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Abstract

Testing whether a variable of interest affects the outcome is one of the
most fundamental problem in statistics and is often the main scientific
question of interest. To tackle this problem, the conditional randomiza-
tion test (CRT) is widely used to test the independence of variable(s)
of interest (X) with an outcome (Y') holding other variable(s) (Z)
fixed. The CRT uses “Model-X” inference framework that relies solely
on the id sampling of (X, Z) to produce exact finite-sample p-values
that are constructed using any test statistic. We propose a new method,
the adaptive randomization test (ART), that tackles the same indepen-
dence problem while allowing the data to be adaptively sampled. Like
the CRT, the ART relies solely on knowing the (adaptive) sampling dis-
tribution of (X, Z). Although the ART allows practitioners to flexibly
design and analyze adaptive experiments, the method itself does not
guarantee a powerful adaptive sampling procedure. For this reason, we
show substantial power gains obtained from adaptively sampling com-
pared to the typical iid sampling procedure in a multi-arm bandit setting
and an application in conjoint analysis. We believe that the proposed
adaptive procedure is successful because it takes arms that may ini-
tially look like “fake” signals due to random chance and stabilizes them
closer to “null” signals and samples more/less from signal/null arms.

Keywords: Conditional Independence Testing, Randomization Inference,
Adaptive Sampling, Model-X, Non-parametric Testing



Springer Nature 2021 BTEX template

2 Adaptive Randomization Test

1 Introduction

Independence testing is ubiquitous in statistics and often the main task of
interest in variable selection problems. For example, it is used in causal infer-
ence for testing the absence of any treatment effect for various applications
[1-3]. More specifically, social scientists may wonder if a political candidate’s
gender may affect voting behavior while controlling for all other gender related
stereotypes to isolate the true effect of gender [4-6]. Biologists may also be
interested in the effect of a specific gene on a characteristic after holding all
other genes constant [7].

In the independence testing problem, the main objective is to test whether
a response Y is statistically affected by a variable of interest X while holding
other variable(s) Z fixed. Informally speaking, we aim to test Y 1L X | Z,
where Z can be the empty set for an unconditional test. For the aforemen-
tioned gender example, Y is voting responses, X is the political candidate’s
gender, and Z are the candidate’s personality, party affiliation, etc. One way
to approach this problem is the model-based approach that uses parametric
or semi-parametric methods such as regression while assuming some knowl-
edge of Y | (X, Z). Recently, the design-based approach has been increasingly
gaining popularity [1, 2, 8] to tackle the independence testing problem. In
an influential paper [3], the authors introduce the conditional randomization
test (CRT), which uses a design-based or the “Model-X” approach to per-
form randomization based inference. This approach assumes nothing about
the Y | (X, Z) relationship but shifts the burden on requiring knowledge of
the X | Z distribution (hence named “Model-X”). In exchange, the CRT has
exact type-1 error control while allowing the user to propose any test statis-
tics, including those from complicated machine learning models, to increase
power. We remark that if the data was collected from an experiment, then the
distribution of the experimental variables (X, Z) is immediately available and
the CRT can be classified as a non-parametric test.

The CRT, however, does require that (X, Z) is collected independently and
identically (#d) from some distribution, which may not be always appropriate
or desired. For example, large tech companies, such as Uber or Doordash,
have rich experimental data that are sequentially and adaptively collected,
i.e., the next treatment is sampled as a function of all of its previous history
[9, 10]. Despite this non-iid experimental setup, the companies are interested in
performing hypothesis tests on whether a certain treatment or features of their
products affects the response in any way. Additionally, many practitioners may
prefer an adaptive sampling procedure as it can be more effective to detect an
effect since obtaining a large number of samples is often difficult and costly.

1.1 Our Contributions and Overview

Given this motivation, a natural direction is to weaken the iid assumption in
the “Model-X” randomization inference approach and allow testing adaptively
collected data. Therefore, the main contribution of our paper is we allow the
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same “Model-X” randomization inference procedure under adaptively collected
data, i.e., we allow the data (X, Z;) to be sequentially collected at time ¢ as
a function of the historical values of Xi.(;_1y, Z1.4—1), Y1:(¢=1), Where Xy.;_1)
denotes the vector of (X1,...,Xy_1) and Zy,(4—1), Y1.(t—1) is defined similarly.
To the best of our knowledge, there does not exist a general randomization
inference procedure that enjoys all the same benefits as that of the CRT while
allowing for adaptively sampled data (see Section 1.2 for related works).

Our contribution is useful in both the experimental stage (the focus of this
paper), i.e., allowing experimenters to construct powerful adaptive sampling
procedures, and the analysis stage, i.e., after the data was adaptively collected
as long as the analyst knows how the data was adaptively sampled. We name
our method the ART (Adaptive Randomization Test) and we remark that the
validity of the ART, like the CRT, does not require any knowledge of Y | (X, Z)
and leverages the distribution of (X, Z). Therefore, in an experimental setting,
the ART can also be viewed as a non-parametric test.

In Section 2 we formally introduce the proposed method, ART, and prove
how the ART leverages the known distribution of (X, Z) to produce exact
finite-sample valid p-values for any test statistic. Although this formally allows
practitioners to adaptively sample data to potentially increase power, it does
not give any guidance on how to choose a reasonable adaptive procedure.
Consequently, we first showcase the ART in the normal-means model setting
(Section 3), a special case of the “multi-arm” bandit setting, through simula-
tions and a theoretical asymptotic power analysis. Secondly, we also explore
the ART’s potential in a factorial survey setting in Section 4 through an appli-
cation to a recent conjoint study concerning the role of gender discrimination
in political candidate evaluation [4]. For both examples, we find that the ART
can be uniformly more powerful than the CRT with a typical ¢id sampling
scheme. We postulate that adaptive procedures leveraging evidence of signals
can potentially enhance statistical power, provided that the degree of adap-
tivity is appropriately kept “in check”. As shown in Sections 3-4 and in [11],
excessive adaptation, i.e., sampling one or a few arms with very high prob-
ability, can lead to favorable regret-minimizing performance but unfavorable
inferential properties. We generally contend that adaptive procedures that
carefully balance the competing demands of exploration and exploitation are
promising for improvements in statistical power and leave further empirical
and theoretical validation to future works.

1.2 Related Works

In this section, we put our proposed method in the context of the current lit-
erature. The ART methodology is in the intersection of reinforcement learning
and “Model-X” randomization inference procedures. As far as we know, our
paper is the first to weaken the iid assumption and allow adaptive testing in the
context of randomization inference when specifically tackling the independence
testing problem. We remark that [12] considers unconditional randomization
testing in sequentially adaptively sampled treatment assignments. However,
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this work does not cover the more general case of conditional randomization
testing and assumes a causal inference framework under the finite-population
view, i.e., conditioning on the potential outcomes [13]. Our work differs in that
we allow for both super-population and finite-population view and addition-
ally generalize to the conditional independence testing problem for general
sequentially adaptive procedures (see Section 2.3 for more details). We also
acknowledge that [14] (and references within) contain mentions of randomiza-
tion inference in adaptive settings but serves primarily as a literature summary
of randomization inference and provides no formal testing for general adaptive
procedures.

As hinted above, many ideas from the reinforcement learning literature
can also be useful starting points to construct a sensible adaptive procedure.
For example, we find ideas from the multi-arm bandit literature, including the
Thompson sampling [15], epsilon-greedy algorithms [16], and the UCB algo-
rithm [17] to be useful when constructing the adaptive sampling procedure.
Although ideas from reinforcement learning can be utilized when performing
the ART, the objective of independence testing is different than that of a typ-
ical reinforcement learning problem. This difference is illustrated and further
emphasized in the theoretical analysis of the normal means bandit problem in
Section 3.

1.3 The Conditional Randomization Test (CRT)

We begin by introducing the CRT that requires an iid sampling procedure.
The CRT assumes that the data (X, Z;, Y;) %2 fxzy fort =1,2,...,n, where
fxzy denotes the joint probability density function (pdf) or probability mass
function (pmf) of (X, Z,Y) and n is the total sample size. For brevity, we refer
to both probability density function and probability mass function as pdf.! The
CRT aims to test whether the variable of interest X affects the distribution of
Y conditional on Z, i.e., Y 1L X | Z. If Z is the empty set, the CRT reduces to
the (unconditional) randomization test. The CRT tests Y 1L X | Z by creating
“fake” resamples X’f fort =1,2,...,n from the conditional distribution X | Z
induced by fxz, the joint pdf of (X, Z), for b = 1,2,..., B, where B is the
Monte-Carlo parameter of choice. More formally, the fake resamples X'f are
sampled in the following way,

Ixz(Z8,2)
[, fxz(x, z)dx

where the right hand side is the pdf of the conditional distribution X | Z
induced by the joint pdf fx 7, lower case Z? represents the realization of random
variable Xf, and each Xf is sampled #id for b= 1,2, ..., B independently of X
and Y. Since each sample X; only depends on the current Z;, the right hand
side of Equation (1) is a conditional distribution that is a function of only its

Xt~ fort=1,2,....n, (1)

!Neither the CRT nor our paper needs to assume the existence of the pdf. However, for clarity
and ease of exposition, we present the data generating distribution with respect to a pdf.
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current Z;. Under the conditional independence null, Y 1l X | Z, the authors
of [3] show that (X,Z,Y), (X2,Z,Y), ..., (XB,Z,Y), and (X,Z,Y) are
exchangeable, where X denotes the complete collection of (X7, Xs,...,X,,).
Xb, Z, and Y are defined similarly. This implies that any test statistic
T(X,Z,Y) is also exchangeable with T(Xb,Z,Y) under the null. This key
exchangeability property allows practitioners to use any test statistic 7" when
calculating the final p-value. More formally, the CRT proposes to obtain a
p-value in the following way,

B
1
PoRT = B 1+ Z Lir&e zv)>rx.2.¥)} | - @
b=1

where the addition of 1 is included so that the null p-values are stochastically
dominated by the uniform distribution. Due to the exchangeability of the test
statistics, the p-value in Equation (2) is guaranteed to have exact type-1 error
control, i.e., P(pcrr < a) < « for all a € [0,1] (under the null) despite the
choice of T and any Y | (X, Z) relationship. This also allows the practitioner
to ideally choose a test statistic to powerfully distinguish the observed test
statistic with the resampled fake test statistic such as the sum of the absolute
value of the main effects of X from a penalized Lasso regression [18].

