
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

TACKLING DECISION PROCESSES WITH NON-
CUMULATIVE OBJECTIVES USING REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Markov decision processes (MDPs) are used to model a wide variety of applica-
tions ranging from game playing over robotics to finance. Their optimal policy
typically maximizes the expected sum of rewards given at each step of the decision
process. However, a large class of problems does not fit straightforwardly into this
framework: Non-cumulative Markov decision processes (NCMDPs), where instead
of the expected sum of rewards, the expected value of an arbitrary function of the
rewards is maximized. Example functions include the maximum of the rewards or
their mean divided by their standard deviation. In this work, we introduce a general
mapping of NCMDPs to standard MDPs. This allows all techniques developed
to find optimal policies for MDPs, such as reinforcement learning or dynamic
programming, to be directly applied to the larger class of NCMDPs. Focusing on
reinforcement learning, we show applications in a diverse set of tasks, including
classical control, portfolio optimization in finance, and discrete optimization prob-
lems. Given our approach, we can improve both final performance and training
time compared to relying on standard MDPs.

1 INTRODUCTION

Markov decision processes (MDPs) are used to model a wide range of applications where an agent
iteratively interacts with an environment during a trajectory. Important examples include robotic
control (Andrychowicz et al., 2020a), game playing (Mnih et al., 2015), or discovering algorithms
(Mankowitz et al., 2023). At each time step t of the MDP, the agent chooses an action based on the
state of the environment and receives a reward rt. The agent’s goal is to follow an ideal policy that
maximizes

Eπ

[
T−1∑
t=0

rt

]
, (1)

where T is the length of the trajectory and the expectation value is taken over both the agent’s
probabilistic policy π and the probabilistic environment. There exist a multitude of established
strategies for finding (approximately) ideal policies of MDPs, such as dynamic programming and
reinforcement learning (Sutton & Barto, 2018).

A limitation of the framework of MDPs is the restriction to ideal policies that maximize Equation (1),
while a large class of problems cannot straightforwardly be formulated this way. For example, in
weakest-link problems, the goal is to maximize the minimum rather than the sum of rewards, e.g. in
network routing one wants to maximize the minimum bandwidths along a path (Cui & Yu, 2023).
In finance, the Sharpe ratio, i.e. the mean divided by the standard deviation of portfolio gains, is an
important figure of merit of an investment strategy, since maximizing it will yield more risk-averse
strategies than maximizing the sum of portfolio gains (Sharpe, 1966). We therefore require a method
to tackle non-cumulative Markov decision processes (NCMDPs), where instead of the expected sum
of rewards, the expectation value of an arbitrary function of the rewards is maximized. First steps
in this direction have already been taken, but are currently limited to specific settings, e.g. by being
restricted to only certain MDP solvers, deterministic environments, and restricted classes of non-
cumulative objectives (for more details on these approaches see Section 4). The main contribution of
this paper is twofold:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Markov decision
process solver

Markov decision process (MDP)Decision process
with non-cumulative
objective (NCMDP)

st = (s̃t, ht)

rt = f (r̃0, …, r̃t) − f (r̃0, …, r̃t−1)

𝔼π [f (r̃0, …, r̃T−1)]
maximize

s̃t, r̃t, at

𝔼π [
T−1
∑
t=0

rt]maximize
at at

st

rt

s̃t

r̃t

adapted rewards

adapted states reinforcement
learning,
dynamic
programming,
…

states, rewards, actions

Figure 1: Mapping of a decision process with non-cumulative objective (blue) to a corresponding
Markov decision process with adapted states and rewards (orange) that can be solved by standard
methods (black). For details and notation, see Section 2.

• First, we provide a theoretical framework for a general and easy-to-implement mapping
of NCMDPs to corresponding standard MDPs. This allows the direct application of ad-
vanced MDP solvers such as reinforcement learning or dynamic programming to tackle also
NCMDPs (see Figure 1).

• Next, we perform numerical experiments focusing on reinforcement learning. We show
applications in classical control problems, portfolio optimization, and discrete optimization
problems using e.g. the non-cumulative max objective and the Sharpe ratio. Using our
framework, we find improvements in both training time and final performance as compared
to relying on standard MDPs.

2 THEORETICAL ANALYSIS

Preliminaries In an MDP, an agent iteratively interacts with an environment during a trajectory.
At each time step t, the agent receives the current state st of the environment and selects an action
at by sampling from its policy π(at|st), which is a probability distribution over all possible actions
given a state. The next state of the environment st+1 and the agent’s immediate reward rt are then
sampled from the transition probability distribution p(rt, st+1|st, at), which depends on the MDP.
This process repeats until it reaches a terminal state. The ideal policy of the agent maximizes the
expected sum of immediate rewards, i.e. Equation (1). Note that we take this ideal policy to be part
of the definition of an MDP to distinguish MDPs from NCMDPs with different ideal policies. For
simplicity, we discuss only non-discounted, episodic MDPs. However, generalization to discounted
settings is straightforward.

Non-cumulative Markov decision processes In the following, we denote states and rewards
related to NCMDPs by s̃t and r̃t, respectively, to distinguish them from MDPs. We define NCMDPs
equivalently to MDPs except for their ideal policies maximizing the expectation value of an arbitrary
scalar function f of the immediate rewards r̃t instead of their sum, i.e.

Eπ [f(r̃0, r̃1, . . . , r̃T−1)] . (2)

To accommodate trajectories of arbitrary finite length, we require f to be a family of functions
consisting of a function ft : Rt → R for each t ∈ N. For brevity, we denote ft(r̃0, r̃1, . . . , r̃t−1) =
f(r̃0, r̃1, . . . , r̃t−1). NCMDPs still have a Markovian transition probability distribution but their
return, i.e. Equation (2), depends on the rewards in a non-cumulative and therefore non-Markovian
way. Thus, NCMDPs are a generalization of MDPs. Due to this distinction, MDP solvers cannot
straightforwardly be used for NCMDPs. To solve this problem, we describe a general mapping from
an NCMDP M̃ to a corresponding MDP M with adapted states and adapted rewards but the same
actions. The mapping is chosen such that the optimal policy of M̃ is equivalent to the optimal policy
of M . Therefore, a solution for M̃ can readily be obtained by solving M with existing MDP solvers,
as shown in Figure 1. In the following, we formalize these ideas.

Definition 1. Given an NCMDP M̃ with rewards r̃t, states s̃t, actions at, the Markovian state
transition probability distribution p̃(r̃t, s̃t+1|s̃t, at), and non-cumulative objective function f , we

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Examples of non-cumulative objective functions f .

f(r̃0, . . . , r̃t) Additional state information ht Adapted reward rt

max(r̃0, . . . , r̃t) h1 = r̃0, ht+1 = max(ht, r̃t) rt = max(0, r̃t − ht)

min(r̃0, . . . , r̃t) h1 = r̃0, ht+1 = min(ht, r̃t) rt = min(0, r̃t − ht)

Sharpe ratio
MEAN(r̃0,...,r̃t)
STD(r̃0,...,r̃t)

h0 =

[
0
0
0

]
, ht+1 =

h
(2)
t

h
(2)
t +1

h
(0)
t + 1

h
(2)
t +1

r̃t

h
(2)
t

h
(2)
t +1

h
(1)
t + 1

h
(2)
t +1

r̃2t

h
(2)
t + 1

rt =

h
(0)
t+1√

h
(1)
t+1−h

(0)2

t+1

− h
(0)
t√

h
(1)
t −h

(0)2

t

max
k∈[−1,t]

∑k
i=0 r̃i h0 = 0, ht+1 = max(0, ht − r̃t) rt = max(0, r̃t − ht)

r̃0r̃1 . . . r̃t h0 = 1, ht+1 = r̃tht rt = ht+1 − ht

Harmonic mean
1

1
r̃0

+···+ 1
r̃t

h0 = 0, ht+1 = ht +
1
r̃t

rt =
1

ht+1
− 1

ht

δt
∑t

k=0 r̃k,
δ ∈ (0, 1)

h0 =

[
0
0

]
, ht+1 =

[
h
(0)
t + r̃t
h
(1)
t + 1

]
rt = δh

(1)
t+1h

(0)
t+1

−δh
(1)
t h

(0)
t

1
t+1

∑t
k=0 r̃k h0 =

[
0
0

]
, ht+1 =

[
h
(0)
t + r̃t
h
(1)
t + 1

]
rt =

1

h
(1)
t+1+1

h
(0)
t+1

− 1

h
(1)
t +1

h
(0)
t

define a corresponding MDP M with rewards rt, states st, the same actions at, and state transition
probability distribution p(rt, st+1|st, at) with functions ρ and u, and vectors ht such that

rt = f(r̃0, . . . , r̃t)− f(r̃0, . . . , r̃t−1) = ρ(ht, r̃t), (3)

st = (s̃t, ht) with ht+1 = u(ht, r̃t), (4)

p
(
rt, st+1=(s̃t+1, ht+1)|st=(s̃t, ht), at

)
=

∑
r̃t

p̃(r̃t, s̃t+1|s̃t, at)δht+1,u(ht,r̃t)δrt,ρ(ht,r̃t), (5)

where δ is the Kronecker delta. For continuous probability distributions, the sum should be replaced
by an integral and the δ by Dirac delta functions.

