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Abstract

Learning-to-learn or meta-learning focuses on developing algorithms that leverage
prior experience to quickly acquire new skills or adapt to novel environments. A cru-
cial component of meta-learning is representation learning, which aims to construct
data representations capable of transferring knowledge across multiple tasks—a
critical advantage in data-scarce settings. We study how representation learning
can improve the efficiency of bandit problems. We consider T d-dimensional
linear bandits that share a common low-dimensional linear representation. We
provide provably fast, sample-efficient algorithms to address the two key problems
in meta-learning: (1) learning a common set of features from multiple related
bandit tasks and (2) transferring this knowledge to new, unseen bandit tasks. We
validated the theoretical results through numerical experiments using real-world
and synthetic datasets, comparing them against benchmark algorithms.

1 Introduction

The ability to transfer knowledge across tasks is essential for robust and sample-efficient inference
and prediction [1]. Developing methods that can learn task representations capable of generalizing to
unseen tasks has become increasingly critical in diverse applications, including deep reinforcement
learning [2], bandit learning [3, 4], and natural language processing [5, 6]. Despite considerable
advancements in transfer learning, the theoretical foundations of the underlying problem remain
underdeveloped. Transfer learning for sequential decision-making problems is still in its early stages,
requiring further exploration to address key gaps in understanding.

Meta-learning involves addressing two key challenges: (1) the upstream problem, which focuses
on learning a shared model or representation across a set of source tasks to capture transferable
knowledge, and (2) the downstream problem, which leverages this shared model to enable efficient
adaptation and learning for a new target task, often under data-scarce conditions. This paper
addresses these challenges in linear bandit problems by proposing a unified framework that learns
robust transferable representations and ensures efficient adaptation to data-scarce target tasks.

Recently, a number of emerging works [7–11] investigated representation learning for bandits
(upstream) and showed that if all tasks share a joint low-rank representation, then by leveraging
such a joint representation, it is possible to learn faster than treating each task independently. The
underlying idea is that since the tasks are related, we can efficiently extract a shared low-dimensional
representation (feature extractor) and then apply a simple function—often a linear one—on top of
this embedding [12–14]. Learning shared representations is inherently non-convex. While existing
works have shown the benefits of representation learning, theoretical analyses often rely on convex
relaxations and assume access to the optimal solution of the non-convex objective [7, 8, 10]. Moreover,
the transferability of learned representations to new target tasks remains underexplored [9].
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In this paper, we focus on ensuring a desired level of accuracy for the learned representation trained
on source bandit tasks with tight sample complexity while also proposing an approach that leverages
this learned model to effectively handle new, unseen target bandit tasks. To learn the shared model,
we introduce an explore-then-commit algorithm. We propose an Optimism in the Face of Uncertainty
Learning (OFUL) algorithm designed to transfer the learned representation to unseen target tasks and
provide a tight regret guarantee to address this gap. We also provide sample complexity bound of the
target task for a meta-learned linear regression. Our contributions in this paper are fourfold.

1. We formulate the meta-learning problem for multi-task representation learning in linear bandits,
where tasks share a low-dimensional (rank-r) representation, with the reward parameter for task
t ∈ [T + 1], θ⋆t = B⋆w⋆t , θ⋆t ∈ Rd and B⋆ ∈ Rd×r. Our objectives are twofold: (i) efficiently
estimate the shared model B⋆ from the T source tasks under tight regret and sample complexity
guarantees (upstream problem) and (ii) develop an approach to transfer the learned model to a
(T + 1)th unseen target task with limited data (downstream problem).

2. We propose an Explore-then-Commit (EtC) algorithm to solve the upstream problem. Our
approach utilizes a careful spectral initialization followed by solving T individual least-squares
problems to estimate the reward parameters, avoiding relaxation of the non-convex problem. We
prove that the EtC algorithm estimates the shared representation and reward parameters within
O(
√
r/T ). We provide the regret guarantee for the source tasks and the sample complexity bounds.

3. To transfer the learned model to a new task, we propose two approaches: (1) an OFUL algorithm
that constructs a confidence set for the target task parameter θ⋆T+1 by leveraging the shared repre-
sentation estimate B̂ learned from the source tasks. We provide high-probability guarantees that
θ⋆T+1 lies within the confidence set and establish a tight regret bound of Õ(

√
rdN) for the target task,

for N rounds. This represents a significant improvement over the standard bound of Õ(d
√
N) by

leveraging the shared model as r ≪ d. (2) A linear regression estimator that learns from target task
data using B̂ estimate. We present the sample complexity of meta-learned linear regression and show
that it achieves significant sample reduction.

4. We evaluated the performance of our approach using synthetic datasets and real-world recom-
mender datasets, Movielens and LastFM. We compared our approach against two benchmark methods:
(i) a naive algorithm that solves tasks independently, and (ii) the Method-of-Moments (MoM) estima-
tor in [1, 8, 15]. Our proposed approach consistently outperforms both benchmarks.

2 Related Work

Representation learning aims at learning a shared representation among various ‘related yet different’
tasks. Since the tasks are related, we can more efficiently extract common information rather than
treating each task independently [12–14, 16]. Multi-task representation learning has been widely
studied in the supervised learning context in both empirical applications [5, 6, 17–19] and theoretical
studies [1, 12, 14, 15, 20, 21]. These works primarily address statistical rates and do not address
the exploration challenges inherent in bandit learning scenarios. Linear bandits are among the most
well-studied bandit models, with prominent applications in areas such as recommender systems
[22–26]. Recently, representation learning for linear bandits has garnered significant attention, as
leveraging task dependencies enables achieving lower regret bounds compared to addressing each
task independently [7–10, 27, 28]. A significant advantage of representation learning is its ability to
transfer learned representations to new, unseen tasks, thereby accelerating the learning process even
under data-sparing settings, which is not explored in the existing literature [7, 8, 10, 28].

Solving multi-task linear bandits with shared representations is inherently a non-convex estimation
problem. Previous works [7, 8] assumed that the optimal solution to a nonconvex cost function is
known. This assumption is used in Lemma 2 in [8] and Lemma 1 in [7] to derive the initial results for
regret analysis. These works primarily focused on regret guarantees under the assumption of a known
optimal estimator to validate the effectiveness of learning representations. [10] considered a convex
relaxation of the problem through trace-norm regularization (Algorithm 1). The solution to the relaxed
problem may not necessarily correspond to a valid solution to the original problem. [28] proposed an
alternating gradient descent and minimization algorithm for estimating the unknown reward matrix
without relaxing the non-convex cost function. The episodic algorithm relies on independent and
identically distributed (i.i.d.) data in both exploration and commit phases, which becomes restrictive
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specifically during the commit episodes where actions are chosen greedily. Another related line of
work includes low-rank bilinear bandits [29–31] and generalized linear bandits [32], which consider a
single bandit setting where the reward parameter is modeled as a low-rank matrix. The single-bandit
setting has also been studied in [33], which proposed a kernel-based multi-task contextual bandit
framework that leverages similarities among arms to improve reward estimation. However, the
theoretical guarantees in [33] rely on the assumption that the task similarity matrix is known a priori.
In contrast, our paper presents a meta-learning framework for multi-task representation learning in
linear bandits, where multiple distinct tasks share a low-rank representation. Notably, our approach
learns the shared representation from the source tasks and utilizes this learned structure to facilitate
effective adaptation to a new, unseen target task in data-scarce settings.

Building on these works, our goal is to develop a provable approach with regret and estimation
guarantees for multi-task representation learning and for both source and target tasks. Our main focus
is on the transferability of the learned model to an unseen target task in a data-scarce setting. Meta-
learning for sequential decision-making problems has recently gained popularity [34–43]. Recently
[44] studied transfer learning in linear bandit using shared representations, under the ellipsoid action
set assumption. Sparse structures are employed for feature learning to accelerate the learning process
in [45–48]. We present additional related work in Appendix I. To the best of our knowledge, this is
the first work that addressed multi-task meta bandit learning using shared representations.

3 Problem Formulation
Notations: For positive integer n, the set [n] denotes {1, 2, · · · , n}. For vector x, ∥x∥ represents
the ℓ2 norm and |x| indicates the element-wise absolute value. For any matrix A, ∥A∥ denotes the
2-norm and ∥A∥F denotes the Frobenius norm. The symbol ⊤ represents the transpose of a matrix or
vector. The notation Ik (or sometimes just I) represents the k × k identity matrix, while ek denotes
the k−th canonical basis vector. For basis matrices B1 and B2, we define Subspace Distance (SD) as
SD(B1, B2) := ∥(I −B1B

⊤
1 )B2∥. We use w.p. for with probability.

Multi-task representation learning in linear bandits: Let t ∈ [T ] be the index of the T source
tasks, and index T + 1 denotes the target task. Each task t ∈ [T ] addresses a related but distinct
linear bandit problem. Let X ⊆ Rd denote the finite action set. In each round n ∈ [N ], every task
t ∈ [T ] independently chooses an action xn,t ∈ X . The task t receives a corresponding reward yn,t
from the environment, determined by the unknown but fixed reward function yn,t = x⊤n,tθ

⋆
t + ηn,t,

where θ⋆t is the unknown reward parameter and ηn,t denotes noise. The expected reward is defined
as rn,t = x⊤n,tθ

⋆
t , where rn,t = E[yn,t]. We define Θ⋆ := [θ⋆1 · · · θ⋆T ] as the reward matrix, which

is unknown. Given tasks are related, we can understand the problem as that all tasks share a joint
representation. Following prior works such as [8, 20, 7, 28, 1, 15, 9], we consider that there exists an
unknown global feature extractor B⋆ ∈ Rd×r and an underlying prediction parameters w⋆t s such that
θ⋆t = B⋆w⋆t , for t ∈ [T ]. Thus Θ⋆ is a low-rank (rank-r) matrix, where r ≪ min{d, T}.
The goal of upstream learning is to find a near-accurate model for any task t ∈ [T ] via sufficient ex-
ploration under tight sample complexity, and output a well-learned representation for the downstream
task. We are also interested in obtaining the regret guarantee for the source tasks given by

RN,T :=

T∑
t=1

N∑
n=1

(x⋆⊤n,tθ
⋆
t − x⊤n,tθ⋆t ). (1)

where x⋆n,t is the optimal action for task t in round n. Let N1 denote the exploration horizon in the
upstream problem. Thus the representation learning reduces to obtaining the estimates Θ̂ = B̂Ŵ

with the goal of minimizing the cost function f(B̂, Ŵ )

f(B̂, Ŵ ) =

N1∑
n=1

T∑
t=1

∥yn,t − x⊤n,tB̂ŵt∥2, (2)

where B̂ ∈ Rd×r and Ŵ ∈ Rr×T . The cost function in Eq. (2) is non-convex, thus challenging to
solve. Let Θ⋆ SVD

