensive analysis, comparing InfoSel to an ora- 495

cle ensemble score, and to a fine-tuned similar-size 496

QA model, highlights the robustness of InfoSel. In- 497

foSel reaches (depending on the dataset) between 498

84% and 96% of the oracle in textual and visual 499

question answering tasks. 500
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7 Limitations501

InfoSel offers an effective approach to enhancing502

out-domain black-box model performance and ad-503

dressing answer selection. However, it is important504

to acknowledge certain limitations that come with505

its application:506

Dependency on Annotated Data: InfoSel, like507

many machine learning techniques, relies on a508

small amount of annotated training and develop-509

ment data specific to the new domain. While510

this requirement is relatively modest, and InfoSel’s511

strength is it’s data efficiency (as demonstrated in512

the experiments), this may still pose a limitation in513

scenarios where obtaining such data is challenging514

or costly.515

Limited Applicability to Open-Ended Text Gen-516

eration: InfoSel’s primary strength lies in its ability517

to select the best answer from a set of base mod-518

els, making it particularly valuable in question-519

answering scenarios. However, for more open-520

ended text-generation tasks, where it may be bene-521

ficial to combine multiple answers, InfoSel’s single-522

answer selection mechanism may not be the ideal523

choice, and future research directions may include524

approaches for combining several long-form an-525

swers.526

API Fine-Tuning Availability: At the time of this527

study, InfoSel operates based on the assumption528

that many APIs do not offer the ability to fine-529

tune models, which is a constraint driven by the530

current landscape of AI services. However, since531

the field of AI is rapidly evolving, API providers532

may potentially introduce fine-tuning as a standard533

feature in the future. However, our experiments534

show that selection may still help even when one535

(and potentially more) of the answer models are536

fine-tuned.537

Transparency and Explainability: InfoSel, like538

other machine learning models, which selects an-539

swers from black-box models may itself operate540

as a "black box". This means its decision-making541

process might not be readily interpretable or ex-542

plainable to end-users. Pairing InfoSel with ex-543

plainability techniques may give users a clearer544

understanding of how the model makes its selec-545

tions.546
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A Appendix 771

A.1 Datasets 772

SQuAD-V2 (Rajpurkar et al., 2018) stands for 773

Stanford Question Answering Dataset 2.0, a dataset 774

designed for the task of question answering. It is an 775

extension of the original SQuAD dataset by includ- 776

ing over 50,000 unanswerable questions written ad- 777

versarially by crowdworkers. The dataset is widely 778

used in natural language understanding research. 779

NQ-Open (Kwiatkowski et al., 2019) is derived 780

from Natural Questions and serves as an open- 781

domain question-answering evaluation. The en- 782

tirety of the questions can be addressed using the 783

information found in the English Wikipedia. It was 784

created by Google AI Language and made available 785

for research purposes. 786

In order to get high-quality answers from LLMs, 787

we use the prompts consisting of the question and 788

context from these two datasets. The details about 789

the prompts are demonstrated in Table 8. 790

GQA is a large-scale dataset for visual reasoning 791

and compositional question answering research. 792

The dataset contains over 113k images collected 793

from a diverse set of sources and over 22 million 794

questions. Only one ground-truth answer is pro- 795

vided for each image-question pair. 796

VizWiz is a benchmark dataset for visual question 797

answering. It includes 31K images, 250K ques- 798

tions, and answers collected through a mobile app 799

for visually impaired users. 10 ground-truth an- 800

swers are provided for each image-question pair. 801

Additionally, we compare the label differences 802

of the in-domain dataset (VQA v2 (Antol et al., 803

2015)) with out-domain datasets (GQA, VizWiz) 804

for VQA base models. Figure 6 shows the top 805

7 most frequent answers and their percentages of 806

GQA, VQA v2 and VizWiz. Four answers in GQA 807

do not appear in the top list of VQA v2 and three for 808

VizWiz. We also sample 3k most frequent answers 809

from each dataset and calculate their percentage 810

of overlapping, which is reported on the intersec- 811

tion in the figure. GQA and VizWiz have 32.9 % 812

and 21.6% of overlap with VQA v2 respectively, 813

showcasing significant differences between the in- 814

domain dataset and out-domain datasets. 815

A.2 Base Models 816

ChatGPT also named chat Generative pre-trained 817

Transformer, is a natural language processing 818

model developed and released by OpenAI. It uti- 819

lizes OpenAI’s GPT foundation models – GPT-3.5 820
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mini-SDv2 mini-NQ
Context: ... The building was ... Derrick Norman Dwight David ... in 2005 and the

designed by architects Lehmer’s list Howard ... player release of her epony-
Marek Budzyński and of primes up to for the Charlotte mous debut album
Zbigniew Badowski... 10,006,721 ... Hornets ... the following year ...

