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Abstract

Q-learning is widely used algorithm in reinforcement learning community.
Under the lookup table setting, its convergence is well established. However,
its behavior is known to be unstable with the linear function approxima-
tion case. This paper develops a new Q-learning algorithm, called RegQ,
that converges when linear function approximation is used. We prove that
simply adding an appropriate regularization term ensures convergence of
the algorithm. Its stability is established using a recent analysis tool based
on switching system models. Moreover, we experimentally show that RegQ
converges in environments where Q-learning with linear function approxi-
mation has known to diverge. An error bound on the solution where the
algorithm converges is also given.

1 Introduction

Recently, reinforcement learning has shown great success in various fields. For in-
stance, Mnih et al. (2015) achieved human level performance in several video games in
the Atari benchmark (Bellemare et al., 2013). Since then, researches on deep reinforcement
learning algorithms have shown significant progresses (Lan et al., 2020; Chen et al., 2021).
For example, Badia et al., 2020 performs better than standard human performance in all
57 Atari games. Schrittwieser et al., 2020 solves Go, chess, Shogi, and Atari without prior
knowledge about the rules. Although great success has been achieved in practice, there
is still gap between theory and the practical success. Especially when off-policy, function
approximation, and bootstrapping are used together, the algorithm may diverge or show
unstable behaviors. This phenomenon is called the deadly triad (Sutton and Barto, 2018).
Famous counter-examples are given in Baird, 1995; Tsitsiklis and Van Roy, 1997.

For policy evaluation, especially for temporal-difference (TD) learning algorithm, there has
been several algorithms to resolve the deadly triad issue. Bradtke and Barto, 1996 uses the
least-square method to compute a solution of TD-learning, but it suffers from O(h2) time
complexity, where h is number of features. Maei, 2011; Sutton et al., 2009 developed gradient
descent based methods which minimize the mean square projected Bellman error. Ghiassian
et al., 2020 added regularization term to TD Correction (TDC) algorithm, which uses a single
time scale step-size. Lee et al., 2021 introduced several variants of the gradient TD (GTD)
algorithm under control theoretic frameworks. Sutton et al., 2016 re-weights some states
to match the on-policy distribution to stabilize the off-policy TD-learning. Diddigi et al.,
2019 uses l2 regularization to propose a new convergent off-policy TD-learning algorithm.
Mahadevan et al., 2014 studied regularization on the off-policy TD-learning through the
lens of primal dual method.

First presented by Watkins and Dayan, 1992, Q-learning also suffers from divergence issues
under the deadly triad. While there are convergence results under the look-up table set-
ting (Watkins and Dayan, 1992; Jaakkola et al., 1994; Borkar and Meyn, 2000; Lee and He,
2019), even with the simple linear function approximation, the convergence is only guar-
anteed under strong assumptions (Melo et al., 2008; Lee and He, 2019; Yang and Wang,
2019).
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The main goal of this paper is to propose a practical Q-learning algorithm, called regularized
Q-learning (RegQ), that guarantees convergence under linear function approximation. We
prove its convergence using the ordinary differential equation (O.D.E) analysis framework
in (Borkar and Meyn, 2000) together with the switching system approach developed in Lee
and He, 2019. As in Lee and He, 2019, we construct upper and lower comparison systems,
and prove its global asymptotic stability based on switching system theories. Compared to
the standard Q-learning in (Watkins and Dayan, 1992), a difference lies in the additional
l2 regularization term, which makes the algorithm relevantly simple. Moreover, compared
to the previous works in Carvalho et al. (2020); Maei et al. (2010), our algorithm is single
time-scale, and hence, shows faster convergence rates experimentally. Our algorithm directly
uses bootstrapping rather than circumventing the issue in the deadly triad. Therefore,
it could give a new insight into training reinforcement learning algorithms with function
approximation without using the so-called target network technique introduced in Mnih
et al., 2015. The main contributions of this paper are summarized as follows:

1. A new single time-scale Q-learning algorithm with linear function approximation is
proposed.

2. We prove the convergence of the proposed algorithm based on the O.D.E approach
together with the switching system model in Lee and He, 2019.

3. We experimentally show that our algorithm performs faster than other two time-
scale Q-learning algorithms in Carvalho et al. (2020); Maei et al. (2010).

Related works:

Several works (Melo et al., 2008; Lee and He, 2019; Yang and Wang, 2019) have relied on
strong assumptions to guarantee convergence of Q-learning under linear function approxi-
mation. Melo et al., 2008 adopts an assumption on relation between behavior policy and
target policy to guarantee convergence, which is not practical in general. Lee and He, 2019
assumes a strong assumption to ensure the convergence with the so-called switching system
approach. Yang and Wang, 2019 has a stringent assumption on anchor state-action pairs.

Motivated by the empirical success of the deep Q-learning in Mnih et al., 2015, recent works
in Zhang et al., 2021; Carvalho et al., 2020; Agarwal et al., 2021; Chen et al., 2022 use the
target network to circumvent the bootstrapping issue and guarantees convergence. Car-
valho et al., 2020 uses a two time-scale learning method, and has a strong assumption on
the boundedness of the feature matrix. Zhang et al., 2021 uses l2 regularization with the
target network, while a projection step is involved, which makes it difficult to implement
practically. Moreover, it also uses a two time-scale learning method. Chen et al. (2022)
used target network and truncation method to address the divergence issue. Agarwal et al.,
2021 additionally uses the so-called experience replay technique with the target network,
and also has a strong assumption on the boundedness of the feature matrix. Furthermore,
the optimality is only guaranteed under a specific type of Markov Decision Process. Maei
et al., 2010 suggested the so-called Greedy-GQ (gradient Q-learning) algorithm, but due to
non-convexity of the objective function, it could converge to a local optima. Lu et al. (2021)
used linear programming approach (Manne, 1960) to design convergent Q-learning algo-
rithm under deterministic control systems. Devraj and Meyn (2017) proposed a Q-learning
algorithm that minimizes asymptotic variance. However, it requires the assumption that
number of changes of policy are finite, and involves matrix inversion at each iteration. Meyn
(2023) introduced an optimistic training scheme with modified Gibbs policy for Q-learning
with linear function approximation, which guarantees existence of a solution of the projected
Bellman equation.

2 Preliminaries and Notations

2.1 Markov Decision Process

We consider an infinite horizon Markov Decision Process (MDP), which consists of a tuple
M = (S,A, P, r, γ), where the state space S and action space A are finite sets, P denotes the
transition probability, r : S ×A×S → R is the reward, and γ ∈ (0, 1) is the discount factor.
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Given a stochastic policy π : S → P(A), where P(A) is the set of probability distributions
over A, agent at the current state sk selects an action ak ∼ π(·|sk), then the agent’s state
changes to the next state sk+1 ∼ P (·|sk, ak), and receives reward rk+1 := r(sk, ak, sk+1). A
deterministic policy is a special stochastic policy, which can be defined simply as a mapping
π : S → A, which maps a state to an action.