= B⋆ΣV ⋆ := B⋆W ⋆, B⋆ ∈ Rd×r, Σ ∈ Rr×r, and V ⋆ ∈ Rr×T , denote (rank r)
singular value decomposition. ThusB⋆, V ⋆

⊤
are basis matrices andW ⋆ := ΣV ⋆. The maximum and

minimum singular values of Σ are σ⋆max and σ⋆min, respectively, and condition number κ :=
σ⋆
max

σ⋆
min

.
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Algorithm 1 Explore-then-Commit (EtC) Algorithm for Representation Learning in Linear Bandits

1: Parameters: Total number of rounds, N ; Number of rounds for exploration step, N1; Multiplier
in specifying α for init step, C̃ = 9κ2µ2; θ̂t ← 0 for all t ∈ [T ]

2: for n← 1, · · · , N1 do
3: For every task t ∈ [T ], randomly select an action xn,t and observe yn,t.
4: end for
5: Compute YN1,t = [y1,t, · · · , yN1,t]

⊤, ΦN1,t = [x1,t, · · · , xN1,t]
⊤ for t ∈ [T ]

6: Spectral Initialization
7: Yt,trunc(α) := YN1,t ◦ 1{|YN1,t|⩽

√
α}, where α = C̃

N1T

∑N1,T
n=1,t=1 y

2
n,t

8: Θ̂0 := 1
N1

∑T
t=1 Φ

⊤
N1,t

Yt,trunc(α)e
⊤
t

9: Set B̂ ← top-r-singular-vectors of Θ̂0

10: Update ŵt, θ̂t: For each t ∈ [T ], set ŵt ← (ΦN1,tB̂)†YN1,t and set θ̂t = B̂ŵt
11: for n← N1 + 1, · · · , N do
12: For each task t ∈ [T ]: choose action xn,t = argmaxx∈X x

⊤θ̂t, and obtain yn,t
13: end for

Transfer learning in linear bandits: In the transfer (downstream) learning setting, the agent is
assigned a new unseen target task T + 1. Let N2 denote the learning horizon of the target task.
During rounds n ∈ [N2], the target task selects an action xn,T+1 ∈ X , and receives a reward
yn,T+1 = x⊤n,T+1θ

⋆
T+1 + ηn,T+1. The target task shares the same feature extractor B⋆ with the

source tasks, specifically θ⋆T+1 = B⋆w⋆T+1. The objective of the target task is to utilize the common
feature extractor learned from the source tasks to more accurately estimate its own parameter θ⋆T+1,
i.e., to minimize the (pseudo) regret of the target task

RN2,T+1 :=

N2∑
n=1

x⋆
⊤

n,T+1θ
⋆
T+1 −

N2∑
n=1

x⊤n,T+1θ
⋆
T+1.

Other assumptions: We now present the other assumptions used in our theoretical analysis.
Assumption 3.1 (Distribution of Feature Vectors and Noise). We assume that for every source task
t ∈ [T ], the feature vector xn,t follows a standard Gaussian distribution. The noise ηn,t is assumed
to be i.i.d. Gaussian with zero mean and variance σ2.
Assumption 3.2 (Bounded Norm of Task Parameter). We assume the existence of constants l and u,
where 0 < l ⩽ u such that l ⩽ ∥w⋆t ∥2 ⩽ u for all t ∈ [T ].

Assumption 3.2 implies column-wise incoherence of the true reward matrix Θ⋆—elaborated in
Appendix A. This is critical for interpolating across columns based on localized observations yn,t that
depend only on individual columns of Θ⋆. Incoherence of the ground-truth matrices is a key property
required for efficient matrix estimation and other sensing problems with sparse measurements [49, 50]
and has been used in recent theoretical works on representation learning [1, 15, 21]. Assumption 3.1
is utilized in obtaining the estimation guarantees for B̂ using spectral initialization. We note that
Assumption 3.1 applies to the source tasks but not to the transfer learning for the target task. Relaxing
the Gaussian model on source task features and noise is a part of our future work.

4 Multi-Task Representation Learning for Linear Bandits
4.1 Proposed Explore-then-Commit Algorithm

This section introduces our proposed Explore-then-Commit (EtC) algorithm for multi-task represen-
tation learning in linear bandits. Our algorithm consists of two phases: an exploration phase and
a commit phase. During the exploration phase, the algorithm collects data by exploring the action
space. The goal is to gather sufficient information, using as few samples as possible, to estimate
the shared feature extractor. Based on the knowledge obtained during the exploration phase, the
algorithm estimates the unknown parameters and commits to a fixed or near-optimal strategy (policy
or model) for subsequent decisions. The pseudocode of the algorithm is given in Algorithm 1.

Exploration and spectral initialization for estimating (B̂, Ŵ ): In the exploration phase, for each
round and task, n ∈ [N1] and t ∈ [T ], actions xn,t are chosen randomly. After exploration, our
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proposed algorithm estimates the shared feature extractor and reward parameters Θ̂ = B̂Ŵ by
minimizing the cost function f(B̂, Ŵ ) in Eq. (2). Due to the non-convex nature of f(B̂, Ŵ ), we
implement a spectral initialization to estimate B̂ and subsequently use the least squares estimator to
estimate ŵt for each task t ∈ [T ] separately. Our goal is to use as few samples (exploration rounds)
as possible. The Method-of-Moments (MoM) estimator in [1] does not bound ∥Θ̂−Θ⋆∥ under the
desired sample complexity. We provide a detailed explanation in Appendix B. We also demonstrate
the effectiveness of our approach as compared to MoM-based approach through simulations. We
address this by borrowing the truncation idea from the phase retrieval literature [49, 51, 28]. Spectral
initialization was employed in [28] for initializing the alternating gradient descent and minimization
estimator. While we utilize spectral initialize, we do not employ the alternating approach from [28].
Define the data matrices YN1,t := [y1,t, · · · , yN1,t]

⊤ and ΦN1,t := [x1,t, · · · , xN1,t]
⊤, for t ∈ [T ].

Using the proposed spectral initialization, we define B̂ as the top-r singular vectors of

Θ̂0 :=
1

N1

T∑
t=1

Φ⊤
N1,tYt,trunc(α)e

⊤
t ,

where Yt,trunc(α) := YN1,t ◦ 1{|YN1,t|⩽
√
α} and α = C̃

N1T

∑N1,T
n=1,t=1 y

2
n,t. Here, C̃ = 9κ2µ2 is a

constant. Note that the summation includes only those n, t for which y2n,t is not excessively large,
i.e., not significantly larger than its empirically computed average. This truncation filters out outlier-
like measurements, focusing on the remaining values. Theoretically, this transformation converts
the summands into sub-Gaussian random variables with lighter tails compared to the untruncated
counterparts, enabling us to establish the desired concentration bound. After fixing the estimate B̂,
we perform T independent least squares to estimate ŵt in Eq. (2) as given below.

ŵt = (ΦN1,tB̂)†YN1,t, for t ∈ [T ].

The estimates for θ⋆t are given by θ̂t = B̂ŵt. Proposition B.1 [28] provides guarantees of the subspace
distance for spectral initialization; with high probability, we have SD(B̂, B⋆) ⩽ δ0, for δ0 < 0.1.

Commit phase: Each task t ∈ [T ] uses the estimates θ̂t = B̂ŵt obtained from the exploration phase
to greedily choose actions that maximize the expected reward. We present the guarantees below.

4.2 Main Results and Guarantees of Algorithm 1
We first present a bound for the estimation error ∥B̂ŵt − B⋆w⋆t ∥ after the exploration phase of
Algorithm 1 and then bound the cumulative regretRN,T .
Theorem 4.1. Assume Assumptions 3.1, 3.2 hold, and the noise-to-signal ratio NSR ⩽

cTδ20
r2κ4σ⋆2

minN1
∥θ⋆t ∥2. Pick a δ0 < 0.1. If N1 ⩾ Cmax(log d, log T, r) and N1T ⩾ Cµ2κ4 dr

2

δ20
,

then for each task t ∈ [T ], with probability at least 1− 6d−10, Algorithm 1 at the end of exploration
achieves

∥B̂ŵt −B⋆w⋆t ∥ ⩽
(
1.12 +

c

κ2r
√
N1

)
µ

√
r

T
σ⋆maxδ0.

The proof of Theorem 4.1 is given in Appendix C. Under the stated assumptions and sample
complexity requirements for the exploration step, we develop a high-probability upper bound on
∥B̂ŵt−B⋆w⋆t ∥. The total number of source samples needed for the exploration stepN1T is inversely
related to δ0. Thus to achieve a smaller δ0, i.e., a tighter error bound ∥B̂ŵt−B⋆w⋆t ∥, a larger sample
size is required. This highlights the trade-off between sample complexity and estimation accuracy.
Remark 4.2. Our guarantees hold when the noise-to-signal ratio (NSR) is below a threshold that
depends on the number of source task samples, reflecting the increasing accuracy of the estimated
representation with more data. NSR in low-rank estimation is defined as the ratio of the maximum
eigenvalue of E[µµ⊤] =

∑
t E[µtµ⊤

t ] = Tσ2I to the minimum nonzero eigenvalue of Θ⋆Θ⋆⊤, which
is σ⋆

2

min. This definition ensures that we are considering the ratio between the worst-case (largest)
noise power in any direction to the smallest signal power in any direction. Thus NSR := Tσ2

σ⋆2
min

.

Theorem 4.3. Assume Assumptions 3.1, 3.2 hold, and NSR ⩽ cTδ20
r2κ4σ⋆2

minN1
∥θ⋆t ∥2. Pick a δ0 < 0.1.

If N1 ⩾ Cmax(log d, log T, r) and N1T ⩾ Cµ2κ4 dr
2

δ20
, then for any δ ∈ (0, 1), with probability at
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Algorithm 2 OFUL-Based Meta Bandit Learning using Shared Representations

1: Set number of rounds for target task, N2; V̄0,T+1 = λI

2: Perform representation learning using source tasks and estimate B̂ using Algorithm 1 from line 1
to line 10

3: for n← 1, · · · , N2 do
4: Construct the confidence ellipsoid βn as Eq (4)
5: Choose the action-estimate pair (xn,T+1, θ̃n,T+1) = argmaxx∈X ,θ∈βn

x⊤θ
6: Play action xn,T+1 and receive the reward yn,T+1

7: Update V̄n,T+1 = V̄n−1,T+1 + xn,T+1x
⊤
n,T+1, Vn,T+1 = B̂⊤V̄n,T+1B̂,

ŵn,T+1 = (B̂⊤V̄n,T+1B̂)−1
∑n
m=1 B̂

⊤xm,T+1ym,T+1, θ̂n,T+1 = B̂ŵn,T+1

8: end for

least 1− 4δ − 6d−10, the cumulative regret of Algorithm 1 is bounded by

RN,T ⩽ 2uT

√
N log

1

δ
log

NT

δ
+ 4µσ⋆maxδ0

(
1.12 +

c

κ2r
√
N1

)√
rNT log

1

δ
log

NT

δ
.