2 Methodology

2.1 Sequential Adaptive Sampling Procedure

The ART, like the CRT, is tied to a specific sampling procedure. Although it
generalizes the iid sampling procedure, it still relies on a specific sequentially
adaptive sampling procedure. Therefore, we also refer to the sequentially adap-
tive sampling procedure as the ART sampling procedure and now formally
present the definition of this procedure.

Definition 2.1 (Sequential Adaptive Sampling Procedure - The ART sam-
pling procedure). We say the sample (X, Z,Y) follows a sequential adaptive
sampling procedure A if the sample obeys the following sequential data
generating process.

(X1, 21) ~ fi*(z1,21), Y1~ fo(z1,21)

(XtaZt) ~ ftA(xtht | T1,21,Y15 - 7$t7172t717yt71)7 }/;ﬁ ~ fQ(xtvzt)v

where lower case (z¢,2¢,y:) denotes the realization of the random variables
(X¢, Zi,Y;) at time ¢, respectively, f denotes the joint pdf of (X, Z;) given
the past realizations, and fxn denotes the pdf of the response Y; as a function
of only the current (X, Z;).
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Definition 2.1 captures a general sequential adaptive experimental setting,
where an experimenter adaptively samples the next values of (X;, Z;) according
to an adaptive sampling procedure f# that may be dependent on all the history
(including the outcome) while “nature” fy determines the next outcome. We
emphasize that fy is generally unknown and in most cases hard to model
exactly. We also remark that practitioners need not implement a fully adaptive
scheme, e.g., f/* can remain identical and even independent of the history for
many ¢ if the researcher wishes to only adapt at some time points (see Section 3
for an adaptive sampling scheme that only adapts once).

The left panel of Figure 1 visually summarizes the sequential adaptive pro-
cedure, where we allow the next sample to depend on all the history (including
the response). Although Definition 2.1 makes no assumption about the adap-
tive procedure f# (even allowing the adaptive procedure to change across
time), it does implicitly assume that the response Y has no carryover effects,
ie., fn is only a function of its current realizations (i, z;) as there are no
arrows in Figure 1 from previous (X;_1, Z;—1) into current Y;. It also assumes
that fy is stationary and does not change across time. Both of these assump-
tions are typically invoked in the sequential reinforcement learning literature
(197 ].

Fig. 1 Schematic diagram of the ART Fig. 2 Schematic diagram of the conve-

sampling procedure in Definition 2.1. The nient adaptive sampling procedure that sat-

directed arrows denote the order in how isfies Assumption 1. As before, the directed

the random variable(s) may affect the corre- arrows denote the order in how the ran-

sponding random variable(s). dom variable(s) may affect the correspond-
ing random variable(s).

2.2 Hypothesis Test

Given the sampling procedure defined in Definition 2.1, the main objective is
to determine whether the variable of interest X affects Y after controlling for
Z. Because the sampling scheme is no longer uid, testing ¥ 1l X | Z requires
further notation and formalization. In the CRT, the null hypothesis of interest
is formally ¥; UL X, | Z; for all t = 1,2,...,n. Since the data is sampled iid,
Y: 1L X; | Z; reduces to testing Y 1L X | Z using the whole data since the
subscript ¢ is irrelevant. However, for an adaptive collected data, Y 1L X | Z is
trivially false for any non-degenerate adaptive procedure A because X depends



Springer Nature 2021 BTEX template

Adaptive Randomization Test 7

onY through f{. Just like the CRT, the practitioners are interested in whether
X affects Y for each sample ¢t. We now formalize this by testing the following
null hypothesis Hy against H,

Hy: fy(z,2) = fy(2/,2) forall z,2" € X, 2 € Z 3

Hy: fy(z,2) # fn(2', 2) for some z,2' € X,z € Z, (3)
where X denotes the entire domain of X that captures all possible values
of X regardless of the distribution of X induced by the adaptive procedure.
For example, if X is a univariate discrete variable that can take any integer
values, then X = Z even if the adaptive procedure A only has a finite support
with positive probability only on values (—1,0,1). In such a case, testing Hy
using the aforementioned adaptive procedure A will only be powerful up to the
restricted support induced by A. Z is defined similarly as the entire domain
for Z.

We finish this subsection by connecting Hy to the causal inference liter-
ature. First, Hy captures the same notion as the CRT null of YV 1l X | Z
because if X makes any distributional impact on Y given Z, then Hj is false.
On the other hand, if Hy is false, then the CRT null is trivially false. Recently,
the authors of [2] show that the CRT null is equivalent to testing the following
causal hypothesis

HS™0 . Y, (2, 2) 4 Yi(a', 2) for all z, 2’ € X,z € Z,

where Y;(z, z) is the potential outcome for individual ¢ at values X = z,Z = z
and we have implicitly assumed the Stable Unit Treatment Value Assumption
(SUTVA) assumption [13], where the potential outcomes of each individual
t is a function of only its own values (X, Z;). The proposed Hj already
captures the causal hypothesis Hga“sal because fq(z,z) characterizes the
causal relationship between (X,Z) and Y. To formally establish this in the
potential outcome framework, we define Y;(x, z) i fn(x,z) from a super-
population framework, i.e., the potential outcomes are viewed as random
variables. Then Hy is equivalent to the causal hypothesis H§#"5#!. Additionally,
if the researcher wishes to think in terms of the finite-population framework,
i.e., conditioning on the potential outcomes and units in the sample, then
only a simple modification of Definition 2.1 is needed. We first replace obtain-
ing the response Y; ~ fy in Definition 2.1 from a stochastic fy to a fixed
potential outcome Y; = Yi(xs,2¢) at every time point ¢, where Yi(zy, 2¢) is
the deterministic (non-random) potential outcome of individual ¢ with values
X, = x4 and Z; = z;. Then Hy reduces to the sharp Fisher null that states
Yi(z,z) = Yi(2/, 2) for all x,2' € X,z € Z and all individuals ¢ in our finite
population. This finite-population testing framework is the one proposed in
[12], where the authors perform the unconditional randomization test in a
sequential adaptive setting like ours.
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2.3 Adaptive Randomization Test (ART)

Since (X, Z,Y:) are no longer sampled 4id from some joint distribution, the
main challenge is to construct XP such that (XP,Z,Y) and (X,Z,Y) are
still exchangeable to ensure the validity of the p-value in Equation (2). A
necessary condition for the joint distributions of (X®,Z,Y) and (X, Z,Y) to be
exchangeable is that they are equal in distribution. For our sequential adaptive
sampling procedure, X; depends on all the history including the response and
it is unclear how to construct our resamples.

To solve this, we propose a natural resampling procedure that respects our
sequential adaptive setting in Definition 2.1. Before formally presenting the
resampling procedure, we provide intuition on how to construct valid resamples
XP. Similar to the CRT, the key is to create fake copies of X by replicating the
original sampling procedure of X conditional on Z,Y. For the CRT sampling
procedure, this reduces to sampling X; 7id from the conditional distribution of
X | Zy for all t = 1,2,...,n. In our sequential adaptive sampling procedure,
this reduces to sampling X; conditional on the history as done exactly in the
original adaptive sampling procedure since X; does not depend on the future
values of Z and Y. We now formalize this in the following definition.

Definition 2.2 (Natural Adaptive Resampling Procedure). Given data
(X,Z,Y), X" follows the natural adaptive resampling procedure if X° satisfies
the following data generating process,

Xb ~ ffq(iliazl) b fQA(ngZ? |jl{7213y1)
VL@ w8 e n)de T
Xb -~ f:‘(‘%l;uzn | fliazhyla SR 7j%—1azn—17yn—1)

" fm fr?(xazn | ‘%?azl7yla ce. 755{()1717Zn—layn—l)dl'7

for b=1,2,..., B independently conditional on (Z,Y), where :ié’ are dummy

variables representing X .

Similar to Equation (1), Definition 2.2 formalizes how each X; is sequen-
tially sampled from the conditional distribution of X3 | (X1.¢—1), Z1:¢, Y1:(¢—1))-
We call this the natural adaptive resampling procedure (NARP) because at
each time ¢ the fake resamples X;’ are sampled from the original sequential
adaptive distribution of X; conditional on Z1.; and Y3.(;—1) (see Appendix C
for further discussions about the NARP). Just like the CRT, Definition 2.2
requires one to sample from a conditional distribution. For this practically
important consideration, we propose a more practical alternative where the
experimenter, at each time ¢, samples Z; first and then samples the variable of
interest X; from X; | Z.4, Y1.(t—1) at every time step (as opposed to simultane-
ously sampling (X¢, Z;) from a joint distribution). This alternative procedure
loses very little generality but allows the NARP in Definition 2.2 to directly
sample from the already available conditional distribution.
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Unfortunately resampling from the NARP does not immediately guarantee
a valid p-value. Recall that we require our resampled X’ to be exchange-
able with X conditional on (Z,Y). A necessary condition of exchangeability
requires the joint distribution of (X,Y, Z) be the same as that of (X,Y,Z).
In particular, the following distributional relationship is always true for any ¢
when assuming the NARP,

Xl:(t—l) 1z, | (le(t—1)7 Zl:(t—l)) ) (4)

because Xl:(t—l) is a random function of only (le(t_l), le(t_l)) and not the
future Z;. Equation (4) directly shows that Z can not depend on previous
X because we require (X,Y,Z) and (X,Y,Z) to be exchangeable. This con-
straint turns out to be both sufficient and necessary to ensure validity of using
the ART with the NARP to test Hy as formally stated in Theorem 2.1 and
Theorem 2.2.

Assumption 1 (Z can not adapt to previous X). For each ¢t = 1,2,...,n
we have by basic rules of probability f/(zy,z; | T1:(4—1)s Z1:(t—1) Y1:(t—1)) =
924(1& | 951:(1571),Z1:(t71)7yl:(t71),2t)h24(zt | -Tl:(tfl)7zl:(tfl)aylz(tfl))v where
gi*, hi* denotes the conditional and marginal density functions induced by the
joint pdf of f, respectively. We say an adaptive procedure A satisfies Assump-
tion 1 if hi*(z | T1:(¢—1)s Z1:(t—1) Y1:(t—1)) does not depend on 1.1y, for
t=23,...,n.

Assumption 1 states that the sequential adaptive procedure A does not allow
Z; to depend on Xy.;_1). For the gender example above, Assumption 1 does
not allow other factors, e.g., party affiliation, candidate personality, etc., to
depend on the previous values of gender. However, Assumption 1 still allows
the practitioner to sample the next values of gender based on all the historical
data, even sampling more of male or female based on a strong interaction with
other factors. Although Assumption 1 does restrict our adaptive procedure, it
is crucial that each X; and Z; are still allowed to adapt by looking at its own
previous values and the previous responses.

