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Abstract

Diffusion Transformer (DiT) is emerging as a cutting-edge trend in the landscape of
generative diffusion models for image generation. Recently, masked-reconstruction
strategies have been considered to improve the efficiency and semantic consistency
in training DiT but suffer from deficiency in contextual information extraction.
In this paper, we provide a new insight to reveal that noisy-to-noisy masked-
reconstruction harms sufficient utilization of contextual information. We further
demonstrate the insight with theoretical analysis and empirical study on the mutual
information between unmasked and masked patches. Guided by such insight, we
propose a novel training paradigm named MC-DiT for fully learning contextual
information via diffusion denoising at different noise variances with clean-to-clean
mask-reconstruction. Moreover, to avoid model collapse, we design two comple-
mentary branches of DiT decoders for enhancing the use of noisy patches and
mitigating excessive reliance on clean patches in reconstruction. Extensive experi-
mental results on 256×256 and 512×512 image generation on the ImageNet dataset
demonstrate that the proposed MC-DiT achieves state-of-the-art performance in
unconditional and conditional image generation with enhanced convergence speed.

1 Introduction

Diffusion Probabilistic Models (DPMs) [19, 29, 42, 43] have emerged as front-runners in the latest
advancements of image-level generative models, and surpass previous state-of-the-art generative
models [10, 14]. DPMs corrupt an input image into a noise obeying the normal distribution by
gradually injecting Gaussian noise and recover the image from the noise with step-by-step denoising
via a pretrained network [42, 43]. U-Net [38] is popular in early works [37, 35] to predict noise from
disrupted images for image generation. Recently, Diffusion Transformer (DiT) [34] has been widely
considered for DPMs [19, 29, 42, 43] in conditional image generation [4, 37], video generation
[16, 22, 30], and 3D generation [15, 25, 36] due to its excellent scalability and superior performance.

Different from vision transformers (ViTs) [11], DiT is trained to predict Gaussian noise from
disrupted images at different noise levels. To achieve large-scale training, DiT suffers from slow
convergence and heavy computational burden in the training process [49]. Moreover, due to its
goal of noise prediction, DiT causes semantic inconsistency in generated images, since it struggles
to learn contextual information in different regions of images for noise prediction [13]. To solve
these problems, mask-reconstruction is introduced into the denoising-based training schedule for
DiT [13, 49, 48]. Inspired by masked autoencoder (MAE) [18], DiT is trained to predict masked noisy
patches from the given unmasked noisy patches. MDT [13] pioneers to propose the asymmetrical
diffusion transformer that integrates mask-reconstruction with denoising, which employs encoders
to extract features from unmasked noisy patches and a lightweight decoder to reconstruct masked
patches via extracted features. MaskDiT [48] accelerates the training process by masking at most 50%
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noisy image patches. SD-DiT [49] introduces self-supervised discriminative objective for knowledge
distillation to reduce the fuzzy relation between the mask-reconstruction and denoising. Despite
superior performance over vanilla DiT, they are deficient in exploiting contextual information by
neglecting different noise scales in different steps of diffusion process.

In this paper, we revisit mask-reconstruction in training DiT and reveal that reconstructing masked
noisy patches from unmasked noisy patches harms contextual information extraction. This
issue is exaggerated under large noise variances, since both unmasked and masked noisy patches
are similar to standard Gaussian noise and contain little contextual information. We demonstrate
this phenomenon in Figure 1(a) by evaluating the mutual information between unmasked output
patches and masked patches at different noise variances for different methods. With the growth of
noise variance, mutual information in noisy image patches generated by MDT [13] and MaskDiT
[48] decreases sharply, while mutual information in vanilla noisy images decreases slowly. This fact
suggests that the information in masked patches rarely comes from unmasked patches, and thereby,
the contextual information is not sufficiently exploited. We further demonstrate this empirical
finding with theoretical analysis on mutual information and the mask graph [46], as elaborated in
Propositions 2 and 3.

To address this problem, we propose MC-DiT to reconstruct clean unmasked patches from clean
masked patches rather than resort to noisy patches. Benefiting from the merit that clean-to-clean
reconstruction is not influenced by the noise, the proposed MC-DiT is able to learn contextual
information via the diffusion denoising process at all noise scales. Furthermore, to avoid model
collapse caused by over-emphasizing clean patches but neglecting noisy patches, we design two
complementary branches to enforce the model focusing more on denoising. In summary, our
contributions are listed as below.

• We provide a new insight that noisy-to-noisy mask-reconstruction is insufficient in extracting
contextual information. We demonstrate the insight on mask-reconstruction with theoretical
analysis and empirical study on mutual information between unmasked and masked patches.

• We propose MC-DiT, a novel training paradigm with new mask-reconstruction objective, to
fully exploit contextual information with clean-to-clean reconstruction. We further design two
complementary branches of DiT decoders to avoid model collapse and focus on denoising.

• We evaluate the proposed MC-DiT in 256×256 and 512×512 image generation on the ImageNet
dataset and achieve state-of-the-art FID score for DiT backbones of various scales.

2 Related Work

Diffusion Probabilistic Models. Diffusion Probabilistic Models (DPMs) [19, 42, 43] have attracted
increasing attention due to their superior image generation ability compared with preceding generative
models [14, 47]. Denoising diffusion probabilistic model (DDPM) [19] significantly advances
generative models, particularly in tasks such as text-guided image synthesis. In specific, DDPM is
realized as a Markov chain [32] that contains forward process and reverse process. In the forward
process, clean images are disrupted by Gaussian noise step by step, and in the reverse process, the
images are generated from the Gaussian noise with step-by-step denoising. The commonly used
U-Net model [38] is trained to predict the Gaussian noise from noisy images. Score matching method
[43] is introduced into diffusion models to design the forward and reverse process with elegant
Stochastic Differential Equation (SDE) [44]. EDM [21] analyzes the design space of diffusion
models and disentangles the effects of parametrization, sampling, and training. To address the time-
consuming iterative issue inherent in DPMs, several methods apply fast sampling strategy [27, 28] or
latent diffusion training strategy [37].