4.3 Proof Sketch (Details in Appendices C and D)
Complete proof of Theorem 4.3 is given in Appendix D. Using spectral initialization, we have the
guarantee for the estimate of the shared model B⋆ as SD(B̂, B⋆) ⩽ δ0, for δ0 < 0.1. The least
squares estimate of W ⋆ is given by

ŵt = (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1(ΦN1,tB̂)⊤YN1,t. (3)

By substituting YN1,t = ΦN1,tB
⋆w⋆t +HN1,t, where Hn,t = [η1,t · · · ηn,t]⊤, we can rewrite Eq. (3)

ŵt = (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t + B̂⊤B⋆w⋆t + (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t .

We multiply both sides by B̂ and simplify further to derive

B̂ŵt −B⋆w⋆t = B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t + (B̂B̂⊤ − I)B⋆w⋆t
+ B̂(B̂⊤Φ⊤

N1,tΦN1,tB̂)−1B̂⊤Φ⊤
N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t .

To bound ∥B̂ŵt −B⋆w⋆t ∥, we utilize the Cauchy-Schwarz inequality, Proposition B.1, and Bernstein
inequality. To bound the total cumulative regretRN,T we bound the cumulative regret from explo-
ration phaseR1

N,T , and cumulative regret of commit phaseR2
N,T separately and combine these two

bounds. To bound each of these terms, we use a combination of Azuma-Hoeffding inequality and the
bound of ∥B̂ŵt −B⋆w⋆t ∥ from Theorem 4.1.
Remark 4.4. By Theorem 4.3, the cumulative regret is linear in the number of source tasks T .
However, under Assumption 3.2, we demonstrate in Appendix A that the ground-truth matrix is
incoherent, i.e., its column norms have similar magnitudes. Incoherence is essential since our
measurement matrices are column-wise sparse. Utilizing this, we have a sublinear regret guarantee,
RN,T = Õ(

√
rNT ). [8] provided a lower bound for the cumulative regret under the infinite action

set setting. In their scenario, the regret during the exploration phase increases linearly with T . This
result is based on a more stringent assumption: the action set for all tasks and all steps is the same
well-conditioned d-dimensional ellipsoids, which cover all directions nicely.

5 Transfer Learning in Bandits using Shared Representations

5.1 Proposed OFUL-Based Meta Bandit Learning Algorithm

This section presents our proposed OFUL meta-learning algorithm for linear bandits, consisting of T
source tasks and a target task (T +1). The algorithm consists of two key phases: first, collaboratively
learning a shared feature extractor B̂ from the T source tasks; and second, leveraging B̂ to construct
and maintain a confidence ellipsoid for the target task parameter θ⋆T+1. The pseudocode is provided in
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Algorithm 2. In this section, we relax Assumption 3.1, which was essential in Section 4 for estimating
the feature representation. Here we assume the noise ηn,T+1s are independent 1-sub-Gaussian
random variables and ∥xn,T+1∥2 ⩽ L, for L > 0, which is a standard assumption in the literature.

Obtain estimate B̂ from source tasks: We first estimate the shared feature B⋆ via exploration of T
source tasks followed by spectral initialization as described in Section 4. Using the estimate B̂ we
construct a confidence set such that with high probability θ⋆T+1 lies in the confidence set.

Construction of the confidence ellipsoid βn and estimate ŵT+1: After estimating B̂ from the source
tasks, in each round n ∈ [N2], the target task T +1 constructs a confidence ellipsoid βn that contains
the unknown reward parameter θ⋆T+1. The target task then computes an optimistic estimate θ̃n,T+1 =

argmaxθ∈βn
(maxx∈X x

⊤θ) and chooses action xn,T+1 = argmaxx∈X x
⊤θ̃n,T+1 to maximize the

reward based on θ̃n,T+1. Alternatively, the pair (xn,T+1, θ̃n,T+1) is chosen as (xn,T+1, θ̃n,T+1) =
argmaxx∈X ,θ∈βn

x⊤θ, optimizing the expected reward. We denote the feature vector and reward as
xn,T+1, yn,T+1, respectively. We use the data to update the estimated reward parameter θ̂n,T+1 and
refine the confidence ellipsoid βn. At each round n ∈ [N2], we perform ℓ2 least squares estimation
with a regularization parameter λ > 0 on the data to estimate ŵn,T+1 by minimizing

argmin
w∈Rr

n∑
m=1

∥ym,T+1 − x⊤m,T+1B̂w∥2 + λ∥w∥22.

From the least squares estimate ŵn,T+1 and the estimate B̂ from source tasks, we have θ̂n,T+1 =

B̂ŵn,T+1. We define d × d positive definite matrice V̄n,T+1 = λI + Φ⊤
n,T+1Φn,T+1 and r × r

positive definite matrice Vn,T+1 = B̂⊤V̄n,T+1B̂, where Φn,T+1 = [x1,T+1, · · · , xn,T+1]. Using
the estimate θ̂n,T+1, we construct a confidence ellipsoid βn as in Eq. (4). One of the main technical
contributions in this section is the construction of a tighter confidence ellipsoid to estimate θ⋆T+1 in
the target task. Theorem 5.1 guarantees that with high probability, θ⋆T+1 ∈ βn for all n ∈ [N2].

5.2 Main Results and Guarantees for OFUL Algorithm

This section presents the main theoretical results for Algorithm 2. We provide guarantees to show
that the true reward parameter θ⋆T+1 lies inside the confidence ellipsoid with high probability, as well
as the upper bound on cumulative regret for the target task with high probability.
Theorem 5.1. Assume Assumptions 3.1, 3.2 hold, ∥θ⋆T+1∥2 ⩽ S, and the noise-to-signal ratio

NSR ⩽ cTδ20
r2κ4σ⋆2

minN1
∥θ⋆t ∥2. Pick δ0 < 0.1. If N1 ⩾ Cmax(log d, log T, r) and N1T ⩾ Cµ2κ4 dr

2

δ20
,

then for any δ ∈ (0, 1) and n ∈ [N2], for the target task T + 1, it is guaranteed with probability at
least 1− δ − 2d−10 that θ⋆T+1 is contained within the set

βn =

θ ∈ Rd : ∥θ̂n,T+1 − θ∥V̄n,T+1
⩽ σ

√
2 log

det(Vn,T+1)
1
2 det(λI)−

1
2

δ
+ ((1 + δ0)

√
λ+ 2

√
nLδ0)S

.
(4)

Furthermore, if N1T ⩾ Cµ2κ4L2dr2N2, then w.p at least 1− δ− 2d−10, θ⋆T+1 is contained within

β′
n =

{
θ ∈ Rd : ∥θ̂n,T+1 − θ∥V̄n,T+1

⩽ σ

√
r log

1 + nL2/λ

δ
+
(√
λ+

√
λ√

N2L
+ 2

√
n

N2

)
S

}
.

Proof of Theorem 5.1 is presented in Appendix E. Theorem 5.1 proves that, if the sample complexity
conditions for the source task are satisfied, the true reward parameter for the target task θ⋆T+1
consistently lies within the built confidence ellipsoid βn with high probability. Our approach builds
upon the concepts introduced in [22], which constructs a confidence ellipsoid for a single bandit
problem. A comparative analysis shows that the confidence set scales with

√
d in Theorem 2 [22],

while our results achieve
√
r. Since r ≪ d, our approach improves the bound, validating the

advantages of transfer learning over the naive approach of independently learning the target task.
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Theorem 5.2. Assume Assumptions 3.1, 3.2 hold, ∥θ⋆T+1∥2 ⩽ S, and the noise-to-signal ratio

NSR ⩽ cTδ20
r2κ4σ⋆2

minN1
∥θ⋆t ∥2. If N1 ⩾ Cmax(log d, log T, r) and N1T ⩾ Cµ2κ4L2dr2N2, then for

any δ ∈ (0, 1), w.p at least 1− δ − 2d−10, cumulative regret of Algorithm 2 for target task T + 1 is

RN2,T+1 ⩽ 2

√
2dN2 log

(
1 +

N2L2

λ

)
·

(
σ

√
r log

(
1 +N2L2/λ

δ

)
+ (
√
λ+

√
λ√

N2L
+ 2)S

)
.

Proof of Theorem 5.2 is given in Appendix F. Theorem 5.2 shows that the bound on cumulative
regret for the target task is Õ(

√
drN2). Applying the method from [22] directly to learn the target

bandit task will result in an Õ(d
√
N2) regret. Given that r ≪ d, our approach provides a significant

improvement, validating the benefit of transfer learning.

5.3 Proof Sketch (Details in Appendices E and F)

Define V̄n,T+1 = λI + Φ⊤
n,T+1Φn,T+1 and Vn,T+1 = B̂⊤V̄n,T+1B̂, where Φn,T+1 =

[x1,T+1, · · · , xn,T+1]. Using spectral initialization, we have SD(B̂, B⋆) ⩽ δ0, for δ0 < 0.1. The
least squares estimator with ℓ2 regularization is given by

ŵn,T+1 = V −1
n,T+1(Φn,T+1B̂)⊤Yn,T+1.

By substituting Yn,T+1 = Φn,T+1B
⋆w⋆T+1 +Hn,T+1, where Hn,t = [η1,t · · · ηn,t]⊤, we derive

ŵn,T+1 = V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 − λV −1

n,T+1B̂
⊤B⋆w⋆T+1

+ B̂⊤B⋆w⋆T+1 + V −1
n,T+1B̂

⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1.

Consider vector z ∈ Rd. By multiplying both sides by z⊤B̂ and utilizing the Cauchy–Schwarz
inequality, we obtain

|z⊤(θ̂n,T+1 − θ⋆T+1)| ⩽ λ∥B̂⊤z∥V −1
n,T+1

∥B̂⊤θ⋆T+1∥V −1
n,T+1

+ |B̂⊤z∥V −1
n,T+1

∥B̂⊤Φ⊤
n,T+1Hn,T+1∥V −1

n,T+1

+ |z⊤(B̂B̂⊤ − I)θ⋆T+1|+ ∥B̂⊤z∥V −1
n,T+1

∥B̂⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1∥V −1

n,T+1
.

