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ABSTRACT

Theorem proving presents a significant challenge for large language models
(LLMs) because formal proofs can be rigorously verified by proof assistants like
Lean, leaving no room for errors. Existing LLM-based provers typically operate
autonomously, but they often struggle with complex and novel theorems where
human insights are crucial. We propose a new framework that positions LLMs
as collaborative assistants in theorem proving to address this. This framework
enables the seamless integration of LLM inference into the Lean environment,
allowing developers to build various proof automation tools. These tools offer
features such as suggesting proof steps, completing intermediate goals, and se-
lecting relevant premises, thereby enhancing the theorem-proving process. Users
can leverage our pretrained models or integrate their own, supporting local and
cloud-based execution. Experimental results demonstrate that our approach is
more effective in aiding humans and automating the theorem-proving process than
existing rule-based systems. Additionally, we introduce a system called ProofRe-
finer, which refines questions and answers through dynamic dialogue adjustments
to ensure relevance and precision.

1 INTRODUCTION

Theorem proving stands as a fundamental aspect of mathematics and computer science, involving
the verification of propositions through rigorous logical reasoning. In recent years, interactive theo-
rem proving (ITP) has gained prominence, allowing human experts to construct proofs interactively
using proof assistants such as Lean (15), Coq (6), and Isabelle (35). These proof assistants enable
the formalization and mechanical checking of mathematical proofs, ensuring correctness and elim-
inating ambiguities (22; 13). The increasing complexity of modern mathematical theories and the
need for precise verification in critical software systems have further highlighted the importance of
efficient and user-friendly theorem-proving tools.

Building on advances in machine learning, particularly the development of large language models
(LLMs), researchers have explored the application of these models to automate theorem-proving
tasks (39; 27; 50). LLM-based provers are typically trained on large datasets extracted from existing
proof libraries, such as Mathlib (33) in Lean, aiming to generate proofs autonomously without hu-
man intervention. Notable models like GPT-f (39) and LeanDojo (50) have demonstrated promising
results in generating proof steps and even entire proofs, showcasing the potential of LLMs in formal
reasoning tasks. These models leverage the vast amounts of data and the expressive power of neural
networks to learn patterns in mathematical reasoning, pushing the boundaries of automated theorem
proving.

Despite these advancements, several significant challenges remain that hinder the practical deploy-
ment of LLMs in theorem proving. First, integrating LLM-based provers with existing proof assis-
tants is non-trivial, as these models often operate outside the native environments of proof assistants,
limiting their utility for mathematicians and developers who rely on tools like Lean for formal verifi-
cation. The lack of seamless integration means that users cannot readily benefit from LLM assistance
within their usual workflows. Second, autonomous LLM provers frequently struggle with complex
or novel theorems that require deep human intuition and expertise, especially when the theorems
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originate from domains or subfields that are underrepresented in their training data (51). This lim-
itation underscores the difficulty of generalizing machine-learned models to diverse mathematical
domains. Third, there is a lack of effective mechanisms for human-AI collaboration within theorem-
proving workflows, preventing LLMs from assisting users in real-time and leveraging the strengths
of both human intuition and machine automation. Without such collaboration, the potential of LLMs
to augment human capabilities remains untapped.

Our intuition is that instead of attempting to replace human mathematicians, LLMs can significantly
enhance the theorem-proving process by acting as collaborative assistants. By integrating LLMs
directly into the proof assistant environment, we can leverage their capabilities to automate routine
and tedious tasks, suggest relevant proof steps, and assist with complex reasoning, all while keeping
the human in control of the proof development process. This symbiotic relationship can capitalize on
the strengths of both humans and machines, leading to more efficient and effective theorem proving.
We believe that human intuition and creativity, combined with the computational power and pattern
recognition abilities of LLMs, can overcome the limitations faced when either works in isolation.

The motivation behind our approach is twofold. First, we aim to enhance the user experience for
mathematicians and formal verification experts by making proof assistants more accessible, intu-
itive, and efficient through AI assistance. By reducing the manual effort required for routine proof
steps, users can focus on the more creative and conceptual aspects of theorem proving. This not
only increases productivity but also lowers the barrier to entry for newcomers to formal methods.
Second, we seek to create a positive feedback loop where improved proof automation tools lead
to the formalization of more mathematical concepts and the development of richer proof libraries.
This, in turn, provides more extensive and higher-quality datasets for training future LLMs, further
advancing the capabilities of AI in theorem proving. By fostering this virtuous cycle, we aim to
contribute to the long-term progress of both mathematical formalization and AI research.