We now provide some intuition for this definition: Equation (3) ensures that the return of M , i.e.∑T−1
t=0 rt, is equal to the return of M̃ , i.e. f(r̃0, . . . , r̃T−1). To compute the immediate rewards rt of

M in a purely Markovian manner, we need access to information about the previous rewards of the
trajectory. This can be achieved by extending the state space with ht, which preserves all necessary
information about the reward history. The function u in Equation (4) updates this information at each
time step. Finally, the Kronecker deltas in Equation (5) ’pick’ all the possible r̃t that result in the
same ht+1 and rt. For example, for f(r̃0, . . . , r̃t) = min(r̃0, . . . , r̃t), we can choose r0 = h1 = r̃0
followed by ht = u(ht, r̃t) = min(ht, r̃t), and rt = ρ(ht, r̃t) = min(0, r̃t − ht). More examples
are shown in Table 1.

Due to Definition 1, there is a mapping between trajectories of NCMDPs and corresponding MDPs,
which we will exploit to use the same policy for both decision processes:

Definition 2. A trajectory T̃ = (s̃0, a0, r̃0, . . .) of an NCMDP M̃ is mapped onto a trajectory
T = map

(
T̃
)

= (s0, a0, r0, . . .) of a corresponding MDP M by calculating rt according to
Equation (3), setting st = (s̃t, ht) with ht calculated according to Equation (4), and keeping the
actions at the same.

Note that multiple T̃ potentially map to the same T since ρ and u, and, therefore, the map operation
are not necessarily injective. We can now state the main result of this manuscript:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Theorem 1. Consider an NCMDP M̃ and a corresponding MDP M , both defined as in Definition 1.
Then, given a policy π(at|st) of M , the expected return of M is equal to the expected return of M̃ ,
i.e.

Eπ

[
T−1∑
t=0

rt

]
= Eπ [f(r̃0, . . . , r̃T−1)] , (6)

if π(at|st) is used to interact with M̃ as follows: At each time step t, map the current trajectory T̃ of

M̃ to a trajectory T = map
(
T̃
)

of M as described in Definition 2, thereby finding st. Then choose

an action according to π(at|st).

For a proof of this theorem see Appendix A. Since M is a standard MDP, we can find its optimal
policy using standard methods and are guaranteed that it will also be the ideal policy of M̃ . More
generally, also non-ideal policies will yield the same return for both decision processes. By mapping
the NCMDP to an MDP, all guarantees available for MDP solvers, e.g. convergence proofs for
Q-learning (Watkins & Dayan, 1992), or the policy gradient theorem for policy-based methods
(Sutton et al., 1999), directly apply also to NCMDPs.

We demonstrate the need for the additional state information ht in the two-step NCMDP depicted in
Figure 2, which captures the main conceptual difficulties in solving NCMDPs: A non-cumulative
objective in a stochastic environment. Here, the goal is to maximize the expected minimum of the
rewards, i.e. min(r̃0, r̃1). If r̃0 = 1 in the first step, the ideal policy is to choose a1 in the second
step, while if r̃0 = −1 the agent should choose a0. Therefore, the choice of the ideal action depends
on information contained in the past rewards, which is captured by h1 = r̃0. We show the MDP
constructed from the NCMDP as described above in the Appendix in Figure A1 and its state-action
value function found by value iteration in Table A1. Our method finds the optimal policy, while
previous methods for solving NCMDPs fail even in this simple example because they neglect the
extra state information (see Table A2).

The question remains how to find the functions u and ρ given a new objective f . In principle,
methods developed based on past (Bacchus et al., 1996; 1997) or future (Thiébaux et al., 2006) linear
temporal logic could be used. However, these require an expensive computation over all possible
states of the MDP making them inefficient for online learning. There is always at least one MDP
corresponding to a given NCMDP since we can take ht = [r̃0, . . . , r̃t−1] with u(ht, r̃t) = [ht, r̃t]
and ρ(ht, r̃t) = f([ht, r̃t]) − f(ht). However, this is not ideal because it leads to a state size that
grows linearly with the trajectory length. In Appendix B.1, we provide a necessary and sufficient
condition for objectives f with constant size additional state information ht. However, this condition
might be difficult to check in practice. Therefore, we also provide a sufficient, but not necessary,
condition that is easier to verify and covers a large class of functions, e.g. all functions in Table 1. For
functions in this class, we also provide an explicit construction of u, ρ, and ht (see Appendix B.2). In
practice, we have empirically observed that a simple analytical consideration leads to ht of a small
and constant size for each of the objectives f considered in this manuscript, which is desirable for
efficient learning and integration with standard function estimators such as neural networks.

3 EXPERIMENTS

From an implementation perspective, our scheme of mapping NCMDPs to MDPs requires minimal
effort, since we can treat both the NCMDP and the used MDP solver as black boxes by simply adding
a layer between them, as shown in Figure 1. In addition, our treatment facilitates online learning and
does not require any computationally expensive preprocessing of the NCMDP. This opens the door
for researchers with specific domain knowledge, who are not necessarily experts in reinforcement
learning, to use standard libraries such as stable-baselines3 (Raffin et al., 2021) to solve their
non-cumulative problems. Conversely, it allows reinforcement learning experts to quickly tackle
existing environments using our method.

There are three kinds of experiments presented in this manuscript:

1. We show that our method can find the optimal policy in a proof-of-principle stochastic
NCMDPs where previous methods fail (see previous section, Figure 2).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

s̃0 s̃1 s̃2

−1

−2

0 0 0
ps

ps

s0 sm
−1

−2

0 0
ps

ps

sf

r̃0 = {1, p = 0.5
−1, p = 0.5 r̃1 = {1, p = 0.9

−2, p = 0.1

r̃1 = 0
a0
a1

Maximize 𝔼π [min (r̃0, r̃1)]

Figure 2: Two-step decision process with non-
cumulative objective. In the first step, the agent
has only one action available and receives a prob-
abilistic reward. In the second step, the agent
can choose between two actions.

Figure 3: Trade-off between average cumula-
tive reward in the Lunar lander environment (in-
set) and maximum speed increase for the non-
cumulative MAXVELPPO and the cumulative
SUMVELPPO algorithm.

2. In Appendix C, we compare our method with the only previous approach for solving
NCMDPs with objectives other than the max function, which was introduced by Cui
& Yu (2023), and is only applicable with more restrictive objectives f , in deterministic
environments, and in conjunction with Q-learning methods. We find in our experiments that
even in this restricted setting, our more general method performs slightly better.

3. In the following sections, we show applications in real-world tasks where previous methods
used for solving special cases of NCMDPs cannot be applied. In lack of a general method
for solving NCMDPs, state-of-the-art approaches to these real-world problems have so far
relied on approximate solutions based on standard MDPs which we use as a baseline to
compare our method to.

We provide details on hyperparameters, compute resources, and training curves for all experiments in
Appendix D.

3.1 CLASSICAL CONTROL

As a first use case of our method, we train a reinforcement learning agent in the Lunar lander
environment of the gymnasium (Towers et al., 2023) library. The agent controls a spacecraft with
four discrete actions corresponding to different engines while being pushed by a stochastic wind.
Immediate positive rewards rt are given for landing the spacecraft safely with small negative rewards
given for using the engines. A realistic goal when landing a spacecraft is to not let the spacecraft get
too fast, e.g. to avoid excessive frictional heating. Therefore, we define an NCMDP where the agent
is penalized for its maximum speed during a trajectory, i.e. we try to maximize

Eπ

[
T−1∑
t=0

rt − cmax (v0, . . . , vT−1)

]
, (7)

where vt is the speed of the agent at time t and c defines a trade-off between minimizing the maximum
speed and the other goals of the agent. We train RL agents using Proximal Policy Optimization
(PPO) (Schulman et al., 2017) on the MDP constructed from the NCMDP as described above
(MAXVELPPO). To show the trade-off between the sum of the agents’ original cumulative rewards∑T−1

t=0 rt and their maximum speed increase during a trajectory, we train agents for different c. Each
value of c corresponds to a marker in Figure 3. We compare our results to an RL agent with a
similar but cumulative objective maximizing Eπ

[∑T−1
t=0 (rt − cv2t)

]
(SUMVELPPO). As shown in

Figure 3, the non-cumulative MAXVELPPO agent is consistently able to find a better trade-off than
the cumulative SUMVELPPO agent. All experiments were performed with 5 agents using different
seeds. We plot average results and standard deviation as error bars for both the cumulative reward
and the speed increase (mostly hidden behind markers).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

1 4 7 10
Training period

0

10

20

Av
g.