The objective of MDP is to find a deterministic optimal policy, denoted by π∗, such
that the cumulative discounted rewards over infinite time horizons is maximized, i.e.,
π∗ := argmaxπ E

[∑∞
k=0 γ

krk
∣∣π] , where (s0, a0, s1, a1, . . .) is a state-action trajectory

generated by the Markov chain under policy π, and E[·|π] is an expectation condi-
tioned on the policy π. The Q-function under policy π is defined as Qπ(s, a) =
E
[∑∞

k=0 γ
krk

∣∣ s0 = s, a0 = a, π
]
, s ∈ S, a ∈ A, and the optimal Q-function is defined

as Q∗(s, a) = Qπ∗
(s, a) for all s ∈ S, a ∈ A. Once Q∗ is known, then an optimal policy

can be retrieved by the greedy action, i.e., π∗(s) = argmaxa∈A Q∗(s, a). Throughout, we
assume that the Markov chain is time homogeneous so that the MDP is well posed, which
is standard in the literature.

It is known that the optimal Q-function satisfies the so-called Bellman equation expressed
as follows:

Q∗(s, a) = E
[
rk+1 + max

ak+1∈A
γQ∗(sk+1, ak+1)

∣∣∣∣ sk = s, ak = a

]
:= T Q∗(s, a), (1)

where T is called the Bellman operator.

2.2 Notations

In this paper, we will use an O.D.E. model (Borkar and Meyn, 2000) of Q-learning to analyze
its convergence. To this end, it is useful to introduce some notations in order to simplify
the overall expressions. Throughout the paper, ea and es denote a-th and s-th canonical
basis vectors in R|A| and R|S|, respectively. Moreover, ⊗ stands for the Kronecker product.
Let us introduce the following notations:

P :=

 P1

...
P|A|

 ∈ R|S||A|×|S|, R :=

 R1

...
R|A|

 ∈ R|S||A|, Q :=

 Q1

...
Q|A|

 ∈ R|S||A|,

Da :=

d(1, a) . . .
d(|S|, a)

 ∈ R|S|×|S|, D :=

D1

. . .
D|A|

 ∈ R|S||A|×|S||A|,

where Pa ∈ R|S|×|S|, a ∈ A is the state transition matrix whose i-th row and j-th column
component denotes the probability of transition to state j when action a is taken at state
i, Pπ ∈ R|S||A|×|S||A| represents the state-action transition matrix under policy π, i.e.,

(es ⊗ ea)
TPπ(es′ ⊗ ea′) = P[sk+1 = s′, ak+1 = a′|sk = s, ak = a, π],

Qa = Q(·, a) ∈ R|S|, a ∈ A and Ra(s) := E[r(s, a, s′)|s, a], s ∈ S. Moreover, d(·, ·) is the
state-action visit distribution, where i.i.d. random variables {(sk, ak)}∞k=0 are sampled, i.e.,
d(s, a) = P[sk = s, ak = a], a ∈ A, s ∈ S. With a slight abuse of notation, d will be also
used to denote the vector d ∈ R|S||A| such that dT (es ⊗ ea) = d(s, a), ∀s ∈ S, a ∈ A. In
this paper, we represent a policy in a matrix form in order to formulate a switching system
model. In particular, for a given policy π, define the matrix

Ππ :=
[
(eπ(1) ⊗ e1) (eπ(2) ⊗ e2) · · · (eπ(|S|) ⊗ e|S|)

]⊤ ∈ R|S|×|S||A|. (2)

Then, we can prove that for any deterministic policy, π, we have ΠπQ =[
Q(1, π(1))

T
Q(2, π(2))

T · · · Q(|S|, π(|S|))T
]T

. For simplicity, let ΠQ := Ππ when

π(s) = argmaxa∈A Q(s, a). Moreover, we can prove that for any deterministic policy

π, Pπ = PΠπ ∈ R|S||A|×|S||A|, where Pπ is the state-action transition probability ma-
trix. Using the notations introduced, the Bellman equation in (1) can be compactly
written as Q∗ = γPΠQ∗Q∗ + R =: T Q∗, where πQ∗ is the greedy policy defined as
πQ∗(s) = argmaxa∈A Q∗(s, a).
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2.3 Q-learning with linear function approximation

Q-learning is widely used model-free learning to find Q∗, whose updates are given as

Qk+1(sk, ak)← Qk(sk, ak) + αkδk, (3)

where δk = rk+1 + γmaxa∈A Qk(sk+1, a) − Qk(sk, ak) is called the TD error. Each up-
date uses an i.i.d. sample (sk, ak, rk+1, sk+1), where (sk, ak) is sampled from a state-action
distribution d(·, ·).
Here, we assume that the step-size is chosen to satisfy the so-called the Robbins-Monro
condition (Robbins and Monro, 1951), αk > 0,

∑∞
k=0 αk = ∞,

∑∞
k=0 α

2
k < ∞. When the

state-spaces and action-spaces are too large, then the memory and computational complexi-
ties usually become intractable. In such a case, function approximation is commonly used to
approximate Q-function (Mnih et al., 2015; Schrittwieser et al., 2020; Hessel et al., 2018; Lan
et al., 2020). Linear function approximation is one of the simplest function approximation
approaches. In particular, we use the feature matrix X ∈ R|S||A|×h and parameter vector
θ ∈ Rh to approximate Q-function, i.e., Q ≃ Xθ, where the feature matrix is expressed

as X :=
[
x(1, 1)T · · · x(1, |A|)T · · · x(|S|, |A|)T

]T ∈ R|S||A|×h. Here, x(·, ·) ∈ Rh is
called the feature vector, and h is a positive integer with h << |S||A|. The corresponding
greedy policy becomes πXθ(s) = argmaxa∈A x(s, a)T θ. Note that the number of policies
characterized by the greedy policy is finite. This is because the policy is invariant under
constant multiplications, and there exists a finite number of sectors on which the policy is
invariant. Next, we summarize some standard assumptions adapted throughout this paper.

Assumption 2.1. The state-action visit distribution is positive, i.e., d(s, a) > 0 for all
s ∈ S, a ∈ A.
Assumption 2.2. The feature matrix, X, has full column rank, and is a non-negative
matrix. Moreover, columns of X are orthogonal.

Assumption 2.3 (Boundedness on feature matrix and reward matrix). There exists con-
stants, Xmax > 0 and Rmax > 0, such that max(||X||∞, ||XT ||∞) < Xmax, ||R||∞ < Rmax.

The Assumption 2.1, Assumption 2.2 and Assumption 2.3 are commonly adopted in the
literature, e.g. Carvalho et al. (2020); Melo et al. (2008); Lee and He (2019). Moreover,
under Assumption 2.1, D is a nonsingular matrix with strictly positive diagonal elements.