Transformers in Diffusion Models. In DPMs, the most commonly used architecture for noise
prediction is U-Net [38], which is a symmetric encoder-decoder framework. Recently, transformers
provide a new perspective to noise prediction due to their excellent multi-modality fusion ability and
remarkable scaling properties. U-ViT [3] integrates time embedding, image patches, and conditional
patches into overall tokens and applies residual connection into transformers for consistency in
generation. DiT [34] claims that transformers applied in DPMs realize superior performance and
achieve the scaling law. Therefore, various works adopt and improve DiT into 2D image generation
[34, 35], video generation [30, 16, 22], and 3D generation [15, 25, 36]. In this paper, we take the DiT
as our backbone and change the input from noisy patches to clean patches.
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Figure 1: (a) Mutual information of different methods between generated masked patches and
unmasked patches. We generate masked noisy patches from unmasked noisy patches and calculate
mutual information I(Xunmasked;Xmasked) under various noise scales. The ‘vanilla clean images’
and ‘vanilla noisy images’ denote the real clean/noisy images, which are the upper bound of the
mutual information. The other lines are computed with the generated images by three strategies. (b)
Mask graph [46] in different reconstruction targets. The left yellow ellipse denotes unmasked patches
and the right green one denotes masked patches. The black arrow denotes the positive pairs to pull in.

Masked Training with Transformers. Mask-reconstruction has been broadly applied into con-
volutional networks and transformers [11]. MAE [18] takes the mask-reconstruction to pretrain
transformers and achieves stunning contextual modeling capabilities and zero-shot performance.
Inspired by this method, various strategies for masked training have been introduced into transformers.
For example, ConvMAE [12] leverages masked convolution to prevent information leakage. FreMiM
[45] converts images into frequency domain and applies masked training for frequency information
reconstruction. MultiMAE [1] utilizes masked training into multi-modality inputs for cross-modal
fusion and generation. SdAE [8] improves masked autoencoder via self distillation. In summary, the
mask-reconstruction training objective transfers the information from unmasked patches to masked
patches, and thereby, enhances contextual semantic modeling ability.

3 Proposed Method

3.1 Preliminaries

Masked AutoEncoders [18]. Masked AutoEncoder (MAE) is a significant unsupervised pretraining
paradigm in computer vision, which reconstructs masked patches from unmasked patches. Given
an image x, MAE first patchifies it into N patches denoted by x̃ ∈ RN×c, where c is the channel
dimension. A random binary mask m ∈ {0, 1}N is applied to obtain masked patches x1 = x[1−m] ∈
RN1×c and unmasked patches x2 = x[m] ∈ RN2×c. N1 and N2 are the number of masked and
unmasked patches. An encoder-decoder framework h = g ◦ f is then applied. The encoder f maps
the unmasked patches x1 into latent space z1 = f(x1), while the decoder reconstructs the pixel
value of masked patches x′

2 = g(z1). The MAE is trained to ensure the reconstruction ability by
minimizing the Mean Square Error (MSE) loss LMAE = ExEx1,x2|x∥g(f(x1)) − x2∥2. U-MAE
[46] provides a theoretical understanding of MAE and establishes connection between MAE and
contrastive learning [33, 17, 7].

Proposition 1 ([46]) The lower bound of the MAE loss is

LMAE ≥ −Ex1,x2
h(x1)

Thg(x2)− ε+ const = Lasym − ε+ const, (1)

where Lasym denotes the asymmetric alignment loss in [46], ε is the fitting error, and hg = g ◦ fg is
the pseudo autoencoder that satisfies Ex∥hg(x2)− x2∥2 ≤ ε.

U-MAE [46] combines Proposition 1 with the mask graph in Figure 1(b) (upper) to represent the
contrastive objective in MAE. Specifically, Proposition 1 demonstrates that the MAE loss is equal
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to the contrastive loss Lasym, which calculates the similarity of h(x1) and hg(x2). If x1 and x2

are neighboring patches, Lasym is minimized when positive pairs (i.e., x1 and x2) are pulled closer.
Proposition 1 is consistent with the mask graph in Figure 1 (b), where unmasked and masked patches
are considered as contrastive pairs. Thus, we employ mask graph as an effective tool to analyze the
contrastive objective of MAE.

Diffusion Probabilistic Models [19, 42, 43]. Diffusion Probabilistic Models (DPMs) emulate the
diffusion process of physical atoms to convert the standard Gaussian distribution into the target
distribution via differential equations. In the forward process, clean data x0 ∼ Pdata(x0) is corrupted
into Gaussian noise xT ∼ N (0, σ2

maxI) step by step via stochastic differential equation (SDE):

dx = f(xt, t)dt+ g(t)dw, (2)

where f is the drift coefficient, g is the diffusion coefficient, w is a standard Wiener process, and t is
the time value from 0 to T . The reverse process generates target samples using the inverse SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̃, (3)

where w̃ is a reverse-time Wiener process. Following EDM [21] to set f(x, t) = 0 and g(t) =
√
2t,

the forward and reverse SDEs are reformulated as dx =
√
2tdw and dx = −t∇x log pt(x)dt, where

s(x, t) = ∇x log pt(x) is the score function. To solve the reverse-time SDE, a denoising network
Dθ(x, t) is trained to minimize the score matching loss:

Ex0∼pdata(x0)En∼N (0,t2I)∥Dθ(x0 + n, t)− x0∥2. (4)

As a result, the score function is estimated by s(x, t) = (Dθ(x, t)− x)/t2. During training, at step
t, noisy images x0 + n are sent to the denoising network Dθ(x, t) to predict the clean images x0.
However, directly optimizing this objective leads to poor contextual information [13]. To solve this
problem, the mask-reconstruction is applied into denoising network [13, 48, 49].

