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Abstract

A diverse range of large language models
(LLMs), e.g., ChatGPT, and visual question
answering (VQA) models, e.g., BLIP, has been
developed for addressing text and visual ques-
tion answering tasks. However, both LLMs
and VQA models encounter challenges when
applied to out-domain datasets. Fine-tuning
these models for domain adaptation is either
impossible (only accessible by APIs as black-
box models) or computationally expensive (big
model size), and often only limited labeled
out-domain data is available. Under these con-
straints, ensemble techniques provide a com-
pelling alternative. In this paper, we aim to im-
prove out-domain model performance by utiliz-
ing the capabilities of existing black-box mod-
els with limited computational cost and labeled
data. To address this challenge, we introduce a
novel data-efficient ensemble method, InfoSel,
which trains small-size (<120M parameters) en-
semble models to select the best answers with-
out relying on prediction confidences for both
text and visual question answering tasks. Our
results demonstrate that InfoSel improves the
performance compared to the ensembled base
models over four mini datasets sampled from
SQuAD-V2, NQ-Open, GQA and VizWiz.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable proficiency across a wide range of tasks,
predominantly attributed to their ability to compre-
hend instructions and tap into vast repositories of
high-quality data (Bubeck et al., 2023; Laskar et al.,
2023). A representative model — ChatGPT! finds
extensive utilization in daily question answering
(QA) tasks, rendering substantial convenience to
a myriad of users (Malik et al., 2023). For visual
question answering (VQA) tasks, VQA models
have exhibited exceptional versatility, primarily

"https://chat.openai.com/

due to their capability to comprehend both visual
and textual context (Gong et al., 2023).

However, Laskar et al. (2023); Kocon et al.
(2023) evaluate state-of-the-art LLMs and conclude
that ChatGPT solves various tasks to some degree
but consistently falls short of state-of-the-art per-
formance, highlighting its limitations to specific
datasets. Similarly, the same issue applies to VQA
models (Li et al., 2022, 2021a,b; Bao et al., 2022).
These models, when trained on in-domain data and
tasks, can encounter challenges in generalizing to
out-domain data due to variations in format or struc-
ture (Arora et al., 2018). Unfortunately, fine-tuning
on out-domain data is not an option, as ChatGPT?
and its similar models (e.g., GPT-3.5 text-davinci-
003%) are proprietary and only accessible via APIs
(black-box models) to users, thereby limiting our
access to detailed insights regarding their architec-
tural intricacies, model weights, training data and
even prediction confidences (Jiang et al., 2023). Be-
sides, even though few models such as LLaMA-2-
70b-chat (Touvron et al., 2023) are recently accessi-
ble through online platforms?, it is computationally
expensive to fine-tune due to its large model size
(70B parameters).

In the context of possessing limited computa-
tional resources and labeled data, a reliable and
robust strategy for maximizing the utility of exist-
ing black-box models is to obtain predictions from
multiple models and subsequently ensemble the
predictions (Dietterich, 2000). Figure 1 demon-
strates our motivation for developing an ensemble
method to help users select the best answers from
all the answers generated by different black-box
models. However, standard ensemble methods like
stacking, weighted averaging (Sagi and Rokach,
2018), or recent LLM-Blender (Jiang et al., 2023)
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Figure 1: InfoSel learns to select the best answer from
the predicted answers of black-box models for new do-
main datasets.

are not applicable in this case, since they either re-
quire to train their own base models independently
(have access to the model architecture) or demand
prediction scores and thus do not fulfill the black-
box setting (where only the predicted answer is
available). Majority voting, on the other hand, is
applicable but provides limited performance im-
provement (Chan and van der Schaar, 2022).

To address the limitations of previous meth-
ods, we propose our new ensemble method named
InfoSel (Informed Selection), a sample-level ap-
proach that trains an ensemble model to select the
best answer regarding different input samples with
a limited computational cost and labeled data in a
black-box setting. Specifically, the ensemble model
learns to solve a multiple choice text or visual QA
task by considering all the predicted answers as
choices and performing it as a classification task.
Three LLMs (ChatGPT, LLaMA-2-70b-chat and
GPT3.5 text-davinci-003) and three VQA models
(ALBEF (Li et al., 2021a), BLIP (Li et al., 2022)
and VLMo (Bao et al., 2022)) are used as ensemble
base models to provide answers for text and visual
QA task respectively.

To simulate a realistic application scenario, we
sample limited labeled data from public datasets
for (out-domain) training and/or ensembling, and
test the ensemble of (pre-trained, black-box, in-
domain) models on the corresponding (out-domain)
test dataset. We refer to this setting with lim-
ited labeled data in the out-domain as "mini-*".

For text QA task, we created mini-SDv2 and
mini-NQ by randomly sampling 1k samples from
SQuAD v2 (Rajpurkar et al., 2018) and NQ-Open
(Kwiatkowski et al., 2019) train dataset respec-
tively; mini-GQA and mini-Viz for VQA task con-
tain only the development dataset of GQA (Hud-
son and Manning, 2019) and VizWiz (Gurari et al.,
2018)).