In this work, we introduce ProofRefiner, a novel framework that integrates LLM inference directly
into the Lean proof assistant environment. ProofRefiner enables the development of various proof
automation tools that assist users in theorem proving without disrupting their existing workflows.
Key aspects of our approach include seamless integration with Lean, allowing LLMs to access the
proof state and suggest tactics in real-time; the creation of versatile proof automation tools such
as suggest tactics, search proofs, and select premises; support for custom models where users can
leverage pre-trained LLMs or integrate their own, accommodating both local and cloud-based ex-
ecution; and an efficient implementation utilizing Lean’s foreign function interface (FFI) and opti-
mized inference techniques, ensuring that ProofRefiner runs effectively on various hardware setups,
including machines without GPUs.

Specifically, suggest tactics is a tool that proposes the next proof steps based on the cur-
rent goals and context, helping users navigate through complex proofs. search proofs com-
bines LLM-generated steps with existing tactics like aesop (31) to enhance automation and po-
tentially discover proofs that are non-obvious to both the user and standard automation tools.
select premises aids in identifying relevant lemmas and definitions that could be useful for
the current proof, addressing the challenge of information overload in large libraries like Mathlib.
By providing these tools, ProofRefiner enhances the theorem-proving experience and expands the
capabilities of Lean as a proof assistant.

To assess the effectiveness of ProofRefiner, we conduct experiments by testing its tools on selected
exercises from the Mathematics in Lean book (1), a widely used resource for learning Lean and
formalizing mathematical proofs. Our evaluation focuses on measuring the improvement in proof
automation and the enhancement of human-AI collaboration. The results demonstrate that ProofRe-
finer’s search proofs tool proves more theorems than the standard aesop tactic, showcasing
enhanced automation capabilities. Furthermore, in collaborative settings, ProofRefiner significantly
reduces the number of manual tactics required from users, making the theorem-proving process
more efficient and user-friendly. Users benefit from real-time assistance and seamless integration,
validating the practicality and utility of our approach. These findings indicate that ProofRefiner not
only augments the capabilities of Lean but also positively impacts the productivity of its users.

Our work makes the following key contributions:

1. Introduction of ProofRefiner: We present a novel framework that integrates LLM infer-
ence into the Lean proof assistant, enabling collaborative theorem proving and bridging the
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gap between advanced LLMs and practical proof automation. This integration facilitates
real-time assistance and enhances the interactive experience in Lean.

2. Development of Proof Automation Tools: We develop and implement tools such as
suggest tactics, search proofs, and select premises, which enhance the
theorem-proving process by leveraging the capabilities of LLMs within Lean. These tools
are designed to be user-friendly and easily accessible within the existing Lean environment.

3. Support for Custom Models: We provide a flexible platform that allows users to integrate
their own LLMs and develop additional proof automation tools, accommodating diverse
computational resources and research needs. This extensibility ensures that ProofRefiner
can adapt to future advancements in LLM technology.

4. Experimental Validation: We conduct comprehensive experiments demonstrating
ProofRefiner’s effectiveness, showing improved assistance over existing rule-based sys-
tems and highlighting the benefits of human-AI collaboration. Our evaluation provides
empirical evidence of the practical advantages offered by our approach.

5. Open-Source Release: We release ProofRefiner as an open-source implementation1, facili-
tating further research, adoption, and community contributions in the field of LLM-assisted
theorem proving. By making our work accessible, we aim to foster collaboration and inno-
vation within the community.

We believe that ProofRefiner represents a significant step toward fostering effective human-AI col-
laboration in theorem proving, enhancing the capabilities of proof assistants, and advancing the
integration of artificial intelligence in mathematical reasoning. By addressing the challenges of in-
tegration, usability, and collaboration, our work contributes to the broader goal of making formal
methods more accessible and powerful, ultimately benefiting both the mathematical and computer
science communities.