Sh
ar

pe
 ra

tio
DIFFSHARPE
SHARPE (ours)

Figure 4: Portfolio optimization. Sharpe ra-
tio during 10 different training periods for al-
gorithms maximizing the cumulative differen-
tial Sharpe ratio (DIFFSHARPE) and the non-
cumulative exact Sharpe ratio (SHARPE).

Table 2: Average Sharpe ratios.

DIFFSHARPE SHARPE

Training 10.51± 1.65 13.33± 1.14
Evaluation 1.43± 0.18 1.35± 0.15

Test 0.53± 0.26 0.51± 0.09

Our method presented here could be applied to similar use cases in other classical control problems,
such as teaching a robot to reach a goal while minimizing the maximum impact forces on its joints or
the forces its motors need to apply.

3.2 PORTFOLIO OPTIMIZATION WITH SHARPE RATIO AS OBJECTIVE

Next, we consider the task of portfolio optimization where an agent decides how to best invest its
assets across different possibilities. A common measure for a successful investment strategy is its
Sharpe ratio (Sharpe, 1966)

MEAN(r̃0, . . . , r̃T−1)

STD(r̃0, . . . , r̃T−1)
, (8)

where r̃t = (Pt+1−Pt)/Pt are the simple returns and Pt is the portfolio value at time t. By dividing
through the standard deviation of the simple returns, the agent is discouraged from risky strategies
with high volatility. As the Sharpe ratio is non-cumulative, reinforcement learning strategies so far
needed to fall back on the approximate differential Sharpe ratio as a reward (Moody et al., 1998;
Moody & Saffell, 2001). However, using the methods developed in this paper we can directly
maximize the exact Sharpe ratio. We perform experiments on an environment as described by Sood
et al. (2023) where an agent trades on the 11 different S&P500 sector indices between 2006 and 2021.
The states contain a history of returns of each index and different volatility measures. Actions are
the continuous relative portfolio allocations for each day. The experiment described by Sood et al.
(2023) consists of training 5 agents with different seeds over a 5-year period, periodically evaluating
their performance on the following year, and testing the best-performing agent in the year after that.
Then, the time period is shifted by one year into the future resulting in a total of 10 time periods. We
re-implement this experiment by training agents using PPO with the cumulative differential Sharpe
ratio (DIFFSHARPE) or the exact Sharpe ratio (SHARPE) as their objective. As depicted in Figure 4,
the SHARPE algorithm significantly outperforms the DIFFSHARPE algorithm in the training years.
However, as shown in Table 2, on the evaluation and test years there is no significant difference
indicating over-fitting of the agents’ policies to the years they are trained on. Nonetheless, we expect
training on the exact SHARPE ratio to give consistently better results if the problem of over-fitting is
solved, e.g. by using realistic stock-market simulators which are for example being developed using
Generative Adversarial Networks (Li et al., 2020). The experiments were performed with 5 sets of 5
seeds each and the standard deviation of different sets of seeds is reported.

While the Sharpe ratio is most widely adopted in finance, our method opens up the possibility to
maximize it also in other scenarios where risk-adjusted rewards are desirable, i.e. all problems where
consistent rewards with low variance are more important than a higher cumulative reward. For
example, in chronic disease management, maintaining stable health metrics is preferable to sporadic
improvements. In emergency or customer service, ensuring predictable response times is often more
important than occasional fast responses mixed with slow ones.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.3 DISCRETE OPTIMIZATION PROBLEMS

Next, we consider a large class of applications where RL is commonly used: Problems where the
agent iteratively transforms a state by its actions to find a state with a lower associated cost. These
problems are common in scientific applications such as physics, e.g. to reduce the length of quantum
logic circuits (Fösel et al., 2021), or chemistry, e.g. for molecular discovery (Zhou et al., 2019).
Another prominent example is the discovery of new algorithms (Mankowitz et al., 2023). Intuitively,
these problems can be understood as searching for the state with the lowest cost within an equivalence
class defined by all states that can be reached from the start state by the agent’s actions.

Concretely, we consider the class of discrete optimization problems equipped with a scalar cost
function c(s̃t) and the immediate rewards r̃t = c(s̃t)− c(s̃t+1). Additionally, we are interested in
the state with the lowest cost found during a trajectory, i.e. the goal is to maximize

Eπ

[
c(s̃0)− min

k∈[0,T−1]
c(s̃k)

]
= Eπ

[
max

k∈[−1,T−1]

k∑
t=0

r̃t

]
. (9)

We conjecture that maximizing Equation (9) will yield better results than maximizing Eπ

[∑T−1
t=0 r̃t

]
due to the following reasons:

1. The agent does not need to learn an optimal stopping point.

2. Considering only the rewards up to the minimum found cost might decrease the variance of
the gradient estimate.

3. The agent does not receive negative rewards for trying to escape a local cost minimum
during a trajectory and is therefore not discouraged from exploring. This leads to learning
difficult optimization strategies requiring an intermittent cost increase more easily.

Peak environment To facilitate an in-depth analysis, we first consider a toy environment with the
cost function depicted in the inset of Figure 5 (a). The cost function was chosen to be simple while
still requiring intermittently cost-increasing actions of the optimal policy. Each trajectory lasts 10
steps and the agent’s actions are stepping to the left, right, or doing nothing. To minimize the number
of hyperparameters, we use the REINFORCE algorithm (Williams, 1992) with a tabular policy.
We compare agents trained with the non-cumulative objective Equation (9) (MAXREINFORCE)
with agents that maximize the cumulative rewards (REINFORCE). As shown in Figure 5 (a), the
MAXREINFORCE agent trains much faster. Two possible sources of this speed-up are a different,
more advantageous direction of the gradient updates and a reduced variance when estimating these
gradients. To investigate which is the case, we periodically stop training and run n = 1000 trajectories
with a fixed policy. We then compute the empirical variance of the gradient update inspired by Kaledin
et al. (2022) as

VAR =
1

n

n−1∑
i=0

∥g⃗i∥22 −

∥∥∥∥∥ 1n
n−1∑
i=0

g⃗i

∥∥∥∥∥
2

2

, (10)

where g⃗i is the gradient from a single trajectory derived either by the MAXREINFORCE or the
REINFORCE algorithm. As this variance scales with the squared magnitude of the average gradients,
we normalize it by this value to ensure a fair comparison between the two algorithms. In Figure 5 (b),
we show that in the initial phase of training, the MAXREINFORCE algorithm significantly reduces
variance. To compare the direction of the gradients we use the same data to compute the normalized
average gradients of both algorithms and show their dot product in Figure 5 (c). We find that the
gradients are correlated (i.e. the dot product is bigger than zero) but not the same. Therefore, we
conclude that the training speed-up is derived both from lower variance and a better true gradient
direction. All results reported are averaged over 10 seeds with standard deviations plotted shaded.

ZX-diagrams As a real-world use case, we consider the simplification of ZX-diagrams, which are
graph representations of quantum processes (Coecke & Kissinger, 2017) with applications e.g. in the
compilation of quantum programs (Duncan et al., 2020; Riu et al., 2023). An example of a typical
ZX-diagram is shown in the inset of Figure 6 (b). We consider the environment described by Nägele
& Marquardt (2024), where the cost function of a diagram is given by its node number, the start states

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(a) (b) (c)

Figure 5: Peak environment. (a) Cost improvement during the trajectory against training episodes
for the cumulative REINFORCE agent and the MAXREINFORCE agent maximizing Equation (9).
The inset shows the cost function of the environment. (b) Empirical variance of both agents against
training progress. (c) Estimated dot product of the average gradient of both agents against training
progress.