By setting z = V̄n,T+1(θ̂n,T+1 − θ⋆T+1), we bound each term in the above equation. We use linear
algebra concepts, similar techniques as in Theorem 1 in [22], Cauchy–Schwarz inequality, and
SD(B̂, B⋆) ⩽ δ0 guarantee from Section 4, to bound ∥θ̂n,T+1 − θ⋆T+1∥V̄n,T+1

. To bound regret
RN,T+1, we use a combination of Cauchy-Schwarz inequality and Theorem 5.1.
Sample Complexity of Meta-Learned Regression: We present a meta-learned linear regression
model that uses the learned B̂ and then estimates ŵT+1 from N2 target samples. We show that the
number of target samples required is O(max(log d, log T, r)) when using the estimate B̂, which is a
significant reduction from direct learning (Appendix G).

6 Simulations
This section presents the experimental evaluation of our proposed approaches using both synthetic
and real-world datasets. We considered two benchmark approaches: (i) a naive approach that
independently solves T tasks using the Thompson Sampling (TS) algorithm or the UCB algorithm,
and (ii) MoM-based estimator from [1, 8, 15]. The MoM estimator, introduced in [1] for estimating
the feature matrix, serves as a baseline for our representation learning approach and has also been
utilized in [8, 15]. The MoM estimator estimates the representation matrix B̂ by calculating the
top-r singular vectors of the matrix Θ̂ = 1

N1T

∑N1,T
n=1,t=1 y

2
n,txn,tx

⊤
n,t. The other existing approaches

assume a convex relaxation technique in their simulations without learning the representation from
the non-convex cost function. The naive approach serves as the performance benchmark for solving
the tasks independently rather than jointly. In both the representation learning and transfer learning
settings, the reward noise ηn,t is sampled from a zero-mean Gaussian distribution with variance
10−6 for the representation learning and 10−2 for the transfer learning. We present some additional
experiments, including a comparison with the convex relaxation approach in Appendix H.
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6.1 Datasets

Synthetic data: The B⋆ ∈ Rd×r matrix is generated by orthonormalizing an i.i.d. standard Gaussian
matrix, and W ⋆ ∈ Rr×T is generated from an i.i.d. Gaussian distribution. The feature matrices Φn,ts
are generated from the standard Gaussian distribution. We set d = 100, T = 100, and r = 2, and
alter the parameters d, T , and r in the experiments to assess performance. In the transfer learning
setting, we utilize d = 100, T = 200, and r = 2. All results are averaged over 100 independent trials.
The error bars show standard errors, calculated as standard deviations divided by

√
100.

Movielens: We utilized the Movielens-100K dataset [52], which contains user ratings for movies.
After pre-processing the data through collaborative filtering to address missing values, we created a
rating matrix R ∈ R943×1682 and normalized the scores from 0 to 5 by dividing by 5. We applied
non-negative matrix factorization (NMF) with a latent factor dimension of

√
d, resulting in the

factorization R = UM , where U ∈ R943×
√
d and M ∈ R

√
d×1682. We consider each user as a

separate task. For every task t, we obtain the feature vector xn,t ∈ Rd by computing the outer product
of the t-th row of U and a certain column of M . Thus, the true reward parameter for any task t is
represented by the vectorized form of the identity matrix I√d. Given that all tasks share a common
reward parameter, the matrix Θ⋆ has rank 1. We set parameters as: d = 100, T = 10, and r = 1.

LastFM: The LastFM dataset is from the online music streaming service Last.fm, including data for
1892 users and 17632 artists. We retain only those artists who have been listened to by a minimum of
30 users and only those users who have listened to at least 30 artists. For artists for whom the user
has not engaged, we assign a reward of 0. We treat the listening count as the reward and subsequently
normalize it to the interval [0, 1], yielding a reward matrix R ∈ R741×538. Similarly to the Movielens
datasets, we utilize NMF with a latent factor dimension of d, resulting in the factorization R = UM ,
where U ∈ R741×d and M ∈ Rd×538. We consider each user as a separate task. For every task t, we
formulate the feature vector xn,t ∈ Rd by computing the element-wise product of the t-th row of U
and a column of M . The reward parameter for all tasks is specified as a vector of ones in Rd. Thus,
Θ⋆ has a rank of 1. We set parameters as: d = 100, T = 10, and r = 1.

6.2 Results and Discussion

Representation learning: We evaluated the performance of our proposed algorithm against two
benchmarks: the MoM estimator and a naive TS-based algorithm. Figure 1a presents the cumulative
regret plots comparing the three algorithms for synthetic data. Figures 1d, 1e, and 1f present
the cumulative regret plots for our approach after varying the rank, the number of source tasks,
and the feature dimension, respectively. The figures indicate that as the dimension d increases,
meaning a more complex model, the cumulative regret increases. Conversely, as the number of tasks
increases, indicating enhanced collaboration among tasks, the cumulative regret (summed over all
tasks) increases; however, per-task cumulative regret decreases, as expected. Our plots show that
increasing the number of tasks, enhancing collaboration reduces cumulative regret. In contrast, a
higher rank leads to an increased cumulative regret, as expected. Figure 1b compares the performance
of the proposed algorithm with respect to the benchmark algorithms for the Movielens data. Figure 1c
compares the performance using LastFM. In the exploration phase of LastFM, the naive-UCB
approach achieves a lower regret since it undergoes estimation in every step, whereas the proposed
approach incurs regret due to its random exploration phase. However, after initialization, the proposed
approach outperforms the naive method by a significant margin. Throughout all experiments, our
proposed algorithm consistently outperforms the two benchmarks. Appendix H presents additional
results.

Transfer learning: We evaluated the performance of our proposed approach for a new target task
and compared it with the two benchmarks: Naive-UCB: a baseline that applies the UCB algorithm
[22] directly for the target task without leveraging the source tasks, (ii) MoM-UCB: a variant of
our algorithm that substitutes our spectral initialization with the MoM estimator introduced in [1].
Figures 1a, 1b , and 1c present the cumulative regret plots for the target task using synthetic data,
the Movielens dataset, and the LastFM dataset, respectively, comparing the three algorithms. Our
proposed algorithm consistently outperforms the two benchmark algorithms in all experiments.The
naive approach presents inadequate generalization due to a lack of shared structure, whereas the
MoM-based approach underperforms because the estimator cannot recover an effective representation
matrix B̂ in limited source data.
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Figure 1: Results of representation learning: In the plots the y-axis is cumulative regret for T tasks,RN,T and
x-axis is round N . Figures 1a, 1d , 1e , and 1f present results for synthetic data for d = 100, T = 100, N1 = 45,
and N = 200. Figures 1a, 1b, and 1c compare our proposed (EtC) algorithm against benchmark approaches
(MoM and Naive) for synthetic, Movielens, and LastFM datasets. Figure 1d present plots by varying rank r
as {2, 4, 6}. Figure 1e presents plots varying the number of source tasks T as {40, 50, 60}. Figure 1f presents
plots varying the feature dimension d as {100, 150, 200}. Figures 1b and 1c present the results for Movielens
data and LastFM data, respectively. The parameters are set as d = 100, T = 10, r = 1, N1 = 300, N = 1000.

0 50 100 150 200
Round, N

0

25

50

75

100

125

150

175
Synthetic data: d= 100, T= 200, r= 2, N1 = 400

Proposed Algorithm
Naive-UCB
MoM-UCB

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Round, N 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e4 Movielens data: d= 100, T= 10, r= 1, N1 = 1000

Proposed Algorithm
Naive-UCB
MoM-UCB

(b)

0 1 2 3 4 5
Round, N 1e5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1e4 LastFM: d= 100, T= 10, r= 1, N1 = 500

Proposed Algorithm
Naive-UCB
MoM-UCB

(c)

Figure 2: Results of transfer learning: Cumulative regret of target task vs. round. Figure 2a is for synthetic
data for d = 100, T = 200, r = 2, N1 = 400. Figure 2b is for Movielens data for d = 100, T = 10, r = 1,
N1 = 1000. Figure 2c is for LastFM data for d = 100, T = 10, r = 1, N1 = 500.

7 Conclusion

This paper studied meta-learning of linear representations for linear bandits. We considered the
upstream problem, which focuses on learning a shared representation from T source tasks, and the
downstream problem, which focuses on transferring the shared model to an unseen target task. We
proposed an explore-then-commit algorithm for the upstream problem and provided convergence
guarantees with regret and sample complexity bounds. Using the learned representation, we proposed
an OFUL algorithm based on a confidence ellipsoid to transfer the knowledge from the source tasks to
the target task. We proved the regret bound for our OFUL approach and sample complexity bound for
the meta-learned regression. Finally, we evaluated the performance of our approach using synthetic
data sets and two real-world data sets and compared them with benchmark approaches. As part of
future work, we aim to relax Assumption 3.1 to accommodate more general feature distributions.
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A Preliminaries

We present two concentration inequalities that are used in ur analysis in this paper.
Proposition A.1 (Azuma-Hoeffding Inequality). Let {Mj : j = 0, 1, 2, 3, · · · } be a martingale and
|Mj −Mj−1| ⩽ Qj almost surely. Then for all positive integers N and all positive reals b,

P[|MN −M0| ⩾ b] ⩽ exp

(
− b2

2
∑N
j=1Q

2
j

)
Proposition A.2 (Theorem 2.8.1, [53]). LetX1, · · · , XN be independent, mean zero, sub-exponential
random variables. Then, for every g ⩾ 0, we have

P
{
|
N∑
i=1

Xi| ⩾ g
}
⩽ 2 exp

[
−cmin

(
g2∑N

i=1 ∥Xi∥2ψ1

,
g

maxi ∥Xi∥ψ1

)]
,

where c > 0 is an absolute constant.

Definition A.3. (Incoherence) A rank-r matrix M ∈ Rd1×d2 is defined as µ-column-wise incoherent
if for every column mi ∈ Rd1 of M , maxi∈[d2] ∥mi∥2 ⩽ µ

√
d1
d2
∥M∥2, where µ ⩾ 1 is a constant

that remains invariant with respect to d1, d2, r.

According to Assumption 3.2, it follows that

∥W ⋆∥F =

√√√√ T∑
t=1

∥w⋆t ∥22 ⩾
√
T l.

Also, the Frobenius norm of W ⋆ satisfies

∥W ⋆∥F =

√√√√ r∑
i=1

σ2
i (W

⋆) ⩽
√
rσ⋆max.

Thus, by defining µ = u
l ⩾ 1, the norm of the task parameter satisfies

∥w⋆t ∥2 ⩽ u =
u

l

√
T l√
T

⩽
u

l

√
r

T
σ⋆max = µ

√
r

T
σ⋆max.