3.2 Contextual Information in Noisy Patches Reconstruction

We first review the mask-reconstruction between noisy patches and point out that applying noisy
patches reconstruction task into the training process of DiT is ineffective and leads to insufficient
contextual information utilization. With the mutual information and mask graph, we propose two
propositions to demonstrate this claim, where the first is for the mutual information of input-output
patches and the second is for the contrastive objective of input unmasked-masked patches.

Mutual information between input and output patches. Besides the mutual information between
masked and unmasked output patches in Figure 1(a), we consider the mutual information between
input noisy patches and output (noisy and clean) patches. MaskDiT [48] and MDT [13] reconstruct
masked noisy output patches from input unmasked noisy input patches, whereas SD-DiT [49] recovers
unmasked clean output patches from masked noisy input patches, as elaborated below.

• MaskDiT & MDT. Noisy patches xt at step t are obtained by injecting noise n ∼ N (0, t2I) into
clean patches x0. Masked and unmasked noisy patches are generated from xt by x1

t = xt[m]
and x2

t = xt[1−m] using a random binary mask m. x2
t is reconstructed from x1

t by minimizing
the MAE loss LMask−MAE = Ext

Ex1
t ,x

2
t |xt

∥g(f(x1
t ))− x2

t∥2 for the encoder f and decoder g.
The ability to exploit contextual information is measured by mutual information I(x1

t ;x
2
t ).

• SD-DiT. SD-DiT extracts latent features of x1
t and concatenates them with masked noisy patches

x2
t to predict clean patches x1

0. The MAE loss LSD−MAE = Ext
Ex1

t ,x
2
t |xt

∥g(f(x1
t ), x

2
t )−x1

0∥2.
The ability to exploit contextual information is measured by mutual information I(x1

0;x
2
t ).

The contextual information in both two formulations is transferred from the noisy patches to
noisy patches. 2 Subsequently, we analyze the contextual information utilization ability of mask-
reconstruction via calculating mutual information of masked and unmasked patches.

2Although the reconstruction targets of SD-DiT are clean patches, it is equivalent to distinguish the x1
0 and

noise n. Therefore, the contextual information is used for better prediction of n.
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Proposition 2 Given masked and unmasked clean patches x1
0 and x2

0 and their noisy versions x1
t

and x2
t , the mutual information I(x1

t ;x
2
t ), I(x1

0;x
2
t ), and I(x1

0;x
2
0) satisfy that

I(x1
0;x

2
t ) ≈ I(x1

0;x
2
0)− Ep(x2

0)
Ep(x2

t |x2
0)

[
KL(p(x1

0|x2
0)∥p(x1

0|x2
t ))

]
, (5)

I(x1
t ;x

2
t ) ≈ I(x1

0;x
2
0)− Ep(x2

0)
Ep(x2

t |x2
0)

[
KL(p(x1

0|x2
0)∥p(x1

0|x2
t ))

]
− Ep(x1

0)
Ep(x1

t |x1
0)

[
KL(p(x2

t |x1
0)∥p(x2

t |x1
t ))

]
. (6)

Proposition 2 suggests that the mutual information I(x1
0;x

2
t ) and I(x1

t ;x
2
t ) are lower than the ideal

mutual information I(x1
0;x

2
0). With the growth of t, the KL divergence terms in (5) and (6) increase

due to larger noise perturbation on x1
0 and x2

0. Thus, the gap between I(x1
0;x

2
t ), I(x1

t ;x
2
t ) and

I(x1
0;x

2
0) becomes larger and the ability to extract contextual information is degraded.

Mask graph. We further analyze the mask-reconstruction via contrastive objectives in mask graphs.
In U-MAE [46], the mask-reconstruction can be transformed into a constrastive learning objective
and there exists a bipartite mask graph to elaborate this transformation [46]. The mask graph is
consistent with Lasym in Proposition 1. Note that MaskDiT, SD-DiT, and MDT share the same mask
graph, since their inputs are all unmasked noisy patches and noisy masked patches. Figure 1(b)
illustrates the mask graph for clean image reconstruction in MAE (top) and that for noisy patch
reconstruction in MaskDiT, SD-DiT, and MDT (bottom). In Proposition 3, we prove that contrastive
objective between noisy patches could interfere learning contextual information.

Proposition 3 The asymmetric loss of noisy patch reconstruction and the asymmetric loss of clean
patch reconstruction satisfy that

Lasym−NN = −Ep(x1
t ,x

2
t )

[
h(x1

t )
Thg(x

2
t )
]

≈ Lasym + E

{
−h(x1

t )
T

[
∂hg

∂x2
0

]T
n

}
+ E

{
−hg(x

2
0)

T

[
∂h

∂x1
0

]T
n

}
, (7)

where Lasym is defined in (1) and represents contextual information. The two noise-weighted items
represent contrastive objective between h(x1

t ) and [∂hg/∂x
2
0] (hg(x

2
0) and [∂h/∂x1

0]) weighted by
the Gaussian noise n.

Proposition 3 implies that the Gaussian noise introduces two extra terms in (7) and could affect the
optimization process of Lasym. Noisy patch reconstruction undermines the contrastive objective of
contextual information, since larger Gaussian noise leads to more severe perturbation on Lasym.

In summary, we leverage mutual information and contrastive asymmetric loss to demonstrate that
the noisy patches mask-reconstruction is sub-optimal to learn real contextual information and larger
noise could have more serious impact on context information extraction. This is consistent with
the results in Figure 1(a). To solve this problem, in Section 3.3, we propose MC-DiT to effectively
reconstruct masked clean patches from unmasked clean patches.