Lemma 2.4 (Gosavi (2006)). Under Assumption 2.3, the optimal Q-function, Q∗, is
bounded, i.e., ||Q∗||∞ ≤ Rmax

1−γ .

The proof of Lemma 2.4 comes from the fact that under the discounted infinite horizon
setting, Q∗ can be expressed as an infinite sum of a geometric sequence.

Remark 2.5. Carvalho et al., 2020; Agarwal et al., 2021 assume ||x(s, a)||∞ ≤ 1 for all
(s, a) ∈ S × A. Moreover, Zhang et al. 2021 requires specific bounds on the feature matrix
which is dependent on various factors e.g. projection radius and transition matrix . On the
other hand, our feature matrix can be chosen arbitrarily large regardless of those factors.

2.4 O.D.E. Analysis

The dynamic system framework has been widely used to prove convergence of reinforcement
learning algorithms, e.g., Sutton et al. 2009; Maei et al. 2010; Borkar and Meyn 2000; Lee
and He 2019. Especially, Borkar and Meyn, 2000 is one of the most widely used techniques
to prove stability of stochastic approximation using O.D.E. analysis. Consider the following
stochastic algorithm with a nonlinear mapping f : Rn → Rn:

θk+1 = f(θk) +mk, (4)

where mk ∈ Rn is an i.i.d. noise vector. For completeness, results in Borkar and Meyn,
2000 are briefly reviewed in the sequel. Under Assumption A.1 given in Appendix A.1, we
now introduce Borkar and Meyn theorem below.

Lemma 2.6 (Borkar and Meyn theorem). Suppose that Assumption A.1 in the Ap-
pendix A.1 holds, and consider the stochastic algorithm in (4). Then, for any initial θ0 ∈ Rn,
supk≥0 ||θk|| < ∞ with probability one. In addition , θk → θe as k → ∞ with probability
one, where f(θe) = 0.
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The main idea of Borkar and Meyn theorem is as follows: iterations of a stochastic recursive
algorithm follow the solution of its corresponding O.D.E. in the limit when the step-size
satisfies the Robbins-Monro condition. Hence, by proving the asymptotic stability of the
O.D.E., we can induce the convergence of the original algorithm. In this paper, we will
use an O.D.E. model of Q-learning, which is expressed as a special nonlinear system called
a switching system. In the sequel, basic concepts in switching system theory are briefly
introduced.

2.5 Switching System

In this paper, we will consider a particular nonlinear system, called the switched linear
system (Liberzon, 2003),

ẋt = Aσtxt, x0 = z ∈ Rn, t ∈ R+, (5)

where xt ∈ Rn is the state,M := {1, 2, . . . ,M} is called the set of modes, σt ∈M is called
the switching signal, and {Aσ, σ ∈ M} are called the subsystem matrices. The switching
signal can be either arbitrary or controlled by the user under a certain switching policy.
Especially, a state-feedback switching policy is denoted by σ(xt).

Stability and stabilization of (5) have been widely studied for decades. Still, finding a prac-
tical and effective condition for them is known to be a challenging open problem. Contrary
to linear time-invariant systems, even if each subsystem matrix Aσ is Hurwitz, the overall
switching system may not be stable in general. This tells us that tools in linear system
theories cannot be directly applied to conclude the stability of the switching system.

Another approach is to use the Lyapunov theory (Khalil, 2002). From standard results
in control system theories, finding a Lyapunov function ensures stability of the switching
system. If the switching system consists of negative definite matrices, we can always find a
common quadratic Lyapunov function to ensure its stability. We use this fact to prove the
convergence of the proposed algorithm. In particular, the proposed Q-learning algorithm
can be modelled as a switching system, whose subsystem matrices are all negative definite.

3 Projected Bellman equation

In this section, we introduce the notion of projected Bellman equation with a regularization
term, and establish connections between it and the proposed algorithm. Moreover, we briefly
discuss the existence and uniqueness of the solution of the projected Bellman equation.
We will also provide an example to illustrate the existence and uniqueness. When using
the linear function approximation, since the true action value may not lie in the subspace
spanned by the feature vectors, a solution of the Bellman equation may not exist in general.
To resolve this issue, a standard approach is to consider the projected Bellman equation
defined as

Xθ∗ = ΓT Xθ∗, (6)

where Γ := X(XTDX)−1XTD is the weighted Euclidean Projection with respect to state-
action visit distribution onto the subspace spanned by the feature vectors, and T Xθ∗ =
γPΠXθ∗Xθ∗ + R. In this case, there is more chances for a solution satisfying the above
projected Bellman equation to exist. Still, there may exist cases where the projected Bellman
equation does not admit a solution. To proceed, let us rewrite (6) equivalently as

Xθ∗ = X(XTDX)−1XTD(γPΠXθ∗Xθ∗ +R)⇔ (XTDX − γXTDPΠXθ∗X)︸ ︷︷ ︸
AπXθ∗

θ∗ = XTDR︸ ︷︷ ︸
b

,

where we use the simplified notations AπXθ∗ := XTDX − γXTDPΠXθ∗X, b = XTDR.
Furthermore we use the simplified notation C := XTDX. Therefore, the projected Bellman
equation in (6) can be equivalently written as the nonlinear equation

b−AπXθ∗ θ
∗ = 0. (7)
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A potential deterministic algorithm to solve the above equation is

θk+1 = θk + αk(b−AπXθk
θk). (8)

If it converges, i.e., θk → θ∗ as k →∞, then it is clear that θ∗ solves (7). In this paper, the
proposed algorithm is a stochastic algorithm that solves the modified equation

b− (AπXθe
+ ηI)θe = 0, (9)

where I is the |S||A| × |S||A| identity matrix, and η ≥ 0 is a weight on the regularization
term. We can use ηC instead of ηI as the regularization term but ηC is known to solve a
MDP with modified discount factor Chen et al. (2022). Similar to (8), the corresponding
deterministic algorithm is

θk+1 = θk + αk(b− (AπXθk
+ ηI)θk). (10)

If it converges, i.e., θk → θe as k → ∞, then it is clear that θe solves (9). Some natural
questions that arise here are as follows: Which conditions can determine the existence and
uniqueness of the equations in (7 and 9)? Partial answers are given in the sequel. Considering
the non-existence of fixed point of (6) (De Farias and Van Roy, 2000), both 7 and (9) may
not also have a solution. However, for the modified Bellman equation in (9), we can prove
that under appropriate conditions, its solution exists and is unique. We give an example
where the solution does not exist for (7) but does exist for (9) in Appendix A.10.

Lemma 3.1. When η > X2
max

√
|S||A| − λmin(C), a solution of (9) exists and is unique.