(a) (b)
π α π / 2

π π / 2 π / 2

α π / 2

Figure 6: ZX environment. (a) Cost improvement during the trajectory against total steps taken in the
environment for the cumulative REINFORCE agent and the MAXREINFORCE agent maximizing
Equation (9). Left inset: Zoom-in to the initial training phase. Right inset: Zoom-in to the final
training phase. (b) Entropy of the agents’ policies against total steps taken in the environment. Inset:
A typical ZX-diagram.

are randomly sampled ZX-diagrams, and the actions are a set of local graph transformations. In total,
there are 6 actions per node and 6 actions per edge in the diagram. This is a challenging reinforcement
learning task that requires the use of graph neural networks to accommodate the changing size of
the state and action space. We use PPO to train agents to maximize either Equation (9) (MAXPPO)
or the cumulative reward (PPO) with a trajectory length of 20 steps. As shown in Figure 6 (a) the
MAXPPO agent initially trains faster than the PPO agent (left inset). This is likely due to the reduced
variance and different gradient direction as described above. The PPO agent then shortly catches
up, but ultimately requires about twice as many training steps to reach optimal performance as the
MAXPPO agent (right inset). We argue that this is because the MAXPPO agent is better at exploring
and therefore learning difficult optimization strategies (reason 3 above). This is captured by the
entropy of the MAXPPO agent’s policy staying much higher than the entropy of the PPO agent, as
shown in Figure 6 (b). All reported results are averaged over 5 seeds with standard deviations plotted
shaded.

Quantum error correction Next, we focus on optimization problems where the starting state is
always the same and the optimal stopping point is known. The specific tasks we consider are the
search for quantum programs to either find new quantum error correction codes or to prepare logical

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: Results for quantum error correction environments.

Task
Area under training curve MAXPPO

PPO

Best of 10 Mean of 10

[[5, 1, 3]]e 1.0004 1.0001± 0.0008
[[7, 1, 3]]e 0.9993 0.9994± 0.0003
[[9, 1, 3]]e 0.9994 0.9994± 0.0003
[[10, 2, 4]]e 1.0013 1.0023± 0.0017
[[12, 2, 4]]e 0.9993 0.9991± 0.0007

[[5, 1, 3]]s 1.0419 1.0666± 0.0407
[[7, 1, 3]]s 1.1824 1.2090± 0.0623
[[9, 1, 3]]s 1.0060 1.0905± 0.1079
[[15, 1, 3]]s 1.1382 1.0309± 0.0806
[[17, 1, 5]]s 1.4748 1.6218± 0.2144

states of a given quantum error correction code - both critical for the eventual realization of quantum
computation (Terhal, 2015). In both cases, the agent iteratively adds elementary quantum logic gates
until the program delivers the desired result. The agents’ policies are encoded by standard multilayer
perceptrons. We train agents on five different sized problems of both tasks. For details on the used
environment, see Zen et al. (2024) and Olle et al. (2023). To obtain a single performance measure
encompassing both final performance and training speed, we continuously evaluate the mean cost
improvement of the agents and average it over the training process as suggested by Andrychowicz
et al. (2020b). Intuitively, this measure can be understood as the area under the agent’s training
curve. In Table 3, we report the quotient of this performance measure of the MAXPPO algorithm
and the PPO algorithm for both the best of 10 and the mean of 10 trained agents. The different tasks
are denoted by three integers, as customary in the quantum error correction community. We find
that the MAXPPO algorithm performs similarly to PPO in quantum error correction code discovery
(subscript e), and significantly better in logical state preparation (subscript s). We argue that the
large degeneracy present in the solution space of the code discovery task diverts the more exploratory
MAXPPO, lowering its performance to the level of PPO.

Limitation When applying MAXPPO to discrete optimization problems with long trajectories in
the many hundreds of steps, we empirically observed an initially slow learning speed. This could be
due to the agent initially mostly increasing cost and therefore receiving zero reward for almost the
entire trajectory. A possible solution could be to dynamically adjust the trajectory length in these
problems going from shorter to longer trajectories during the training process.

4 RELATED WORK

A special case of NCMDPs is first considered by Quah & Quek (2006), who adapt Q-learning
to the max objective by redefining the temporal difference error of their learning algorithms and
demonstrate their algorithms on an optimal stopping problem. However, they do not adapt state
space and do not provide theoretical convergence guarantees. Gottipati et al. (2020) rediscover
the same algorithm, apply it to molecule generation, and provide convergence guarantees for their
method, while Eyckerman et al. (2022) consider the same algorithm for application placement in fog
environments. Cui & Yu (2023) finally show a shortcoming of the method used in the above papers:
It is guaranteed to converge to the optimal policy only in deterministic settings. Additionally, they
provide convergence guarantees of Q-learning in deterministic environments for a larger class of
functions f , focusing on the min function for network routing applications. In Appendix B.1 we show
that the class of objectives f considered by Cui & Yu (2023) is a subclass of all objectives that lead
to constant size extra state information ht using our method. Independently, the max function is also
used in the field of safety reinforcement learning in deterministic environments both for Q-learning
(Fisac et al., 2015; 2019; Hsu et al., 2021) and policy-based reinforcement learning (Yu et al., 2022).
Moflic & Paler (2023) use a reward function with parameters that depend on the past rewards of the
trajectory to tackle quantum circuit optimization problems that require large intermittent negative

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

rewards, albeit without providing theoretical convergence guarantees. Additionally, Wang et al.
(2020) investigate planning problems with non-cumulative objectives within deterministic settings.
They provide provably efficient planning algorithms for a large class of functions f by discretizing
rewards and appending them to the states. Recently, Veviurko et al. (2024) showed how to use the
max objective also in probabilistic settings by augmenting state space and provide convergence
guarantees for both Q-learning and policy-based methods. They then show experiments with their
algorithm yielding improvements in MDPs with shaped rewards. However, they do not redefine
the rewards, which requires adaptation of the implementation of their MDP solvers. Our method
described above reduces to an effectively equivalent algorithm to theirs in the special case of the max
objective.

A limitation of all works discussed above is that they require a potentially complicated adaptation
of their reinforcement learning algorithms and only consider specific MDP solvers or specific non-
cumulative objectives. They are also limited to deterministic settings, except for Veviurko et al.
(2024), which consider only the max objective.

5 DISCUSSION & CONCLUSION

In this work, we described a mapping from a decision process with a general non-cumulative objective
(NCMDP) to a standard Markov decision process (MDP) applicable in deterministic and probabilistic
settings. As our method is agnostic to the algorithm used to solve the resulting MDP, it works for
arbitrary action spaces and in conjunction with both off- and on-policy algorithms. Its implementation
is straightforward and directly enables solving NCMDPs with state-of-the-art MDP solvers, allowing
us to show improvements in a diverse set of tasks such as classical control problems, portfolio
optimization, and discrete optimization problems. Note that these improvements are achieved without
adding a single additional hyperparameter to the solving algorithms.

In further theoretical work, a full constructive classification of objective functions f with constant-
size extra state information ht would be desirable. From an applications perspective, there are
a lot of interesting objectives with non-cumulative f that could not be maximized so far. For
example, the geometric mean could be used to maximize average growth rates, or the function
f(r̃0, . . . , r̃t) = δt

∑t
k=0 r̃k, δ ∈ (0, 1) could be used to define an exponential trade-off between

trajectory length and cumulative reward in settings where long trajectories are undesirable. We
believe that a multitude of other applications with non-cumulative objectives are still unknown to the
reinforcement learning (RL) community, and conversely, that researchers working on non-cumulative
problems are not aware of RL, simply because these two concepts could not straightforwardly be
unified so far. This manuscript offers the exciting possibility of discovering and addressing this class
of problems still unexplored by RL.

REPRODUCIBILITY

Anonymized code including exact hyperparameters and random seeds, generated data, trained agent
weights, and instructions for running the code for all presented experiments are available for download
at https://osf.io/ajwmk/?view_only=38b116ac6633496a83657aeff43db34a.
Upon acceptance, we will make the code and data publicly available. Furthermore, we state or
provide references to all used hyperparameters and computation times for all experiments in Ap-
pendix D.

REFERENCES

Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon
Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020a. doi:
10.1177/0278364919887447. URL https://journals.sagepub.com/doi/10.1177/
0278364919887447.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, and Marcin Michalski. What matters for

10

https://osf.io/ajwmk/?view_only=38b116ac6633496a83657aeff43db34a
https://journals.sagepub.com/doi/10.1177/0278364919887447
https://journals.sagepub.com/doi/10.1177/0278364919887447

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

on-policy deep actor-critic methods? A large-scale study. In International conference on learning
representations, 2020b. doi: 10.48550/arXiv.2006.05990. URL https://openreview.net/
forum?id=nIAxjsniDzg.