3.3 Contextual Enhancement with Masked Clean Patches

As demonstrated in Propositions 2 and 3 that reconstructing masked noisy patches from unmasked
noisy patches is insufficient for contextual information extraction, we propose a novel method
named MC-DiT to enhance contextual information extraction for DiT from the perspective of
leveraging masked clean patches to reconstruct unmasked clean patches. Figure 2(a) depicts the
proposed framework for MC-DiT. The clean images are disrupted by Gaussian noise n ∼ N (0, t2I),
where t is the time step. Then the noisy images are patchified and masked by a random binary
mask m. The unmasked noisy patches x1

t are fed into the DiT encoder for feature extraction. For
contextual information extraction, the masked clean patches x2

0 are concatenated with extracted
feature z = concat(z1, x

2
0), where z1 is the feature of x1

t . After that, the feature z is sent to DiT
decoder to reconstruct clean unmasked patches x1

0, which is consistent with previous masked diffusion
([48],[49]). The training objective of unmasked clean patch reconstruction is:

Lclean = Ex0∼pdata
En∼N (0,t2I)∥(Dθ((x0 + n)⊙ (1−m), x0 ⊙m, t)− x0)⊙ (1−m)∥2. (8)

By applying masked clean patches x2
0 in (8), the information in x2

0 is transferred to unmasked clean
output patches x̃1, which is constrained to equal x1

0. It is not disrupted by noise n, since there is no
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Figure 2: Framework of the proposed MC-DiT. (a) Pre-training. MC-DiT introduces unmasked clean
patches and learns sufficient contextual information by reconstructing unmasked clean patches from
masked clean patches. Two complementary EMA branches are developed to avoid model collapse.
(b) Finetuning. MC-DiT is trained with unmasked patches for denoising.

noise in x2
0 and x1

0. Moreover, as mentioned in Section 3.2, the mutual information for our MC-DiT
is I(x1

0;x
2
0), since we leverage masked clean patches to recover unmasked clean patches. According

to Proposition 2, I(x1
0;x

2
0) is much higher than I(x1

0;x
2
t ) and I(x1

t ;x
2
t ) under different noise n and

time steps t. Thus, the mutual information learned by our MC-DiT would not decrease for different
noise at different time steps and sufficient contextual information could be learned for reconstruction.

In addition, we explore the potential benefits of x2
0 by enforcing the masked output patches x̃2 to

match x2
t . As discussed in Section 3.1, the denoising network Dθ predicts clean images from noisy

images and can be viewed as distinguishing the clean images and noise. Therefore, predicting x2
t

from x2
0 is to recognize the noise n and add to x2

0. To this end, we employ reversed constraint on
masked output patches x̃2, as illustrated in Figure 2(a). The training objective is

Lnoise = Ex0∼pdata
En∼N (0,t2I)∥(Dθ((x0 + n)⊙ (1−m), x0 ⊙m, t)− (x0 + n))⊙m∥2. (9)

3.4 Addressing Model Collapse

Although MC-DiT can learn sufficient contextual information in theory, there exists model collapse
problem in practice. The model learns a shortcut way that it only leverages masked clean patches to
reconstruct unmasked clean patches and neglect the unmasked noisy patches. We further address
the model collapse problem caused by only using masked clean patches to reconstruct unmasked
clean patches for training. We introduce two extra EMA (Exponential Moving Average) branches of
DiT decoders3 to balance the mask-reconstruction and denoising objective. As shown in Figure 2(a),
given the noisy input to DiT encoder, we introduce two branches to achieve only mask-reconstruction
and denoising alongside the original DiT decoder. The upper branch of DiT decoder Dϕ reconstructs
from the whole noisy patches and captures denoising information, while the bottom branch processes
clean patches and captures contextual information Dφ. Constraints on the two branches are employed
in the loss function to balance the DiT decoder.

Lcon1=Ex0∼pdata
En∼N (0,t2I)∥(Dθ((x0+n)⊙(1−m), x0⊙m, t)−Dϕ(x0+n))⊙(1−m)∥2, (10)

Lcon2=Ex0∼pdata
En∼N (0,t2I)∥(Dθ((x0+n)⊙(1−m), x0⊙m, t)−Dφ(x0))⊙(1−m)∥2. (11)

3The parameters of EMA decoders are initialized with those in the DiT decoders and are updated in the EMA
fashion according to the parameters in DiT decoders: θema = α× θema + (1−α)× θdec, where α denotes the
weight coefficient. The two decoders are updated only using the EMA method without using gradient updates.

6



Table 1: Comparison with state-of-the-art approaches for ImageNet-256×256 class conditional image
generation. Bold font represents the best result. ‘-G’ means using classifier-free guidance.

Methods FID ↓ sFID ↓ IS ↑ Prec. ↑ Rec. ↑
BiGAN-deep [5] 6.95 7.36 171.40 0.87 0.28
StyleGAN-XL [41] 2.30 4.02 265.12 0.78 0.53
MaskGIT [6] 6.18 - 182.10 0.80 0.51
CDM [20] 4.88 - 158.71 - -
ADM [9] 10.94 6.02 100.98 0.69 0.63
ADM-U [9] 7.49 5.13 127.49 0.72 0.63
LDM-8 [37] 15.51 - 79.03 0.65 0.63
LDM-4 [37] 10.56 - 209.52 0.84 0.35
U-ViT-H/2 [2] 6.58 - - - -
DiT-XL / 2 [34] 9.62 6.85 121.50 0.67 0.67
MDT-XL / 2 [13] 6.23 5.23 143.02 0.71 0.65
MaskDiT-XL / 2 [48] 5.69 10.34 177.99 0.74 0.60
SD-DiT-XL / 2 [49] 7.21 5.17 144.68 0.72 0.61
MC-DiT-XL / 2 4.14 6.96 309.69 0.83 0.62
ADM-G [9] 4.59 5.25 186.70 0.82 0.52
ADM-U-G [9] 3.94 6.14 215.84 0.83 0.53
LDM-8-G[37] 7.76 - 103.49 0.71 0.62
LDM-4-G [37] 3.60 - 247.67 0.87 0.48
U-ViT-H/2-G[2] 2.29 5.68 263.88 0.82 0.57
DiT-XL / 2-G [34] 2.27 4.60 278.24 0.83 0.57
MDT-XL / 2-G [13] 1.79 4.57 283.01 0.81 0.61
MaskDiT-XL / 2-G [48] 2.28 5.67 276.56 0.80 0.61
MC-DiT-XL / 2-G 1.78 4.87 290.17 0.81 0.62

Here, Dϕ and Dφ are two EMA DiT decoders. Therefore, the overall loss is:

L = Lclean + λ1Lnoise + λ2Lcon1 + λ3Lcon2, (12)

where λ1, λ2 and λ3 are hyper-parameters.