Specifically, two different architectures are ap-
plied for text and visual QA tasks respectively. In-
JoSel-BERT simply uses BERT-Base (110M pa-
rameters) (Devlin et al., 2019) as the backbone to
process the question with predicted answers as a
multiple choice textual QA task. Differently, In-
JoSel-MT employs a multimodal transformer (MT)
(115M parameters) (Li et al., 2019) to create fused
contextual representations of input data (image,
question, and the predicted answers). The fused
representations are then used to train a dense layer
for selecting the best answer. To address the lim-
itation of the max capability of base models, we
introduce InfoSel™, which further ensemble the
trained InfoSel model with a fine-tuned model us-
ing BERT or MT with the same amount of labeled
data.

Our results demonstrate that InfoSel and
InfoSel™ improve the performance in mini-SDv2
(58.44% to 63.71%) and mini-NQ (71.54% to
73.37%) for textual QA task, and also mini-GQA
(50.60% to 55.16%) and mini-Viz (21.28% to
52.91%) for VQA task compared to the ensembled
base models.

Our contributions are: (1) We propose, InfoSel,
a new approach to ensembling black-box ques-
tion answering models. Our approach is the first
that does not rely on access to model architec-
ture, weights or prediction confidences. InfoSel
is lightweight in parameters and data-efficient. (2)
We study InfoSel in textual and viual question an-
swering and demonstrate its effectiveness on four
benchmark datasets; (3) Analysis shows that on
some datasets InfoSel already achieves better per-
formance than the best of the base models with
only as little as 10 samples; (4) We investigate
the impact of selecting different modality of input
information for ensemble training in the VQA task.

2 Related Work

Domain adaptation methods aim to improve the
performance of a model on a target domain by
leveraging knowledge from a source domain (Zhou



et al., 2022). Methods such as fine-tuning (Yosin-
ski et al., 2014), feature adaptation (Long et al.,
2015)), and data augmentation (Choi et al., 2019)
aim to improve the performance of individual mod-
els and thus require access to the model architec-
ture, weights, or in-domain training data.

Ensemble learning entails the generation and
combination of multiple learners (ML models) to
address a particular machine learning task (Sagi
and Rokach, 2018). Classical ensembling ap-
proaches like boosting (Schapire, 2013) and bag-
ging (Breiman, 1996) are designed to train and
combine a large number of individual models with
numerous high-quality training data and are thus
computationally expensive. Snapshot ensemble
method (Huang et al., 2017) uses several local min-
ima from one single model for ensembling, which
requires full access to model weights and architec-
ture. Stacking methods (Wolpert, 1992; Pascanu
et al., 2014) uses a meta-learner to learn the pre-
dictions from base models and provides the final
output. However, the predictions usually consist of
probability scores generated by base models.

LLMs/VQA models ensembling methods pro-
posed by Jiang et al. (2023) uses a PairRanker to
rank the best top K answers generated by LLMs.
(Puerto et al., 2021) introduces MetaQA to com-
bine models from different domains. (Han et al.,
2021) and (Clark et al., 2019) aim to avoid dataset
biases, while (Xu et al., 2019) learns joint feature
embeddings across different domains. However,
these methods either rely on the model’s prediction
confidences or have access to in-domain training
data and model architecture.

Ensembling black-box models can be achieved
by majority voting which selects a final answer
with the most votes, but it can only provide limited
improvement in performance (Chan and van der
Schaar, 2022). To address the limitation of the
above methods, InfoSel provides a computation-
and data-efficient ensemble solution for black-box
models without relying on knowledge of model
architecture, weights, in-domain training data, and
model prediction confidences.

3 Informed Selection Ensemble Training

The left half of Figure 2 illustrates the InfoSel
framework for ensemble LLMs in QA tasks, while

the right half presents the ensemble framework for
VQA models in VQA tasks.

3.1 InfoSel Training for Textual QA

Data Preparation. We randomly sampled N
(N=10%) content-question pairs {(C;, Q;)}Y,
from training data of different benchmark datasets.
(Ci, Q) is then formed as a prompt with certain
rules (explained in Table 8 in Appendix) P; =

R(C;, Q;) for getting high-quality answers from
LLMs. Al denotes the ground-truth answer of
P K (K 3) state of-the-art black-box LLMs
{M; Lp) — Al K are chosen to predict on the
N prompts, and thereby provide N *x K candidate
answers. We calculate the token-based F'1 scores
(Rajpurkar et al., 2018) of all candidate answers
{A K | predicted on P; and use it as the target

label Yj for training answer-selection.
Y = {F1(A4, A}, Y e RE

P; is later concatenated with {A
tively as input {X }
while Yil contrlbute as label for the training op-
timization. We denote the concatenation of vectors
or strings by the notation |-, -].

K | respec-
, for ensemble training,

lej = [P, Aéj]

InfoSel-BERT. BERT-Base is used as the back-
bone of InfoSel- BERT to generate K sentence rep-
resentations {A; K of {X! 1| respectively.

T __ l T
hf; = BERT(XL), b}

768
» g R

A dense layer (DL) is followed to classify {hl i tie1
to label Y;l with a binary cross entropy loss BC'E.
We denote 6 to be the set of trainable parameters
and formulate the training objective of InfoSel-
BERT as:

N
ming y - BCE(DLy(|[BERTy(X]
=1

), YY)

(D
FT-BERT. Motivated by a situation where a tun-
able QA model (BERT-Base) and limited labeled
data are available, we fine-tune the BERT Base
model with the same amount of the labeled data
(10%) and name the fine-tuned model as FT-BERT.
In particular, FT-BERT aims to locate the start and
end token position of the answer from the con-
text C'. Therefore, the start token and end token

SWe distinguish components in textual QA with language
models and visual QA with superscripts | and v.



what is the answer?
——|c: Leo Strauss was born in .| Prompt
IQ: Where was the author ...?