The proof is given in Appendix A.3, which uses Banach fixed-point theorem (Agarwal et al.,
2018). From Lemma 3.1, we can see that when the weight η is sufficiently large, the existence
and uniqueness of the solution is guaranteed. Note that even if a solution satisfying (9)
exists, Xθe may be different from the optimal Q-function, Q∗. However, we can derive a
bound on the error, Xθe − Q∗, using some algebraic inequalities and contraction property
of Bellman operator, which is presented below.

Lemma 3.2. Assume that a solution of (9) exists. When η > X2
max

√
|S||A|− λmin(C), we

have the following bound:

||Xθe −Q∗||∞ ≤
ηX2

max|S||A|
λmin(C)(η + λmin(C)−X2

max

√
|S||A|)

2Rmax

1− γ

+
λmin(C) + η

η + λmin(C)−X2
max

√
|S||A|

∥ΓQ∗ −Q∗∥∞ .

Some remarks are in order for Lemma 3.2. First of all, η > X2
max

√
|S||A|−λmin(C) ensures

that the error is always bounded. The first term represents the error potentially induced by
the regularization. The second term represents the error incurred by the difference between
the optimal Q∗ and Q∗ projected onto the feature space. Therefore, this error is induced by
the linear function approximation. Note that even if η →∞, the error remains bounded.

4 Algorithm

In this section, we will introduce our main algorithm, called RegQ, and elaborate the condi-
tion on the regularization term to make the algorithm convergent. The proposed algorithm
is motivated by TD-learning. In particular, for on-policy TD-learning, one can establish its
convergence using the property of the stationary distribution. On the other hand, for an off-
policy case, the mismatch between the sampling distribution and the stationary distribution
could cause its divergence (Sutton et al., 2016). To address this problem, Diddigi et al., 2019
adds a regularization term to TD-learning in order to make it convergent. Since Q-learning
can be interpreted as an off-policy TD-learning, we add a regularization term to Q-learning
update motivated by Diddigi et al., 2019. This modification leads to the proposed RegQ
algorithm as follows:

θk+1 = θk + αk(x(sk, ak)δk + ηθk) (11)
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The pseudo-code is given in Appendix A.9. Note that letting η = 0, the above update is
reduced to the standard Q-learning with linear function approximation in (3). The proposed
RegQ is different from Diddigi et al., 2019 in the sense that a regularization term is applied
to Q-learning instead of TD-learning. Rewriting the stochastic update in a deterministic
manner, it can be written as follows:

θk+1 = θk + αk(b− (AπXθk
+ ηI)θk +mk+1), (12)

where mk+1 = δkx(sk, ak)+ ηθk − (b− (AπXθk
+ ηI)θk) is an i.i.d. noise. Note that without

the noise, (12) is reduced to the deterministic version in (10). In our convergence analysis,
we will apply the O.D.E. approach, and in this case, AπXθk

+ηI will determine the stability

of the corresponding O.D.E. model, and hence, convergence of (11). Note that (12) can be
interpreted as a switching system defined in (5) with stochastic noises. As mentioned earlier,
proving the stability of a general switching system is challenging in general. However, we
can find a common Lyapunov function to prove its asymptotic stability. In particular, we
can make −(AπXθk

+ ηI) to be negative definite under the following condition:

η > λmax(C)

(
max

π∈Θ,s∈S,a∈A

γdTPπ(ea ⊗ es)

2d(s, a)
− 2− γ

2

)
, (13)

where Θ is the set of all deterministic policies, and ⊗ is the Kronecker product. Lemma A.3,
given in Appendix A.2, is similar to Theorem 2 in Diddigi et al., 2019, and ensures such
a property. Now, we can use the Lyapunov argument to establish stability of the overall
system. Building on the negative definiteness of the −(AπXθk

+ ηI), in the next section, we

prove that under the stochastic update (11), we have θk → θe as k → ∞ with probability
one, where θe satisfies the projected Bellman equation in (9). If η = 0 satisfies (13), we can
guarantee convergence to an optimal policy without errors.

5 Convergence Analysis

Recently, Lee and He, 2019 suggested a switching system framework to prove the stability
of Q-learning in the linear function approximation cases. However, its assumption seems
too stringent to check in practice. Here, we develop more practical Q-learning algorithm by
adding an appropriately preconditioned regularization term. We prove the convergence of
the proposed Q-learning with regularization term (11) following lines similar to Lee and He,
2019. Our proof mainly relies on Borkar-Meyn theorem. Therefore, we first discuss about
the corresponding O.D.E. for the proposed update in (11), which is

θ̇t = −(XTDX + ηI)θt + γXTDPΠXθtXθt +XTDR := f(θt). (14)

Then, using changes of coordinates, the above O.D.E. can be rewritten as

d

dt
(θt − θe) = (−XTDX − ηI + γXTDPΠXθtX)(θt − θe) + γXTDP (ΠXθt −ΠXθe)Xθe,

(15)
where θe satisfies (9). Here, we assume that the equilibrium point exists and is unique. We
later prove that if the equilibrium exists, then it is unique. To apply Borkar-Meyn theorem,
we discuss about the asymptotic stability of the O.D.E. in (15), and check conditions of
Assumption A.1 in Appendix A.1. Note that (15) includes an affine term, i.e., it cannot
be expressed as a matrix times θt − θe. Establishing asymptotic stability of switched linear
system with affine term is difficult compared to switched linear system (5). To circumvent
this difficulty, Lee and He, 2019 proposed upper and lower systems, which upper bounds
and lower bounds the original system, respectively using the so-called vector comparison
principle. Then, the stability of the original system can be established by proving the
stability of the upper and lower systems, which are easier to analyze. Following similar
lines, to check global asymptotic stability of the original system, we also introduce upper
and lower systems, which upper bounds and lower bounds the original system, respectively.
Then, we prove global asymptotic stability of the two bounding systems. Since upper and
lower systems can be viewed as switched linear system and linear system, respectively, the
global asymptotic stability is easier to prove. We stress that although the switching system

7



Under review as a conference paper at ICLR 2024

approach in Lee and He, 2019 is applied in this paper, the detailed proof is entirely different
and nontrivial. In particular, the upper and lower systems are given as follows:

θ̇ut = (−XTDX − ηI + γXTDPΠXθu
t
X)θut , θ̇lt = −(XTDX − ηI + γXTDPΠXθeX)θlt,

where θut denotes the state of the upper system, and θlt stands for the state of the lower
system. We defer the detailed construction of each system to Appendix A.6. Establishing
stability of upper and lower system gives the stability of overall system.

Theorem 5.1. Suppose that (a) Assumption 2.2 holds, (b) (13) holds, and (c) a solution
of (9) exists. Then, the solution is unique, and the origin is the unique globally asymptoti-
cally stable equilibrium point of (15).

The detailed proof is given in Appendix A.6.

Building on previous results, we now use Borkar and Meyn’s theorem in Lemma 2.6 to
establish the convergence of RegQ. The full proof of the following theorem is given in Ap-
pendix A.7.