We visually summarize Assumption 1 and a more convenient, but not nec-
essary, way to conduct a restricted adaptive sampling procedure in Figure 2.
Figure 2 shows a set of arrows from Z; into X; as opposed to them being
simultaneously generated as in Figure 1 to allow the proposed NARP in Defini-
tion 2.2 to conveniently sample directly from the already available conditional
distribution. Assumption 1 is also satisfied in Figure 2 as there exist no arrows
from any Xy into Z; for t’ < t. Before stating our main theorem, we summa-
rize the ART procedure in Algorithm 1. We note that although the p-value
parT in Equation (5) is similar to pcrr in Equation (2), the resamples X are
different in the two procedures. We now state the main theorem that shows
the finite-sample validness of using the ART for testing Hg.
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Algorithm 1 ART p-value

Input: Adaptive procedure A, test statistic T', total number of resamples B
Given an adaptive procedure A, obtain n samples of (X,Z,Y) according to
the sequential adaptive procedure in Definition 2.1.

forb=1 to B do : Sample X® according to the NARP in Definition 2.2;
Output:

1 B

part = 57 |14 D Lo zv)2rx,2,v)) (5)
b=1

Theorem 2.1 (Valid p-values using the ART). Suppose the adaptive pro-
cedure A follows the adaptive procedure in Definition 2.1 and satisfies
Assumption 1. Further suppose that the resampled X? follows the NARP in
Definition 2.2 for b = 1,2,...B. Then the p-value parr in Algorithm 1 for
testing Hy is a valid p-value. Equivalently, P(part < «) < « for any « € [0, 1].
In addition, pagrr is also a valid p-value conditional on Y and Z.

This theorem allows testing Hy for sequentially adaptive sampling pro-
cedures through randomization inference. Before concluding this section, as
alluded before, we state formally in Theorem 2.2 that our assumption is indeed
necessary to establish the exchangeability of (X, Z,Y) and (Xb, Z,Y) if we fol-
low the natural adaptive procedure in Definition 2.2. The proofs of Theorem 2.1
and Theorem 2.2 can be found in Appendix D.

Theorem 2.2 (Necessity of Assumption). For an adaptive procedure A, if
the resampled X follows the natural adaptive resampling procedure in Defi-
nition 2.2 and (X,Z,Y) and (Xb, Z,Y) are exchangeable, then Assumption 1
must hold, i.e., Assumption 1 is necessary.

3 ART in Normal Means Model

In this section, we explore the ART under the well-known normal-means set-
ting [20]. We first introduce the normal-means setting, the sampling procedures
we consider, and the test statistic in Section 3.1. We then present two main the-
orems, Theorem A.1 and Theorem A.2, that characterize the asymptotic power
of both the #id procedure and a naive, but still insightful, two stage adaptive
sampling procedure under local alternatives of O(n~1/2) distance in Section
3.2. Finally, we numerically evaluate these two theorems to illustrate when
the adaptive sampling procedure leads to an increase of power in Section 3.3.
Lastly, we postulate the main reasons for why an adaptive sampling procedure
is more powerful than an iid sampling procedure in Section 3.4.
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3.1 Normal Means Model

Formally, the normal-means model is characterized by the following model.
Y| (X=j)~N(@®;,1), forjeXx :={1,2,...,p},

where j refers to the p different possible integer values of X.2 We refer to
the different values of X as different arms. For this setting there are no other
experimental variables Z. Our task is to characterize power under the alter-
native, i.e., when at least one arm of X has a different mean than that of the
other arms. For simplicity, we consider an alternative where only one arm has
a positive non-zero mean while the remaining p — 1 arms have zero mean. This
leads to the following one-sided alternative.

HYMM : there exists only one j* such that fj« =h>0and 6; =0,Vj # j*.

As usual, our null assumes that X does not affect Y in any way,
HMM 9, =0,vj € {1,2,...,p}.

Given a budget of n samples, our task is to come up with a reasonable adap-
tive sampling procedure that leads to a higher power than that of the typical
uniform #d sampling procedure using CRT. Because we do not use a fully
adaptive procedure for this setting but a simplified two step adaptive proce-
dure, we use subscript ¢ instead of ¢ to denote the sample index for this section.
We now formally state the general iid sampling procedure.

Definition 3.1 (Normal Means Model: #d Sampling procedure with Weight
Vector ¢). We call a sampling procedure #id with weight vector q =
(¢1,42,-- - ,gp) if each sample of X = (X1, X>,...,X,,) is sampled indepen-
dently and P(X; = j) =g¢;, forall i =1,2,...,nand j € X.

We note that this definition is more general than the uniform iid sampling pro-
cedure that pulls each arm with equal probability, i.e., ¢ = (1/p,1/p,...,1/p).
We use X ~ M(q) to compactly describe this iid sampling procedure. With
a slight abuse of notation, we also use X; ~ M(q) to denote the above
distribution of Xj;.

Despite the simplicity of the normal-means setting, analyzing the power
of a fully adaptive procedure is generally theoretically infeasible. Therefore,
we consider a naive “two stage” adaptive procedure. The first stage is an
exploration stage that follows the typical iid sampling procedure while the
second stage is again another different i#id sampling procedure that adapts
once based on the first stage’s data. More specifically, the second stage will
adapt by reweighting the probability of pulling each arm by a function of

2We remind the reader that p is used to denote the cardinality of X as opposed to the dimension
of X.
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the sample mean. Under the alternative, we expect the arm with the true
signal will on average have a higher sample mean, thus we can exploit this
arm more in the second stage. Furthermore, the adaptive procedure will also
detect arms that, by chance, lead to higher sample means. In such a case, we
can additionally identify these “fake” signal arms and sample more to “de-
noise” and reduce the variance from these arms. We note that this two-stage
adaptive procedure does not utilize the full potential of an adaptive sampling
procedure, but we show that even a simple two stage adaptive procedure can
lead to insightful gains and conclusions. We formally summarize the adaptive
procedure in Definition 3.2.

Definition 3.2 (Normal Means Model: Two Stage Adaptive Sampling proce-
dure). An adaptive sampling procedure is called a two stage adaptive sampling
procedure with exploration parameter €, reweighting function f and scaling
parameter t if (X,Y) are sampled by the following procedure. First, for
1 <i < [n€,
X M@y Vi ¥ fa(w).

Second, for each j € X', we compute the sample mean for each arm using the
[ne] samples from the first stage,

vF._ Zy:% Yile‘:j

Jj o ne
Zgzl] 1x,—;

in which the superscript “F” stands for the first stage. Third, we calculate
a reweighting vector Q € RP as a function of Y¥’s that captures the main

adaptive step, -
Q= LY (6)
’ 2:1 f(t\/ﬁ : YkF)
Finally, we sample the second batch of samples using the new weighting vector,
namely, for [ne] +1<i<n

)

iid iid

Xi ~ M(Q); Y~ fn(x).

We comment that f(-) denotes the adaptive re-weighting function. For
example if f(z) = e®, then this reweighs the probability by an exponential
function, where t is a hyper-parameter of choice and a larger value of ¢ will lead
to a more disproportional sampling of different arms for the second stage. We
also scale the reweighting function by \/n because the signal decreases with
rate 1/4/n as we describe now in the following section.

3.2 Power Analysis Through Local Asymptotics

Although practically one could simulate the power for both the iid sampling
procedure and the adaptive sampling procedure, we theoretically characterize
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the power for deeper insights and exploration across an entire grid of differ-
ent signal strengths and number of arms of X. To characterize the asymptotic
power of both the uniform 4id sampling procedure and the two stage adaptive
sampling procedure, we use key ideas from the classical local asymptotic the-
ory [21]. We remark that for our setting we apply local asymptotic theory to
characterize the power of different sampling procedures as opposed to char-
acterizing the distribution of different test statistics of the data from a fixed
sampling procedure.

In our asymptotic setting, we keep p fixed and let n — oo. To avoid the
power from approaching one, we scale our signal strength h proportional to
the standard parametric rate n=/2, i.e.,

h=ho/vn >0, (7)

where hg is a positive constant.

As introduced in Definition 3.1, we first analyze the power under an iid
sampling procedure with arbitrary weight vector ¢ = (g1, g2, - - , ¢p) such that
¢;’s are all positive and Y7 _, ¢; = 1. Without loss of generality, we assume
under HIMM the signal is in the first arm, i.e., 7* = 1. Consequently, we have
under Hll\m[M7

X ~M(q),

L iid ho
Y| Xi=1 N(\/ﬁJ),
N(0,1), for j # 1.

Vil Xi=j '~

To compute the p-value as done in Equation (5), we need a reasonable
test statistic. We use maximum of all sample means for each arm as the main
proposed test statistic,

Y. Z?:l lei:j
TX,Y)= max Y;:= max =HF——.
JEL2,...,p JEL2,..,p Zi:l 1x,—;

(8)
We remark that another natural test statistic, Y (the sample mean), is degen-
erate in our testing framework since it does not depend on X or X, where X
is the fake copy. For the sake of notation simplicity, we define the following
resampled test statistic

~ S = Z?:1Yil)~(7:j
T(X,Y)= max Y;:= max ————,
JEL,2,.p JELZp Y 1z,

in which, formally speaking, X = (Xll, LX)t = X! and readers should
comprehend X as a generic copy of X°. Lastly, to deal with the Monte-Carlo
parameter B, we show in Appendix E that as B — oo the power of testing Hy
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against Hy is equal to

P (IP’ {T(X,Y) > 20 (T(X,Y)) ‘YD , 9)

where P denotes the probability measure induced by all randomness and
Z1-a (T(X, Y)) is the 1 — o quantile of the distribution of T'(X,Y) condition-
ingonY.

With the above setting, one can explicitly derive the joint asymptotic dis-
tributions of Yj’s, Yj’s and Y under the alternative H;. Consequently, the
asymptotic power of both the #id sampling procedures (Theorem A.1) and our
two-stage adaptive sampling procedures (Theorem A.2) with test statistic T
as defined in Equation 8 can be characterized. For brevity and readability, we
omit the explicit formulation of the theorems here, but they have been derived
and are included in Appendix A. Therefore, for now, we will proceed assuming
that these asymptotic results have been established.