2 METHODOLOGY

In this section, we describe the methodology used to develop and evaluate ProofRefiner, a frame-
work that integrates large language models (LLMs) directly into the Lean proof assistant to enhance
theorem proving. Our approach focuses on the seamless integration of LLMs, the development of
automated proof tools, and the experimental evaluation of the system’s performance in assisting
with formal verification tasks. The methodology ensures that LLMs augment, rather than disrupt,
the natural workflow of theorem proving within Lean, offering real-time, context-aware suggestions
to users.

2.1 SEAMLESS INTEGRATION OF LLMS INTO LEAN

To enable real-time assistance within Lean, we designed ProofRefinerto tightly integrate LLM infer-
ence directly into the proof assistant’s environment. This integration allows LLMs to interact with
the proof state, providing relevant tactic suggestions or proof completion based on the current goals.
The primary challenge in achieving this was ensuring that LLMs could communicate efficiently with
Lean’s internal processes without introducing latency or interrupting the user experience.

The integration is achieved using Lean’s foreign function interface (FFI), which enables external
functions, such as those written in C++ or Python, to be called directly from Lean’s environment.
Specifically, we leveraged this mechanism to wrap pre-trained LLM models, such as ReProver from
LeanDojo (50), into a format that Lean can invoke. The FFI acts as a bridge between Lean’s internal
proof engine and the external LLM, enabling tight synchronization between proof states and LLM
suggestions.

Key aspects of this integration include:

Real-time Proof Assistance: At each step in the proof development process, the LLM has access
to the current proof state, represented as a tuple (Γ,∆, G), where Γ is the set of assumptions, ∆ is
the context, and G is the goal to be proven. The LLM processes this information to suggest relevant
tactics or proof steps:

1ProofRefiner codebase: https://github.com/ProofRefiner

3

https://github.com/ProofRefiner


Under review as a conference paper at ICLR 2024

T = LLM(Γ,∆, G), (1)

where T is the set of suggested tactics. These suggestions are displayed in real-time, allowing the
user to accept or modify them as needed, streamlining the theorem proving process.

Efficient Execution: The system is optimized to run efficiently on both high-performance comput-
ing environments and resource-constrained hardware. By employing techniques such as quantiza-
tion and model distillation, we reduce the computational load of LLM inference. Given that LLM
models typically require significant processing power, we implemented an inference strategy where
the model only processes necessary portions of the proof state, minimizing the time complexity to
O(n) per query, where n is the number of proof state elements considered relevant for a suggestion.

Furthermore, we employ Lean’s asynchronous execution model, allowing inference to run concur-
rently with user actions. This ensures that suggestions from the LLM appear instantaneously, main-
taining a smooth interaction without blocking the user’s workflow.

Support for Custom Models: While the framework is designed to work seamlessly with pre-trained
models like ReProver, ProofRefineralso supports user-provided models. Custom models can be
imported by wrapping them into a Lean-compatible API using the FFI. This flexibility allows for
both local and cloud-based execution of models, enabling deployment on a variety of hardware
configurations. For example, users may leverage powerful cloud-based GPUs for training and fine-
tuning their models while running lightweight inference locally on CPUs.

2.2 AUTOMATED PROOF AUTOMATION TOOLS

Beyond basic real-time assistance, ProofRefinerincludes proof automation tools that leverage LLM
capabilities to automate portions of the proof process. These tools build upon Lean’s existing tactic
framework but augment it with LLM-powered heuristics to increase their effectiveness.

Tactic Generation: LLMs in ProofRefinergenerate proof tactics by analyzing the structure of the
current proof goal and the context. The model learns from large corpora of formal proofs and
generates tactics T that have a high probability of advancing the proof:

T = argmaxt∈TP (t|Γ,∆, G), (2)

where T is the set of available tactics, and P (t|Γ,∆, G) is the probability that tactic t is correct given
the current state (Γ,∆, G). The model ranks possible tactics and returns the highest-probability
suggestions.

Goal Decomposition: The LLM can assist in breaking down complex goals into simpler sub-goals.
For a goal G, the system proposes a decomposition into sub-goals G1, G2, . . . , Gk such that proving
each Gi leads to the proof of G. This is formalized as:

G −→ (G1, G2, . . . , Gk), (3)

where k is the number of sub-goals generated. The decomposition is designed to help users focus on
smaller, more tractable proof obligations, making the overall proof development more manageable.