PIE
A Gy DIPIAL
Pla;

> Beat]
>[oa]
E AL : Germany i 9

'
' AL : France

SLonE

Plad
Plag

InfoSel-BERT Afl

g

FT-BERT | Al

[Je/{ej esuaq} —[ 19fe asuaq }

[ oseqd 1439 } 4{ oseq 1439 }

_‘*» Q: What's in the picture?
E Aj : Airplane E $-9

J

>fian]
(S
>firan]

Jawlojsuel]
[epownny

E Ay : Airplane E

JH

InfoSel-MT A

Z]of4i]
7]of4s]

| A3 Bird
i
1]QJ4;]

Jewlojsues |
lepownniy

| bk

[49/(91 esuaq} 1afe esuaqg ]

[

Figure 2: InfoSel framework. Trainable models are in red color, while blue represents the frozen models.

position of /E is provided as the label for token
classification optimization.®

InfoSel™-BERT. To address the limitation of the
max capability of base models, InfoSel™-BERT
performed a further ensemble training of FT-BERT
and InfoSel-BERT with the same training scheme
as InfoSel-BERT. We expect InfoSel™-BERT can
capture the unseen labels of base models from FT-
BERT and thus improve the overall performance.

3.2 InfoSel Training for VQA

Data Preparation. Assume we have N image-
question pairs {(I;,Q;)}Y, from development
data of VQA benchmark datasets. K (K=3) pre-
trained VQA models {M}((1;,Q:)) — Ay},
learned to predict N x K candidate answers over
{(I;, Q) }Y,. AV is the ground-truth answer of
(I;, Q;). A binary vector, i.e., label Y,?, is then con-
structed by the accuracy scores of the K candidate
answers.

V)" = {Acc(AY

Y A;]>}jK:1Y;v € RK

A concatenation of question and answer denotes
as text segment Tj; = [Q;, Aé j]. Text embeddings
hgj are generated by the BERT embedding layer,
which means each subword embedding is the sum
of its token, position, and segment embedding.

hi; = embedding(Ty;), hi; € R768

Visual embeddings i generated by a pre-trained
R-CNN model (Anderson et al., 2018) include the
image region embeddings hiI and the detector tag
(i.e., object labels of the image) embeddings h\"Y.

The training scheme is adapted from https://
huggingface.co/learn/nlp-course/chapter7/7?fw=pt
with the additional option to allow the model to return empty
answers for unanswerable questions.

Each region embedding is the sum of a visual fea-
ture vector from the detector and a spatial box coor-
dinate embedding (Tan and Bansal, 2019; Li et al.,
2021b). We linearly map the size of hi] from 2048
to 768 for concatenation with tag embeddings.

bl tags = RCNN(I;), h! € R?948

pleg —

tag 768

embedding(tags), h
hY = [Linear(hl), hi*], by € R

In summary, The text and visual embeddings
{(hﬁj, hf)}szl are served as inputs for ensemble
training, while Y}" is used as the label for training
optimization.

InfoSel-MT. A Multimodal Transformer (MT) (Li
et al., 2021b) is employed as the backbone for
InfoSel-MT to generate a fused contextual repre-
sentation hg; of (hﬁj, hY). Finally, a dense layer
(DL) is followed for the classification by mapping
{hg; ]['(:1 to label Y,".

h;':j = MT(h;t]v h;})a hf] € R768

The training objective function can be formalized
as follows:

N
ming Z BCE(DL@([MTe(hfj,
=1

h))je), YY)

2
FT-MT. Similar to FT-BERT, the trainable MT in
this framework is also fine-tuned with the devel-
opment dataset as a VQA model which is able to
predict answers. Different from InfoSel-MT, the
input only contains the question embedding A (in-
stead of text embeddings) and visual embedding
hy .

h! = embedding(Q;), hi € R7®
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Source Dataset Num.
SQuAD-V2 train 800
SQuAD-V2 train 200
SQuAD-V2 dev 11,873

Dataset

mini-SDv2 train
mini-SDv2 validation
mini-SDv2 test

mini-NQ train NQ-Open train 800
mini-NQ validation NQ-Open train 200
mini-NQ test NQ-Open dev 3,499
mini-GQA train GQA dev 105,640
mini-GQA validation ~ GQA dev 26,422
mini-GQA test GQA test 12,578
mini-Viz train VizWiz dev 3,456
mini-Viz validation VizWiz dev 863
mini-Viz test VizWiz test 8,000

Table 1: Details of datasets used for InfoSel ensemble
training.

Specifically, FT-MT solves a multi-label classifica-
tion task by mapping the fused question and visual
representation to a label vector formalized by the
accuracy of a list of frequent answers extracted
from the training data. The training scheme is
adapted from (Li et al., 2021b).

InfoSel™-MT. Similar to InfoSel™-BERT,
InfoSel*-MT ensembles the predictions from
FI-MT and InfoSel-MT using the same training
scheme of InfoSel-MT.