Theorem 5.2. If η satisfies (13), then with Assumption 2.1, Assumption 2.2 and Assump-
tion 2.3, under the stochastic update (11), θk → θe as k → ∞ with probability one, where
θe satisfies (9).

6 Experiments

In this section, we present experimental results under well-known environments in Tsitsiklis
and Van Roy (1996); Baird (1995), where Q-learning with linear function approximation
diverges. In Appendix A.8.3, we also compare performance under the Mountain Car envi-
ronment (Sutton and Barto, 2018) where Q-learning performs well. In Appendix A.8.2, we
show experimental results under various step-size and η. We also show trajectories of upper
and lower systems to illustrate the theoretical results.

6.1 θ → 2θ (Tsitsiklis and Van Roy, 1996)

Even when there are only two states, Q-learning with linear function approximation could
diverge (Tsitsiklis and Van Roy, 1996). Depicted in Figure 3a in Appendix A.8.1, from state
one (θ), the transition is deterministic to absorbing state two (2θ), and reward is zero at
every time steps. Therefore, the episode length is fixed to be two. Learning rate for Greedy
GQ (GGQ) and Coupled Q Learning (CQL), which have two learning rates, are set as 0.05
and 0.25, respectively as in Carvalho et al., 2020; Maei et al., 2010. Since CQL requires
normalized feature values, we scaled the feature value with 1

2 as in Carvalho et al., 2020,
and initialized weights as one. We implemented Q-learning with target network (Zhang
et al., 2021), which also have two learning rates, without projection for practical reason
(Qtarget). We set the learning rate as 0.25 and 0.05 respectively, and the weight η as two.
For RegQ, we set the learning rate as 0.25, and the weight η as two. It is averaged over 50
runs. In Figure 1a, we can see that RegQ achieves the fastest convergence rate.

6.2 Baird Seven Star Counter Example (Baird, 1995)

Baird, 1995 considers an overparameterized example, where Q-learning with linear function
approximation diverges. The overall state transition is depicted in Figure 3b given in Ap-
pendix A.8.1. There are seven states and two actions for each state, which are solid and
dash action. The number of features are h = 15. At each episode, it is initialized at ran-
dom state with uniform probability. Solid action leads to seventh state while dashed action
makes transition uniformly random to states other than seventh state. At seventh state, the
episode ends with probability 1

100 . The behavior policy selects dashed action with probabil-

ity 5
6 , and solid action with probability 1

6 . Since CQL in Carvalho et al. (2020) converges

under normalized feature values, we scaled the feature matrix with 1√
5
. The weights are

set as one except for θ7 = 2. The learning rates and the weight η are set as same as the
previous experiment. As in Figure 1b, Our RegQ shows the fastest convergence compared
to other convergent algorithms.

8
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(a) Results in θ → 2θ (b) Results in Baird seven star counter example

Figure 1: Experiment results

(a) θ1 − θe1 (b) θ2 − θe2

Figure 2: O.D.E. results

6.3 O.D.E. Experiment

Let us consider a MDP with |S| = 2, |A| = 2, and the following parameters:

X =

1 0
0 2
1 0
0 2

 , D =


1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

 , P =

 0.5 0.5
1 0
0.5 0.5
0.25 0.75

 , R =

111
1

 , γ = 0.99.

For this MDP, we will illustrate trajectories of the upper and lower system. Each state
action pair is sampled uniformly random and reward is one for every time step. η = 2.25 is
chosen to satisfy conditions of Theorem 5.1. From Figure 2, we can see that the trajectory
of the original system is bounded by the trajectories of lower and upper system.

7 Conclusion

In this paper, we presented a new convergent Q-learning with linear function approxima-
tion (RegQ), which is simple to implement. We provided theoretical analysis on the pro-
posed RegQ, and demonstrated its performance on several experiments, where the original
Q-learning with linear function approximation diverges. Developing a new Q-learning al-
gorithm with linear function approximation without bias would be one interesting future
research topic. Moreover, considering the great success of deep learning, it would be inter-
esting to develop deep reinforcement learning algorithms with appropriately preconditioned
regularization term instead of using the target network.

9
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A Appendix

A.1 Assumption for Borkar and Meyn Theorem

Assumption A.1.
1. The mapping f : Rn → Rn is globally Lipschitz continuous, and there exists a function
f∞ : Rn → Rn such that

lim
c→∞

f(cx)

c
= f∞(x), ∀x ∈ Rn. (16)

2. The origin in Rn is an asymptotically stable equilibrium for the O.D.E. ẋt = f∞(xt).

3. There exists a unique globally asymptotically stable equilibrium θe ∈ Rn for the
O.D.E. ẋt = f(xt) , i.e., xt → θe as t→∞.

4. The sequence {m, k ≥ 1} where Gk is sigma-alebra generated by {(θi,mi, i ≥ k)},
is a Martingale difference sequence. In addition , there exists a constant C0 <∞ such that
for any initial θ0 ∈ Rn , we have E[||mk+1||2|Gk] ≤ C0(1 + ||θk||2),∀k ≥ 0.

5. The step-sizes satisfies the Robbins-Monro condition (Robbins and Monro, 1951)
:

∞∑
k=0

αk =∞,

∞∑
k=0

α2
k <∞.

A.2 Positive definiteness of AπXθ
+ ηI

We first introduce Gerschgorin circle theorem (Horn and Johnson, 2013) to prove
Lemma A.3.

Lemma A.2 (Gerschgorin circle theorem (Horn and Johnson, 2013)). Let A = [aij ] ∈ Rn×m

and Ri(A) =
m∑
j ̸=i

aij. Consider the Gerschgorin circles

{z ∈ C| : |z − aii| ≤ Ri(A)}, i = 1, . . . , n.

The eigenvalues of A are in the union of Gerschgorin discs

G(A) = ∪ni=1{z ∈ C| : |z − aii| ≤ Ri(A)}.

Now, we state the lemma to guarantee positive definiteness of AπXθ
+ ηI. Instead we prove

positive definiteness of AπXθ
+ η

λmax(C)C.

Lemma A.3. Let

MπXθ := D

((
1 +

η

λmax(C)

)
I − γPπXθ

)
.

Under the following condition:

η > λmax(C) max
π∈Θ,s∈S,a∈A

(
γdTPπXθei

2di
− 2− γ

2

)
,

where Θ is the set of all deterministic policies, and ⊗ is the Kronecker product, MπXθ
is

positive definite.

Proof. We use Gerschgorin circle theorem for the proof. First, denote mij = [MπXθ
]ij .

Then, one gets

mii = di

((
1 +

η

λmax(C)

)
− γeTi P

πXθei

)
,

mij = −diγeTi PπXθej for i ̸= j.