Although we characterize the asymptotic power for the 4id sampling pro-
cedures for any general weight vector ¢, the default choice of weight vector ¢
should be (1/p,1/p,...,1/p) since the practitioner typically has no prior infor-
mation about which arm is more important. We refer to this choice of ¢ as the
uniform #d sampling procedure. Suppose an oracle knows which arm is the
signal. Then a naive, but natural idea for the oracle would be to sample more
from the arm with signal (large value of ¢1) to maximize power. As shown in
the next section, this is not necessarily the best strategy. In other words, the
optimizer ¢; := arg max,, Power;iq(q) is not always larger than 1/p, illustrating
that it is actually better to sometimes sample less from the actual signal arm
depending on the signal strength. This hints at the well known bias-variance
trade-off between the mean difference of T and T and their variances. Another
natural idea is to construct an adaptive procedure that up-weights or down-
weights the signal arm according to the oracle weight. However, Section 3.3
shows this naive strategy is not always recommended as the adaptive procedure
can do better than even the oracle i4d sampling procedure.

Furthermore, we remark that the final expression that characterizes the
asymptotic power in both Theorem A.1 and Theorem A.2 are not immediately
insightful due to the complicated nature of both the “maximum” test statistic
and the adaptive sampling procedure. Though Theorem A.1 and Theorem A.2
are not directly interpretable, the computational cost of evaluating it numeri-
cally is less than naively simulating the adaptive procedure for a large value of
n by a factor of O(n). Moreover, since the asymptotic power does not depend
on n, the conclusion is naturally more consistent and unified when compared
to the empirical power obtained from simulating with different large sample
size. Apart from the computational advantages the theorem provides, it is also
of theoretical interest as our work leverages local asymptotic power analysis to
characterize the distributions under different sampling strategies as opposed
to characterizing the distributions under different test statistics. In addition,
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these two theorems can also serve as a starting point and motivating example
for theoretically analyzing the power of the ART for future works.

3.3 Power Results

Given the asymptotic results alluded in Section 3.2 and formally presented in
Appendix A, we now attempt to understand how the ART using an adaptive
sampling procedure may be more powerful than the CRT using an #id sam-
pling procedure. As alluded in the previous subsection, if a practitioner knows
which arm contains the signal, then a naive but natural adaptive strategy is to
up-weight or down-weight the known signal arm according to the oracle. We
formally define the oracle in the following way, where we assume, without loss
of generality, j* =1,

1= P i
¢i = arg max, oweriia(q(q1)),

in which q(q1) :== (g1, (1 —q1)/(p— 1), (L —a@1)/(p—=1),....,(A—q)/(p— 1)) €
RP denotes the sampling probabilities of all p arms, where the first signal
arm has probability ¢; and the remaining arms (that have no signal) equally
share the remaining sampling probability. Let ¢* = ¢(g7), i.e., the oracle iid
sampling procedure that samples the known treatment arm in an optimal
way. We refer to the iid sampling with weight vector ¢* as the “oracle iid
sampling procedure.”?

Next, we use numerical evaluations of Theorem A.1 and Theorem A.2 to
compare the power of the (two-stage) adaptive sampling procedure, uniform
#id sampling, and the oracle iid sampling procedure across a grid of possible
signal strengths hy and number of arms p. For the adaptive sampling procedure
described in Definition 3.2, we choose the reweighting function f to be the
exponential function, i.e., f(z) = exp(z).

Figure 3 shows how the ART’s power with the proposed adaptive sampling
procedure is greater than that of both the uniform #id sampling procedure and
even the oracle 7id sampling procedure. To produce this figure, we first fix an
arbitrary, but reasonable, combination of hyper-parameters for the ART, i.e.,
we set exploration parameter ¢ = 0.5 and reweighting parameters tyg = log2
and t = to/ho. As a reminder, exploration parameter ¢ = 0.5 implies the
adaptive procedure spends half of the sampling budget on exploration and
only adapts once by reweighting (see Definition 3.2) after the first half of
the iid samples are collected. The choice of t; = log2 allows the first arm
(containing the real signal) to get roughly twice more sampling weight than
the remaining arms in the second stage in expectation. Appendix F shows
additional simulations with different choices for the adaptive parameters (e, tg),

3¢* is not formally the most optimal 7id sampling procedure for all possible itd sampling pro-
cedure since we consider the maximum power when only varying g1 while imposing the remaining
arms to all have equal probabilities. However, we do not imagine any other reasonable iid sam-
pling procedure to have a stronger power than ¢* since the remaining p — 1 arms with no signals
are not differentiable in any way, thus we lose no generality by setting them with equal probability.
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Fig. 3 The figure shows the difference between the local asymptotic power of the ART
using the adaptive sampling procedure in Definition 3.2 (with a fixed arbitrary choice of
hyper-parameters € = 0.5 and ¢ = log2/ho) and the CRT using an iid sampling procedure
for different values of signal strength hp and number of arms p. All tests use the test statistic
defined in Equation 8. The left plot shows that the power of the adaptive sampling procedure
is almost uniformly higher than that of the default uniform 4id sampling. The right plot
shows that the power of the adaptive sampling procedure is higher than that of even the
oracle 7id sampling procedure when the signal strength is relatively high. We note that values
on the top left corners of both heatmaps are close to 0 only because the power of all three
sampling procedures is almost degenerately one. The significance level is @ = 0.05. These
heat maps are generated based on Monte Carlo evaluations of Theorem A.1 and Theorem
A2

demonstrating that the results presented here are not sensitive to the initially
chosen parameters.

Figure 3 shows that the power of the ART from the adaptive sampling
procedure is uniformly better than that of the CRT using the default uniform
#id sampling procedure. For example, in areas that have high number of arms
and signal, the adaptive sampling procedure can have close to 10 percentage
points higher power than the uniform 4id sampling procedure. The right panel
of Figure 3 surprisingly shows that the adaptive sampling procedure can be
more powerful than even the oracle #id sampling procedure when the signal
strength is relatively high. This power difference can be as large as 10 percent-
age points when the signal and number of arms are high. However, we note
that the adaptive sampling procedure’s power can be lower than that of the
oracle iid sampling procedure when the signal is low. We postulate further in
Section 3.4 how and why the ART may be helping in power. We note that for
both panels in Figure 3, the top left corners of the heatmaps have zero differ-
ence between the two sampling procedures because this regime of strong signal
and low p results in a degenerate power close to one, allowing no significant
differences.

3.4 Understanding why Adapting Helps

In this subsection, we summarize some of the insights we find from the above
analysis of the normal means model. Our goal is to characterize key ideas of
why adapting is helpful so practitioners can also build their own successful
adaptive procedure. We acknowledge that all statements here are respect to
the specific normal-means model setting, but we believe that the main ideas



Springer Nature 2021 BTEX template

Adaptive Randomization Test 17

Oracle v.s. Uniform Weighting Difference Oracle v.s. Uniform Power Difference
2 25
— 20 20
S
£
£ o -1 Oracle - Uniform iid
D 15 15
e 7 0.05 0.06
o 0.00 008
» -0.05 .
30 B " e
€ 0.1 X
5 0.15
@
5 5
o e w— I ——
5 0 3 20 5 0 3 20
Number of Arms (p) Number of Arms (p)

Fig. 4 This figure compares the theoretical power of the CRT from an 4id oracle sampling
procedure with the CRT from an uniform i:d sampling procedure. The first panel on the left
compares whether oracle ¢} should down-weight (less than 1/p) or up-weight (more than
1/p) the signal arm. The second panel compares the power difference between the oracle
and uniform sampling procedures.

should generalize to different applications and scenarios as shown in Section 4
for instance. Unfortunately, it is difficult to theoretically verify many of the
presented insights because the power of the ART and the CRT depends on the
behavior of also the resampled test statistics. For example, even if we empir-
ically verify that the adaptive procedure is sampling arms with zero signal
with lower probability, it does not directly imply the power is greater because
the resampled test statistic may exhibit the same behavior. This would make
both the observed and resampled test statistic approximately indistinguish-
able, leading to an insignificant p-value. Therefore, Figure 3 should serve as
the main result that highlights how adapting can indeed help. Nevertheless,
we attempt to show some empirical evidence of how adapting is helping.

As pointed out at the beginning of Section 3.3, a natural idea is to try
to design adaptive strategies that mimic the oracle id procedure. However,
the power gain shown in the left plot of Figure 3 can not be attributed to
only mimicking the oracle iid sampling procedure because the right plot of
Figure 3 shows the adaptive sampling procedure can be more powerful than
even the oracle iid sampling as long as the signal strength is not too low.
Additionally, it is unclear if the oracle sampling procedure always samples the
signal arm with higher probability as our adaptive sampling procedure does.
Consequently, to understand the oracle sampling procedure’s behavior further,
we present Figure 4 that compares the oracle sampling procedure’s behavior
with the #d uniform sampling procedure.

The left plot of Figure 4 shows that the oracle up-weights and also down-
weights the signal arm depending on hg and p. For example, the red regions
shows that the oracle actually down-weights the signal arm to spend more
sampling budget on other arms. Therefore, if mimicking the oracle sampling
procedure is the ideal solution, the adaptive procedure should down-weight the
signal arm for the red regions in Figure 4. However, when comparing Figure 3
and the left plot in Figure 4, we see that the up-weighting (since t > 0) adaptive
procedure can actually beat not only the uniform iid sampling procedure but
also the oracle iid sampling procedure. This shows that the adaptive procedure
is doing more than just mimicking the oracle sampling procedure.
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Instead, as alluded previously, we believe the main intuition behind the
success of the ART is for the following three reasons. As expected, the first
reason is that an adaptive sampling procedure can, to some extent, mimic
the oracle #id procedure and achieve closer-to-oracle sampling proportions on
average (at least for the regimes that up-weight the signal arm). Additionally,
and most importantly, when the adaptive sampling procedure samples more
from the arms that look like signal it is not only sampling from the arms that
is truly the real signal but also the arms that are “fake” signals due to random
chance. This allows the adaptive procedure to de-noise these “fake” signal arms
to a correctly null state. Thirdly, adapting also down-weights arms (with high
probability) that contain no signal, allowing our remaining samples to focus on
exploring the more relevant arms. In summary, we find that adaptive procedure
that sample more from signal arms generally lead to improvements in power.
However, as shown in Figures 3-4, this power advantage vanishes when the level
of adaptivity becomes “unchecked”, i.e., too far from the uniform iid sampling
procedure. Consequently, we postulate that adaptive procedure that balance
both exploration and exploitation are generally promising for improvements
in power.

4 Application of ART in Conjoint Studies

In this section, we further demonstrate the power of the ART in a popular
factorial design called conjoint analysis. Conjoint analysis, introduced more
than half a century ago [22], is a factorial survey-based experiment designed
to measure preferences on a multidimensional scale. Recently the authors of
[2] also introduced the CRT in the context of conjoint analysis to test whether
a variable of interest X matters at all for a response Y given Z.