Unmasking Finetuning. Similar to MaskDiT [48], although our MC-DiT captures contextual
information during masking training, directly applying the pretrained model in inference leads to
unsatisfactory performance, which is caused by the training-inference discrepancy. The clean patches
used in training are not provided in the inference time. Thus, after training our MC-DiT, we finetune
it on the unmasked scenarios for better performance, as shown in Figure 2 (b). It is worth noting that
MC-DiT only needs a few iteration in the finetuning to generated semantic coherence images.

4 Experiments

4.1 Implementation Details

Model Settings. We follow the same architecture in MaskDiT [48]. Specifically, we first apply a
pretrained variational autoencoder (VAE) from Stable Diffuion [37] to map the images into latent
space, and then train our MC-DiT to reconstruct clean patches from noisy patches under the EDM
[21] framework to approximate score function in the diffusion process. The pretrained VAE maps
256×256×3 input images to 32×32×4 latent features and 512×512×3 images to 64×64×4 latent
features. Similar to SD-DiT, we apply DiT-S, DiT-B, and DiT-XL as our backbones.

Training Details. Similar to previous works [13, 48, 49], we train MC-DiT on ImageNet [39]
with resolutions 256×256×3 and 512×512×3, respectively. Most training settings are the same
as MaskDiT [48]. We train MC-DiT for 400K to 1M iterations using the AdamW optimizer with
learning rate 0.0001 and no weight decay. By default, we use 50% mask ratio and batch size 1024.
λ1 and λ2 in (12) are set to 0.1 and 0.05 for more denoising reconstruction. The EMA coefficient is
set to 0.999 for smoothness and no data augmentation is employed.

Evaluation Metrics. Following DiT [34], we leverage Fréchet Inception Distance (FID) to measure
the quality of generated images. For fair comparison, we also use ADM’s Tensorflow evaluation
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Table 2: Comparison with state-of-the-art approaches for ImageNet-512×512 class conditional image
generation. The bold font represents the best performance.

Methods FID ↓ sFID ↓ IS ↑ Prec. ↑ Rec. ↑
BiGAN-deep [5] 8.43 8.13 177.90 0.88 0.29
StyleGAN-XL [41] 2.41 4.06 267.75 0.77 0.52
ADM [9] 23.24 10.19 58.06 0.73 0.60
ADM-U [9] 9.96 5.62 121.78 0.75 0.64
DiT-XL / 2 [34] 12.03 7.12 105.25 0.75 0.64
MaskDiT-XL / 2 [48] 10.79 13.41 145.08 0.74 0.56
MC-DiT-XL / 2 9.30 6.28 179.58 0.76 0.53
ADM-G[9] 7.72 6.57 172.71 0.87 0.42
ADM-U-G[9] 3.85 5.86 221.72 0.84 0.53
DiT-XL / 2-G [34] 3.04 5.02 240.82 0.84 0.54
MaskDiT-XL / 2-G [48] 2.50 5.10 256.27 0.83 0.56
MC-DiT-XL / 2-G 2.03 4.87 272.19 0.84 0.56

Table 3: Comparison with state-of-the-art approaches ImageNet-256×256 class conditional image
generation at different scales and iterations. ’-S’, ’-B’, ’-XL’ means ’small’, ’base’ and largest model
size, respectively and ’/ 2’ denotes the patch size of 2 for all input patches.

Methods Training Iterations FID-50K ↓
DiT-S / 2 [34] 400K 68.40
MDT-S / 2 [13] 400K 53.46
SD-DiT-S / 2 [49] 400K 48.39
MC-DiT-S / 2 400K 41.67
DiT-B / 2 [34] 400K 43.47
MDT-B / 2 [13] 400K 34.33
SD-DiT-B / 2 [49] 400K 28.62
MC-DiT-B / 2 400K 18.88
DiT-XL / 2 [34] 7000K 9.62
MaskDiT-XL / 2 [48] 1300K 12.15
MDT-XL / 2 [13] 1300K 9.60
SD-DiT-XL / 2 [49] 1300K 9.01
MC-DiT-XL / 2 1300K 7.92

suite [9] to compute FID-50K (FID for short), sFID [31], Inception Score (IS) [40] and Preci-
sion/Recall [24] as secondary metrics. More vivid images have lower FID and sFID, while their IS
and Precision/Recall are higher.

4.2 Experimental Results

We evaluate vanilla training (i.e., LDM [37], ADM [9], and DiT [34]) and masked training (i.e.,
proposed MC-Dit, MaskDiT[48], MDT [13], and SD-DiT [49]) using backbones of different scales
for 256×256 and 512×512 image generation on ImageNet.

Results on ImageNet-256×256. Table 1 shows that our MC-DiT-XL / 2 achieves the smallest
FID score and the highest IS score. Compared with non-masked diffusion models, MC-DiT-XL / 2
decrease the FID score from 9.62 to 4.14. Compared with masked diffusion models, the FID score
decreases from 5.69 to 4.14. With classifier-free guidance (-G), our MC-DiT-XL / 2-G achieves the
best FID score of 1.78, and the highest IS score, which significantly outperforms previous works.

Results on ImageNet-512×512. Table 2 shows that MC-DiT-XL / 2 achieves a FID of 9.30 and
outperforms MaskDiT [48] and DiT [34]. The IS score of MC-DiT is also the highest, indicating the
effectiveness of our method. With classifier-free guidance (-G), our MC-DiT-XL / 2-G achieves the
best FID score of 2.03, indicating the effectiveness of MC-DiT.