Fahiem Bacchus, Craig Boutilier, and Adam Grove. Rewarding behaviors. In Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 1160–1167, 1996. ISBN 978-0-262-51091-2. URL
https://aaai.org/papers/172-AAAI96-172-rewarding-behaviors/.

Fahiem Bacchus, Craig Boutilier, and Adam Grove. Structured solution methods for non-markovian
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 112–117,
1997. ISBN 0262510952. URL https://dl.acm.org/doi/abs/10.5555/1867406.
1867424.

Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press, 2017. ISBN 9781107104228.

Wei Cui and Wei Yu. Reinforcement learning with non-cumulative objective. IEEE Transactions on
Machine Learning in Communications and Networking, 1:124–137, 2023. doi: 10.1109/TMLCN.
2023.3285543. URL https://ieeexplore.ieee.org/document/10151914.

Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering. Graph-
theoretic simplification of quantum circuits with the ZX-calculus. Quantum, 4:279, 2020.
doi: 10.22331/q-2020-06-04-279. URL http://quantum-journal.org/papers/
q-2020-06-04-279/.

Reinout Eyckerman, Phil Reiter, Steven Latré, Johann Marquez-Barja, and Peter Hellinckx. Ap-
plication placement in fog environments using multi-objective reinforcement learning with
maximum reward formulation. In NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium, pp. 1–6, 2022. doi: 10.1109/NOMS54207.2022.9789757. URL
https://ieeexplore.ieee.org/document/9789757.

Jaime F Fisac, Mo Chen, Claire J Tomlin, and S Shankar Sastry. Reach-avoid problems with time-
varying dynamics, targets and constraints. In Proceedings of the 18th international conference on
hybrid systems: computation and control, pp. 11–20, 2015. doi: 10.1145/2728606.2728612. URL
https://dl.acm.org/doi/10.1145/2728606.2728612.

Jaime F. Fisac, Neil F. Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J. Tomlin.
Bridging Hamilton-Jacobi safety analysis and reinforcement learning. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 8550–8556, 2019. doi: 10.1109/ICRA.2019.
8794107. URL https://ieeexplore.ieee.org/document/8794107.

Thomas Fösel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li. Quantum circuit optimization
with deep reinforcement learning. arXiv, 2021. doi: 10.48550/arXiv.2103.07585. URL https:
//arxiv.org/abs/2103.07585.

Sai Krishna Gottipati, Yashaswi Pathak, Rohan Nuttall, Raviteja Chunduru, Ahmed Touati, Sri-
ram Ganapathi Subramanian, Matthew E Taylor, and Sarath Chandar. Maximum reward for-
mulation in reinforcement learning. arXiv, 2020. doi: 10.48550/arXiv.2010.03744. URL
https://arxiv.org/abs/2010.03744.

Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire J Tomlin, and Jaime F Fisac. Safety and live-
ness guarantees through reach-avoid reinforcement learning. In Proceedings of Robotics: Sci-
ence and Systems, July 2021. doi: 10.15607/RSS.2021.XVII.077. URL https://www.
roboticsproceedings.org/rss17/p077.pdf.

Maxim Kaledin, Alexander Golubev, and Denis Belomestny. Variance reduction for policy-gradient
methods via empirical variance minimization. arXiv, 2022. doi: 10.48550/arXiv.2206.06827. URL
https://arxiv.org/abs/2206.06827.

Junyi Li, Xintong Wang, Yaoyang Lin, Arunesh Sinha, and Michael Wellman. Generating realistic
stock market order streams. Proceedings of the AAAI Conference on Artificial Intelligence, 34:
727–734, 2020. doi: 10.1609/aaai.v34i01.5415. URL https://ojs.aaai.org/index.
php/AAAI/article/view/5415.

11

https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=nIAxjsniDzg
https://aaai.org/papers/172-AAAI96-172-rewarding-behaviors/
https://dl.acm.org/doi/abs/10.5555/1867406.1867424
https://dl.acm.org/doi/abs/10.5555/1867406.1867424
https://ieeexplore.ieee.org/document/10151914
http://quantum-journal.org/papers/q-2020-06-04-279/
http://quantum-journal.org/papers/q-2020-06-04-279/
https://ieeexplore.ieee.org/document/9789757
https://dl.acm.org/doi/10.1145/2728606.2728612
https://ieeexplore.ieee.org/document/8794107
https://arxiv.org/abs/2103.07585
https://arxiv.org/abs/2103.07585
https://arxiv.org/abs/2010.03744
https://www.roboticsproceedings.org/rss17/p077.pdf
https://www.roboticsproceedings.org/rss17/p077.pdf
https://arxiv.org/abs/2206.06827
https://ojs.aaai.org/index.php/AAAI/article/view/5415
https://ojs.aaai.org/index.php/AAAI/article/view/5415

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt,
and Jakob Foerster. Discovered policy optimisation. Advances in Neural In-
formation Processing Systems, 35:16455–16468, 2022. doi: 10.48550/arXiv.2210.
05639. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/688c7a82e31653e7c256c6c29fd3b438-Abstract-Conference.html.

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas Köppe, Kevin Millikin,
Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert Tung,
Minjae Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane, Thomas
Hubert, Julian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol Vinyals,
and David Silver. Faster sorting algorithms discovered using deep reinforcement learning. Nature,
618(7964):257–263, 2023. doi: 10.1038/s41586-023-06004-9. URL https://doi.org/10.
1038/s41586-023-06004-9.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

Ioana Moflic and Alexandru Paler. Cost explosion for efficient reinforcement learning optimisation
of quantum circuits. In 2023 IEEE International Conference on Rebooting Computing (ICRC), pp.
1–5. IEEE, 2023. doi: 10.1109/ICRC60800.2023.10386864. URL https://www.computer.
org/csdl/proceedings-article/icrc/2023/10386864/1TJmieJCklW.

J. Moody and M. Saffell. Learning to trade via direct reinforcement. IEEE Transactions on Neural
Networks, 12(4):875–889, 2001. doi: 10.1109/72.935097. URL https://ieeexplore.
ieee.org/document/935097.

John Moody, Lizhong Wu, Yuansong Liao, and Matthew Saffell. Performance functions and reinforce-
ment learning for trading systems and portfolios. Journal of Forecasting, 17(5-6):441–470, 1998.
doi: https://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-\#.
URL https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%
291099-131X%281998090%2917%3A5/6%3C441%3A%3AAID-FOR707%3E3.0.
CO%3B2-%23.

Maximilian Nägele and Florian Marquardt. Optimizing ZX-diagrams with deep reinforce-
ment learning. Machine Learning: Science and Technology, 5(3):035077, 2024. doi: 10.
1088/2632-2153/ad76f7. URL https://iopscience.iop.org/article/10.1088/
2632-2153/ad76f7.

Jan Olle, Remmy Zen, Matteo Puviani, and Florian Marquardt. Simultaneous discovery of quantum
error correction codes and encoders with a noise-aware reinforcement learning agent. arXiv, 2023.
doi: 10.48550/arXiv.2311.04750. URL https://arxiv.org/abs/2311.04750.

K.H. Quah and Chai Quek. Maximum reward reinforcement learning: A non-cumulative re-
ward criterion. Expert Systems with Applications, 31(2):351–359, 2006. doi: 10.1016/j.eswa.
2005.09.054. URL https://www.sciencedirect.com/science/article/pii/
S0957417405002228.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo,
2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Jordi Riu, Jan Nogué, Gerard Vilaplana, Artur Garcia-Saez, and Marta P Estarellas. Reinforcement
learning based quantum circuit optimization via ZX-calculus. arXiv, 2023. doi: 10.48550/arXiv.
2312.11597. URL https://arxiv.org/abs/2312.11597.

12

https://proceedings.neurips.cc/paper_files/paper/2022/hash/688c7a82e31653e7c256c6c29fd3b438-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/688c7a82e31653e7c256c6c29fd3b438-Abstract-Conference.html
https://doi.org/10.1038/s41586-023-06004-9
https://doi.org/10.1038/s41586-023-06004-9
https://doi.org/10.1038/nature14236
https://www.computer.org/csdl/proceedings-article/icrc/2023/10386864/1TJmieJCklW
https://www.computer.org/csdl/proceedings-article/icrc/2023/10386864/1TJmieJCklW
https://ieeexplore.ieee.org/document/935097
https://ieeexplore.ieee.org/document/935097
https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-131X%281998090%2917%3A5/6%3C441%3A%3AAID-FOR707%3E3.0.CO%3B2-%23
https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-131X%281998090%2917%3A5/6%3C441%3A%3AAID-FOR707%3E3.0.CO%3B2-%23
https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-131X%281998090%2917%3A5/6%3C441%3A%3AAID-FOR707%3E3.0.CO%3B2-%23
https://iopscience.iop.org/article/10.1088/2632-2153/ad76f7
https://iopscience.iop.org/article/10.1088/2632-2153/ad76f7
https://arxiv.org/abs/2311.04750
https://www.sciencedirect.com/science/article/pii/S0957417405002228
https://www.sciencedirect.com/science/article/pii/S0957417405002228
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2312.11597

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 2017. doi: 10.48550/arXiv.1707.06347. URL https://arxiv.
org/abs/1707.06347.