Unlike the analysis performed in Section 3, we do not theoretically char-
acterize the asymptotic power and in exchange consider a fully adaptive
procedure and a more complicated test statistic. We apply our proposed
methodology on a recent conjoint study concerning the role of gender dis-
crimination in political candidate evaluation [4, 23]. In this study, the authors
conduct an experiment based on a sample of voting-eligible adults in the U.S.
collected in March 2016, where each of the 1,583 respondents were given 10
pairs of political candidates with uniformly sampled levels of gender and twelve
other factors (see original article for details). The respondents were then forced
to choose one of the two pair of candidate profiles to vote into office, which is
our main binary response Y. The study consists of a total of 7,915 responses,
where the primary objective was to test whether gender (X) matters in voting
behavior (Y') while controlling for other variables such as age, race, etc. (Z).

The authors of [4] were able to find a statistically significant effect of can-
didate’s gender on voting behavior of Presidential candidates. We attempt to
answer this important question of whether gender matters in voting behavior
had the experimenter ran the same experiment for the first time but with a
lower sample budget n < 7,915. To run this quasi-experiment, we assume the
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original data of size 7,915 is the population and we draw samples (without
replacement) from the original dataset according to our experiment. For sim-
plicity, suppose X is gender and Z is only candidate party. Since each sample
consists of a pair of profiles, one potential sample may be X; = (Male, Female)
and Z; = (Democrat, Democrat), indicating the left profile was a Democratic
male candidate and the right profile was Democratic female candidate. Given
such a sample, we obtain the subsequent response Y from the original study
of 7,915 samples from randomly drawing response Y with corresponding pair
of profiles with a Democratic male candidate and a Democratic female candi-
date. Once we draw this response Y, we do not put it back into the population.
Since Z in the original study contained twelve other factors, the probability
of observing a unique sequence of a particular (X, Z) is close to zero. For this
reason, we only run this quasi-experiment for up to one other Z, namely the
candidate’s party affiliation (Democratic or Republican) because the authors
of [2] suggest potential strong interactions with gender.

Following the intuition presented in Section 3, we build an adaptive proce-
dure that samples arms of (X, Z) such that there is more evidence of a signal
based on each arm mean. We similarly set an initial exploration € parameter
and use a test statistic based on the sum of the estimated coefficients related
to X from a Lasso logistic regression of Y with main effects of X and Z and
their interactions. In the original experiment, all factor levels were sampled
uniformly and independently. We use this as the baseline #id sampling pro-
cedure for comparison. Appendix G contains further details of the adaptive
procedure and test statistic along with simulation results.

‘ iid sampling procedure - CRT  Adaptive sampling procedure - ART

n = 500 0.13 0.14
n = 1,000 0.14 0.17
n = 2,000 0.24 0.30
n = 3,000 0.31 0.40

Table 1 The two columns represent the power of the CRT with the uniform #id sampling
procedure and the ART for testing Ho when o = 0.1, where X is gender (Male or Female)
in the gender political candidate study in [4] and Z is the candidate’s party affiliation
(Democratic or Republican). Each row represents a different sample size n that aims to
replicate the original experiment had the researchers re-ran the experiment with the
respective sampling procedures.

Table 1 shows the power results using both the iid sampling procedure and
the proposed adaptive sampling procedure. In particular, Table 1 shows that
the power of detecting gender effects using the adaptive sampling procedure
is consistently higher than that from using the #id sampling procedure. For
example, when n = 3,000 (approximately 37% of the original sample size),
we observe a power difference of 9 percentage points with the iid sampling
procedure only having 31% power, approximately a 30% increase of power.

Acknowledgments. We thank Lucas Janson, lavor Bojinov and Sub-
habrata Sen for advice and feedback.
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Appendix A Asymptotic Results for the
Normal Means Model

The two asymptotic power analysis results we omitted for conciseness of the
main text in Section 3.2 are stated here. Proofs of results presented in this
section are all in Appendix E.

Theorem A.1 (Normal Means Model: Power of RT under #d sampling pro-
cedures). Upon taking B — oo, the asymptotic power of the iid sampling
procedure with probability weight vector ¢ = (¢1,¢2, - ,¢p), as defined in
Definition 3.1, with respect to the RT with the “maximum” test statistic, is
equal to

Poweriq(q) =P (Tiid > 2l-a (ﬂid)) ,

where z1_, is the 1 — « quantile of the distribution of Tig. Tiq and Tiq
are defined/generated as a function of G := (G1,G2,...,Gp—1) and H :=
(Hv,Hy,...,Hp_1), both of which are independent and follow the same (p—1)
dimensional multivariate Gaussian distribution N (0,3(q)). Tiq and Tiq are
then defined as

‘ 1
Eid:ﬂid (q;GaH) = maX({Hl+hO}m{HjaJ :2a"'7p71}m {quJH]}>v
P =1

-1
Tiiq = Thia (¢, G, H) := hoq1 + max ({Gj,j =1,...,p—1}n {;zilqjaj}> .
Finally, ¥(q) is specified by -
(q) := D(a) "' So(¢)D(a) " (A1)
where matrices Yo and D are defined as

v(q1) —1q2 - —q1gp—1
Solg)i= | B M) TR g gooo),

~1qp-1 —q2qp—1 -+ V(gp—1)
with v(z) = z(1 — x), and D(q) := diag(qi,qa,-- -, qp—1) € RP=DxP=1),

We note that if we assume p to be “large” (in a generic sense) and our
sampling probabilities ¢; = O(1/p) for all j, then the diagonal elements of 3(q)
will be generally much larger than the off-diagonal elements. Consequently,
G and H in Theorem A.1 will have approximately independent coordinates,
thus both Tinq and Tig are characterized by nearly independent Gaussian
distributions.
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By an argument similar to proof for Theorem A.1, we can also derive the
asymptotic power for our two-stage adaptive sampling procedures.

Theorem A.2 (Normal Means Model: Power of the ART under two-stage
adaptive sampling procedures). Upon taking B — oo, the asymptotic power
of a two-stage adaptive sampling procedures with exploration parameter e,
reweighting function f, scaling parameter t and test statistic T as defined in
Definition 3.2, with respect to the ART with the “maximum” test statistic, is
equal to

Poweradap (6, t, f) = ]PJRF7GF7RS,HF (P (Tadap Z Zl—a(Tadap | RF, }287 HF, HS)

‘RF RS, HF HS)>

- (A2)

where 21_o(Tadap,; | RF, RS HY HS) denotes the 1 — a quantile of the
conditional distribution of T,4ap given RY¥, RS, G¥ and G®. Further more,

Todap = max T, 5 T, = max T, ¥
P . adap,j» adap . adap,j»
J€{1,2,...,p} J€{1,2,...,p}

GVEW; + Qi/(1—€) [H + RS + 1,211 — eho|
eq; + (1 —€)Q; ’
~ qj'\/EVNVj +Qj (1—6) (GJS+RS+\/1—6h0Q1)

Todan. i = - :
adapd €qj + (1 —€)Q;

where R¥, RS, G¥, G5, HY, HS, Q, Q, W and W are random quantities
generated from the following procedure. First, generate RY ~ N(0,1), GF ~
N (0,%(q)), and HY ~ N(0,%(q)) independently, where %(-) is defined in
Equation Al. Second, compute

Tadap,j =

W; = Hj + R" + 1;_1\/chy, for j € {1,2,...,p— 1},
Wj :Gf—&—RF—l—\ﬁhoql,forje {1,2,...,p—1},

-1
1 p

Wy === qH} + B+ Vehoni(1- ),
pj:1

1%~
—— > 4;,G5 + RF +Vehoq:.

p j=1

W

Third, compute

S {11/720 E S (i1 I
TS T Wi Ve LS WiV
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We note that with a slight abuse of notation, the @ defined here is the
asymptotic distributional characterization of Equation 6. Lastly, generate

RS ~ N(0,1), HS ~ N (0,2(Q)) and G5 ~ N (0, 2 (Q)) independently.

Appendix B Multiple Testing

Our proposed method tests Hy for a single variable of interest X conditional on
other experimental variables Z. However, the practitioner may be interested in
testing multiple Hy for multiple variables of interest (including variables from
Z).

To formalize this, denote X = (X!, X2 ... XP) to contain p variables of
interest, each of which can also be multidimensional. Informally speaking, our
objective is to perform p tests of Y 1L X7 | X7 for j = 1,2,...p, where
X7 denotes all variables in X except X7. Given a fixed j, our proposed
methodology in Section 2.1-2.3 can be used to test any single one of these
hypothesis. The main issue with directly extending our proposed methodology
for testing all j = 1,2, ...p variables is that Assumption 1 does not allow X ~7
to depend on previous X7 but X7 may depend on previous X~/ when testing a
single hypothesis Y 1l X7 | X 7. This asymmetry may cause this assumption
to hold when testing for X7 but simultaneously not hold when testing for X7’
for j # j'. Thus, in order to satisfy Assumption 1 for all variables of interest
simultaneously, we modify our procedure such that each X7 is independent of
Xg,/ for all j,7 and ¢’ < t. In other words, we force each Xg to be sampled
according to its own history X{;(tq) and the history of the response but not
the history and current values of X7 " for j # 7' and for every j. We formalize
this in following assumption.

Assumption 2 (Each X7 does not adapt to other X7'). For each ¢t =
1,2,...,n suppose each X; = (X}, X?2,...,X}) are sampled according to
a sequential adaptive sampling procedure A: X; ~ f{‘(x%,xf,...,xf |
m;%t_l),le:(t_l),ylz(t,l)). We say an adaptive procedure A satisfies Assump-

tion 2 if f* can be written into following factorized form, for t = 2,3,...,n,
P
A1, 2 —j j A g3 j
fi (g a2l | x1:€t71)7ijl:(t,l),yl:(t—l)) = H fiat | x{:(t,l),y{:(t,l))
j=1

with every f/4(- | xi:(tflyyi:(tfl)) being a valid probability measure for all
possible values of (xtlz(tfl),yﬁz(tfl)).

Assumption 2 states that X7 can not adapt based on the history of any
other X" for all j # j'. This assumption is sufficient to satisfy Assumption 1
when testing Hy for any X7 for any j = 1,2,...,p, thus leading to a valid
p-value for every X7 simultaneously when using the proposed ART procedure



Springer Nature 2021 BTEX template

Adaptive Randomization Test 23

in Algorithm 1. Although our framework gives valid p-values for each of the
multiple tests, we need to further account for multiple testing issues. For exam-
ple, one naive way to control the false discovery rate is to use the Benjamini
Hochberg procedure [24], but this is not the focus of our paper.