As stated in Definition A.3, the matrix W ⋆ is µ-column-wise incoherent.
Definition A.4. For the purpose of simplification in the demonstration, we define the matrices and
vectors as follows:

• Φn,t := [x1,t · · ·xn,t]⊤,

• Yn,t = [y1,t · · · yn,t]⊤, and

• Hn,t = [η1,t · · · ηn,t]⊤.

B Spectral Initialization vs. MoM Estimator

Spectral Initialization: Learning the shared model is inherently a non-convex problem. In this work,
we propose a solution to estimate the unknown reward matrix Θ⋆ by addressing the non-convex
optimization problem via a spectral initialization approach.

The standard approach used for initializing iterative algorithms for low-rank matrix estimation is to
compute the top r left singular vectors of the matrix

Θ̂0,full =
1

N1
[Φ⊤
N1,1YN1,1, . . . ,Φ

⊤
N1,TYN1,T ]

=
1

N1

T∑
t=1

N1∑
n=1

xn,tyn,te
⊤
t .
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Note that E[Θ̂0,full] = Θ⋆. To demonstrate the effectiveness of this initialization approach, a sin-Θ
theorem, such as Davis-Kahan or Wedin, is typically employed to bound SD(B⋆, B̂) in terms of
quantities dependent on Θ̂0,full − Θ⋆. Therefore, the first requirement is to establish a bound for
Θ̂0,full−Θ⋆. We note that, the summands of Θ̂0,full and hence of Θ̂0,full−Θ⋆, are sub-exponential
r.v.s. These can be bounded using the sub-exponential Bernstein inequality in Proposition A.2.
This requires to bound the maximum sub-exponential norm of any summand, say we denote it as
Km. For our summands, we can only guarantee Km ⩽ (1/N1)maxt ∥θ⋆t ∥ ⩽ (1/N1)µ

√
r/Tσ⋆max.

This is not small enough, i.e., the summands are not nice enough sub-exponentials. It will require
N1T ⪰ (d + T )r

√
T which is too large. To show that ∥Θ̂0,full∥ ⩽ cσ⋆max with high probability

under the desired sample complexity, we need Km to be of order (r/T ) or smaller. To achieve this
we propose a truncation strategy, referred to as spectral initialization [28, 54].

Spectral initialization estimates the common feature extractor B̂ based on the data gathered from
different tasks. Unlike the MoM approach described in Algorithm 1 of [1], our approach uses a
truncation strategy to guarantee that the norm ∥Θ̂ − Θ⋆∥ is bounded within the desired sample
complexity. We define B̂ as the top-r singular vectors of

Θ̂0 :=
1

N1

T∑
t=1

Φ⊤
N1,tYt,trunc(α)e

⊤
t ,

where Yt,trunc(α) := YN1,t ◦ 1{|YN1,t|⩽
√
α} and α = C̃

N1T

∑N1,T
n=1,t=1 y

2
n,t. We present the pseu-

docode of the spectral initialization approach below.

We have the following guarantee from [28] for spectral initialization in linear contextual multi-task
bandits. Proposition B.1 provides an error guarantee for the subspace distance between the estimated
feature extractor B̂, obtained through spectral initialization, and the true feature extractor B⋆.
Proposition B.1 (Theorem 5.1, [28]). Assume that the noise-to-signal ratio NSR ⩽

cTδ20
r2κ4σ⋆2

minN1
∥θ⋆t ∥2. Pick a δ0 ⩽ 0.1, then with probability at least 1− exp(log T − cN1)− exp(d−

cδ20N1T
r2µ2κ4 ), we have

SD(B̂, B⋆) ⩽ δ0.

Method of Moments (MoM) Estimator: Estimation guarantee using MoM estimator given in [1]
requires the number of source task samples for each task N ≳ polylog(N, d, T )(κr)4 max(d, T ).
Our estimator, on the other hand, requires N ≳ max(log T, log d, r). Estimation guarantee in [1],

Theorem 2, provides a subspace distance sin θ(B̂, B⋆) = Õ
(√

max(d,T )r logN
N

)
. Õ(·) here hides the

logarithmic terms and constant terms. It is shown that the MoM estimator achieves close-to-optimal
estimate if the number of tasks is bounded as T ≤ O(d). On the other hand, we provide an optimal
estimation guarantee of δ0, i.e., SD(B̂, B⋆) ⩽ δ0, where δ0 < 0.1, under the given sample complexity.
Since our problem setting involves scenarios where the number of tasks T is independent of the
feature dimension d, the MoM estimator is not directly applicable in our setting.

C Proof of Theorem 4.1

In this section we present the proof of Theorem 4.1. We first present the following lemma which is
used in the proof of Theorem 4.1.
Lemma C.1. Assume Assumption 3.1 holds. After the exploration step, for each task t ∈ [T ], with
probability at least 1− 2 exp(log T + r − cN1), we have

∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t∥ ⩽
1

9
σ

Proof. To determine the upper bound for the term ∥B̂(B̂⊤Φ⊤
N1,t

ΦN1,tB̂)−1B̂⊤Φ⊤
N1,t

HN1,t∥, we
perform a thorough analysis as follows:

∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t∥ = ∥(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,tB̂∥

⩽ ∥(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1∥∥B̂⊤Φ⊤

N1,tHN1,tB̂∥
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Let us consider a fixed z ∈ Sr. We have

z⊤B̂⊤Φ⊤
N1,tΦN1,tB̂z =

N1∑
m=1

z⊤B̂⊤xm,tx
⊤
m,tB̂z

Furthermore, we find that

E[z⊤B̂⊤xm,tx
⊤
m,tB̂z] = z⊤B̂⊤E[xm,tx⊤m,t]B̂z = z⊤B̂⊤B̂z = 1

and also
E[z⊤B̂⊤xm,t] = 0

Var(z⊤B̂⊤xm,t) = E[z⊤B̂⊤xm,tx
⊤
m,tB̂z] = 1

The summands are independent sub-exponential random variables with norm Km ⩽ 1. We apply
sub-exponential Bernstein inequality stated in Proposition A.2 by setting g = ϵ1N1. In order to
implement this, we show that

g2∑N1

m=1K
2
m

⩾
ϵ21N

2
1

N1
= ϵ21N1

g

maxmKm
⩾

ϵ1N1

maxm 1
= ϵ1N1

Therefore, for a fixed z ∈ Sr, with probability at least 1− exp(−cϵ21N1),

z⊤B̂⊤Φ⊤
N1,tΦN1,tB̂z −N1I ⩾ −ϵ1N1

Using epsilon-net over all z ∈ Sr adds a factor of exp(r). Thus, with probability at least 1− exp(r−
cϵ21N1), we have minz∈Sr z

⊤B̂⊤Φ⊤
N1,t

ΦN1,tB̂z ⩾ (1− ϵ1)N1. Then, the above holds for all t ∈ [T ]

with probability at least 1− exp(log T + r − cϵ21N1). Setting ϵ1 = 0.1, we obtain

∥(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1∥ = 1

σmin(B̂⊤Φ⊤
N1,t

ΦN1,tB̂)

=
1

minz∈Sr z
⊤B̂⊤Φ⊤

N1,t
ΦN1,tB̂z

⩽
1

0.9N1

Similarly, let us consider a fixed z̄ ∈ Sr. We have

z̄⊤B̂⊤Φ⊤
N1,tHN1,tB̂z̄ =

N1∑
m=1

z̄⊤B̂⊤xm,tηm,tB̂z̄

Furthermore, we find that

E[z̄⊤B̂⊤xm,tηm,tB̂z̄] = z̄⊤B̂⊤E[xm,tηm,t]B̂z̄ = z̄⊤B̂⊤E[xm,t]E[ηm,t]B̂z̄ = 0

and also
E[z̄⊤B̂⊤xm,t] = 0

E[ηm,tB̂z̄] = 0

Var(z̄⊤B̂⊤xm,t) = E[z̄⊤B̂⊤xm,tx
⊤
m,tB̂z̄] = z̄⊤B̂⊤E[xm,tx⊤m,t]B̂z̄ = z̄⊤B̂⊤B̂z̄ = 1

Var(ηm,tB̂z̄) = E[η2m,tz̄⊤B̂⊤B̂z̄] = E[η2m,t]z̄⊤B̂⊤B̂z̄ = σ2

The summands are independent sub-exponential random variables with norm Km ⩽ σ. We apply
sub-exponential Bernstein inequality stated in Proposition A.2 by setting g = ϵ2N1σ. In order to
implement this, we show that

g2∑N1

m=1K
2
m

⩾
ϵ22N

2
1σ

2

N1σ2
= ϵ22N1

g

maxmKm
⩾
ϵ2N1σ

σ
= ϵ2N1
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Therefore, for a fixed z̄ ∈ Sr, with probability at least 1− exp(−cϵ22N1),

z̄⊤B̂⊤Φ⊤
N1,tHN1,tB̂z̄ ⩽ ϵ2N1σ

Using epsilon-net over all z̄ ∈ Sr adds a factor of exp(r). Thus, with probability at least 1− exp(r−
cϵ22N1), we have maxz̄∈Sr z̄

⊤B̂⊤Φ⊤
N1,t

HN1,tB̂z̄ ⩽ ϵ2N1σ. Then, the above holds for all t ∈ [T ]

with probability at least 1− exp(log T + r − cϵ22N1). Setting ϵ2 = 0.1, we obtain

∥B̂⊤Φ⊤
N1,tHN1,tB̂∥ = max

z̄∈Sr
z̄⊤B̂⊤Φ⊤

N1,tHN1,tB̂z̄ ⩽ 0.1N1σ

We can combine these and apply the union bound. This leads us to conclude that with probability at
least 1− 2 exp(log T + r − cN1),

∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t∥ ⩽
1

0.9N1
0.1N1σ =

1

9
σ

Proof of Theorem 4.1:

We start by analyzing ŵt based on its least square estimation given by
ŵt = (B̂⊤Φ⊤

N1,tΦN1,tB̂)−1(ΦN1,tB̂)⊤YN1,t

= (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1(ΦN1,tB̂)⊤(ΦN1,tB

⋆w⋆t +HN1,t)

= (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t + (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,tB
⋆w⋆t

= (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t + (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,tB̂B̂
⊤B⋆w⋆t

+ (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t

= (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t + B̂⊤B⋆w⋆t

+ (B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t

Applying B̂ to both sides, we derive
B̂ŵt = B̂(B̂⊤Φ⊤

N1,tΦN1,tB̂)−1B̂⊤Φ⊤
N1,tHN1,t + B̂B̂⊤B⋆w⋆t

+ B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t

= B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t +B⋆w⋆t + (B̂B̂⊤ − I)B⋆w⋆t
+ B̂(B̂⊤Φ⊤