4 Experiments

Datasets. To address the constraint of having a lim-
ited amount of labeled data, we created smaller QA
datasets by randomly sampling 1,000 samples from
public benchmark datasets for QA. Specifically,
we established Mini-SDv2 and Mini-NQ, contain-
ing samples from the SQuUAD-V2(Rajpurkar et al.,
2018) and NQ-Open (Kwiatkowski et al., 2019)
training datasets respectively. For Mini-NQ, we
used the long answer as the context and the short
answer as the ground-truth answer like (Fisch et al.,
2019). The 1,000 samples of each dataset were
divided into train and validation data using an 8:2
ratio, while the test data was set to the dev data of
the original datasets (since the original test data is
not publicly available). For VQA tasks, we con-
structed Mini-GQA and Mini-Viz datasets using
only the development dataset of GQA (Hudson and
Manning, 2019) and VizWiz (Gurari et al., 2018))
respectively. These dev data were divided into train
and validation data using an 8:2 ratio, while the test
data remained the same as the test data of the orig-
inal datasets. Table 1 demonstrates the details of
these datasets. More descriptions about the datasets
are shown in Appendix A.1.

Base Models. ChatGPT, LLaMA-2-70b-chat (Tou-
vron et al., 2023) and GPT3.5 text-davinci-003,

which are state-of-the-art LLLMs, are chosen to
provide candidate answers for our QA ensemble
training. Three VQA models (VLMo (Bao et al.,
2022), ALBEF (Lietal.,2021a) and BLIP (Li et al.,
2022)) which are pre-trained on VQA v2 dataset
(Antol et al., 2015) with different architectures are
selected as base models for VQA ensemble training.
All base models either can only return predictions
without any logits or scores, or this restriction is
assumed for the purpose of our study. More details
about the model description are shown in Appendix
A2

The Oracle represents the maximum capability of a
combination of base models. Specifically, for each
input, the oracle always selects the best answer,
i.e., the answer with the highest agreement with
the ground truth, among all the candidate answers
predicted by base models. Thus, the oracle score
represents the performance of an ideal ensemble
model.

Baselines. Majority voting (MV) makes a collec-
tive decision by considering the predicted answers
as a group of individuals voting on a particular in-
put. The answer that receives the most votes is the
winner, otherwise, a random one is picked. Simi-
lar to (Schick and Schiitze, 2020), which uses the
model accuracy of the training set before training
as the weight for average weighting, we use the
model’s corresponding out-domain accuracy as the
weight for weighted voting (WV).

Evaluation Metric. LLMs intend to generate con-
textual answers which lead to lower scores in ex-
tract match (EM) even when with high recall scores
(number of common tokens / number of ground
truth answer tokens). Therefore, we mainly use the
F'1 score as the main evaluation metric for QA per-
formance. The base VQA models are not trained
for unanswerable visual questions and thus per-
form badly on the VizWiz dataset, which contains
~28% of visual questions that are deemed unan-
swerable. Therefore, we consider data samples
with the ground-truth answers and predicted an-
swers not equal to "unanswerable", "unknown" or "
" as relevant samples and retrieved samples respec-
tively. Precision, recall and F'1 score are reported
on relevant and retrieved samples.

Setup. We use a learning rate of 5 x 10~ and batch
size of 4 for training InfoSel-BERT and FT-BERT
over 5 epochs. For InfoSel-MT and FT-MT, we use
a learning rate of 5 x 10~° and batch size of 16, the
models are trained over 20 epochs. Experiments
are run on Nvidia DGX-1 with 1 GPU.



| mini-SDv2 mini-NQ

EM P R Fl |EM P R Fl
LLaMA-2-70b-chat | 0.24 7.20 5270  11.34 | 28.07 43.20 79.21 4647
text-davinci-003 5237 56.86 63.58 58.44 | 5224 6996 77.50 69.44
ChatGPT 30.89 40.53 68.54 4495 | 57.53 74.15 7581 71.54
Oracle 58.61 64.04 7798 66.20 | 64.02 80.54 87.97 79.21
MV 2695 3423 61.22 37.75 | 46.07 62.56 77.66 62.43
WV 5237 56.86 6358 58.44 | 57.53 74.15 7581 7154
FT-BERT 46.80 47.70 4886 47.68 | 36.52 4281 4346 40.60
InfoSel-BERT 5236 56.85 63.59 63.71 | 5845 7599 77.75 73.37
InfoSel+-BERT 52.12 5274 5347 52.68 | 46.61 55.08 54.63 5249

Table 2: Model performance on textual QA tasks. The best results are bolded.

5 Results and Analysis

5.1 Main Result of InfoSel for Textual QA

Table 2 shows the main results of InfoSel-BERT
and the comparison with base models, baselines
and FT-BERT for textual QA tasks. LLaMA-2-
70b-chat performed the worst in F1 score among
the base models, the main reason is that it usually
provides a longer explanation text for the generated
answers compared to the other two LLMs. All the
models perform better in mini-NQ as mini-SDv2
test data contains ~50% of unanswerable ques-
tions which increases the difficulty of the QA task.
The oracle of the base model indicates an ideal
ensemble method can only improve the F'1 score
of mini-SDv2 and mini-NQ from 58.44 to 66.20
and 71.54 to 79.21. The results of the LLMs can
be different from (Laskar et al., 2023) or (Kocon
et al., 2023) because we do not apply any post-
processing, human evaluation or output constraints
for the generated answers. Another factor is that
LLMs are updating over time and thus can provide
different responses for different users.