Appendix C Discussion of the Natural
Adaptive Resampling Procedure

Keen readers may argue the NARP is merely a practical choice but an unnec-
essary one, thus no longer requiring Assumption 1. Exchangeability requires
(X,Z,Y)and (X*,Z,Y) to be equal in distribution. Consequently, if one could
sample the entire data vector X from the conditional distribution of X | (Z,Y),
then this construction of X would satisfy the required distributional equality.
In general, however, it is well known that it is difficult to sample from a compli-
cated graphlcal model [25]. To illustrate this, we show how constructing valid
resamples X? for even two time periods may be difficult without Assumption 1
with the following equations.

P(Xi1=x1,Xo =22 | Z1 = 21, Z2 = 22, Y1 = Y1, Y2 = ¥2)
B PXo=uao| X1 =21,Z1 = 21,20 = 22, Y1 = 1)
[ P(Zy=m|Xi=x.Y1=uy,Z1=2)dP(X1 = | Z; = )
P(Zo=2 | Xi=21,Y1=y,Z1=2)P(X1 =21 | Z1 = 1)
xP(Xo=a9 | X1 =21,Z1=21,7%2 =22, Y1 = 1)
P(Za=2 | X1 =x1,Y1=y1,Z1 = 21)P(X1 =21 | Z1 = z1)].

This follows directly from elementary probability calculations. Since any valid
construction of X? must have that P(X1 = xl,Xg =ay | 21 = 21,725 =
20,Y1 = y1,Y2 = y2) = P(X1 = 21, Xo = 22 | Z1 = 21,22 = 2,1 =
Y1, Y2 = 72), the above equation shows that it is generally hard to construct
valid resamples due to the normalizing constant in the denominator of the
second line. We further note that Assumption 1 bypasses this problem because
P(Zy = zo | X1 = 21,Y1 = y1,Z1 = z1) is now independent of the condition
X1 = x1. Therefore, the denominator in the second line is always P(Zy = 25 |
X1 =x1,Y1 =1, 21 = 1), cancelling out with the numerator.

Although sampling from a distribution that is known up to a propor-
tional constant has been extensively studied in the Markov Chain Monte Carlo
(MCMC) literature [26], many MCMC methods introduce extra computa-
tional burden to an already computationally expensive algorithm that requires
B + 1 resamples and computation of test statistic T. Moreover, it is unclear
how “approximate” draws from the desired distribution in a MCMC algorithm
may impact the exact validness of the p-values. This problem may be exacer-
bated when the sample size n is large because the errors for each resamples
could exponentially accumulate across time. Therefore, we choose to use the
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NARP along with Assumption 1 as the proposed method because it avoids
these complications.

Appendix D Proof of Main Results Presented
in Section 2

Proof of Theorem 2.1 By definition of our resampling procedure, under Hy,
> d ¢ d d

X1, 20)=X1|Z1=X1 | Z1=X1| (N1, 2)

d

where the last “=" is by the null hypothesis of conditional independence, namely
X1 1L Y1 | Z1. Moreover, it also suggests

> d
(X1,Y1,71) = (X1, Y1, Z1).
Then we will prove the following statement holds for any k € {1,2,...,n} by
induction,
> d
(Xlzkvylzkvzl:k) = (Xllk‘ayltkazl:k)' (DS)
Assuming Equation D3 holds for k—1, we now prove it also holds for k. For simplicity,

in the rest of this proof, we will use P(+) as a generic notation for pdf or pmf, though
the proof holds for more general distributions without a pdf or pmf. First,

P (X1 (km1)> Y1 (h—1)> Z1:k) = (wlz(k—1)7yl:(k—l):zl:k)]
() 5
=P |Z | Xl:(k—l)»Yl:(k—l),Zl:(k—l)):(wlz(k—l)vyl:(k—l):zl:(k—l))]

[
2 1(
P[(Xl (k=1)s Y1:(k=1)s Z1:(k—1)) = (l‘1:(k—1)7y1;(k—1)721:(k—1))]
[Zk | Yii(h—1)s Z1:(k—1)) = (y1:(k—1)721:(k—1))}

=r|
[
[

(
P[(Xl (k=1)s Y1:(k=1)s Z1:(k—1)) = (l‘1:(k_1)7y1;(k—1)721:(k—1))]

(D4)
(

N

=P
o | (Yi(k—1), Z1:(k—-1)) = (y1:(k—1)721:(k—1))}

P[(Xl (k=1) Y1:(k—1)» Z1:(k—1)) = (331:(1@—1)7y1;(k—1)721:(k—1))]
Wp [z | (X1e—1)Yi:(k—1)s Z1:(k—1)) = (mlz(k—l)vyl:(k—1)7zl:(k—1))]
P[(Xl (k=1)s Y1:(k—1)s Z1:(k—1)) = ($1:(k—1)7y1;(k—1)721:(k—1))]

=P [(X1:(k—-1)> Y1:(k—1)> Z1:k) = (xlz(k—my1:(k—1)721:k)} ;

where (i) is simply by Bayes rule; (ii) is because Zj, 1L Xj.,_1 | (Y1 (k—1)s Z1:(k—1))
since Xl:k—l is a random function of only Y1.(k—1) and le(k_l); and lastly, (iii) is
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by induction assumption; (iv) is by Assumption 1. Moreover,

P [(Xlzkayl:k:,zl:k) = (Il:k7y1:k721:k)]
Op [Yk =y | X1k, Yis(h—1)s Z1:k) = ($1:k,y1:(k—1)7z1:k)}
P [(X1;k7Y1;(k_1)7Z1:k) = (961;k,y1;(k_1)7z1;k)]

(;)P[Yk =y | Zx = 2] - P [(X1;k7Y1;(k—1),Z1:k) = (xl:k7y1:(k—1):zl:k)}

(iii) - -
=PYy=yr | Zy=2] P [Xk = ok | (X1 (h—1)s Yi:(h—1)» Z1:6) = (ml:(k—1)7y1:(k—1)>Zl:k)]
- P [(Xl:(k—l)z Yl:(k,—l)7 Zl:k) = ('le(k—l)v Y1:(k—-1)» Zl:k)]
(iv)
=Py =yx | Zi = 2] - P [Xk =z | (X1:(k—1) Y1:(k—=1)» Z1:k) = (1’1:(1§—1)7y1:(k—1),Z1:k)]
P [(Xl:(k—l):ylz(k—l)vZl:k) = (351:(1@—1)72/1;(1«—1)721:1:)}
)
=P[Yy=yk | Zx = 2] - P [Xk =z | (X1:(k—1)> Y1:(k—=1)» Z1:k) = (xl:(k—1)7ylz(k—1)>Zl:k)]
P [(Xl:(k—l):ylz(k—l)vZl:k) = (351:(1@—1)7y1;(k—1)721:k)}
=P [(Xl:k:7 Yl:k7 Zl:k) = (xlzkvyl:kz Zl:k})] 5
where (i) is again simply by Bayes rule; (ii) is because Y} is a random function of
only Zj, (up to time k) under the null Hy and thus is independent of anything with
index smaller or equal to k conditioning on Zj; (iii) is again by Bayes rule; (iv) is
by Definition 2.2; and finally (v) is by the previous equation above. Equation D3 is
thus established by induction, as a corollary of which, we also get for any k < n,
> d
Xl:n | (Yl:'le:n) - Xl:n | (Yl:'le:n)

Finally, note that X 1 X | (Y,Z). So, conditioning on (Y, Z2), X and X are
exchangeable, which means the p-value defined in Equation 5 is conditionally valid,
conditioning on (Y, Z). Since P(p < a | Y, Z) < « holds conditionally, it also holds
marginally. O

Proof of Theorem 2.2 Note that Assumption 1 was only utilized once in the proof

of Theorem 2.1, namely (iv) of Equation D4. So upon assuming (X1.1, Y1.4, Z1.%) 4
(X1:5, Y1:k, Z1.k ), we know immediately from Equation D4 that

P [Zk =2k | Yii(e=1)s Z1:(k—1)) = (y1;(k—1),21:(k—1))}
=P [Zk =2k | (X1:(k—1) Y1:(k—1)s Z1:(k—1)) = (xlz(k—l)»ylz(k—l)vZl:(k—l))}

which is exactly Assumption 1. O

Appendix E Proof of Results Presented in
Appendix A

Before proving the main power results, we first state a self-explanatory lemma
concerning the effect of taking B to go to infinity, which justifies assuming
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B to be large enough and ignoring the effect of discrete p-values like the one
defined in Equation 5. Similar proof arguments are made in [27], thus we omit
the proof of this lemma. The lemma states that as B — oo, conditioning on
any given values of (X,Y,Z),

| 1
-value :—= ——
p B+1

B
1+ Z 1{T(X",Z,Y)2T(X,Z,Y)}]
b=1
2% p (T(Xb, Z.Y)>T(X,2,Y) | Y, z) .

Lemma E.1 (Power of ART under B — o). For any adaptive sapling proce-
dure A satisfies Definition 2.1 and any test statistic 7', as we take B — oo, the
asymptotic conditional power of ART (with CRT being an degenerate special
case) condition on (Y, Z) is equal to

P (T(X,Y,Z) > 2-o(T(X,Y,Z)) | Y, z) ,
while the unconditional (marginal) power is equal to
Py (P(TXY,2) > 21X, Y,2) | Y.Z)).

Note that the joint distribution of (X,X,Y7 Z) is implicitly specified by the
sampling procedure A.

Lemma E.2 (Normal Means Model with iid sampling procedures: Joint

Asymptotic Distributions of §7j’s7 Ezfj’s and Y Under the Alternative H;).
Define .

Ton = <Y17Y27~-~7Yp—17571,572’-~-757p—1,37> e R
Upon assuming the normal means model introduced in Section 3, under the
alternative Hy with h = hy/y/n, as n — oo,

d
v Tan = T3,

with
Gl + R + hofh
GQ + R + hofh

Gp—1+ R+ hoq1
W= Hi+R+ho |eR?,
Hy+ R

Hp—l + R
R
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where G := (G1,Go,...,Gp_1) and H := (H1,Hs,...,H,_1) both follow the
same (p— 1) dimensional multivariate Gaussian distribution M (0,X) and R is
a standard normal random variable. Note that ¥ was defined in the statement
of Theorem A.1. Moreover, G, H and R are independent.