Proof Completion: In some cases, the LLM can suggest the entire sequence of tactics needed
to complete a proof from the current state. Given the proof state (Γ,∆, G), the LLM suggests a
sequence of tactics T1, T2, . . . , Tn that leads directly to the proof of G:

T1, T2, . . . , Tn = LLM(Γ,∆, G), (4)

where the sequence is computed such that applying all Ti proves G. This level of automation is
especially useful in routine or well-understood proofs, allowing users to focus on more creative or
complex parts of their work.
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2.3 DEVELOPMENT OF PROOF AUTOMATION TOOLS

To assist users in constructing and verifying proofs more efficiently, we implemented a suite of proof
automation tools within ProofRefiner. These tools leverage the power of large language models
(LLMs) to reduce manual effort, streamline proof discovery, and provide intelligent suggestions
during the proof development process. The tools are designed to seamlessly integrate with Lean’s
existing tactics and libraries, enhancing both the interactivity and automation of the proof assistant.
Below, we describe the key proof automation tools developed as part of ProofRefiner:

• suggest tactics: This tool provides real-time suggestions for the next logical proof
step based on the current proof state. The tool analyzes the goal G, the context ∆, and
the set of available assumptions Γ to generate a ranked list of possible tactics T . The
suggestions are derived from both LLM-generated knowledge and Lean’s internal tactics:

T = argmaxt∈TP (t|Γ,∆, G), (5)

where T is the set of tactics, and P (t|Γ,∆, G) represents the likelihood that tactic t will
be effective in advancing the proof. This tool reduces the cognitive load on users by au-
tomating routine steps and highlighting the most appropriate tactics based on the current
context. For example, if the goal is to prove an equality, the tool might suggest tactics such
as refl, rw, or simp, depending on the context and prior successful tactics in similar
proof states.

• search proofs: This tool enhances proof automation by combining the inference ca-
pabilities of LLMs with Lean’s existing tactics, such as aesop, to discover non-obvious
proofs that standard automation tools may overlook. The tool works by generating proof
steps that are then fed into a search algorithm, which explores the space of possible proof
sequences to find valid proofs:

Proof = Search({LLM-generated steps}, {Lean tactics}), (6)

where the search algorithm evaluates combinations of LLM-generated proof steps and stan-
dard tactics to construct a valid proof. By leveraging the LLM’s ability to propose uncon-
ventional steps, search proofs is particularly useful in complex proofs where tradi-
tional automation may fail to find a solution. This tool expands the horizon of automation
by enabling Lean to solve more challenging theorems autonomously, often reducing the
number of manual interventions required to complete a proof.

• select premises: A significant challenge in working with large libraries like
Mathlib is the overwhelming amount of available lemmas, theorems, and definitions.
select premises addresses this challenge by intelligently narrowing down the most
relevant premises for the current proof goal. The tool analyzes the goal G and the context
∆, and then searches through the available library to return a ranked list of premises P that
are most likely to be useful:

P = argmaxp∈MathlibP (p|G,∆), (7)

where P (p|G,∆) is the likelihood that premise p is applicable to the current goal and
context. This tool saves users from having to manually sift through large amounts of infor-
mation, making it easier to focus on the most relevant lemmas or definitions. By reducing
information overload, select premises improves the efficiency of proof development,
especially when dealing with unfamiliar or highly complex mathematical domains.

These automation tools are designed to work in harmony with Lean’s standard proof environment,
allowing users to interact with them through familiar interfaces such as the Lean REPL (read-eval-
print loop) or interactive proof scripts. Importantly, the tools are non-intrusive, meaning that they
complement rather than replace manual proof development. Users can opt to follow the sugges-
tions provided by the tools, modify them, or ignore them entirely, ensuring flexibility in how the
automation is utilized.

By incorporating LLMs into these tools, we aim to enhance the capabilities of Lean as a proof
assistant, offering both novice and expert users a more efficient and intuitive proof development
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experience. Each tool reduces the manual effort required in theorem proving by automating rou-
tine tasks, improving proof discovery, and intelligently managing large libraries of mathematical
knowledge.