N1,tΦN1,tB̂)−1B̂⊤Φ⊤
N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t

Therefore, by applying the union bound, with probability at least 1− exp(log T − cN1)− exp(d−
cδ20N1T
r2µ2κ4 )− 4 exp(log T + r − cN1), we derive

∥B̂ŵt −B⋆w⋆t ∥ = ∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t + (B̂B̂⊤ − I)B⋆w⋆t
+ B̂(B̂⊤Φ⊤

N1,tΦN1,tB̂)−1B̂⊤Φ⊤
N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t ∥

⩽ ∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t∥+ ∥(B̂B̂⊤ − I)B⋆w⋆t ∥

+ ∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t ∥

⩽ ∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t∥+ ∥(B̂B̂⊤ − I)B⋆w⋆t ∥

+∥(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tΦN1,t(I − B̂B̂⊤)B⋆w⋆t ∥

⩽ ∥B̂(B̂⊤Φ⊤
N1,tΦN1,tB̂)−1B̂⊤Φ⊤

N1,tHN1,t∥+ (1 + 0.12)∥(I − B̂B̂⊤)B⋆∥∥w⋆t ∥
(5)

⩽
1

9
σ + 1.12µ

√
r

T
σ⋆maxδ0 (6)

⩽
c

κ2r
√
N1

∥θ⋆t ∥δ0 + 1.12µ

√
r

T
σ⋆maxδ0 (7)

⩽

(
1.12 +

c

κ2r
√
N1

)
µ

√
r

T
σ⋆maxδ0 (8)
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where Eq (5) is derived from Proposition B.1 in [28]. Eq (6) is derived from Proposition B.1 and
Lemma C.1. Eq (7) is derived from NSR ⩽ cTδ20

r2κ4σ⋆2
minN1

∥θ⋆t ∥2. Eq (8) is derived from ∥θ⋆t ∥ =

∥w⋆t ∥ ⩽ µ
√

r
T σ

⋆
max. To ensure probability at least 1 − 6d−10 guarantees for our theorem, it

is necessary to set the bounds for N1 and N1T . These bounds must guarantee that the following
probability is at least 1−6d−10: 1−exp(log T−cN1)−exp(d− cδ20N1T

r2µ2κ4 )−4 exp(log T + r − cN1).
This required that each exponential term be substantially smaller than or equal to d−10. We obtain

log T − cN1 ⩽ −10 log d⇒ N1 ⩾ Cmax(log d, log T )

d− cδ20N1T

r2µ2κ4
⩽ −10 log d⇒ N1T ⩾ Cµ2κ4

dr2

δ20
log T + r − cN1 ⩽ −10 log d⇒ N1 > Cmax(log d, log T, r).

Consequently, combining these results, we conclude that

N1 ⩾ Cmax(log d, log T, r)

N1T ⩾ Cµ2κ4
dr2

δ20
.

Thus, the proof is complete.

D Proof of Theorem 4.3

Proof of Theorem 4.3:

We start the analysis by founding a bound on the cumulative regretR1
N,T for the exploration step in

the following manner:

R1
N,T =

N1∑
m=1

T∑
t=1

x⋆
⊤

m,tθ
⋆
t − x⊤m,tθ⋆t⩽

N1∑
m=1

T∑
t=1

x⋆
⊤

m,tθ
⋆
t

Let us define Mj =
∑j
m=1

∑T
t=1 x

⋆⊤

m,tθ
⋆
t . It is observed that E[Mj |M1, · · · ,Mj−1] = Mj−1 and

E[|Mj |] < ∞ constitutes a martingale. According to Assumption 3.1, the feature vector x⋆m,t
follows the standard Gaussian distribution. Thus, x⋆

⊤

m,tθ
⋆
t ∼ N (0, ∥θ⋆t ∥2). Utilizing Gaussian

tail bounds and the union bound over T tasks and N1 rounds, with probability at least 1 − δ,

x⋆
⊤

m,tθ
⋆
t ⩽

√
2 log N1T

δ ∥θ
⋆
t ∥. Given that

|Mj −Mj−1| =
T∑
t=1

x⋆
⊤

j,t θ
⋆
t

⩽
T∑
t=1

√
2 log

N1T

δ
∥θ⋆t ∥

=

T∑
t=1

√
2 log

N1T

δ
∥w⋆t ∥ (9)

⩽

√
2 log

N1T

δ
uT

we utilize the Azuma-Hoeffding inequality stated in Proposition A.1 and the union bound to
determine that with probability at least 1− 2δ, the cumulative regretR1

N,T for the exploration step is
bounded as follows:

R1
N,T =

N1∑
m=1

T∑
t=1

(x⋆m,t − xm,t)⊤θ⋆t ⩽ 2uT

√
N1 log

1

δ
log

N1T

δ
.

According to Assumption 3.2, matrixW ⋆ is µ-column-wise incoherence (Appendix A). This indicates
that the norm of each task-specific vector is bounded as ∥w⋆t ∥2 ⩽ µ

√
r
T σ

⋆
max. By applying this
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property into the analysis of Eq. (9), we conclude that with probability at least 1− 2δ, the cumulative

regret is bounded byR1
N,T ⩽ 2µσ⋆max

√
rN1T log 1

δ log
N1T
δ .

Next, we demonstrate a bound for the cumulative regretR2
N,T in the following round as follows:

R2
N,T =

N∑
m=N1

T∑
t=1

x⋆
⊤

m,tθ
⋆
t − x⊤m,tθ⋆t

=

N∑
m=N1

T∑
t=1

x⋆
⊤

m,tθ
⋆
t − x⊤m,tθ⋆t + x⋆

⊤

m,tθ̂t − x⋆
⊤

m,tθ̂t

⩽
N∑

m=N1

T∑
t=1

x⋆
⊤

m,tθ
⋆
t − x⊤m,tθ⋆t + x⊤m,tθ̂t − x⋆

⊤

m,tθ̂t

=

N∑
m=N1

T∑
t=1

x⋆
⊤

m,t(θ
⋆
t − θ̂t) + x⊤m,t(θ̂t − θ⋆t )

Let us define M ′
j =

∑j
m=N1

∑T
t=1 x

⋆⊤

m,t(θ
⋆
t − θ̂t) + x⊤m,t(θ̂t − θ⋆t ). Observing that

E[M ′
j |M ′

1, · · · ,M ′
j−1] = M ′

j−1 and E[|M ′
j |] < ∞, it can be found that {M ′

j : j = 0, 1, 2, 3, · · · }
constitutes a martingale as well. According to Assumption 3.1, the feature vector xm,t follows a stan-
dard Gaussian distribution. Thus, x⊤(θ⋆t − θ̂t) ∼ N (0, ∥(θ⋆t − θ̂t)∥2). Utilizing Gaussian tail bounds
and the union bound over T tasks and (N−N1) rounds, with probability at least 1−δ, x⊤(θ⋆t − θ̂t) ⩽√
2 log (N−N1)T

δ ∥θ⋆t−θ̂t∥. By applying the findings from Theorem 4.1 and the union bound, we show

that with probability at least 1−δ−exp(log T −cN1)−exp(d− cδ20N1T
r2µ2κ4 )−4 exp(log T +r−cN1),

it follows that

|M ′
j −M ′

j−1| =
T∑
t=1

x⋆
⊤

j,t (θ
⋆
t − θ̂t) + x⊤j,t(θ̂t − θ⋆t )

⩽ 2

T∑
t=1

max
x∈X

x⊤(θ⋆t − θ̂t)

⩽ 2

T∑
t=1

√
2 log

(N −N1)T

δ
∥θ⋆t − θ̂t∥

⩽ 2

T∑
t=1

√
2 log

(N −N1)T

δ

(
1.12 +

c

κ2r
√
N1

)
µ

√
r

T
σ⋆maxδ0

= 2
√
2

(
1.12 +

c

κ2r
√
N1

)
µ
√
rTσ⋆maxδ0

√
log

(N −N1)T

δ
.

Utilizing the Azuma-Hoeffding inequality stated in Proposition A.1 and the union bound, we
can determine that with probability at least 1 − 2δ − exp(log T − cN1) − exp(d − cδ20N1T

r2µ2κ4 ) −
4 exp(log T + r − cN1), the cumulative regret R2

N,T for the following round is determined as
follows:

R2
N,T ⩽

N∑
n=N1

T∑
t=1

x⋆
⊤

n,t(θ
⋆
t − θ̂t) + x⊤n,t(θ̂t − θ⋆t )

⩽ 4µσ⋆max

(
1.12 +

c

κ2r
√
N1

)
δ0

√
r(N −N1)T log

1

δ
log

(N −N1)T

δ
.

By combining the bounds forR1
N,T andR2

N,T and applying the union bound, we can conclude that

with probability at least 1− 4δ− exp(log T − cN1)− exp(d− cδ20N1T
r2µ2κ4 )− 4 exp(log T + r − cN1),
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the cumulative regretRN,T is given by

RN,T = R1
N,T +R2

N,T

⩽ 2uT

√
N1 log

1

δ
log

N1T

δ
+ 4µσ⋆max

(
1.12 +

c

κ2r
√
N1

)
δ0

√
r(N −N1)T log

1

δ
log

(N −N1)T

δ

⩽ 2uT

√
N log

1

δ
log

NT

δ
+ 4µσ⋆max

(
1.12 +

c

κ2r
√
N1

)
δ0

√
rNT log

1

δ
log

NT

δ

= Õ
(
T
√
N + δ0σ

⋆
max

√
rNT

)
.

Moreover, by combining the cumulative regret bound forR1
N,T , obtained through the µ-column-wise

incoherence property of W ⋆, and R2
N,T , and applying a union bound, we determine that with a

probability of at least 1− 4δ − exp(log T − cN1)− exp(d− cδ20N1T
r2µ2κ4 )− 4 exp(log T + r − cN1),

the cumulative regret is bounded by

RN,T ⩽ 2µσ⋆max

√
rNT log

1

δ
log

NT

δ
+ 4µσ⋆max

(
1.12 +

c

κ2r
√
N1

)
δ0

√
rNT log

1

δ
log

NT

δ

=

(
2 + 4.48δ0 +

4cδ0

κ2r
√
N1

)
µσ⋆max

√
rNT log

1

δ
log

NT

δ

= Õ
(
(1 + δ0)σ

⋆
max

√
rNT

)

E Proof of Theorem 5.1

Definitions:

For λ > 0, define the matrices

• Vn,T+1 = λI + B̂⊤Φ⊤
n,T+1Φn,T+1B̂, and

• V̄n,T+1 = λI +Φ⊤
n,T+1Φn,T+1.