Weight voting always selects the best model
(in F1 score). Majority voting can randomly cap-
ture the answers from a model with a lower F'1
score but a higher recall score (LLaMA-2-70b-
chat), which is showcased by achieving a higher
recall than weight voting in mini-NQ.

With only 1,000 samples, InfoSel-BERT
achieves 96.24% (63.71/66.20) of the oracle in
mini-SDv2 and 93.06% (73.37/79.21) on mini-NQ.
In contrast, FI-BERT falls obviously (more than
10%) from InfoSel-BERT even when it outperforms
two of the base models in mini-SDv2. InfoSel™
does not bring an obvious improvement here due
to the poor performance of FI-BERT.

We studied the impact of training InfoSel-BERT
and FT-BERT with different amounts of training
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Figure 3: Test performance of InfoSel-BERT (referred to
InfoSel in the figure) and FT-BERT (referred to FT) over
an increasing number of training data from SQuAD-V2
(left) and NQ-Open (right). The yellow dot highlights
the point when InfoSel outperforms base models.

data from SQuAD-V2 and NQ-Open and demon-
strated the result in Figure 3. We observe that In-
JfoSel-BERT can achieve a higher F1 score than
base models even when only 10 samples from
SQuAD-V2 are used for training, while 300 sam-
ples are needed from NQ-Open to get a better re-
sult than base models. Additionally, we find that
a larger training data size benefits FI-BERT more
than InfoSel-BERT. The F1 score of FI-BERT in-
creased ~200% and ~500% from 10 to 10,000
training samples on SQuAD-V2 and NQ-Open re-
spectively, while InfoSel-BERT only increased only
~3% and ~4%. However, the result also confirmed
that fine-tuning requires numerous training data for
getting a comparable performance with InfoSel.

5.2 Main Result of InfoSel for VQA

Table 3 demonstrates the performance of base mod-
els, baselines and our methods for VQA task. All
the base models achieve close performance on both
datasets. mini-Viz contains ~28% unanswerable
questions and thus gets worse scores than mini-
GQA. Fine-tuning (FT-MT) leads to overfitting on
GQA as the highest validation accuracy (68.86%)
does not guarantee any improvement on test data.



mini-GQA mini-Viz mini-GQA mini-Viz

Model Val Test Val Test Model Val Test Val Test

Acc Acc Acc F1 Acc InfoSel-MT(V) 55.33  50.56 22.73  20.79
ALBEF 54.82 | 50.60 | 21.92 20.51 | 21.28 InfoSel-MT(Q) 57770 51.11 2323 21.21
BLIP 52.94 | 48.08 | 22.64 20.08 | 20.80 InfoSel-MT(VQ) 57.75 50.83 23.33 20.06
VLMo 54.00 | 48.21 | 21.95 20.10 | 19.77 InfoSel-MT(VA) 59.25 5238 2447 22.66
Oracle 7030 | 65.03 | 28.76 24.87 | - InfoSel-MT(QA) 62.84 5476 25.02 22.89
MV 55.85 | 51.05 | 23.64 2148 | 21.47 InfoSel-MT(VQA) 63.00 55.16 2520 23.26
A% 56.45 | 52.10 | 23.82 21.59 | 1943
FI-MT 68.86 | 50.48 | 51.71 20.66 | 51.76  Table 4: Accuracy of InfoSel-MT models using differ-
I”fosel;MT 63.00 | 55.16 | 25.13  22.60 | 23.16  en¢input information for training. V, Q, and A represent
InfoSel”-MT | 70.06 | 52.54 | 5592 32.18 | 5291 s3] question, and answer information respectively.

Table 3: Validation and test performance on VQA tasks,
more details of the precision, recall, and F'1 score are
shown in Table 7 in Appendix A. The test data annota-
tion of mini-Viz dataset is not accessible and thus the
oracle score on test data can not be reported.

While InfoSel-MT overcame this problem with an
improvement of 9% ((55.16-50.60)/50.60) from
base models and achieving 84.81%(55.16/65.03)
of the oracle. However, FT-MT enhanced ~ 240%
(51.76/21.28) accuracy on mini-Viz, this is because
fine-tuning introduced new labels (e.g., "unanswer-
able") for FI-MT which base models have not seen
during training. This statement is showcased by
the higher F1 score of InfoSel-MT when compared
with FT-MT. Finally, InfoSel*-MT perfectly blends
the strengths of InfoSel and fine-tuning by ensem-
bling InfoSel-MT and FI-MT, which improved
upon both models from 51.76 to 52.91.

Figure 4 demonstrates that InfoSel-MT can out-
perform base models with only 5% (6603 samples)
of training data from mini-GQA and 20% (864
samples) from mini-Viz. Additionally, we notice
that the increase in training data size does not guar-
antee a performance improvement in fine-tuning
(showcased by mini-GQA).
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Figure 4: Validation and test performance of InfoSel-MT
(referred to InfoSel in the figure) and FT-MT (referred
to FT) over an increasing percentage of training data
from mini-GQA (left) and mini-Viz (right). The yellow
dot highlights the point when InfoSel outperforms base
models.