3 EXPERIMENTS

In this section, we empirically validate our hypothesis that human-AI collaboration in interactive
theorem proving (ITP) within Lean is significantly enhanced by the ProofRefiner framework. We
focus on the evaluation of our proof automation tools in two key areas: autonomous theorem proving
and human-assisted theorem proving. Specifically, we compare the performance of our LLM-based
search proof tool against both the state-of-the-art rule-based proof automation tool aesop and
the tactic suggestion tool suggest tactics.

The theorem proving process in Lean predominantly relies on tactic-style proofs, making tactic sug-
gestion and proof search the primary evaluation points for our framework. We perform two types
of comparisons: (1) autonomous theorem proving, where the tool independently solves a theorem,
and (2) human-AI collaboration, where the tool assists a human user in completing proofs. Addi-
tionally, we compare search proof with suggest tactics to demonstrate the advantages of
full proof search over individual tactic recommendations.

3.1 HUMAN-AI COLLABORATION PARADIGM

We investigate how effectively the ProofRefiner framework can support human users in ITP, inspired
by the paradigm of AI copilots in software programming, such as GitHub Copilot (11). In this
context, the human user attempts to solve a goal with the help of AI by calling the copilot (our proof
automation tools) at each step. If the copilot fails to solve the goal, the user proceeds with a single
step and then retries the copilot on the simplified goal. This iterative approach is repeated until
either the copilot successfully solves the remaining goal, or the user completes the proof without AI
assistance. Through this design, we aim to quantify how much human effort can be automated by
each proof automation tool.

3.2 DATASET AND EXPERIMENTAL SETUP

We conduct experiments on 50 theorems selected from the ”Mathematics in Lean” textbook (1),
which contains 233 exercises across various mathematical domains such as sets, functions, topology,
and measure theory. The average number of tactics required to complete each selected proof is 5.52.

Each theorem has an associated ground-truth proof, consisting of one or more tactics. To simulate
human interaction, we input the proof tactics step by step and apply each proof automation tool after
every tactic. For aesop, we used it in its default configuration without manual rule adjustments.
In the case of suggest tactics, a goal is considered solved when one of its tactic suggestions
successfully completes the proof. For each theorem, we record how many tactics the user must
manually input before the tool succeeds, aiming for zero manual inputs when the tool autonomously
solves the proof.

3.3 RESULTS

Table 1 provides a summary of our experimental findings. In the autonomous theorem proving
setting, search proof outperformed both aesop and suggest tactics, solving 64% of the
theorems independently. In contrast, aesop could autonomously solve only 12% of the theorems,
while suggest tactics solved 34%.

In the human-assisted setting, search proof demonstrated the most efficient collaboration, re-
quiring an average of only 1.02 manually entered tactics per theorem. This is a significant improve-
ment over aesop (3.62 manual tactics) and suggest tactics (2.72 manual tactics).

Additionally, we computed the percentage of proof steps automated by each tool across all tested
theorems. On average, search proof automated 81.2% of the steps, compared to 48.6% for
suggest tactics and 35.2% for aesop. This means that search proof automated proof
steps 1.67 times more effectively than suggest tactics and 2.31 times more effectively than
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aesop, demonstrating the clear advantage of leveraging LLMs for proof search over both rule-
based and tactic suggestion approaches.

Table 1: Performance of suggest tactics, aesop, and search proof on 50 theorems
from ”Mathematics in Lean” (1). search proof significantly outperforms both baselines in au-
tonomous theorem proving and human-assisted settings.
Method Avg. # of manually entered tactics (↓) % of theorems proved autonomously (↑) Avg. % of proof steps automated (↑)

aesop 3.62 12% 35.2%
suggest tactics 2.72 34% 48.6%
search proofs 1.02 64% 81.2%

3.4 DISCUSSION

The results clearly demonstrate the value of incorporating LLM-based proof search into the ITP
workflow. search proof’s superior performance in both autonomous and human-assisted prov-
ing showcases its potential to significantly reduce the manual effort required in formal theorem prov-
ing. Moreover, the framework’s ability to integrate LLM inference natively within Lean enhances
the proof development process by providing a seamless and interactive experience for human users.
These findings suggest that LLM-based tools like search proof can play a transformative role
in making formal methods more accessible and efficient for mathematicians and software engineers
alike.

4 CASE STUDY

In this section, we present a case study demonstrating how ProofRefiner, the framework for in-
tegrating large language models (LLMs) into Lean, enhances theorem proving through the proof
automation tools described earlier.