William F. Sharpe. Mutual fund performance. The Journal of Business, 39(1):119–138, 1966. ISSN
00219398, 15375374. URL http://www.jstor.org/stable/2351741.

Srijan Sood, Kassiani Papasotiriou, Marius Vaiciulis, and Tucker Balch. Deep reinforce-
ment learning for optimal portfolio allocation: A comparative study with mean-variance
optimization. International Conference on Automated Planning and Scheduling, pp.
21, 2023. URL https://icaps23.icaps-conference.org/papers/finplan/
FinPlan23_paper_4.pdf.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction, Second edition.
The MIT Press, 2018. ISBN 9780262039246. URL http://incompleteideas.net/
book/RLbook2020.pdf.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information process-
ing systems, 12, 1999. URL https://papers.nips.cc/paper_files/paper/1999/
hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html.

Barbara M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys., 87:307–346,
2015. doi: 10.1103/RevModPhys.87.307. URL https://link.aps.org/doi/10.1103/
RevModPhys.87.307.

Sylvie Thiébaux, Charles Gretton, John Slaney, David Price, and Froduald Kabanza. Decision-
theoretic planning with non-markovian rewards. Journal of Artificial Intelligence Research, 25:
17–74, 2006. URL https://dl.acm.org/doi/abs/10.5555/1622543.1622545.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
2023. URL https://zenodo.org/record/8127025.

Grigorii Veviurko, Wendelin Boehmer, and Mathijs de Weerdt. To the max: Reinventing reward in rein-
forcement learning. In 41st International Conference on Machine Learning (ICML), 2024. doi: 10.
48550/arXiv.2402.01361. URL https://openreview.net/forum?id=4KQ0VwqPg8.

Ruosong Wang, Peilin Zhong, Simon S Du, Russ R Salakhutdinov, and Lin Yang. Planning with
general objective functions: Going beyond total rewards. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 14486–14497, 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/a6a767bbb2e3513233f942e0ff24272c-Paper.pdf.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.
doi: 10.1007/BF00992698. URL https://link.springer.com/article/10.1007/
BF00992698.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992. doi: 10.1007/BF00992696. URL https:
//doi.org/10.1007/BF00992696.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In Proceedings of the 39th International Conference on Machine Learning, volume 162,
pp. 25636–25655, 2022. doi: 10.48550/arXiv.2205.07536. URL https://proceedings.
mlr.press/v162/yu22d.html.

Remmy Zen, Jan Olle, Luis Colmenarez, Matteo Puviani, Markus Müller, and Florian Marquardt.
Quantum circuit discovery for fault-tolerant logical state preparation with reinforcement learning.
arXiv, 2024. doi: 10.48550/arXiv.2402.17761. URL https://arxiv.org/abs/2402.
17761.

13

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://www.jstor.org/stable/2351741
https://icaps23.icaps-conference.org/papers/finplan/FinPlan23_paper_4.pdf
https://icaps23.icaps-conference.org/papers/finplan/FinPlan23_paper_4.pdf
http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://papers.nips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://dl.acm.org/doi/abs/10.5555/1622543.1622545
https://zenodo.org/record/8127025
https://openreview.net/forum?id=4KQ0VwqPg8
https://proceedings.neurips.cc/paper_files/paper/2020/file/a6a767bbb2e3513233f942e0ff24272c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a6a767bbb2e3513233f942e0ff24272c-Paper.pdf
https://link.springer.com/article/10.1007/BF00992698
https://link.springer.com/article/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://proceedings.mlr.press/v162/yu22d.html
https://proceedings.mlr.press/v162/yu22d.html
https://arxiv.org/abs/2402.17761
https://arxiv.org/abs/2402.17761

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimiza-
tion of molecules via deep reinforcement learning. Scientific Reports, 9:10752, 2019.
doi: 10.1038/s41598-019-47148-x. URL https://www.nature.com/articles/
s41598-019-47148-x.

Appendices
A PROOF OF THEOREM 1

First, we find that the probability p(T) of a trajectory T occurring in M is the sum of the probabilities
p(T̃) of all possible trajectories T̃ occurring in M̃ that map to T if π is used as a policy for M̃ as
described above:

p(T) = p(s0)

T−1∏
t=0

π(at|st)p(rt, st+1|st, at)

= p(s̃0)

T−1∏
t=0

π(at|st)
∑
r̃t

p̃(r̃t, s̃t+1|s̃t, at)δht+1,u(ht,r̃t)δrt,ρ(ht,r̃t)

=
∑

map(T̃)=T

p(s̃0)

T−1∏
t=0

π(at|st)p̃(r̃t, s̃t+1|s̃t, at) =
∑

map(T̃)=T

p(T̃),

(11)

where
∑

map(T̃)=T is the sum over all trajectories of M̃ that map to T . The second to last step can
be shown through induction. Therefore, we find

Eπ

[
T−1∑
t=0

rt

]
=

∑
T

p(T)
T−1∑
t=0

rt =
∑
T

∑
map(T̃)=T

p(T̃)f(r̃0, . . . , r̃T−1)

=
∑
T̃

p(T̃)f(r̃0, . . . , r̃T−1) = Eπ [f(r̃0, . . . , r̃T−1)] ,

(12)

where in the second step we used Equations (3) and (11), and in the third step that each T̃ maps to a
unique T . □

B OBJECTIVES f WITH CONSTANT SIZE EXTRA STATE INFORMATION ht

B.1 NECESSARY AND SUFFICIENT CONDITION FOR CONSTANT SIZE EXTRA STATE
INFORMATION ht

First, note that if we can predict f(r̃0, . . . , r̃t) in a Markovian manner, we can also predict
f(r̃0, . . . , r̃t) − f(r̃0, . . . , r̃t−1) in a Markovian manner by adding just one more dimension to
our state ht, i.e. f(r̃0, . . . , r̃t−1). Therefore, we focus on predicting f(r̃0, . . . , r̃t) in the following.
Rewriting Definition 1, we find using

f(r̃0, . . . , r̃t)− f(r̃0, . . . , r̃t−1) = ρ (r̃t, u (r̃t−1, u (r̃t−2, ...))) (13)

or equivalently
f(r̃0, . . . , r̃t) = ρ′ (r̃t, u

′ (r̃t−1, u
′ (r̃t−2, ...))) , (14)

with
u′(r̃t, h

′
t) = u′ (r̃t, (ht, ft−1)) = [u(r̃t, ht), ft−1 + ρ(r̃t, ht)] , (15)

and
ρ′(r̃t, h

′
t) = ρ(r̃t, ht) + ft−1. (16)

14

https://www.nature.com/articles/s41598-019-47148-x
https://www.nature.com/articles/s41598-019-47148-x

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

s̃0
(s̃1, − 1)

(s̃2,0)
(s̃1,1) (s̃2,1)

(s̃2, − 1)

(s̃2, − 2)

r0 = 1,p = 0.5
r1 = − 1

r1 = − 3,p = 0.1

r1 = 0,p = 0.9
r1 = − 1,p = 0.1

r1 = 0,p = 0.9

r1 = 0

a0

a1

a0
r0 = − 1,p = 0.5 a1

Figure A1: Markov decision process constructed from the non-cumulative Markov decision process
depicted in Figure 2.

Table A1: Q-function Q of the MDP depicted in
Figure A1 (which corresponds to the NCMDP
of Figure 2) found by value iteration using our
method. The resulting policy is optimal and
results in an expected return of −0.15.

State s Action a Q(s, a)

s̃0 - −0.15
(s̃1, 1) a0 −1
(s̃1, 1) a1 −0.3
(s̃1,−1) a0 0
(s̃1,−1) a1 −0.1

Table A2: Q-function Q′ of the MDP depicted
in Figure 2 found by value iteration using the
method of Cui & Yu (2023). The resulting policy
is not optimal and results in an expected return
of −0.5.