What profession How many primes were who did Dwight when did Taylor
Question: does Zbigniew included in Derrick Howard play Swift ’s first

Marek have? Norman Lehmer’s list for last year? album release?
of prime numbers?

LLaMA-2-70b-chat architect unanswerable Charlotte Hornets 2006
text-davinci-003 Architect 10,006,721 The Houston Rockets 2006
ChatGPT unanswerable unanswerable Washington Wizards 2006
FT-BERT architects Marek Budzyński unanswerable Dwight David Howard 2005

and Zbigniew Badowski
InfoSel-MT unanswerable 10,006,721 Charlotte Hornets 2006
InfoSel+-MT unanswerable unanswerable Dwight David Howard 2005

Table 5: Case study of our models on mini-SDv2 test and mini-NQ test data. Answers of LLMs are shortened to
keywords for better demonstration. Ground-truth answers are bolded, and one suspicious ground-truth answer is
colored red.

mini-GQA mini-Viz

Image:
Question: What appliance is Is the tall tree on What kind of food What is this pro-

it? the right? is in this can? duct?
ALBEF blender yes fruit salad refrigerator
BLIP toaster yes vegetable soup toilet
VLMo microwave yes fruit door
FT-MT coffee maker no soup unanswerable
InfoSel-MT toaster yes vegetable soup toilet
InfoSel+-MT coffee maker no vegetable soup unanswerable

Table 6: Case study of our models on mini-GQA test and mini-Viz validation data. Ground-truth answers are
bolded.

Figure 6: Top 7 most frequent answers of VQA v2
(in-domain dataset of VQA models), GQA and VizWiz
(out-domain datasets).

and GPT-4 – to generate context-based responses821

to user prompts.822

LLaMA-2-70b-chat (Touvron et al., 2023) is a823

70B parameter generative text model developed824

by Meta and launched as part of the LLaMA 2825

collection of fine-tuned large language models in826

July 2023. It was pre-trained on 2 trillion tokens827

of publicly available data and has a context length828

of 4096 tokens (i.e., twice the context length of 829

LLaMA 1 models). 830

GPT 3.5 text-davinci-003 is part of the GPT 3.5 831

family of large language models introduced by Ope- 832

nAI in 2022. It has a capacity of 175 billion param- 833

eters, a context window of 4097 tokens and was 834

trained on a dataset that contains data up to June 835

2021. 836

ALBEF (Li et al., 2021a)7 first encodes the im- 837

age and text with an image encoder (visual trans- 838

former (Dosovitskiy et al., 2020)) and a text en- 839

coder respectively. Then a multimodal encoder 840

is used to fuse the image features with the text 841

features through cross-modal attention. The V&L 842

representation is trained with objectives of image- 843

text contrastive learning, masked language mod- 844

eling and image-text matching. Differnet from U- 845

VisualBERT, ALBEF uses a 6-layer transformer 846

decoder to generate answers for VQA task. 847

7https://github.com/salesforce/ALBEF

12

https://github.com/salesforce/ALBEF


GQA VizWiz
Model Val Test Val

P R F1 P R F1 P R F1

BA
SE

ALBEF 54.82 54.82 54.82 50.60 50.60 50.60 14.68 34.00 20.51
BLIP 52.94 52.94 52.94 48.08 48.08 48.08 14.35 33.43 20.08
VLMo 57.12 54.00 55.52 52.87 48.21 50.43 14.40 33.24 20.10
Oracle 70.30 70.30 70.30 65.03 65.03 65.03 17.81 41.24 24.87
MV 56.56 55.85 56.21 52.24 51.05 51.64 15.37 35.65 21.48
WV 56.45 56.45 56.45 52.10 52.10 52.10 15.43 35.95 21.59

T
F

FT-MT 68.86 68.86 68.86 50.48 50.48 50.48 29.26 15.97 20.66
InfoSel-MT 63.00 63.00 63.00 55.16 55.16 55.16 16.16 37.59 22.60
InfoSel+-MT 70.06 70.06 70.06 52.54 52.54 52.54 39.07 27.35 32.18

Table 7: Validation and test performance of different models on new domain datasets.