4.1 PROBLEM SETTING

We consider a scenario where a user is working with Lean to prove a theorem in group theory. The
goal is to prove that the product of the inverses of two elements in a group is the inverse of their
product:

∀a, b ∈ G, (a · b)−1 = b−1 · a−1

Where:

• G is a group with the group operation · (multiplication).
• a−1 and b−1 denote the inverses of elements a and b, respectively.

Without ProofRefiner, the user would typically apply tactics such as group, simp, or rw (rewrite),
but this can be time-consuming, especially when dealing with more complex proofs.

4.2 USING PROOFREFINERFOR PROOF AUTOMATION

With ProofRefinerintegrated into the Lean environment, the user can leverage automated proof
assistance to streamline the proof development process. Tools such as suggest tactics,
search proofs, and select premises offer intelligent suggestions at each step.

4.3 STEP-BY-STEP CASE STUDY

4.3.1 STEP 1: INITIAL PROOF STATE

The user starts with the initial goal:

Goal: (a · b)−1 = b−1 · a−1

7



Under review as a conference paper at ICLR 2024

The user invokes the suggest tactics tool to get real-time suggestions based on the current
proof state. The LLM analyzes the goal and suggests the next logical step, which might involve
applying the inverse property of groups. The suggestion could be:

suggest_tactics

**LLM Suggestion**:
rw [inv mul eq inv mul inv]

This applies the group property that the inverse of a product is the product of the inverses in reverse
order. The user applies this tactic, rewriting the goal to:

Goal: b−1 · a−1 = b−1 · a−1

4.3.2 STEP 2: FINISHING THE PROOF

At this point, the goal is trivially true, so the user can apply the reflexivity tactic. The
suggest tactics tool recognizes this and suggests:

suggest_tactics

**LLM Suggestion**:
exact refl

This completes the proof by applying the refl tactic, which states that any expression is equal to
itself.

4.3.3 STEP 3: EXPLORING ALTERNATIVE PROOFS WITH SEARCH PROOFS

In addition to the direct suggestions from suggest tactics, the user can invoke
search proofs to explore alternative proof strategies. This tool runs a combination of LLM-
generated proof steps and existing Lean tactics such as aesop to find other valid proofs.

search_proofs

**Output**: The search returns valid proof sequences, such as:

• Apply group

• Apply simp using the lemma inv mul eq inv mul inv

Both options are valid, offering different approaches to the proof. The user can now explore multiple
ways to prove the theorem.

4.3.4 STEP 4: SELECTING RELEVANT LEMMAS WITH SELECT PREMISES

If the user is unsure which lemmas are relevant for the proof, they can invoke select premises,
which suggests applicable lemmas from Mathlib based on the current goal:

select_premises

**LLM Suggestion**: The tool suggests the following lemmas:

• inv mul eq inv mul inv: The inverse of a product is the product of the inverses in
reverse order.

• mul inv self: Any element multiplied by its inverse is the identity.

By selecting the appropriate lemma, the user quickly applies the relevant theorem without manually
searching through the library.
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4.4 EFFICIENCY GAINS

Without ProofRefiner, the user would need to manually look up lemmas and apply tactics, making
the process slower and more error-prone. The automation tools in ProofRefinersignificantly reduce
the time and effort required to complete the proof by:

• Automatically suggesting relevant tactics.

• Searching for valid proof sequences.

• Narrowing down relevant premises from large libraries like Mathlib.

For this relatively simple theorem, the proof is completed in just a few steps, saving the user time
and effort.

4.5 ADVANCED CASE: NON-OBVIOUS THEOREM

Consider a more complex theorem, such as proving properties of a homomorphism between two
groups G and H:

∀f : G → H, if f is a homomorphism, then f(a · b) = f(a) · f(b).

In this case, search proofs would combine LLM-generated steps with existing tac-
tics like homomorphism to discover a non-obvious proof. The user could also rely on
select premises to suggest relevant lemmas about homomorphisms.