State s̃ Action a Q′(s̃, a)

s̃0 - −0.5
s̃1 a0 0
s̃1 a1 −0.2

Given these definitions ft = f(r̃0, . . . , r̃t). If f admits a representation of the form Equation (14)
with u′ of constant output dimension, additional state information ht of the same constant size is
possible. Cui & Yu (2023) find a condition of similar form to Equation (14) for the objectives f
which their method can optimize:

f(r̃0, . . . , r̃t) = g (r̃t, g (r̃t−1, g (r̃t−2, . . .))) , g : R2 → R. (17)

In this sense, our method can be seen as extending the class of objectives f with constant size
extra state information by allowing for ρ ̸= u and by allowing a multidimensional update function
u : Rk+1 → Rk instead of g. Also, note that the method of Cui & Yu (2023) only works in
deterministic environments in conjunction with Q-learning based methods.

B.2 SUFFICIENT CONDITION FOR CONSTANT SIZE EXTRA STATE INFORMATION ht

While Equation (14) provides a complete categorization of functions with constant size ht, in practice
it may be difficult to check whether a given function satisfies this property. In the following, we
consider a smaller set of functions including all of the functions in Table 1, and provide an explicit
construction of u, constant size ht, and ρ for functions of this class. Specifically, we consider function
families that can be written with a constant k ∈ N as

f(r̃0, . . . , r̃t) = F (t, b0, . . . , bk−1) , (18)

where F : Rk+1 → R,

bj = bj(r̃0, . . . , r̃t) = Bj

(
φj(0, r̃0), . . . , φj(t, r̃t)

)
, (19)

where φj : R2 → R, and Bj is an arbitrary binary operation, such as +,×,max,min, and

Bj(x0, . . . , xt) = Bj(xt,Bj(xt−1,Bj(...))). (20)

For example, if Bj is the multiplication operation, Bj(x0, . . . , xt) =
∏t

i=0 xi. As we show by
construction below, all objectives f of this form have extra state information ht of maximum
dimension k + 1. Since we are dealing with function families, Equation (18) introduces a notion

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table A3: Objectives f in the form of Equation (18). All f except max
k∈[−1,t]

∑k
i=0 r̃i are permutation

invariant resulting in associative Bj .

f(r̃0, . . . , r̃t) F (t, b0, . . . , bk−1) [Bj] [φj(t, r̃t)]

max(r̃0, . . . , r̃t) h
(0)
t B0 = max φ0(r̃t) = r̃t

min(r̃0, . . . , r̃t) h
(0)
t B0 = min φ0(r̃t) = r̃t

Sharpe ratio
MEAN(r̃0,...,r̃t)
STD(r̃0,...,r̃t)

h
(0)
t /t√

h
(1)
t /t−

(
h
(0)
t /t

)2
B0 = B1 = +

φ0(r̃t) = r̃t,
φ1(r̃t) = r̃2t

max
k∈[−1,t]

∑k
i=0 r̃i h

(1)
t + h

(0)
t

B0

(
φ0(r̃t), h

(0)
t

)
=

max
(
0, h

(0)
t − φ0(r̃t)

)
,

B1 = +

φ0(r̃t) = r̃t,
φ1(r̃t) = r̃t

r̃0r̃1 . . . r̃t h
(0)
t B0 = × φ0(r̃t) = r̃t

Harmonic mean
1

1
r̃0

+···+ 1
r̃t

1

h
(0)
t

B0 = + φ0(r̃i) =
1
r̃t

δt
∑t

t=0 r̃t,
δ ∈ (0, 1)

δth
(0)
t B0 = + φ0(r̃t) = r̃t

1
t+1

∑t
k=0 r̃k

1
t+1h

(0)
t B0 = + φ0(r̃t) = r̃t

of consistency for different sizes of inputs (r̃0, . . . , r̃t), since it requires the use of the same φj

for all input sizes. Note that for permutation invariant f , φj is independent of the time-step, i.e.
φj(i, r̃i) = φj(r̃i), and Bj is associative. All but one of the objectives f we consider in this
manuscript are permutation invariant.

Given Equation (18), we can directly construct the update function

h
(j)
t+1 = u(j) (r̃t, ht) = Bj

(
φj

(
h
(k)
t , r̃t

)
, h

(j)
t

)
, 0 ≤ j < k, (21)

where superscript (j) indicates the jth entry of a vector. Additionally,

h
(k)
t+1 = h

(k)
t + 1

is keeping track of the time step. In this case, each bj(r̃0, . . . , r̃t−1) is a dimension of ht. Finally,

ρ(r̃t, ht) = F

(
h
(k)
t+1,

{
h
(j)
t+1

}j=k−1

j=0

)
− F

(
h
(k)
t ,

{
h
(j)
t

}j=k−1

j=0

)
. (22)

We show in Table A3 how all functions in Table 1 can be written in this form.

C GRID ENVIRONMENT: EXPERIMENTS COMPARING TO CUI & YU (2023)

In this section, we compare our method to the more specialized method for solving NCMDPs intro-
duced by Cui & Yu (2023), which can only be applied in deterministic environments in conjunction
with Q-learning methods. We want to answer the question of whether our more general method
can be competitive even in this specialized scenario. To this end, we consider the min objective in
a grid environment, where each tile is associated with a deterministic reward sampled uniformly
from [−1, 1] when initializing the grid. At each step, the agent can choose to move forward and left,
forward and right, or forward and straight, and an episode terminates when the agent has crossed from
one side of the grid to the other (see Figure A2). We perform experiments on grid sizes N = 3, 4, 5
with 10 random grids per size. For each grid and training method, we train 5 agents with different
initialization. To facilitate a fair comparison between both methods, we use a vanilla deep Q-learning
algorithm with minimal hyperparameters for training (for details see Appendix D). We either extend

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

������ 2

po
sit

ion
 1

�	��

����

���

���

	��

��
��
��

Figure A2: Example of a grid environment for the min objective with N = 5. Orange arrows indicate
the ideal policy.

−0.5 0.0 0.5 1.0
Cui et. al.

−0.5

0.0

0.5

1.0

Ou
rs

N=3, final return
 Mean ours: 0.2108
 Mean Cui et. al.: 0.1472

−0.5 0.0 0.5 1.0
Cui et. al.

N=4, final return
 Mean ours: 0.0844
 Mean Cui et. al.: 0.0480

−0.5 0.0 0.5 1.0
Cui et. al.

N=5, final return
 Mean ours: -0.0916
 Mean Cui et. al.: -0.1996

Figure A3: Final return when training agents on the grid environment with our method (y-axis) and
the method of Cui & Yu (2023) (x-axis). We perform experiments on grid sizes N = 3, 4, 5 with
10 random grids per size (one marker is one grid). Per grid and training method we train 5 agents
with different initialization and show the standard deviation as bars. Our method performs better on
average for the 3 grid sizes.

the states and adjust the rewards as specified in Table 1 for the minimum objective and use the standard
Q-function update of Q-learning (ours), or we only change the Q-function update as specified by
Cui & Yu (2023) to Q(st, at)← min(rt, argmax

a
Q(st+1, a)). We find that our algorithm is not only

competitive with the method of Cui & Yu (2023), but even outperforms it in terms of average final
performance (see Figure A3) and trains equally fast (see Figure A4). Surprisingly, the prediction
loss of the Q-function is similar for both methods (see Figure A5). This suggests that small errors
in the Q-function learned by our method may be less detrimental to performance than errors in the
Q-function learned by the method of Cui & Yu (2023).

D DETAILS ON EXPERIMENTS

Lunar lander For training, we use the PPO implementation of stables-baselines3
[citepstable-baselines3. The hyperparameters and network architecture of both algorithms were
chosen as by Raffin (2020) (which are optimized to give good performance without the velocity
penalty), only increasing the batch size and the total training steps to ensure convergence. Training a
single agent takes around one hour on a Quadro RTX 6000 GPU with the environment running in
parallel on 32 CPUs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

−0.5 0.0 0.5 1.0
Cui et. al.

−0.5

0.0

0.5

1.0

Ou
rs

N=3,
 Area under training curve
 Mean ours: 0.1881
 Mean Cui et. al.: 0.1283

−0.5 0.0 0.5 1.0
Cui et. al.

N=4,
 Area under training curve
 Mean ours: -0.0232
 Mean Cui et. al.: -0.0036

−0.5 0.0 0.5 1.0
Cui et. al.