Dataset Sample Prompts
What is the answer?
Context:[context];
Question:[question];
If you can’t find the answer, please respond "unanswerable".

mini-SDv2 Answer:
Answer the question depending on the context.
Context: [context];
Question: [question];
If you can’t find the answer, please respond "unanswerable".
Answer:
Answer the question depending on the context without explanation.

mini-NQ Context: [context];
Question: [question];
Answer:

Table 8: Our sample prompts in QA datasets. SQuAD-V2 were available in PromptSource (Bach et al., 2022)
for prompt generation, we selected the prompt from PromptSource for mini-SDv2, which contains two forms of
prompts.

LLMs VQA Models
Model #Param Model #Param
LLaMA-2-70b-chat 70B ALBEF 290M
text-davinci-003 175B BLIP 361M
ChatGPT 175B VLMo 182M
InfoSel-BERT 110M InfoSel-MT 115M

Table 9: Parameter size of models.

BLIP (Li et al., 2022)8 uses a visual transformer848

as the image encoder, and a multi-task model (mul-849

timodal mixture of encoder-decoder) as a unified850

model with both understanding and generation ca-851

pabilities. The model is jointly pre-trained with852

three vision-language objectives: image-text con-853

trastive learning, image-text matching, and image-854

conditioned language modeling. Similarly to AL-855

BEF, VQA task is considered as an answer genera-856

tion task in this method.857

VLMo (Bao et al., 2022)9 is a unified vision-858

language pre-training method with Mixture-of-859

Modality-Experts. VLMO leverages large-scale860

8https://github.com/salesforce/BLIP
9https://github.com/microsoft/unilm/tree/

master/vlmo

image and text data to learn joint representations of 861

vision and language. It employs a mixture model 862

to capture diverse interactions between visual and 863

textual information, achieving state-of-the-art per- 864

formance on various vision-language tasks. 865

The model parameter sizes are shown in Table 9. 866

A.3 Multi-modal Information Concatenation 867

or Fusion? 868

We studied the impact of concatenating and fusing
multi-modal input information for VQA task.
InfoSel-MLP is an alternative model type for
InfoSel which processes all the input information
separately with a simple multi-layer perceptron
(MLP) instead of MT. A pre-trained Sentence-
BERT (Reimers and Gurevych, 2019) 10 Mqa is
used for generating question embedding hq and
answer embeddings ha.

hqi = Mqa(Qi), h
q ∈ R768

h
aj
i = Mqa(Aij), h

aj
i ∈ R768

10https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1

13

https://github.com/salesforce/BLIP
https://github.com/microsoft/unilm/tree/master/vlmo
https://github.com/microsoft/unilm/tree/master/vlmo
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1


mini-GQA mini-Viz
Model Val Test Val Test
InfoSel-MLP 57.87 52.35 22.68 21.12
InfoSel-MT 63.00 55.16 25.13 23.16

Table 10: Comparison of using different architecture for
processing input information in a different way. Input
concatenation result is demonstrated by InfoSel-MLP
and the fusion result is shown by InfoSel-MT.

MLP takes the concatenated representation of ques-869

tion, answer, and visual embeddings as input and870

maps it to the label space. The objective function871

of InfoSel-MLP is formalized as:872

minθ

N∑
i=1

BCE(MLPθ([h
q
i , h

v
i , [h

aj
i ]Kj=1]), Y

v
i )

(3)873

The input layer of the MLP maps the concate-874

nated representations to a hidden layer with a size875

equal to 300, followed by a ReLU activation layer876

and then an output layer with an output size equal877

to the number of models.878

Table 10 demonstrates the performance of in-879

put concatenation result (InfoSel-MLP) and fusion880

result (InfoSel-MT). We observe that InfoSel-MT881

achieves ∼3% and ∼2% higher accuracy than In-882

foSel-MLP in mini-GQA and mini-Viz respectively,883

which proves that a fused contextual representation884

of inputs provides more discriminative information885

than a concatenation of input embeddings.886
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