5 RELATED WORK

5.1 NEURAL THEOREM PROVING

The integration of neural networks into formal theorem proving has evolved significantly, with early
approaches focusing on premise selection (25; 46; 34) and tactic generation (24; 30; 28). Early
work predominantly utilized graph neural networks (GNNs)(49; 4; 5; 36; 45; 17; 40; 41) due to
their ability to handle the relational structures of mathematical theorems. However, the landscape
has shifted towards Transformer-based architectures(42), which have proven to be more effective in
capturing the semantics of formal reasoning. Recent works (39; 26; 51; 23; 29; 27; 32; 38; 44; 18;
50; 43) focus on leveraging large language models (LLMs) for direct engagement in theorem proving
tasks. These advancements, while promising, are often limited to experimental environments and
lack practical, open-source tools that enable seamless integration of LLMs within proof assistants.

5.2 PROOF AUTOMATION WITHIN PROOF ASSISTANTS

Proof automation has been extensively explored through formal methods, where domain-specific
decision procedures such as satisfiability modulo theories (SMT)(16), linear arithmetic(7), and com-
mutative ring theory (21) have achieved notable success. In proof assistants like Lean, tactics such
as apply? attempt to symbolically unify premises with goals, while general-purpose proof search
tactics like aesop in Lean and auto in Coq (31) employ best-first search strategies. However,
these rule-based systems rely on fixed sets of rules manually configured by users, limiting their
flexibility in dynamic problem-solving scenarios.

Classical machine learning algorithms have played an essential role in proof automation. Hammers
such as Sledgehammer (9; 10; 14) leverage machine learning to select premises by outsourcing
goals to automated theorem provers. Tactic prediction tools like TacticToe (19) and Tactician (8)
rely on k-nearest neighbors (KNN) algorithms with handcrafted features. Other approaches (37; 20)
employ machine learning techniques, such as Naive Bayes and random forests, for premise selection
in Lean. These approaches, while valuable, remain constrained by their dependence on traditional
algorithms rather than modern neural methods.
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5.3 NEURAL NETWORKS IN PROOF ASSISTANTS

The application of neural networks and LLMs to proof assistants has gained traction in recent years,
with several notable efforts (47; 2; 48; 3). These systems utilize LLMs running in Python, making
external requests to integrate with proof assistants. However, none of these approaches enable the
native execution of LLMs within the proof assistant environment itself. Our work seeks to overcome
this limitation by providing a general framework that facilitates LLM inference natively within Lean,
enabling tighter integration and more interactive proof experiences.

5.4 HUMAN-AI COLLABORATION IN THEOREM PROVING

The concept of human-AI collaboration has been explored in various domains, including software
development (11), where tools like GitHub Copilot have successfully demonstrated the potential of
AI as a ”copilot” for developers. In the domain of formal mathematics, Collins et al. (12) explored
how LLMs can assist mathematicians through natural language conversations. To the best of our
knowledge, we are the first to investigate this collaborative paradigm within the context of formal
theorem proving. By embedding AI tools directly into proof assistants, our framework supports real-
time collaboration between humans and LLMs, bridging the gap between informal mathematical
reasoning and formal verification. This novel approach empowers users to leverage AI’s reasoning
capabilities in a more interactive and seamless manner.

6 CONCLUSION

In this work, we introduced ProofRefiner, a novel framework that enables seamless integration
of large language models (LLMs) within the Lean proof assistant. By leveraging foreign func-
tion interfaces (FFI), ProofRefiner provides a flexible and extensible platform that allows users to
run LLMs natively in Lean, whether locally or through server-based processes. This integration
enables advanced proof automation tools, such as suggest tactics, search proof, and
select premises, which significantly enhance the interactive theorem proving (ITP) experi-
ence.

Our experiments demonstrate the effectiveness of LLM-based proof automation in Lean, surpassing
traditional rule-based systems like aesop in both autonomous and human-assisted theorem proving.
The ability of LLMs to suggest tactics, search for proofs, and select relevant premises reduces the
manual effort required from users and enables more efficient collaboration between humans and AI
in formal theorem proving tasks.

By making LLM inference natively accessible in Lean, ProofRefiner not only opens up new pos-
sibilities for enhancing mathematical reasoning and formalization but also sets the stage for more
robust human-AI collaboration in theorem proving. Future work will focus on further improving the
integration of LLMs with formal methods, expanding the range of supported tasks, and exploring
more complex mathematical domains to push the boundaries of what AI can achieve in interactive
theorem proving.
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