Here Vn,T+1 = B̂⊤V̄n,T+1B̂.

Proof of Theorem 5.1:

Let ŵn,T+1 be the least squares estimate of w⋆T+1 with ℓ2 regularization, where the regularization
parameter λ > 0. We have

ŵn,T+1 = V −1
n,T+1(Φn,T+1B̂)⊤Yn,T+1

= V −1
n,T+1(Φn,T+1B̂)⊤(Φn,T+1B

⋆w⋆T+1 +Hn,T+1)

= V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 + V −1

n,T+1B̂
⊤Φ⊤

n,T+1Φn,T+1B
⋆w⋆T+1

= V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 + V −1

n,T+1B̂
⊤Φ⊤

n,T+1Φn,T+1B̂B̂
⊤B⋆w⋆T+1

+ V −1
n,T+1B̂

⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1

= V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 + V −1

n,T+1(Vn,T+1 − λI)B̂⊤B⋆w⋆T+1

+ V −1
n,T+1B̂

⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1

= V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 + B̂⊤B⋆w⋆T+1 − λV −1

n,T+1B̂
⊤B⋆w⋆T+1

+ V −1
n,T+1B̂

⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1
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By multiplying B̂ on both sides, we derive

B̂ŵn,T+1 = B̂V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 + B̂B̂⊤B⋆w⋆T+1 − λB̂V −1

n,T+1B̂
⊤B⋆w⋆T+1

+ B̂V −1
n,T+1B̂

⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1

= B̂V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 +B⋆w⋆T+1 + (B̂B̂⊤ − I)B⋆w⋆T+1

− λB̂V −1
n,T+1B̂

⊤B⋆w⋆T+1 + B̂V −1
n,T+1B̂

⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1

Considering any vector z ∈ Rd, and multiplying both sides, we get

z⊤B̂ŵn,T+1 − z⊤B⋆w⋆T+1

= z⊤B̂V −1
n,T+1B̂

⊤Φ⊤
n,T+1Hn,T+1 − λz⊤B̂V −1

n,T+1B̂
⊤B⋆w⋆T+1 + z⊤(B̂B̂⊤ − I)B⋆w⋆T+1

+ z⊤B̂V −1
n,T+1B̂

⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1

= ⟨(z⊤B̂)⊤, B̂⊤Φ⊤
n,T+1Hn,T+1⟩V −1

n,T+1
− λ⟨(z⊤B̂)⊤, B̂⊤B⋆w⋆T+1⟩V −1

n,T+1

+ z⊤(B̂B̂⊤ − I)B⋆w⋆T+1+⟨(z⊤B̂)⊤, B̂⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1⟩V −1

n,T+1

Analyzing the absolute value, the upper bound is given as follows:

|z⊤B̂ŵn,T+1 − z⊤B⋆w⋆T+1|
⩽ ∥(z⊤B̂)⊤∥V −1

n,T+1
∥B̂⊤Φ⊤

n,T+1Hn,T+1∥V −1
n,T+1

+ λ∥(z⊤B̂)⊤∥V −1
n,T+1

∥B̂⊤B⋆w⋆T+1∥V −1
n,T+1

+∥(z⊤B̂)⊤∥V −1
n,T+1

∥B̂⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1∥V −1

n,T+1
+ |z⊤(B̂B̂⊤ − I)B⋆w⋆T+1|

(10)

To determine the upper bound for the term ∥B̂⊤Φ⊤
n,T+1Hn,T+1∥V −1

n,T+1
, we apply the method from

Theorem 1 in [22], which gives us

∥B̂⊤Φ⊤
n,T+1Hn,T+1∥2V −1

n,T+1

⩽ 2σ2 log

(
det(Vn,T+1)

1
2 det(λI)−

1
2

δ

)

with probability at least 1− δ. To determine the upper bound for the term ∥B̂⊤B⋆w⋆T+1∥V −1
n,T+1

, we
have

∥B̂⊤B⋆w⋆T+1∥2V −1
n,T+1

= w⋆
⊤

T+1B
⋆⊤B̂V −1

n,T+1B̂
⊤B⋆w⋆T+1 ⩽ ∥B̂⊤B⋆w⋆T+1∥22∥V −1

n,T+1∥2

= ∥B̂⊤∥22∥B⋆w⋆T+1∥22∥V −1
n,T+1∥2 ⩽

∥B⋆w⋆T+1∥22
λmin(Vn,T+1)

⩽
1

λ
S2

To determine the upper bound for the term ∥B̂⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1∥V −1

n,T+1
, we

have with probability at least 1− exp(log T − cN1)− exp(d− cδ20N1T
r2µ2κ4 ),

∥B̂⊤Φ⊤
n,T+1Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1∥V −1

n,T+1
⩽ ∥Φn,T+1(I − B̂B̂⊤)B⋆w⋆T+1∥

⩽ ∥Φn,T+1∥∥(I − B̂B̂⊤)B⋆∥∥w⋆T+1∥ ⩽
√
nLδ0S

where the first inequality follows from the matrix inequality Φn,T+1B̂(λI +

B̂⊤Φ⊤
n,T+1Φn,T+1B̂)−1B̂⊤Φ⊤

n,T+1 ⩽ I . The second inequality follows from the Cauchy–Schwarz
inequality. The last inequality follows from ∥Φn,T+1∥ ⩽

√
nL, ∥w⋆T+1∥ = ∥θ⋆T+1∥ ⩽ S and Propo-

sition B.1. Consider z = V̄n,T+1(B̂ŵn,T+1 −B⋆w⋆T+1). To determine the upper bound for the term
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|z⊤(B̂B̂⊤−I)B⋆w⋆T+1|, we have with probability at least 1−exp(log T −cN1)−exp(d− cδ20N1T
r2µ2κ4 ),

|z⊤(B̂B̂⊤ − I)B⋆w⋆T+1| = |(B̂ŵn,T+1 −B⋆w⋆T+1)
⊤V̄n,T+1(B̂B̂

⊤ − I)B⋆w⋆T+1|
= ⟨B̂ŵn,T+1 −B⋆w⋆T+1, (B̂B̂

⊤ − I)B⋆w⋆T+1⟩V̄n,T+1

⩽ ∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1
∥(B̂B̂⊤ − I)B⋆w⋆T+1∥V̄n,T+1

⩽ ∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1
(
√
λ∥(B̂B̂⊤ − I)B⋆w⋆T+1∥

+∥Φn,T+1(B̂B̂
⊤ − I)B⋆w⋆T+1∥)

⩽ (
√
λ+
√
nL)δ0S∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1

To determine the upper bound for the term ∥(z⊤B̂)⊤∥2
V −1
n,T+1

, we have

∥(z⊤B̂)⊤∥2
V −1
n,T+1

= z⊤B̂V −1
n,T+1B̂

⊤z

= (B̂ŵn,T+1 −B⋆w⋆T+1)
⊤V̄n,T+1B̂V

−1
n,T+1B̂

⊤V̄n,T+1(B̂ŵn,T+1 −B⋆w⋆T+1)

= (B̂ŵn,T+1 −B⋆w⋆T+1)
⊤V̄

1
2

n,T+1V̄
1
2

n,T+1B̂V
−1
n,T+1B̂

⊤V̄
1
2

n,T+1V̄
1
2

n,T+1(B̂ŵn,T+1 −B⋆w⋆T+1)

⩽ ∥B̂ŵn,T+1 −B⋆w⋆T+1∥2V̄n,T+1
∥V̄

1
2

n,T+1B̂V
−1
n,T+1B̂

⊤V̄
1
2

n,T+1∥

⩽ ∥B̂ŵn,T+1 −B⋆w⋆T+1∥2V̄n,T+1

where the last inequality is derived from ∥V̄
1
2

n,T+1B̂V
−1
n,T+1B̂

⊤V̄
1
2

n,T+1∥ = ∥V̄
1
2

n,T+1B̂V
− 1

2

n,T+1∥2 =

λmax(V
− 1

2

n,T+1B̂
⊤V̄

1
2

n,T+1V̄
1
2

n,T+1B̂V
− 1

2

n,T+1) = λmax(V
− 1

2

n,T+1Vn,T+1V
− 1

2

n,T+1) = 1. To determine the
upper bound for the term |z⊤B̂ŵn,T+1 − z⊤B⋆w⋆T+1|, we have

|z⊤B̂ŵn,T+1 − z⊤B⋆w⋆T+1| = |z⊤(B̂ŵn,T+1 −B⋆w⋆T+1)|
= (B̂ŵn,T+1 −B⋆w⋆T+1)

⊤V̄n,T+1(B̂ŵn,T+1 −B⋆w⋆T+1)

= ∥B̂ŵn,T+1 −B⋆w⋆T+1∥2V̄n,T+1

Substituting these in Eq. (10) gives

∥B̂ŵn,T+1 −B⋆w⋆T+1∥2V̄n,T+1
⩽ ∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1

σ

√
2 log

det(Vn,T+1)
1
2 det(λI)−

1
2

δ

+ λ∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1

1√
λ
S

+ ∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1

√
nLδ0S

+ (
√
λ+
√
nL)δ0S∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1

By rearranging and simplifying the inequality above, we determine that with probability at least
1− δ − exp(log T − cN1)− exp(d− cδ20N1T

r2µ2κ4 ),

∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1
⩽ σ

√
2 log

det(Vn,T+1)
1
2 det(λI)−

1
2

δ
+ ((1 + δ0)

√
λ+ 2

√
nLδ0)S.
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Furthermore, det(Vn,T+1) = det(λI + B̂⊤Φ⊤
n,T+1Φn,T+1B̂) =

∏r
i=1(λ+ λi), where λi represent

the eigenvalue value of the positive semi-definite matrix B̂⊤Φ⊤
n,T+1Φn,T+1B̂. Given

λi ⩽ Tr(B̂⊤Φ⊤
n,T+1Φn,T+1B̂)

= Tr(

n∑
m=1

B̂⊤xm,T+1x
⊤
m,T+1B̂)

=

n∑
m=1

Tr((B̂⊤xm,T+1)(B̂
⊤xm,T+1)

⊤)

=

n∑
m=1

(B̂⊤xm,T+1)
⊤(B̂⊤xm,T+1)

=

n∑
m=1

∥B̂⊤xm,T+1∥22

⩽
n∑

m=1

∥xm,T+1∥22

⩽ nL2

we conclude that det(Vn,T+1) ⩽
∏r
i=1(λ+nL

2) = (λ+nL2)r = λr(1+nL2

λ )r. Setting δ0 = 1√
N2L

.