Contextual Enhancement. Figure 1 (a) reports the mutual information between unmasked and
masked output patches with different noise, which can be viewed as the metric of contextual informa-
tion consistency. Our MC-DiT decreases slowly during the noise variance becomes larger, which
indicates more sufficient contextual reconstruction regardless noise.

8



(a) Training loss (b) FID

Figure 3: Training loss and FID for DiT-B/2, MaskDit-B/2, and MC-DiT-B/2 during training.

Figure 4: Comparison of 256 × 256 images generated by MDT, MaskDiT and MC-DiT. Various
details are strange in images generated by MDT and MaskDiT.

Backbones at different scales. Table 3 evaluates FID-50K at different scales and training iterations
with various backbones. Notice that MaskDiT only reports the performance of ‘XL’ scale. Under
fixed number of training iterations, MC-DiT outperforms vanilla DiT [34], MDT [13], and SD-DiT
[49] in FID by a large margin, i.e., 6.72, 9.74, and 1.09 FID reduction for DiT-S, DiT-B, and DiT-XL
backbones. This fair comparison fully demonstrates the effectiveness of our method.

Convergence speed. In order to evaluate the convergence speed of various methods, we compare the
training loss curve in Figure 3(a). We report the MSE loss (Eq. (8)) on clean patches for fairness. We
train MaskDiT [48] and DiT [34] for 300K iterations due to the substantial time and GPU resource
overhead and use the training curve of our MC-DiT trained for evaluations, which is trained for
400K iterations. The training loss of MC-DiT decreases faster than DiT [34] and MaskDiT [48].
Figure 3(b) measures FID-50K at each step after unmasked tuning and shows that MC-DiT achieves
the lowest FID-50K score.

Generated image comparison. Figure 4 visualizes the 256× 256 images generated by MDT [13],
MaskDiT[48] and our MC-DiT. Our generated images are more realistic and have more consistent
textual structure than MaskDiT and MDT. For example, images of ’hammer’ generated by MaskDiT
and MDT have incomplete structure, while our MC-DiT generates images with more complete
structures, validating the superior contextual information extraction ability of our MC-DiT.

4.3 Ablation Studies

For computation efficiency, we adopt ’-B’ in all the models for fair comparison. All the models are
trained for 400K itreations with batch size 256 and mask ratio 50%.
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Table 4: Ablation study of hyperparameters.

λ1 FID λ2 FID λ3 FID
0 43.23 0.0 38.83 0.0 37.77

0.01 40.99 0.01 36.15 0.05 35.20
0.1 35.20 0.1 35.20 0.1 35.46
1.0 38.97 1.0 37.54 1.0 36.35

Table 5: Ablation study of the EMA branches.

Branches FID
Main Branch 22.10

w Noisy Branch 19.26
w Clean Branch 18.88

Table 6: Comparison with different targets.

Reconstruction Target FID-50K ↓
All the clean patches 34.53
Only clean patches 25.88

Clean patches + Noisy patches 22.10

Table 7: Ablation study of unmasking tuning.

Strategy Iterations FID
MaskDiT-XL/2 w UT 1300K 12.15
MC-DiT-XL/2 w UT 1300K 7.92

MC-DiT-XL/2 w/o UT 1300K 8.33

Main branch target. We evaluate the reconstruction targets of main branch by considering three
cases, i.e., clean patch reconstruction + noisy patch reconstruction, all clean patch reconstruction
and only clean patch reconstruction. ‘All clean patches’ means all the patches are constrained by
clean reconstruction loss. ‘Only clean patches’ means only unmasked patches are constrained by
clean reconstruction loss, and ‘Clean patches + Noisy patches’ means masked patches are further
constrained by noisy reconstruction loss. Table 6 shows that our model performs the best, which
validates the effectiveness of noisy reconstruction loss.

Effectiveness of two extra EMA branches. Table 5 evaluates the influence of two EMA branches.
FID decreases obviously by 2.84 using the noise branch, indicating the necessity of noisy branch to
address model collapse. Further experiments can be found in appendix.

Unmasked tuning. Unmasked tuning (UT) can reduce the training-inference discrepancy, as demon-
strated by MaskDiT and is adopted in our MC-DiT. However, we can remove unmasked tuning to
reduce the complexity at little loss on FID. Table 7 shows that FID will increase by only 0.41 for
MC-DiT by removing unmasked tuning.

Figure 5: Ablation study of mask ratio.

Hyperparameters. We separately evaluate four
values for λ1, λ2, and λ3. Table 4 shows best
FID is obtained when λ1 = 0.1, λ2 = 0.1, and
λ3 = 0.05. Note that λ2 is larger than λ3 since
the denoising objective is more important than
contextual information utilization.

Mask ratio. Figure 5 visualizes the influence of the mask ratio in m. FID is smallest at the mask
ratio of 50% and increases rapidly when the mask ratio is larger than 50%.

5 Conclusion

In this paper, we summarize the previous works that combine mask-reconstruction with DiT training
and claim that reconstructing masked noisy patches from unmasked noisy patches is insufficient
for contextual information extraction. To validate this claim, we analyze the mutual information
and contrastive objective theoretically and experimentally. Besides, we propose a new pretraining
paradigm (dubbed MD-DiT), which reconstructs unmasked clean patches from masked clean patches
and guarantees the contextual information extraction. Moreover, to avoid model collapse, two extra
EMA branches are applied in MC-DiT to adjust the balance between the mask-reconstruction task
and denoising objective. Extensive experiments demonstrate the robustness of our method and our
MC-DiT achieves the state-of-the-art performance in image generation.

Limitations. Despite excellent performance, the training speed and inference speed of MC-DiT still
needs to be improved. We will mitigate this issue in future work by transferring the information in
the encoder into the decoder, which decreases the training difficulty.