13
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Except for the diagonal element, the row and column sums, respectively, become∑
j∈Si

|mij | = γdi(1− eTi P
πXθei)∑

j∈Si

|mji| = γdTPπXθei − γdie
T
i P

πXθei,

where Si = {1, 2, . . . , |S||A|} \ {i}. We need to show that MπXθ +MπT
Xθ is positive definite.

To this end, we use Lemma A.2 to have the following inequality:

|λ− 2mii| ≤
∑
j∈Si

|mij |+
∑
j∈Si

|mji|

Considering the lower bound of λ, we have

λ ≥ 2mii −
∑
j∈Si

|mij | −
∑
j∈Si

|mji|

= 2di

((
1 +

η

λmax(C)

)
− γeTi P

πXθei

)
− γdi(1− eTi P

πXθei)− (γdTPπXθei − γdie
T
i P

πXθei)

= η
2di

λmax(C)
+ (2− γ)di − γdTPπXθei.

Hence, for λ > 0, we should have

η > λmax(C)

(
γdTPπXθei

2di
− 2− γ

2

)
.

Taking η > λmax(C)maxπ∈Θ,s∈S,a∈A

(
γdTPπXθ ei

2di
− 2−γ

2

)
, we can make MπXθ always posi-

tive definite.

A.3 Proof of Lemma 3.1

To show existence and uniqueness of the solution of (9), we use Banach fixed-point theo-
rem (Agarwal et al., 2018). First, we define the operator Tη as follows:

Tη(θ) := (XTDX + ηI)−1(XTDR+ γXTDPΠXθXθ)

We show that Tη is contraction mapping. The existence and uniqueness of (9) follows from
the Banach fixed-point theorem.

||θ1 − θ2||∞ = ||(XTDX + ηI)−1(γXTDPΠXθ1Xθ1 − γXTDPΠXθ2Xθ2)||∞
≤ γ||(XTDX + ηI)−1||∞||XT ||∞||ΠXθ1Xθ1 −ΠπXθ2

Xθ2||∞
≤ γ||(XTDX + ηI)−1||∞||XT ||∞||ΠX(θ1−θ2)(Xθ1 −Xθ2)||∞
≤ γ||(XTDX + ηI)−1||∞||XT ||∞||Xθ1 −Xθ2||∞
≤ γ||(XTDX + ηI)−1||∞||XT ||∞||X||∞||θ1 − θ2||∞

≤ γ

√
|S||A|

λmin(C) + η
||XT ||∞||X||∞||θ1 − θ2||∞

≤ γ||θ1 − θ2||∞.

The first inequality follows from the sub-multiplicativity of matrix norm and ||DP ||∞ ≤ 1.
The second inequality follows from the fact that maxx − max y ≤ max(x − y). The last

inequality is due to the condition η > X2
max

√
|S||A|−λmin(C). Since γ < 1, Tη is contraction

mapping. Now we can use Banach fixed-point theorem to conclude existence and uniqueness
of (9).

14
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A.4 Proof of Lemma 3.2

Proof. Let Γη := X(XTDX + ηI)−1XTD. The bias term of the solution can be obtained
using simple algebraic inequalities.

||Xθe −Q∗||∞ = ∥ΓηT (Xθe)− ΓT (Q∗)∥∞ + ∥ΓT Q∗ −Q∗∥∞
≤ ∥ΓηT (Xθe)− ΓηT (Q∗)∥∞ + ∥ΓηT (Q∗)− ΓT (Q∗)∥∞ + ∥ΓQ∗ −Q∗∥∞
≤ γ ∥Γη∥∞ ∥Xθe −Q∗∥∞ + ∥Γη − Γ∥∞ ∥T (Q

∗)∥∞ + ∥ΓQ∗ −Q∗∥∞
The last inequality follows from the fact that the Bellman operator T is γ-contraction with
respect to the infinity norm. We bound each terms. First, we have

∥Γη∥∞ =
∥∥X(XTDX + ηI)−1XTD

∥∥
∞

≤ X2
max

∥∥(XTDX + ηI)−1
∥∥
∞

≤ X2
max

√
|S||A|

∥∥(XTDX + ηI)−1
∥∥
2

≤
X2

max

√
|S||A|

λmin(C) + η
.

The first inequality follows from Assumption 2.3. The second inequality follows from the
matrix norm inequality and the last inequality follows from the fact that induced norm of
symmetric positive definite matrix equals its maximum eigenvalue.

Bounding ∥Γη − Γ∥∞, we have

∥Γη − Γ∥∞ ≤ ||X||∞||X
T ||∞||(XTDX + ηI)−1 − (XTDX)−1||∞

≤ X2
max

∥∥(XTDX + ηI)−1(XTDX − (XTDX + ηI))(XTDX)−1
∥∥
∞

≤ ηX2
max

∥∥(XTDX + ηI)−1
∥∥
∞

∥∥(XTDX)−1
∥∥
∞

≤ ηX2
max|S||A|

λmin(C)(λmin(C) + η)
.

Lastly, we have ∥T (Q∗)∥∞ ≤
2Rmax

1−γ which follows from boundedness of Q∗ in Lemma 2.4.

Arranging the terms, we get

η + λmin(C)−X2
max

√
|S||A|

λmin(C) + η
||Xθe −Q∗||∞ ≤

ηX2
max|S||A|

λmin(C)(λmin(C) + η)

2Rmax

1− γ
+ ∥ΓQ∗ −Q∗∥∞

Rearranging the terms, we have

||Xθe −Q∗||∞ ≤
ηX2

max|S||A|
λmin(C)(η + λmin(C)−X2

max

√
|S||A|)

2Rmax

1− γ
+

λmin(C) + η

η + λmin(C)−X2
max

√
|S||A|

∥ΓQ∗ −Q∗∥∞ .

The bias is caused by projection and additional error term due to regularization.

A.5 Proofs to check Assumption A.1 for Theorem 5.2.

In this section, we provide omitted proofs to check Assumption A.1 for Theorem 5.2.

First of all, Lipschitzness of f(θ) ensures the unique solution of the O.D.E..

Lemma A.4 (Lipschitzness). Let

f(θ) = −(XTDX + ηI)θ + γXTDPΠXθXθ +XTDR. (17)

Then, f(θ) is globally Lipschitzness continuous.

Proof. Lipschitzness of f(θ) can be proven as follows:

||f(θ)− f(θ′)||∞ ≤ ||(XTDX + ηI)(θ − θ′)||∞ + γ||XTDP (ΠXθXθ −ΠXθ′Xθ′)||∞
≤ ||XTDX + ηI||∞||θ − θ′||∞ + γ||XTDP ||∞||ΠXθXθ −ΠXθ′Xθ′||∞
≤ ||XTDX + ηI||∞||θ − θ′||∞ + γ||XTDP ||∞||ΠX(θ−θ′)X(θ − θ′)||∞
≤ (||XTDX + ηI||∞ + γ||XTDP ||∞||X||∞)||θ − θ′||∞

Therefore f(θ) is Lipschitz continuous with respect to the || · ||∞,
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Next, the existence of limiting O.D.E. of (14) can be proved using the fact that policy is
invariant under constant multiplication when linear function approximation is used.