Consequently, we show that with probability at least 1− δ − exp(log T − cN1)− exp(d− cδ20N1T
r2µ2κ4 ),

∥B̂ŵn,T+1 −B⋆w⋆T+1∥V̄n,T+1
⩽ σ

√
r log

(
1 + nL2/λ

δ

)
+ (
√
λ+

√
λ√

N2L
+ 2

√
n

N2
)S.

Note that we have a probability of 1 − δ − exp(log T − cN1) − exp(d − cδ20N1T
r2µ2κ4 ). To ensure a

probability guarantee of at least 1− δ − 2d−10 for our theorem, it is required to set the bound for N1

and N1T such that the exponential terms are less than or equal to d−10. We obtain

log T − cN1 ⩽ −10 log d⇒ N1 ⩾ Cmax(log d, log T )

d− cδ20N1T

r2µ2κ4
⩽ −10 log d⇒ N1T ⩾ Cµ2κ4

dr2

δ20
.

Consequently, combining these results, we conclude that

N1 ⩾ Cmax(log d, log T )

N1T ⩾ Cµ2κ4
dr2

δ20
.

By setting δ0 = 1√
N2L

, it is essential to ensure that

N1 ⩾ Cmax(log d, log T )

N1T ⩾ Cµ2κ4L2dr2N2.

Thus, we complete the proof.

F Proof of Theorem 5.2

In this section we present the proof of Theorem 5.2.
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Proof of Theorem 5.2:

We start the analysis by bounding the cumulative regret RN,T+1 for the target task T + 1. With
probability at least 1− δ − 2d−10, we have

RN2,T+1

=

N2∑
m=1

x⋆
⊤

m,T+1θ
⋆
T+1 − x⊤m,T+1θ

⋆
T+1

⩽
N2∑
m=1

x⊤m,T+1θ̃m,T+1 − x⊤m,T+1θ
⋆
T+1 (11)

=

N2∑
m=1

x⊤m,T+1(θ̃m,T+1 − θ̂m,T+1) + x⊤m,T+1(θ̂m,T+1 − θ⋆T+1)

⩽
N2∑
m=1

(
∥θ̃m,T+1 − θ̂m,T+1∥V̄m−1,T+1

+ ∥θ̂m,T+1 − θ⋆T+1∥V̄m−1,T+1

)
∥xm,T+1∥V̄ −1

m−1,T+1

⩽

√√√√ N2∑
m=1

(
∥θ̃m,T+1 − θ̂m,T+1∥V̄m−1,T+1

+ ∥θ̂m,T+1 − θ⋆T+1∥V̄m−1,T+1

)2√√√√ N2∑
m=1

∥xm,T+1∥2V̄ −1
m−1,T+1

(12)

⩽ 2
√
N2

(
σ

√
r log

(
1 +N2L2/λ

δ

)
+ (
√
λ+

√
λ√

N2L
+ 2)S

)√
2 log

(
det(V̄N2,T+1)

det(λI)

)
(13)

⩽ 2
√
N2

(
σ

√
r log

(
1 +N2L2/λ

δ

)
+ (
√
λ+

√
λ√

N2L
+ 2)S

)√
2d log

(
1 +

N2L2

λ

)
(14)

= Õ
(√

dN2

(
σ
√
r +
√
λS
))

,

where Eq (11) follows by x⋆
⊤

m,T+1θ
⋆
T+1 ⩽ x⊤m,T+1θ̃m,T+1. Eq (12) follows by Cauchy–Schwarz

inequality. Eq (13) follows by Theorem 5.1 and Lemma 11 in [22].

G Transferring Feature Representation to New Target Tasks

In this section, we present a direct linear regression algorithm for transfer learning to a new target
task using the shared model extracted from the source tasks. Using the estimated linear feature
representation B̂ shared across related tasks from the source task, our goal here is to transfer this
representation to a new, unseen (T + 1)th target task and thereby improve learning and sample
complexity as compared to the standard approach that learns the task separately without leveraging
the knowledge from the source tasks. Our main focus here is to derive a sample complexity bound on
the number of target task samples required when using the biased estimate B̂. The pseudocode is
presented in Algorithm 3. It uses B̂ as a plug-in surrogate for the unknown B⋆ and estimates w⋆T+1.
Mathematically, we define our estimator as follows

ŵT+1 ∈ argmin
w∈Rr

n∑
m=1

∥ym,T+1 − x⊤m,T+1B̂w∥2.

In the result below we present the error guarantee for the linear regression estimator and the sample
complexity on the number of target samples required.

Theorem G.1. Assume Assumptions 3.1 holds. For new task T + 1, with probability at least
1− exp(log T − cN1)− exp(d− cδ20N1T

r2µ2κ4 )− 4 exp(log T + r − cN2), using Algorithm 3, we have

∥B̂ŵT+1 −B⋆w⋆T+1∥ ⩽
1

9
σ + 1.12δ0∥θ⋆T+1∥
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Algorithm 3 Transferring Features to New Tasks

1: Set number of rounds for target task, N2

2: Perform representation learning using source tasks and estimate B̂ using Algorithm 1 from line 1
to line 10

3: for n← 1, · · · , N2 do
4: choose action xn,T+1 = argmaxx∈X x

⊤θ̂T+1, and obtain yn,T+1

5: end for
6: Compute YN2,T+1 = [y1,T+1, · · · , yN2,T+1]

⊤, ΦN2,T+1 = [x1,T+1, · · · , xN2,T+1]
⊤

7: Update ŵT+1, θ̂T+1: Set ŵT+1 ← (ΦN2,T+1B̂)†YN2,T+1 and set θ̂T+1 = B̂ŵT+1

Furthermore, if

N1 ⩾ Cmax(log d, log T )

N1T ⩾ Cµ2κ4
dr2

δ0
N2 ⩾ Cmax(log d, log T, r),

then with probability at least 1− 6d−10,

∥B̂ŵT+1 −B⋆w⋆T+1∥ ⩽
1

9
σ + 1.12δ0∥θ⋆T+1∥

Proof. Following the same logic as in Lemma C.1, we can demonstrate that with probability at least
1− 2 exp(log T + r − cN2), we have

∥B̂(B̂⊤Φ⊤
N2,T+1ΦN2,T+1B̂)−1B̂⊤Φ⊤

N2,T+1HN2,T+1∥ ⩽
1

9
σ.

Following the same logic as in Theorem 4.1, we can show that

B̂ŵT+1 −B⋆w⋆T+1 = B̂(B̂⊤Φ⊤
N2,T+1ΦN2,T+1B̂)−1B̂⊤Φ⊤

N2,T+1HN2,T+1 + (B̂B̂⊤ − I)B⋆w⋆T+1

+ B̂(B̂⊤Φ⊤
N2,T+1ΦN2,T+1B̂)−1B̂⊤Φ⊤

N2,T+1ΦN2,T+1(I − B̂B̂⊤)B⋆w⋆T+1.

Therefore, with probability at least 1 − exp(log T − cN1) − exp(d − cδ20N1T
r2µ2κ4 ) −

4 exp(log T + r − cN2), we obtain

∥B̂ŵT+1 −B⋆w⋆T+1∥
⩽ ∥B̂(B̂⊤Φ⊤

N2,T+1ΦN2,T+1B̂)−1B̂⊤Φ⊤
N2,T+1HN2,T+1∥+ ∥(B̂B̂⊤ − I)B⋆w⋆T+1∥

+ ∥B̂(B̂⊤Φ⊤
N2,T+1ΦN2,T+1B̂)−1B̂⊤Φ⊤

N2,T+1ΦN2,T+1(I − B̂B̂⊤)B⋆w⋆T+1∥

⩽ ∥B̂(B̂⊤Φ⊤
N2,T+1ΦN2,T+1B̂)−1B̂⊤Φ⊤

N2,T+1HN2,T+1∥

+(1 + 0.12)∥(I − B̂B̂⊤)B⋆∥∥w⋆T+1∥

⩽
1

9
σ + 1.12δ0∥θ⋆T+1∥

where the second-last inequality is derived from Proposition B.1 in [28]. The last inequality is derived
from Proposition B.1.

H Additional Experiments

In this section, we present some additional experiments.

Comparison with the convex relaxation approach: We evaluated our proposed algorithm (Algo-
rithm 1) against the convex relaxation method utilizing the same data generation method described in
Section 6.1. The convex relaxation approach approximates the non-convex cost function through the
application of trace-norm regularization [10]. The key challenge is that the solution to the relaxed
problem may not necessarily correspond to a valid solution to the original problem. As shown in
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Figure 3: Plots for synthetic data: Figure 3a presents the cumulative regret vs. learning round for synthetic
data, with parameters set as d = 100, T = 15, r = 10, N1 = 45, σ2 = 0.01. Plots for Movielens data:
Figure 3b presents the cumulative regret vs. learning round for Movielens data, with parameters set as d = 100,
T = 15, r = 1, N1 = 20, σ2 = 0.01.

Figure 3a, our proposed algorithm outperforms the convex relaxation approach for the synthetic data.
Figure 3b indicates that our proposed algorithm shows fast convergence following the exploration
phase and consistently outperforms the convex relaxation approach for the Movielens data, which
does not converge. A potential reason for this is that the solution to the convex relaxed problem
need not necessarily be the solution to the actual non-convex problem. This experiment validates the
effectiveness of the proposed approach.

I Additional Related Work

We present some additional related work in this section.

Multi-task reinforcement learning: Multi-task learning in reinforcement learning (RL) domains
is studied in many works, including [36, 39, 55, 41]. [36, 39, 56–58] analyzed the problem from
the empirical perspective. From the theoretical perspective, [59] analyzed the sample complexity of
multi-task RL in the tabular setting. [55] demonstrated that representation learning has the potential
to enhance the rate of the approximate value iteration algorithm. [41] proved that representation
learning can reduce the sample complexity of imitation learning. Both works require a probabilistic
assumption similar to that in [14] and the statistical rates are of similar forms as those in [14].
Representation learning in multi-task RL has been studied recently in [7, 60–62].

Low-rank and sparse bandits: Some previous work studied the impact of low-rank structure in
linear bandits [29, 63, 64]. [63] considered a setting where the context vectors consist of two parts,
i.e. x̂ = x+ ψ, so that x is from a hidden low-rank subspace and is i.i.d. drawn from an isotropic
distribution. The mean reward in [29, 65] is defined as the bilinear multiplication x⊤Θy, where x, y
are the actions chosen and Θ is the unknown reward matrix with a low-rank structure. The bilinear
setting is further generalized by [32].
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Guidelines:
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A proof sketch follows each result, while the complete formal proofs are provided in the
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dataset, or provide access to the model. In general. releasing code and data is often
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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