Remark 1. Roughly speaking, after removing means, R captures the ran-
domness of Y being sampled from its marginal distribution; H captures
the randomness of sampling X conditioning on Y; lastly, G captures the
randomness of resampling X given Y.

Remark 2. We also note that we do not include characterizing the distri-
bution of Y, or Yp to avoid stating the convergence in terms of a degenerate
multivariate Gaussian distribution since Yp is a deterministic function given
Y and the remaining p — 1 means of the other arms.

Proof of Lemma E.2 We first characterize the conditional distribution of ):/J For any
je{1,2,...,p},
n
= Zi:l 1/21)21 =j

J=
2?21 1Xi:j

n
1 izizln(lﬁi:j’qﬂ')JrZ?:lYi %"

v | g Vn Voo | Eitilgo;
By Central Limit Theorem, since Var (Yi(lfg:j - qj)> — qj(1—gj) as n — o0,
Yim i (1;21:]' - qj‘)

q;(1 —gj)n
which together with Slutsky’s Theorem and the fact that gjn/> 1 ; 1g.;, =1
almost surely gives,

4 N, 1),

S anl Y q U(Qj)
Jjin i =+nY; — ==— S N |0, ,
jin = V/nYj NG 32
where v(g;) = Var(Bern(q;)) = Var(lijl) = ¢j(1 — g;). Additional to these one
dimensional asymptotic results, we can also derive their joint asymptotic distribution.
Before moving forward, we define a few useful notations,

J—p,n = (Jl,n7 J2,n7 ceey prl,n) S Rp_l»
‘/i = (}/Z(]'Xizl - Q1)7 Y;(IXLZQ - q2)a e 7Y'i(1)~(i:p,1 - qp—l)) € Rp717

_ 1 &
S o= - Zl Var(V;),
=

and
(1)  —@e2  —qg3 - —qgp—1
—q1q2  v(q2) —q2q3 -+ —q2qp—1
Yo := Var ((1;21.:171&:27“' ,1)21.:,)_1)) =| —qu¢3  —geq3  v(g3) - —g3qp-1
—q1Gp—1 —q2qp—1 —q3Gp—1 -+ V(gp—1)
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By Multivariate Lindeberg-Feller CLT (see for instance [28]),
VS, AV —EV) SN (0,1,-1) . (E6)
which further gives
Vi (V —EV) S N (0,%0)
because of
nli_)moo Yn = Xp.
Therefore we have
I S N0,3), (E7)
where
S=D"'5D!
with
D = diag(q1,42, -+ ,qp—1) € RP™XPD), (E8)
Roughly speaking, this suggests that after removing the shared randomness induced
by %, all the \/ﬁ):’j’s are asymptotically independent and Gaussian distributed.
Next, we turn to Y;. Note that in this part we will view X; as generated from
Fyx|y after the generation of Y; according to its marginal distribution. The only
difference in the observed test statistic and the above is that we have

X | Y~ M(q))

with ¢ = (¢ 1,472, - ,qu) and
N (Y Do 1 exp |—3 (Y'fh—f’l'fl)2
* QJ ( iy ﬁ j=1 ) 2 ? \/ﬁ J=
9i,5 = =
’ P . h 2
S (s Bt ) T e | (1 e
instead. Again, Multivariate Lindeberg-Feller CLT gives,
Sky— - ey d
V(SR T2 (VF BV S N (0, 1,-1) (E9)

with
—1
Vit = (Yi(lx,=1 — 411), Yi(lx,=2 — qr2), -+ . Yi(lx,=p—1 — i p—1)) ERP™7,

n

Sh= S Var ().

Note that, since
. *
Jim Var (Yi(1x,—; — ai;)) = ¢;(1 = q5)

and

Jim Cov (Yi(Lx,—j, — ¢ 1) Yi(lx,=ja — @1,32)) = ~ 5 %
we have

lim ¥ =3,
n—oo
which further gives
Vn (VX —EV*) S N (0,%). (E10)

Similar to J’s, we define J*’s as well,

_ K "V nooxy Vvn (V).
Jj*,n — \/ﬁyj_zzfl q; 5 i _ 21_1 i+ X;=j _szl q;,5 z+0p(1) _ ( )g +Op(1).

aivn avn givn q;
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and
Jip,n = (Jf,n7 Jg,nv ceey J;Cfl{n) € Rp_l,
which together with Equation E10 gives
T S N(0,5). (E11)

Note that though Equation E7 and Equation E11 are almost exactly the same, it
does not suggest 17]-’5 and Y’j’s have the same asymptotic distribution, since the
Y:

n
=1

“mean” parts that have been removed actually behave differently, namely

Yiaa,Yi
and %‘7\/57
E.6. Roughly speaking, under this 1/n scaling, the randomness that leads to the
Gaussian noise part in CLT is the same across them as demonstrated in Equation
E7 and Equation E11, but the Gaussian distribution they are converging to have
different means.

Finally, following exactly the same logic, we can further derive the following joint

, as demonstrated in Lemma E.3, Lemma E.4, Lemma E.5 and Lemma

. c . rLY; .
asymptotic distribution of J_j, 5, Jtpm and Z“T:I Letting

Y _
JALL = (%,J_p,mtp,n) R,

we have

100
Jarn SN0, 84 =N [0, [0z 0
003

Lemma E.3. As n — oo,

1 = a.s. Zn_ Y;, d
=Y V221 and ==L S N(hoga, 1).
n; g an NG N(hoqi,1)

Proof By defining E; := S;W; + (1 — S;)G; ~ N(0,1), we have
Siho
Vvn

Note that F; and S; are not independent. Thus,

Ia. , 1 2
”;Yi:”;<Ei+ )

L zn:Ezz + L zn:Siho + L zn:QhOEiSi
i3 n? i n?/? =
3,
since by Law of Large Numbers the last two terms will vanish asymptotically and
the first term will converge to E(EZ) = 1. Moreover,

Yi=FE; +

Siho
NG

Tic i _ X Bi g i Si
Vn Vn n
d
— N (hoq1,1),

where the last line is obtained by applying CLT to the first term and LLN to the
second term. ]
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Lemma E.4. As n — oo,

n *
21:1 q;1Yi 4

: =N q1 ho, 1).
avn ( )
Proof We first show
lim E (\/ﬁql’lei) = hg. (E12)
n—00 ’

Recall that Y; can be seen as a mixture of two normal distributions A(0,1) and

N (%, 1) with weights 1 — ¢; and ¢;. Thus E (\/ﬁqzlYi) is equal to

—(y—ho/v/n)*/2

yaie —y?/2 L (y—ho/vm)?/2
- o d
\/ﬁ Rq1e_(y_h0/\/ﬁ)2/2+(1_ql)e_yZ/g ( q1)m€ +q1 me y
= AO + Aj.
Note that with a change of variable h = ho/+/n,
2 P 2 s
A, = BV ye” W/ v o~ (=ho/ V24,
o Vor Jr qremWmho/VI?/2 4 (1 — gp)ev?/2
— _ 2
= lim i ho l/ ye~(W=h)*/2 6_(y_h)2/2dy
w0 Vo | B J grem WP 4 (1= qr)e v
ye‘(y—h)2/2 Cyn)?/2
_ daiho ¢ [IR qre- M7 (1—qr)ev2/2 dy
V2r T
h=0
e ~(y=h)?/2
aiho qie A (1 g)e 2 d
T Vor Je s y
h=0
2
— Q1h0 2 7y2/2
\/ﬂ R( (I1)y Y

= hoqi (2 — q1).
Similarly,
lim Ag = hoq1(1 — q1)2.
n— oo
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Equation E12 is thereby established. Then we compute limy,— o0 Var(qz 1Y;) using
the same strategy.

nli_>moo Var(q; 1Y:)
= tim {E[@00)?] - [Batav2)*}

= lim E[(a517)’]

n—oo
y ) qe—W=ho/Vm)? /2 ?
T oo Jp U | qrem R/ NET2 (1= qp)e /2
1 2 | 2
=gy ez o wmm]d
[( q1) W N = Y (E13)
N qre—W—n’/2 2
B /RhI—>HIO {y qlef(yfh)z/Q + (1 — ql)e*yz/Z
1 2 1 _(y—p)2
o I 6<yh>/2]}d
[( q1)m Vor y
26—y2/2d
2
=dq1-
Combining Equation E12 and Equation E13, the lemma is thus established by Central
Limit Theorem. O

Following exactly the same logic, we have the following parallel lemma for

J# 1L
Lemma E.5. For j # 1, as n — oo,

"oy,
Lizm14ig¥i o N(0,1)
av/n

Proof We first show

1 * . p—
Again, recall that Y; can be seen as a mixture of two normal distributions N (0, 1)
and N (%, 1) with weights 1 — ¢; and ¢;. Thus E (\/ﬁquYi) is equal to

—y2/2 1
° (1—aq1)

e V2 g L —l—ho/ VP2 | g

Y4,
vn z Nor Nors

R qle_(y_ho/\/ﬁ)z/Q + (1 — ql)@_yz/Q
:= By + B1.
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With a change of variable h = ho/\/n, we have

4?2
lim By = q1g;V/n ye Y / e_(y_ho/\/ﬁ)Q/Qdy
e Ver R Q1e*(y*ho/\/ﬁ)2/2 F(1— ql)efyz/Q
.2
oy q1qiho |1 yey’/2 i
im _u - ,
h—0 27 h R qle_(y— )2/ +(1—Q1)e—y/
2
ye v /2 —(y—h)?/2
019;ho ¢ [IR qre- W22 (1qr)e v2/2 € dy
Vo W
h=0
ye‘y2/2 e—(y—h)2/2
214570 qe- (24 (1-qr)e VP /2 d
RV T y
h=0
‘hqj'ho

_ 2 —y*/2
= 1— d
fom R( Q1)y € Y

= hogjq1(1 — q1).
Similarly,
Jim By = —hogjq1(1 — q1).
Finally, we have limp—oo Var(q; ;Y;) = q]2- as well, which by CLT finishes the proof.
O

We can further write down their asymptotic joint distribution. We note
that ¢7; = %qz 5 deterministically for j > 2, thus it suffices to only include
7 = 1,2 in the joint asymptotic distribution.