Lemma A.5 (Existence of limiting O.D.E. and stability). Let

f(θ) = (−XTDX − ηI)θ + γXTDPΠXθXθ +XTDR. (18)

Under (13), there exists limiting O.D.E. of (18) and its origin is asymptotically stable.

Proof. The existence of limiting O.D.E. can be obtained using the homogeneity of policy,
ΠX(cθ) = ΠXθ.

f(cθ) = −(XTDX + ηI)(cθ) + γXTDPΠX(cθ)X(cθ) +XTDR,

lim
c→∞

f(cx)

c
= (−XTDX − ηI + γXTDPΠXθX)θ

This can be seen as switching system and shares common Lyapunov function V = ||θ||2.
Hence, the origin is asymptotically stable.

Lastly, we check conditions for martingale difference sequences.

Lemma A.6 (Martingale difference sequence, mk, and square integrability). We have

E[mk+1|Fk] = 0,

E[||mk+1||2|Fk] < C0(1 + ||θ||2),

where C0 := max(12X2
maxR

2
max, 12γX

4
max + 4η2).

Proof. To show {mk, k ∈ N} is a martingale difference sequence with respect to the sigma-
algebra generated by Gk, we first prove expectation of mk+1 is zero conditioned on Gk:

E[mk+1|Gk] = 0

This follows from definition of b, C and AπXθ
.

The boundedness E[||nk||] < ∞ also follows from simple algebraic inequalities. Therefore
{mk, k ∈ N} is martingale difference sequence.

Now, we show square integrability of the martingale difference sequence, which is

E[||mk+1||2|Gk] ≤ C0(||θk||2 + 1).

Using simple algebraic inequalities, we have

E[||mk+1||2|Gk] = E[||δkx(sk, ak) + ηθk − Eµ[δkx(sk, ak) + ηθk]||2|Gt]
≤ E[||δkx(sk, ak) + ηθk||2 + ||Eµ[δkx(sk, ak) + ηθk]||2|Gt]
≤ 2E[||δkx(sk, ak) + ηθk]||2Gt]
≤ 4E[||δkx(sk, ak)||2|Gt] + 4η2E[||θk||2|Gt]
≤ 12X2

maxE[||rk||2 + ||γmaxx(sk, ak)θk||2 + ||x(sk, ak)θk||2|Gt] + 4η2||θk||2

≤ 12X2
maxR

2
max + 12γX4

max||θk||2 + ||θk||2 + 4η2||θk||2

≤ C0(1 + ||θk||2),

where C0 := max(12X2
maxR

2
max, 12γX

4
max + 4η2). The fourth inequality follows from the

fact that ||a+ b+ c||2 ≤ 3||a||2 + 3||b||2 + 3||c||2. This completes the proof.
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A.6 Proof of Theorem 5.1

Before moving onto the proof of Theorem 5.1, in order to prove the stability using the upper
and lower systems, we need to introduce some notions such as the quasi-monotone function
and vector comparison principle. We first introduce the notion of quasi-monotone increasing
function, which is a necessary prerequisite for the comparison principle for multidimensional
vector system.

Definition A.7 (Quasi-monotone function). A vector-valued function f : Rn → Rn with

f := [f1 f2 · · · fn]
T

is said to be quasi-monotone increasing if fi(x) ≤ fi(y) holds for
all i ∈ {1, 2, . . . , n} and x, y ∈ Rn such that xi = yi and xj ≤ yj for all j ̸= i.

Based on the notion of quasi-monotone function, we introduce the vector comparison prin-
ciple.

Lemma A.8 (Vector Comparison Principle (Hirsch and Smith, 2006)). Suppose that f̄ , f
are globally Lipschitz continuous. Let xt be a solution of the system

d

dt
xt = f̄(xt), xo ∈ Rn,∀t ≥ 0.

Assume that f̄ is quasi-monotone increasing, and let vt be a solution of the system

d

dt
vt = f(vt), v0 < x0,∀t ≥ 0,

where f(v) ≤ f̄(v) holds for any v ∈ Rn. Then, vt ≤ xt for all t ≥ 0.

The vector comparison lemma can be used to bound the state trajectory of the original
system by those of the upper and lower systems. Then, proving global asymptotic stability
of the upper and lower systems leads to global asymptotic stability of original system. We
now give the proof of Theorem 5.1.

Proof. First we construct the upper comparison part. Noting that

γXTDPΠXθeXθe ≥ γXTDPΠXθXθe (19)

and
γXTDPΠX(θ−θe)X(θ − θe) ≥ γXTDPΠXθX(θ − θe), (20)

we define f̄(y) and f(y) as follows:

f̄(y) = (−XTDX − ηI + γXTDPΠXyX)y,

f(y) = (−XTDX − ηI + γXTDPΠX(y+θe)X)y + γXTDP (ΠX(y+θe) −ΠXθe)Xθe

Using (19) and (20), we have f̄(y) ≤ f(y).

f is the corresponding O.D.E. of original system and f̄ becomes O.D.E. of the upper system.
f̄ becomes switched linear system.

Now consider the O.D.E. systems

d

dt
θut = f̄(θut ), θu0 > θ0,

d

dt
θt = f(θt).

Next, we prove quasi-monotone increasing property of f̄ . For any z ∈ R|S||A|, consider a
non-negative vector p ∈ R|S||A| such that its i-th element is zero. Then, for any 1 ≤ i ≤ d,we
have

eTi f̄(y + p) = eTi (−XTDX − ηI + γXTDPΠX(y+p)X)(y + p)

= −eTi (XTDX + ηI)y − ηeTi p+ γeTi X
TDPΠX(y+p)X(y + p)

≥ −eTi (XTDX + ηI)y + γeTi X
TDPΠXyXy

= eTi f̄(y),
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where the inequality comes from eTi X
TDXp = 0 due to Assumption 2.2 and eTi p = 0 since

i-th element of p is zero.

Therefore by Lemma A.8, we can conclude that θt ≤ θut . The switching system matrices
of the upper system are all negative definite by Lemma A.3, The switching system shares
V (θ) = ||θ||2 as common Lyapunov function. Therefore, we can conclude that the upper
comparison system is globally asymptotically stable.