Acknowledgment. This work was supported in part by the National Natural Science Foundation
of China under Grant 62125109, Grant T2122024, Grant 62320106003, Grant 62371288, Grant
62431017, Grant 62401357, Grant 62401366, Grant 61931023, Grant 61932022, Grant 62120106007.
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A Supplemental Material

A.1 Theoretical Proof

Proposition 2. Given masked and unmasked clean patches x1
0 and x2

0 and their noisy versions x1
t

and x2
t , the mutual information I(x1

t ;x
2
t ), I(x1

0;x
2
t ), and I(x1

0;x
2
0) satisfy that
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Proof. Given the time step t,masked noisy patches x2
t , masked clean patches x2

0, clean unmasked
patches x1

0 and noisy unmasked patches x1
t , where x2

t = x2
0 + n, x1

t = x1
0 + n and n ∼ N (0, t2I).

we derive the mutual information I(x1
0;x
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t ) according to the definition.
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Thus, the mutual information between noisy masked patches and unmasked clean patches I(x1
0;x

2
t )

is less than I(x1
0;x

2
0) due to the non-negativity of KL divergence. Moreover, during t increases, the

variance of the Gaussian noise n becomes larger. As a result, noisy masked patches x2
t are disrupted

heavily from clean patches x2
0. The distribution p(x1

0|x2
t ) is very dissimilar from p(x1

0|x2
0). Formally,

the derivation of KL divergency can be written as:
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We approximate p(x2
t ) ≈ p(x2

0) + p(n), since p(x2
t ) is a Gaussion distribution with mean value x2

0
and variance t2. As t increases, the KL divergence KL(p(x1
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t )) increases and the mutual

information I(x1
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t ) achieves the larger difference with I(x1

0;x
2
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Similarly, the mutual information between noisy patches I(x1
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Therefore, the proposition has been proved.
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Proposition 3. The asymmetric loss of noisy patch reconstruction and the asymmetric loss of clean
patch reconstruction satisfy that:

Lasym−NN = −Ep(x1
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0
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where Lasym is defined in (1) and represents contextual information. The two noise-weighted items
represent contrastive objective between h(x1

t )− [∂hg/∂x
2
0] and hg(x

2
0)− [∂h/∂x1

0] weighted by the
Gaussian noise n.

Proof. According to Eq.1, the asymmetric loss can be written as:
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where we leverage first-order Taylor’s formula in Eq. 26 and Eq. 28 to calculate h(x1
t ) and hg(x

2
t ) at

x1
0 and x2

0, since x1
t = x1

0 + n and x2
t = x2

0 + n. o denotes the the higher order infinitesimal.

A.2 Experiment Details

Diffusion Settings. We leverage EDM [21] as our diffusion training framework, which predicts
clean image patches from noisy images. For fair comparison, we use the default parameters in
EDM (see [21] for more details). During inference, we generate conditional images from Gaussian
noise via EDM-sampler [21]. Specifically, the time steps in the reverse process are set via ti =

(t
1
ρ
max + i

N−1 (t
1
ρ

min − t
1
ρ
max))ρ, where N = 40, ρ = 7, tmax = 80 and tmin = 0.002. Besides,

the second-order correction is applied and the generated images are the average of first-order and
second-order results.

Training Details. We follow the LDM [37] and adopt a pretrained VAE to firstly map the images
into the latent spaces. The weight of pretrained VAE is from Stable Diffusion [37]. Then, we train
the denoising models with these latent features. We leverage AdamW optimizer with learning rate
0.0001, batch size 256, and 50% mask ratio. As for unmasking fintuning, we slightly change some
hyper-parameters with learning rate 0.00005, batch size 128, mask ratio 0%. Some details can be
found in Table 8.

A.3 Supplementary Experiments

Generalization Experiments. We adopt the ImageNet dataset in the experiments for a fair compari-
son, since MaskDiT[48], SD-DiT[49] and MDT[13] are all evaluated on the ImageNet dataset[39]. In
fact, our MC-DiT can be generalized to different domains or datasets for improved image generation
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Table 8: Experimental details about MC-DiT.

MC-DiT-B/2 MC-DiT-XL/2 MC-DiT-XL/2
Resolution 256× 256 256× 256 512× 512

Training Time 50h 586h 623h
Inference Time (50K images) 12h 8h 15.2h

GPUs 2× RTX-3090 GPUs 4× V100 GPUs 4× V100 GPUs
Batch Size 256× 2 256× 4 128× 4

Memory Usage per GPU 17GB 20GB 27GB

Table 9: Performance comparison on Cifar10 and CelebA dataset of MaskDiT and MC-DiT

Cifar10 CelebA
Methods FID Methods FID

MaskDiT-B / 2 11.52 MaskDiT-B / 2 7.14
MC-DiT-B / 2 9.28 MC-DiT-B / 2 5.36

Table 10: Performance comparisons with different branches.

Branches FID
Main Branch 22.10

w/ Noisy Branch 19.26
w/ Clean Branch 18.88

Main Branch (unmasked noisy patch only) 25.72
Main Branch (masked clean patch only) 23.69

Main Branch (unmasked noisy patch only) w/ Noisy Branch 19.84
Main Branch (unmasked noisy patch only) w/ Clean Branch 19.57

due to the fact that it can extract contextual information from arbitrary images. Table 9 compares the
performance of MaskDiT[48] and MC-DiT on the CIFAR-10 [23] and CelebA [26] (that collected
for face anti-spoofing) datasets. Due to time limit, we train both MaskDiT[48] and MC-DiT for 200K
iterations. Experimental results show that MC-DiT outperforms MaskDiT[48] on both datasets.

Convergence Speed. In Figure 3, we compare the training curve of DiT [34], MaskDiT [48] and
MC-DiT and point out that the training loss of MC-DiT decreases faster than DiT [34] and MaskDiT
[48]. This is due to the primary focus of our analysis is the overall effectiveness of the model. The
blue line can achieve a lower loss, despite similar iterqation counts for flattening, highlighting the
model’s efficiency in reaching a more optimal solution. Besides, the loss reported in Figure 3(a)
denotes the MSE loss Lclean. Thus, lower MSE loss means the generated clean patches are more
similar to the ground-truth. Moreover, MC-DiT achieves lower MSE loss with the same iterations
with DiT [34] and MaskDiT [48], indicating the performant model with higher convergence speed.