5.3 Analysis of Model Disagreements

Figure 5 demonstrates the model disagreement
over different datasets. The number in the tables
presents the number of samples that column models
provide better predictions (with higher evaluation
scores) than the row models. That is model pairs
with dark cells have many disagreements and can
potentially benefit from ensembling. In particu-
lar, for a dark cell, the row model provides many
good answers that the column model does not find.
Hence, the column for the oracle contains all 0’s
when compared to the base models, but fine-tuning
(FT, InfoSel™) can find some answers that the base
models cannot find.

This analysis sheds light on the quality of models
and the effect of fine-tuning in the different settings.
For the textual QA datasets, LLaMA is clearly out-
performed in all comparisons (dark LLaMA col-
umn and light LLaMA row), but fine-tuning (FT,
InfoSel™) has difficulties contributing substantial
amounts of valuable answers.

For mini-GQA, the different models are able
to contribute more evenly. mini-Viz is the only
setting where fine-tuning finds substantial amounts
of answers not found by the base models (dark rows
for FT and InfoSel™).

5.4 Ablation Study

In an ablation experiment (Table 4), we compared
the effect of providing different information to
InfoSel-MT, and found that the best setting is to
combine the image, question and answer (V+Q+A)
information, and the second most useful is Q+A
information. The worst setting is to apply only
the image as the signal. The reason can be that a
single image usually has multiple corresponding
questions on GQA, and thus hard for the model to
learn discriminative features.
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Figure 5: Model disagreements over different datasets.

5.5 Case Study

Table 5, 6 (in Appendix) demonstrate several in-
teresting cases from the predictions of different
models for textual and visual QA tasks. We ob-
serve from Table 5 that InfoSel-BERT selects an-
swers from different language models. However,

InfoSel*-BERT may select wrong answers from
the overfitted FT-BERT model and underperforms
InfoSel-BERT in those instances. The last case
showcases a wrong ground-truth answer provided
by the original dataset. However, LLMs are still
able to generate the right answer with their contex-
tual comprehension ability, while FT-BERT limited
to classification tasks can only extract answer to-
kens from context and thus cannot provide the right
answer. Therefore, ensembling LLMs to utilize
their powerful comprehension ability can benefit
users more than fine-tuning small-size models.

Table 6 shows that InfoSel and InfoSel™ are able
to capture the right answer even though only one
of the base models provides the right answer. The
last case demonstrates that InfoSel ™ captures the
new label "unanswerable" introduced by FT-MT,
which can never be predicted by InfoSel-MT as the
base models always predict an answer. Therefore,
it is essential to include FT-MT for ensembling
training when out-domain datasets contain a high
percentage of new labels.

6 Conclusion

The rise of black-box Al services and hosted mod-
els demands for methods to choose an answer from
such systems when their responses disagree. Previ-
ous methods such as weighted voting are too sim-
plistic since they do not capture sample-specific
patterns that can help in determining which model
is the most reliable for one particular example type;
and/or they need access to components that can-
not be assumed to be available, such as prediction
confidences or tunable model parameters.

In this paper we propose InfoSel, a lightweight
method to select an answer from several dis-
tinct base models, considering question-, context-
/image- and predicted answer-information (but not
based on predicted answer confidences). In InfoSel,
only a small-size transformer for answer selection
is fine-tuned, and InfoSel consistently improves
over always choosing the answer from the overall
best model.

Extensive analysis, comparing InfoSel to an ora-
cle ensemble score, and to a fine-tuned similar-size
QA model, highlights the robustness of InfoSel. In-
foSel reaches (depending on the dataset) between
84% and 96% of the oracle in textual and visual
question answering tasks.



7 Limitations

InfoSel offers an effective approach to enhancing
out-domain black-box model performance and ad-
dressing answer selection. However, it is important
to acknowledge certain limitations that come with
its application:

Dependency on Annotated Data: InfoSel, like
many machine learning techniques, relies on a
small amount of annotated training and develop-
ment data specific to the new domain. While
this requirement is relatively modest, and InfoSel’s
strength is it’s data efficiency (as demonstrated in
the experiments), this may still pose a limitation in
scenarios where obtaining such data is challenging
or costly.

Limited Applicability to Open-Ended Text Gen-
eration: InfoSel’s primary strength lies in its ability
to select the best answer from a set of base mod-
els, making it particularly valuable in question-
answering scenarios. However, for more open-
ended text-generation tasks, where it may be bene-
ficial to combine multiple answers, InfoSel’s single-
answer selection mechanism may not be the ideal
choice, and future research directions may include
approaches for combining several long-form an-
SWerS.

API Fine-Tuning Availability: At the time of this
study, InfoSel operates based on the assumption
that many APIs do not offer the ability to fine-
tune models, which is a constraint driven by the
current landscape of Al services. However, since
the field of Al is rapidly evolving, API providers
may potentially introduce fine-tuning as a standard
feature in the future. However, our experiments
show that selection may still help even when one
(and potentially more) of the answer models are
fine-tuned.