For the lower comparison part, noting that

γXTDPΠXθXθ ≥ γXTDPΠXθeXθ,

we can define f(y) and f̄(y) such that f(y) ≤ f̄(y) as follows:

f̄(y) = −XTDXy − ηy + γXTDPΠXyXy +XTDR,

f(y) = −XTDXy − ηy + γXTDPΠXθeXy +XTDR

The corresponding O.D.E. system becomes

d

dt
θt = f̄(θt),

d

dt
θlt = f(θlt), θl0 < θ0. (21)

Proving quasi-monotonicity of f̄ is similar to previous step. Consider non-negative vector
p ∈ R|S||A| such that its i-th element is zero. Then, we have

eTi f̄(y + p) = eTi (−(XTDX + ηI)(y + p) + γXTDPΠX(y+p)X(y + p) +XTDR)

= eTi (−(XTDX + ηI)y + γXTDPΠX(y+p)X(y + p) +XTDR)

≥ eTi (−(XTDX + ηI)y + γXTDPΠXyXy +XTDR)

= eTi f̄(y).

The second equality holds since XTDX is diagonal matrix and pi = 0.
Therefore by Lemma A.8, we can conclude that θlt ≤ θt. The lower comparison part is linear
system with affine term, and the matrix is negative definite by Lemma A.3. Hence, we can
conclude that (21) is globally asymptotically stable.

To prove uniqueness of the equilibrium point, assume there exists two different equilibrium
points θe1 and θe2. The global asymptotic stability implies that regardless of initial state,
θt → θe1 and θt → θe2. However this becomes contradiction if θe1 ̸= θe2. Therefore, the
equilibrium point is unique.

A.7 Proof of Theorem 5.2

Proof. To apply Lemma 2.6, let us check Assumption A.1.

1. First and second statement of Assumption A.1 follows from Lemma A.5

2. Third statement of Assumption A.1 follows from Theorem 5.1

3. Fourth statement of Assumption A.1 follows from Lemma A.6

Since we assumed Robbins Monro step-size, we can now apply Lemma 2.6 to complete the
proof.

A.8 Experiments

A.8.1 Diagrams for θ → 2θ and Baird Seven Star Counter Example

The state transition diagrams of θ → 2θ and Baird seven-star example are depicted in Fig-
ure 3a and Figure 3b respectively.
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(a) θ → 2θ

(b) Baird seven star counter example

Figure 3: Counter-examples where Q-learning with linear function approximation diverges

A.8.2 Experiments with varying hyperparameters
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(a) ThetaTwoTheta learning rate 0.01 (b) ThetaTwoTheta learning rate 0.05

(c) Baird learning rate 0.01 (d) Baird learning rate 0.05

Figure 4: Learning curve under different learning rate and regularization coefficient

In Figure 4, we have ran experiments under η ∈ {2−2, 2−1, 1, 2, 4}, and learning rate
0..01, 0.05. Overall, we can see that the convergence rate gets faster as η increases.

A.8.3 Mountain car (Sutton and Barto, 2018) experiment

Mountain Car is environment where state consists of position, and velocity, which are both
continuous values. The actions are discrete, accelerating to left, staying neutral, and ac-
celerating to the right. The goal is to reach the top of the mountain quickly as agent gets
-1 reward every time step. We use tile-coding (Sutton and Barto, 2018) to discretize the
states. We experimented under various tiling numbers and with appropriate η, it achieves
performance as Q-learning does. We ran 1000 episodes for the training process, and the
episode reward was averaged for 100 runs during test time. From Table 1, with appropriate
η, RegQ performs comparable to Q-learning.

Table 1: Result of episode reward, step size = 0.1. The columns correspond to η, and rows
correspond to number of tiles.

0 0.01 0.05 0.1

2× 2 −199.993± 0.005 −200.0± 0.0 −199.28± 0.074 −199.993± 0.005
4× 4 −196.631± 0.179 −189.903± 0.225 −194.178± 0.166 −196.631± 0.179
8× 8 −185.673± 0.305 −163.08± 0.248 −185.103± 0.219 −185.673± 0.305
16× 16 −166.893± 0.33 −158.152± 0.251 −167.934± 0.238 −166.893± 0.33
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A.9 Pseudo-code

Algorithm 1 Regularized Q-learning

1: Initialize θ0 ∈ Rn.
2: Set the step-size (αk)

∞
k=0, and the behavior policy µ.

3: for iteration k = 0, 1, . . . do
4: Sample sk ∼ dµ and ak ∼ µ.
5: Sample s′k ∼ P (sk, ak, ·) and rk+1 = r(sk, ak, s

′
k).

6: Update θk using (11).
7: end for

A.10 Example of discussion on solution of the Projected Bellman equation

We now provide an example where the solution does not exist for (7) but does exist for (9).

Example A.9. Let us define a MDP whose state transition diagram is given as in Figure 5.
The cardinality of state space and action space are |S| = 3, |A| = 2 respectively. The

Figure 5: State transition diagram

corresponding state transition matrix, and other parameters are given as follows:

X =


0.01 0
0.1 0
0 0.01
0 0.01
0.1 0
0 0.01

 , R1 =

[−2
0
0

]
, R2 =

[
1
0
0

]
, P1 =

0 1 0
1
4

1
4

1
2

1
4

1
2

1
4

 , P2 =

0 0 1
1
4

1
4

1
2

1
4

1
2

1
4

 ,

γ = 0.99, d(s, a) =
1

6
, ∀s ∈ S,∀a ∈ A

where the order of elements of each column follows the orders of the corresponding defini-
tions. Note that for this Markov decision process, taking action a = 1 and action a = 2
at state s = 2 have the same transition probabilities and reward. It is similar for the state
s = 3. In this MDP, there are only two deterministic policies available, denoted by π1 and
π2, that selects action a = 1 and action a = 2 at state s = 1, respectively, i.e., π1(1) = 1
and π2(1) = 2. The actions at state s = 2 and s = 3 do not affect the overall results.

The motivation of this MDP is as follows. Substitute πXθ∗ in (7) with π1 and π2. Then
each of its solution becomes

θe1 :=

[
θe11
θe12

]
≈

[
6
111

]
∈ R2, θe2 :=

[
θe21
θe22

]
≈

[
−496
−4715

]
∈ R2.

If π1 is the corresponding policy to the solution of (7), it means that action a = 1 is greedily
selected at state s = 1. Therefore, Qπ1(1, 1) > Qπ1(1, 2) should be satisfied. However, since
Qπ1(1, 1) = x(1, 1)T θe1 = 0.06 and Qπ1(1, 2) = x(1, 2)T θe1 ≈ 1.11, this is contradiction.
The same logic applies to the case for π2. Therefore, neither of them becomes a solution
of (7). On the other hand, considering (9) with η = 2 which satisfies (13), the solution for
each policy becomes θe11 ≈ −1.66 · 10−5, θe12 ≈ 8.3 · 10−6 and θe21 ≈ −0.0016, θe22 ≈ 0.00083
respectively. For π1 and π2, we have Qπ1(1, 1) < Qπ2(1, 2) and Qπ1(1, 1) < Qπ1(1, 2)
respectively. Hence, θe2 satisfies (9) and becomes the unique solution.
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