Main Branch Target. The modal collapse occurs when the main branch only considers clean-to-
clean mask-reconstruction for masked clean patches but ignores the denoising of unmasked noisy
patches. We propose two EMA branches to balance the two tasks for the main branch. We use the
noisy EMA branch to realize noisy-to-clean mapping for denoising, and the clean EMA branch to
realize clean-to-clean mapping for mask-reconstruction (mask ratio is 0%). The two EMA branches
constrain the output of the main branch (minimize the MSE loss between the outputs of the main
branches and EMA branches) via three hyper-parameters, which leads to the balance on the denoising
task and clean-to clean mask-reconstruction task.

To verify this, we report in Table 10 the FID score of the main branch with noisy and clean patch
inputted only. The result of the main branch with unmasked noisy patches only is higher than that of
masked clean patches, indicating the modal collapse problem. With noisy and clean branches, the
FID score of the main branches decline distinctly, validating the effectiveness of the EMA branches.

Ablation Study of hyperparameters. Following MaskDiT[48], we select 0.01, 0.1, and 1.0 as the
scaling values of three hyperparameters and supplement various values for ablation study. Table 13,
Table 14 and Table 15 evaluate various values of the three hyperparameters and we find that the best
FID is still obtained when λ1 = 0.1, λ2 = 0.1, and λ3 = 0.05.
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Figure 6: Feature visualization of MaskDiT and MC-DiT at different noise variance. Better viewed
by zoom in.

Table 11: Parameters and training cost comparison between MDT, MaskDiT and MC-DiT. Training
speed denotes the number of iterations per second.

Setting
256× 256

Modal Params FLOPs Mem Speed FID
MDT-XL/2 742M 28G 20G 1.22 6.23

MaskDiT-XL/2 730M 24G 18G 3.09 5.69
MC-DiT-XL/2 786M 26G 20G 1.45 4.14

512× 512
Modal Params FLOPs Mem Speed FID

MDT-XL/2 742M 64G 28G 0.83 -
MaskDiT-XL/2 730M 56G 24G 1.98 10.79
MC-DiT-XL/2 786M 60G 27G 1.05 9.30

Attention Map Visualization. Figure 6 visualizes the attention map of MaskDiT and MC-DiT at
different noise variance with Cifar10 dataset[23]. A larger noise variance denotes the noise with large
scale. Our MC-DiT extracts proper shape for various noise scale, while the features extracted by
MaskDiT are messy in the large noise scale. This further proves the motivation and effectiveness of
our paper that clean-to-clean mask reconstruction promotes learning sufficient contextual information.

Training cost comparison. We compare the training cost (parameters, FLOPs, memory used and
training speed) on 4×V100 GPUs in Table 11. The training speed of MC-DiT is a little bit slower
than other methods due to two EMA branches. However, the inference speed of MC-DiT is similar
to MaskDiT, since two EMA branches are removed during inference. The additional overhead of
MC-DiT is relatively small (7.6% parameters and 8% FLOPs), but the FID performance improvement
is significant.

EMA Branch with DiT encoder. In the main branch of MC-DiT, the unmasked noisy patches are fed
into the DiT encoder, while all the noisy patches are directly inserted into the EMA DiT decoder to
avoid modal collapse, as shown in the Figure 2. The reasons are on the two folds: (1) efficient. Only
apply DiT decoder for EMA branches leads to small extra parameters and fast inference speed, while
EMA DiT encoder slows down the entire EMA branches. (2) effective. The DiT decoder is trained to
extract masked clean images patches in the main branch. Thus, directly apply image patches as the
input of EMA DiT decoder does not lead to poor denoising results. As shown in Table 12, applying
EMA DiT encoder introduces extra 669M parameters, while FID score only decreases 1.35. Thus, to
balance the parameters and performance, we select DiT decoder in the EMA branches.
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Table 12: Performance and parameters comparisons with and without DiT encoder in EMA branches.

Branch Params FID
DiT Decoder 56M 18.88

DiT Decoder + DiT encoder 725M 17.53

Table 13: Ablation study on λ1

λ1 0 0.01 0.03 0.05 0.07 0.09 0.1 0.3 0.5 0.7 0.9 1.0
FID 43.23 40.99 39.23 38.44 37.95 36.53 35.20 35.98 36.74 36.91 37.52 38.97

Table 14: Ablation study on λ2

λ2 0 0.01 0.03 0.05 0.07 0.09 0.1 0.3 0.5 0.7 0.9 1.0
FID 38.83 36.15 36.02 36.46 35.99 36.07 35.20 35.34 36.18 37.26 35.98 37.54

Table 15: Ablation study on λ3

λ3 0 0.01 0.03 0.05 0.07 0.09 0.1 0.3 0.5 0.7 0.9 1.0
FID 37.77 37.25 36.63 35.20 36.07 37.93 35.46 35.88 37.26 36.19 37.40 36.35

Figure 7: Visualization of 256× 256 images generated by our MC-DiT.

A.4 Generated Samples

Figure 7 visualizes some images generated by our MC-DiT with 256 × 256 resolutions. Figure 8
visualizes some images generated by our MC-DiT with 512× 512 resolutions.
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Figure 8: Visualization of 512× 512 images generated by our MC-DiT
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly clarify our claim in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss our limitation in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We clearly describe the theoretical results and proof in Sec 3.2 and supplemen-
tary.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly clarify the setting and parameters of experiments in Sec 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We have provide the core file of our code in the supplementary. And the code
will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe this in details in Sec 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We focused primarily on the exploratory analysis and preliminary results.
Addressing statistical significance and error bars will be a priority in our future research to
provide a more comprehensive evaluation of our findings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We will report this upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have adhered to all ethical guidelines and standards throughout our study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We briefly discuss this in conclusion.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the source code of MaskDiT, which is credited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The pretrained weight and source code will be released upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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