Transparency and Explainability: InfoSel, like
other machine learning models, which selects an-
swers from black-box models may itself operate
as a "black box". This means its decision-making
process might not be readily interpretable or ex-
plainable to end-users. Pairing InfoSel with ex-
plainability techniques may give users a clearer
understanding of how the model makes its selec-
tions.
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A Appendix

A.1 Datasets

SQuAD-V2 (Rajpurkar et al., 2018) stands for
Stanford Question Answering Dataset 2.0, a dataset
designed for the task of question answering. It is an
extension of the original SQuAD dataset by includ-
ing over 50,000 unanswerable questions written ad-
versarially by crowdworkers. The dataset is widely
used in natural language understanding research.
NQ-Open (Kwiatkowski et al., 2019) is derived
from Natural Questions and serves as an open-
domain question-answering evaluation. The en-
tirety of the questions can be addressed using the
information found in the English Wikipedia. It was
created by Google Al Language and made available
for research purposes.

In order to get high-quality answers from LLMs,
we use the prompts consisting of the question and
context from these two datasets. The details about
the prompts are demonstrated in Table 8.

GQA is a large-scale dataset for visual reasoning
and compositional question answering research.
The dataset contains over 113k images collected
from a diverse set of sources and over 22 million
questions. Only one ground-truth answer is pro-
vided for each image-question pair.

VizWiz is a benchmark dataset for visual question
answering. It includes 31K images, 250K ques-
tions, and answers collected through a mobile app
for visually impaired users. 10 ground-truth an-
swers are provided for each image-question pair.

Additionally, we compare the label differences
of the in-domain dataset (VQA v2 (Antol et al.,
2015)) with out-domain datasets (GQA, VizWiz)
for VQA base models. Figure 6 shows the top
7 most frequent answers and their percentages of
GQA, VQA v2 and VizWiz. Four answers in GQA
do not appear in the top list of VQA v2 and three for
VizWiz. We also sample 3k most frequent answers
from each dataset and calculate their percentage
of overlapping, which is reported on the intersec-
tion in the figure. GQA and VizWiz have 32.9 %
and 21.6% of overlap with VQA v2 respectively,
showcasing significant differences between the in-
domain dataset and out-domain datasets.

A.2 Base Models

ChatGPT also named chat Generative pre-trained
Transformer, is a natural language processing
model developed and released by OpenAl. It uti-
lizes OpenAI’s GPT foundation models — GPT-3.5
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mini-SDv2 mini-NQ
Context: ... The building was ... Derrick Norman Dwight David ... in 2005 and the
designed by architects Lehmer’s list Howard ... player release of her epony-
Marek Budzynski and of primes up to for the Charlotte mous debut album
Zbigniew Badowski... 10,006,721 ... Hornets ... the following year ...
What profession How many primes were who did Dwight when did Taylor
Question: does Zbigniew included in Derrick Howard play Swift ’s first

Marek have?

Norman Lehmer’s list
of prime numbers?

for last year? album release?

LLaMA-2-70b-chat architect unanswerable Charlotte Hornets 2006

text-davinci-003 Architect 10,006,721 The Houston Rockets 2006

ChatGPT unanswerable unanswerable Washington Wizards 2006

FI-BERT architects Marek Budzynski unanswerable Dwight David Howard 2005
and Zbigniew Badowski

InfoSel-MT unanswerable 10,006,721 Charlotte Hornets 2006

InfoSel™-MT unanswerable unanswerable Dwight David Howard 2005

Table 5: Case study of our models on mini-SDv2 test and mini-NQ test data. Answers of LLMs are shortened to
keywords for better demonstration. Ground-truth answers are bolded, and one suspicious ground-truth answer is

colored red.

mini-Viz

Image: e
Question: What appliance is Is the tall tree on What kind of food ~ What is this pro-

it? the right? is in this can? duct?
ALBEF blender yes fruit salad refrigerator
BLIP toaster yes vegetable soup toilet
VLMo microwave yes fruit door
FI-MT coffee maker no soup unanswerable
InfoSel-MT toaster yes vegetable soup toilet
InfoSel™-MT coffee maker no vegetable soup unanswerable

Table 6: Case study of our models on mini-GQA test and mini-Viz validation data. Ground-truth answers are

bolded.
GQA VQAv2 VizWiz
White: 1.2% Blue: 0.8%
Right: 5.2% 1: 2.7% Black: 0.8%
No: 17.62% Yes: 18.4% No: 3.0%
8 PN
Yes: 17.78% io NoO:18.9% & Unanwerable: 31.7%
o2 ]
Left: 5.2% ° Yes: 2.2%
Man: 1.3% White: 1.2%

Black: 1.2% Grey: 0.8%

Figure 6: Top 7 most frequent answers of VQA v2
(in-domain dataset of VQA models), GQA and VizWiz
(out-domain datasets).

and GPT-4 — to generate context-based responses
to user prompts.

LLaMA-2-70b-chat (Touvron et al., 2023) is a
70B parameter generative text model developed
by Meta and launched as part of the LLaMA 2
collection of fine-tuned large language models in
July 2023. It was pre-trained on 2 trillion tokens
of publicly available data and has a context length
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of 4096 tokens (i.e., twice the context length of
LLaMA 1 models).

GPT 3.5 text-davinci-003 is part of the GPT 3.5
family of large language models introduced by Ope-
nAl in 2022. It has a capacity of 175 billion param-
eters, a context window of 4097 tokens and was
trained on a dataset that contains data up to June
2021.