N=5,
 Area under training curve
 Mean ours: -0.2169
 Mean Cui et. al.: -0.2260

Figure A4: Area under the training curve when training agents on the grid environment with our
method (y-axis) and the method of Cui & Yu (2023) (x-axis). We perform experiments on grid sizes
N = 3, 4, 5 with 10 random grids per size (one marker is one grid). Per grid and training method
we train 5 agents with different initialization and show the standard deviation as bars. Both methods
perform similarly.

Portfolio optimization For training, we use the PPO implementation of stables-baselines3
(Raffin et al., 2021). The hyperparameters and network architecture of both algorithms were chosen
as by Sood et al. (2023) where they were optimized to give a good performance of the DIFFSHARPE
algorithm. Training a single agent takes around one hour on a Quadro RTX 6000 GPU with the
environment running in parallel on 10 CPUs.

Peak environment For training, we use a custom REINFORCE implementation with a tabular
policy to keep the number of hyperparameters minimal, updating the agent’s policy after each
completed trajectory. We use a learning rate of 2−10 but also performed experiments scanning the
learning rate which leaves qualitative results similar. Training a single agent takes around 20 minutes
on a Quadro RTX 6000 GPU with the environment running on a single CPU.

ZX-diagrams For training, we use the PPO implementation of Nägele & Marquardt (2024) to
facilitate the changing observation and action space. The hyperparameters and network architecture
were chosen as by Nägele & Marquardt (2024) who originally chose them to give good performance
of the PPO algorithm. This is the most compute-intensive experiment reported in this work with one
training run lasting for 12 hours using two Quadro RTX 6000 GPUs and 32 CPUs.

Quantum error correction For training, we use the PPO implementation of PureJaxRL (Lu
et al., 2022). For the code discovery task, we modify the reward to consist of the (normalized)
difference in immediate rewards used in Olle et al. (2023). The hyperparameters in the code discovery
task have been fixed throughout all cases and chosen to provide good performance in all the examples
considered with standard PPO. The hyperparameters for the logical state preparation task have been
chosen to be the optimal ones reported in Zen et al. (2024), which were optimized for performance of
the PPO algorithm. All of the training is done on a single Quadro RTX 6000 GPU. Training 10 agents
to complete the code discovery task takes 1 to 2 minutes, depending on the target code parameters.
For the logical state preparation task, it takes around 100 seconds for [[5, 1, 3]]l and around 2500
seconds for [[17, 1, 5]]l to train 10 agents in parallel.

Grid environment For training, we use a vanilla Q-learning algorithm. Per training run, we take a
total of 105 steps in the environment. After a warmup phase of 1000 steps, we train after every 100
steps taken in the environment on a batch consisting of the last 1000 experiences of the agent. For
exploration, we use an ϵ-greedy strategy with ϵ = 0.1. We use the Adam optimizer with the learning
rate linearly annealed from 10−2 to 10−7. For the Q-network, we use a multilayer perceptron with 2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

hidden layers of dimension 128 with tanh activations. One training run takes around 30 seconds on a
single CPU.

We estimate the total compute time to reproduce the results of this manuscript to be around 1000
GPU hours and 25000 CPU hours.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Train step

10−6

10−3

100
Lo

ss
N=3, grid 0

Train step

Lo
ss

N=4, grid 0

Train step

Lo
ss

N=5, grid 0

Train step

10−6

10−3

100

Lo
ss

N=3, grid 1

Train step

Lo
ss

N=4, grid 1

Train step

Lo
ss

N=5, grid 1

Train step

10−6

10−3

100

Lo
ss

N=3, grid 2

Train step

Lo
ss

N=4, grid 2

Train step

Lo
ss

N=5, grid 2

Train step

10−6

10−3

100

Lo
ss

N=3, grid 3

Train step

Lo
ss

N=4, grid 3

Train step

Lo
ss

N=5, grid 3

0 500 1000
Train step

10−6

10−3

100

Lo
ss

N=3, grid 4

0 500 1000
Train step

Lo
ss

N=4, grid 4

0 500 1000
Train step

Lo
ss

N=5, grid 4

Cui et. al. Ours

Figure A5: Square error when predicting the Q-function in the grid environment using our method
(orange) and the method of Cui & Yu (2023) (blue) against the training step. N indicates the grid size
with 10 different random grids per size (only 5 shown) and train 5 agents with different seeds per grid.
Lines show the mean loss and the maximum and minimum loss is shaded. The prediction loss of the
Q-function is similar for both methods but our method leads to higher performance (see Figure A3).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

−200

0

200
Re

tu
rn

c= 0.0 c= 0.125 c= 0.25

−200

0

200

Re
tu

rn

c= 0.5 c= 0.75 c= 1.0

−500

−250

0

250

Re
tu

rn

c= 1.5 c= 2.0 c= 3.0

−1000

−500

0

Re
tu

rn

c= 4.0 c= 6.0 c= 8.0

0 2
Global step 1e7

−2000

−1000

0

Re
tu

rn

c= 12.0

0 2
Global step 1e7

c= 16.0

0 2
Global step 1e7

c= 24.0

Figure A6: Training progress of cumulative SUMVELPPO algorithm in the Lunar lander environment.
The standard deviation over 5 seeds is shaded.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Re
tu

rn

c= 12.5 c= 25

−400

−200

0

200

Re
tu

rn

c= 50 c= 75 c= 100

−500

−250

0

250

Re
tu

rn

c= 150 c= 200 c= 300

−1000

−500

0

Re
tu

rn

c= 400 c= 600 c= 800

0 2
Global step 1e7

−3000

−2000

−1000

0

Re
tu

rn

c= 1200

0 2
Global step 1e7

c= 1600

0 2
Global step 1e7

c= 2400

Figure A7: Training progress of non-cumulative MAXVELPPO algorithm in the Lunar lander
environment. The standard deviation over 5 seeds is shaded.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1 4 7 10
Evaluation period

0.0

2.5

Av
g.

Sh
ar

pe
 ra

tio

1 4 7 10
Test period

0.0

2.5 DIFF
SHARPE
SHARPE
(ours)

Figure A8: Sharpe ratio on evaluation and test periods.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

0

10

20
Sh

ar
pe

 ra
tio

Training period 1 Training period 2

0

10

20

Sh
ar

pe
 ra

tio

Training period 3 Training period 4

0

10

20

Sh
ar

pe
 ra

tio

Training period 5 Training period 6

0

10

20

Sh
ar

pe
 ra

tio

Training period 7 Training period 8

0 2 4 6
Global step 1e6

0

10

20

Sh
ar

pe
 ra

tio

Training period 9

0 2 4 6
Global step 1e6

Training period 10

DIFFSHARPE SHARPE

Figure A9: Training progress in the portfolio optimization task. The standard deviation over 25 seeds
is shaded.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0 5000 10000 15000 20000

0.4

0.6

0.8

Co
st

im
pr

ov
em

en
t [[5, 1, 3]]s

0.00 0.25 0.50 0.75 1.00 1.25
1e6

0.8

0.9

1.0

[[5, 1, 3]]e

0 5000 10000 15000 20000
0.2

0.4

0.6

0.8

Co
st

im
pr

ov
em

en
t [[7, 1, 3]]s

0.00 0.25 0.50 0.75 1.00 1.25
1e6

0.8

0.9

1.0

[[7, 1, 3]]e

0 200000 400000 600000
0.0

0.5

Co
st

im
pr

ov
em

en
t [[9, 1, 3]]s

0.00 0.25 0.50 0.75 1.00 1.25
1e6

0.8

0.9

1.0

[[9, 1, 3]]e

0 200000 400000 600000

0.25

0.50

0.75

Co
st

im
pr

ov
em

en
t [[15, 1, 3]]s

0 2 4 6 8
1e6

0.8

0.9

1.0

[[10, 2, 4]]e

0 200000 400000 600000
Global step

0.25

0.50

0.75

Co
st

im
pr

ov
em

en
t [[17, 1, 5]]s

0.00 0.25 0.50 0.75 1.00 1.25
Global step 1e6

0.8

0.9

1.0

[[12, 2, 4]]e

PPO MAXPPO

Figure A10: Training progress in the quantum error correction tasks. The best and worst performance
of 10 seeds is shaded.

25

	Introduction
	Theoretical Analysis
	Experiments
	Classical Control
	Portfolio Optimization with Sharpe Ratio as Objective
	Discrete Optimization Problems

	Related Work
	Discussion & Conclusion
	Proof of theorem 1
	Objectives f with constant size extra state information ht
	Necessary and sufficient condition for constant size extra state information ht
	Sufficient condition for constant size extra state information ht

	Grid environment: Experiments comparing to cui2023
	Details on experiments