ALBEF (Li et al., 2021a)’ first encodes the im-
age and text with an image encoder (visual trans-
former (Dosovitskiy et al., 2020)) and a text en-
coder respectively. Then a multimodal encoder
is used to fuse the image features with the text
features through cross-modal attention. The V&L
representation is trained with objectives of image-
text contrastive learning, masked language mod-
eling and image-text matching. Differnet from U-
Visual BERT, ALBEF uses a 6-layer transformer
decoder to generate answers for VQA task.

"https://github.com/salesforce/ALBEF


https://github.com/salesforce/ALBEF

GQA VizWiz

Model Val Test Val
P R F1 P R F1 P R F1
ALBEF 5482 5482 54.82 | 50.60 50.60 50.60 | 14.68 34.00 20.51
% BLIP 5294 5294 5294 | 48.08 48.08 48.08 | 1435 3343 20.08
é VLMo 57.12 5400 5552 | 52.87 4821 5043 | 1440 3324 20.10
Oracle 70.30  70.30 70.30 | 65.03 65.03 65.03 | 17.81 41.24 24.87
MV 56.56 55.85 56.21 | 5224 51.05 51.64 | 1537 3565 2148
\"AY% 56.45 5645 5645 | 52.10 52.10 52.10 | 1543 3595 21.59
FT-MT 68.86 68.86 68.86 | 50.48 50.48 50.48 | 29.26 1597 20.66
E InfoSel-MT 63.00 63.00 63.00 | 5516 55.16 55.16 | 16.16 37.59 22.60
InfoSel™-MT | 70.06 70.06 70.06 | 52.54 5254 5254 | 39.07 2735 32.18

Table 7: Validation and test performance of different models on new domain datasets.

Dataset Sample Prompts

What is the answer?
Context:[context];
Question:[question];

If you can’t find the answer, please respond "unanswerable".

mini-SDv2  Answer:

Answer the question depending on the context.

Context: [context];
Question: [question];

If you can’t find the answer, please respond "unanswerable".

Answer:

Answer the question depending on the context without explanation.

mini-NQ Context: [context];
Question: [question];

Answer:

Table 8: Our sample prompts in QA datasets. SQuAD-V2 were available in PromptSource (Bach et al., 2022)
for prompt generation, we selected the prompt from PromptSource for mini-SDv2, which contains two forms of

prompts.
LLMs VQA Models
Model #Param Model #Param
LLaMA-2-70b-chat  70B ALBEF 290M
text-davinci-003 175B BLIP 361M
ChatGPT 175B VLMo 182M
InfoSel-BERT 110M InfoSel-MT  115M

Table 9: Parameter size of models.

BLIP (Li et al., 2022)? uses a visual transformer
as the image encoder, and a multi-task model (mul-
timodal mixture of encoder-decoder) as a unified
model with both understanding and generation ca-
pabilities. The model is jointly pre-trained with
three vision-language objectives: image-text con-
trastive learning, image-text matching, and image-
conditioned language modeling. Similarly to AL-
BEF, VQA task is considered as an answer genera-
tion task in this method.

VLMo (Bao et al., 2022)° is a unified vision-
language pre-training method with Mixture-of-
Modality-Experts. VLMO leverages large-scale

8https://github.com/salesforce/BLIP
9https://github.com/microsoft/unilm/tree/
master/v1lmo
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image and text data to learn joint representations of
vision and language. It employs a mixture model
to capture diverse interactions between visual and
textual information, achieving state-of-the-art per-
formance on various vision-language tasks.

The model parameter sizes are shown in Table 9.

A.3 Multi-modal Information Concatenation
or Fusion?

We studied the impact of concatenating and fusing
multi-modal input information for VQA task.
InfoSel-MLP 1is an alternative model type for
InfoSel which processes all the input information
separately with a simple multi-layer perceptron
(MLP) instead of MT. A pre-trained Sentence-
BERT (Reimers and Gurevych, 2019) 10 My is
used for generating question embedding h? and
answer embeddings h®.

hl = My (Q;), h? € R™®
hi? = Mga(Ay), hi? € R

10https://huggingface.co/sentence—transformers/
multi-qa-mpnet-base-dot-v1


https://github.com/salesforce/BLIP
https://github.com/microsoft/unilm/tree/master/vlmo
https://github.com/microsoft/unilm/tree/master/vlmo
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1

mini-GQA mini-Viz

Model Val Test Val Test
InfoSel-MLP | 57.87 | 52.35 | 22.68 | 21.12
InfoSel-MT | 63.00 | 55.16 | 25.13 | 23.16

Table 10: Comparison of using different architecture for
processing input information in a different way. Input
concatenation result is demonstrated by InfoSel-MLP
and the fusion result is shown by InfoSel-MT.

MLP takes the concatenated representation of ques-
tion, answer, and visual embeddings as input and
maps it to the label space. The objective function
of InfoSel-MLP is formalized as:

N
ming Yy BCE(MLPy([hf, by, [h7)11)), V)

1
i=1
3)

The input layer of the MLP maps the concate-
nated representations to a hidden layer with a size
equal to 300, followed by a ReLU activation layer
and then an output layer with an output size equal
to the number of models.

Table 10 demonstrates the performance of in-
put concatenation result (InfoSel-MLP) and fusion
result (InfoSel-MT). We observe that InfoSel-MT
achieves ~3% and ~2% higher accuracy than In-
foSel-MLP in mini-GQA and mini-Viz respectively,
which proves that a fused contextual representation
of inputs provides more discriminative information
than a concatenation of input embeddings.
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