Lemma E.6. As n — oo,

LY g Ye Y 4feYi EH\/( )
\/ﬁ ) q1\/ﬁ ) q2\/ﬁ M3, 23),

where
11z = (hogi, hoqi (2 — 1), hogi (1 — 1)) " € R?,
and X3 € R3*3 is equal to

—_ =
- o=
—_ = =

In other words, asymptotically these
linearly correlated.

hree random variables are completely
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Proof By Lemma E.4, it suffices to show

. Z?:1 Y; Z?:1 quYi . Z:;l Y; E?:1 ’JZ':QYi
lim Cor R = lim Cor ,
n— oo \/ﬁ (I1\/ﬁ n—oo \/ﬁ q2\/ﬁ
C ol cop [ 2= GaYi N gpYi)
n—oo lh\/ﬁ ’ QQ\/’E s

which can be established by the following three displays. First,
lim_ Cov (¥i,q71Y:)

= lim E (% -q},Y)

= lim { ygqle_(y_hﬂ/\/ﬁ)z/Q

n—=oo JR qle_(y—ho/\/ﬁ)Q/Q +(1- Q1)6_y2/2

1 _,2 1 2
{(1*%)\/%6 Y /2+qlﬁe (y—ho/v/n) /2} }dy
2, o—(y—h)?/2

_ Y qe 1 20 7(y7h)2/2}
=1 1 1 |

h1—>InO R qle*(y*h)2/2 + (1 _ql)e,yQ/Q |:( QI)me +q1 me y

2, o—(y—h)?/2
. Yy qie B 1 4?2 1 *(y*h)f“/?}
/R }11_%10 { qre—W—h1/2 1- q1)67y2/2 |:(1 q) mé + a1 Tﬂ”e dy

=q ]Ry e Y

=4q1;
secondly,

Jlim_Cov (¥i,47Y)
= lim E(Y; a2V

yPqpe V2
R qle—(y—ho/\/ﬁ)Q/Q + (1 — ql)e_y2/2

= lim

.2
e y/2+fh

Y

{(1 ~aq) ‘(”"’O/ﬁwﬂ }d

—=€

V2T
.2

lim y22q2€ Y /2 _ |:(1 B ql)

h—0 que—(y—h) /2+(1—q1)e_y /2 V2

1
V2T

LN ef(yfhf/z} dy

V2T
2 —y?/2
- Y qee RN SRy wafhf/z}
/Mimo{qle@h)a/uuql)ezﬂ/z {(1 Wt e W

= q2
q Ry o Y

= q2;
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and finally
Jim_Cov (¢51Yi, 45 2Yi)

= lim E(Qz 194, 2Y )

n—oo

2 —(y=ho/Vn)?/2,~y?/2
— lim { [ Y qgze e
1

noo Jr Ul emtho/vm?/2 4 (1_q1)efy2/2]2

2 1 2
1 —*/2 ~(y—ho/V) /2} }d
% q)—=e Vo y

—(y—h)?/2 _—y?/2
= lim y ql@e W ey e_y2/2 +q171 e_(y_h)z/g] d

0-a)—
h—0 [ +(1_q1)€,y2/2]2 qn Vor Vor

—y-n)?/2, R 2 L ) .
y q192€ € -y~ /2 —(y—h)7/2
1 1-— d
Rhl_%{ [que—(—m?/2 (1—q1)e—92/2]2 [( q1) 5=¢ +q 5= ]} y

Ver

—y%/2
—m@/f dy
R 2T

=q192-

Appendix F Additional Simulations in
Normal-means Model

To show that our results presented in Section 3.3 are not sensitive to the
initially chosen adaptive parameters and to also further optimize for multiple
adaptive procedures A as shown in Algorithm 1, we create Figure F1. Figure F'1
shows the power of the ART using different combinations of the adaptive
parameters, € and reweighting value g, in three different scenarios of p and hy.

Figure F1 shows that an adaptive procedure with exploration parameter
e = 0.7 seems to be a favorable choice across different signal strengths. Addi-
tionally, we find that the optimal reweighting parameter ¢t can be different
across different scenarios but does not seem to matter largely across the dif-
ferent scenarios. We find that our initially chosen parameter of ¢ = 0.5 in
Section 3.3 was not necessarily the most optimal choice, demonstrating the
robustness of the results presented in Section 3.3
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Fig. F1 Each panel showcases the power for different exploration parameter € across differ-
ent reweighting parameter to, where t = to/ho. The panels differ by different signal strengths
ho = 6, 10, 14 while the number of arms are fixed at p = 15.

Appendix G Details of ART in Conjoint
Analysis

In this section we first give further details of the ART used in Section 4 along
with some additional simulation results.

G.1 Simulation Setup

For our simulation setup, (X, Z) each contain one factor with four levels,
ie., XE,XE ZE, ZF take values 1,2,3,4. The response model follows a logis-
tic regression model with main effects and interactions on only one specific
combination,

Pr(Y; = 1| Xy, Z;) = logit ™ | Bx L{XE =1, X #1} - Bx1{X} #1,XF =1}

+ 02U Zf = L2 # 1} - B Zf # 1, 2{ = 1}
+BxzUX{ =12 =2, X[ # 1,2 # 2}

—Bxz XL #1,2F £2, xF =1,2F = 2} |,

where the first four indicators force main effects Bx, 8z of X and Z, respec-
tively, on the first levels of each factor and the last two indicators force an
interaction effect Sxz between the first and second level of factors X and Z.
For example, 1{X} = 1,ZF = 2, X[t # 1,72} # 2} is one if the left profile
values of (X, Z) are (1,2), respectively, but the right profile values of (X, Z)
are not (1,2) simultaneously. We note that the interaction indicator is still
one if (X}, ZL) = (1,2) and (X[, ZF) = (1,3) as long as both (X[}, Z})
and (X[, ZF) are not (1,2) simultaneously. For the left plot of Figure G2,
Bx = Bz = 0.6 while Bxz = 0.9 while we vary the sample size in the z-
axis. For the right plot of Figure G2, the interaction Sxz = 0 while we vary
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Bx = Bz = (0,0.3,0.6,0.9,1.2) in the x-axis with a fixed sample size of
n = 1,000. Lastly, our response model assumes “no profile order effect” since
all main and interaction effects are repeated symmetrically for the right and
left profile (except we shift the sign because Y = 1 refers to the left profile
being selected).

G.2 Adaptive Procedure and Test Statistic

We first give a detailed description of our adaptive procedure then formally
define the test statistic used in Section 4.

We define X; ~ Multinomial(pt)fl, pffw ey pt)&@)7 where pfj represents the
probability of sampling the jth arm (arm refers to each unique combination of
left and right factor levels) out of K2 possible arms and K is the total levels
of X. For example, in our simulation setup K = 4 and there are 16 possible
arms, (1,1), (1,2), etc., and pgj is defined similarly. The uniform 7id sampling
procedure pulls each arm with equal probability, i.e., pfj = %,ptz, = % for
every j and L is the total number of factor levels for factor Z.* Although we
present our adaptive procedure when Z contains only one other factor (typical
conjoint analysis have 8-10 other factors), our adaptive procedure loses no
generality in higher dimensions of Z.

We now propose the following adaptive procedure that adapts the sampling
weights of pffj, pf ; at each time step ¢ in the following way,

pry o< [YN —0.5]+|N(0,0.01%),  pf; o< |V —0.5[+|N(0,0.01%)], (G14)

where Yfi denotes the sample mean of Y7,Y5,...,Y; 1 for arm j in variable X,
YJZt is defined similarly, and N (0,0.012) denotes a Gaussian random variable
with mean zero and variance 0.01? (the two Gaussians in Equation (G14) are
drawn independently). Equation (G14) samples more from arms that look like
signal (further away from 0.5). We add a slight perturbation in case Y])g is
exactly equal to 0.5 at any time point ¢ to discourage an arm from having zero
probability to be sampled.

With this reweighting procedure, we build our adaptive procedure. Just
like Definition 3.2, we also have an e adaptive parameter that denotes the
beginning [ne] samples that are used for “exploration” by using the typical uni-
form iid sampling procedure. In the remaining samples, we adapt by changing
the weights according to Equation (G14). This adaptive sampling procedure
immediately satisfies Assumption 1 and also Assumption 2 since each variable
only looks at its own history and previous responses. Algorithm 2 summarizes
the adaptive procedure.

We now give the test statistic under consideration. Although the authors
of [2] consider a complex Hierarchical Lasso model to capture all second-order
interactions, we consider a simple cross-validated Lasso logistic test statistic

4We also note that conjoint applications do indeed default to the uniform 4d sampling procedure
(or a very minor variant from it) [4, 29].
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Algorithm 2 Adaptive Procedure for Conjoint Studies

Given adaptive parameter €
fort =1 to [ne] do

Sample X; ~ Multinomial(pt)fl,pffg, . ,pr2), where pf’(j = % for all j =
1,2,... K2

Sample Z; ~ Multinomial(pgl,pgg,...,prz), where pfj = % for all j =
1,2,..., L2

fort =[nel+1 ton do

Sample X; ~ Multinomial(pfl,pf;,...,pt)fKQ), where pfj is given in
Equation (G14)

Sample Z; ~ Multinomial(pfl,p52,...,prz), where ptZ,j is given in

Equation (G14)

that fits a Lasso logistic regression of Y with main effects of X and Z and
their interactions due to the simplicity of this simulation setting. This leads
to the following test statistic

K- K—-1L-1
T°(X,Z,Y) = Z B (G15)
k=1 k=1 I=1

where Bk denotes the estimated main effects for level k out of K levels of X
(one is held as baseline) and 4y; denotes the estimated interaction effects for
level k of X with level [ of L total levels of Z.

This test statistic also imposes the “no profile order effect” constraints,
i.e., we do not separately estimate coefficients for the left and right profiles
to increase power. When fitting a Lasso logistical regression of Y with main
effects and interaction of (X, Z), we obtain a separate effect for both the left
and right effects. Since the “no profile order effect” constraints the left and
right effects to be similar, we formally impose the following constraints

Br = BE = B, Au = 4R = —4E, (G16)

where the superscripts L and R denote the left and right profile effects, respec-
tively. To incorporate this symmetry constraint, we split our original R (4+1)
data matrix (X, Z,Y) into a new data matrix with dimension R?"*(+1) where
the first n rows contain the values for the left profile (and the corresponding Y)
and the next n rows contain the values for the right profile with new response
1-Y, [2] shows that this formally imposes the constraints in Equation (G16)
by destroying any profile order information in the new data matrix.

G.3 Simulation Results

We first compare the power of our adaptive procedure stated in Algorithm 2
with the iid setting where each arm for X and Z are drawn uniformly at ran-
dom under the simulation setting described in Appendix G.1. We empirically
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Fig. G2 The figure shows how the power of the ART (based on adaptive sampling pro-
cedure in Algorithm 2) and the CRT (based on an iid sampling procedure) varies as the
sample size increases (left plot) or the main effect increases (right plot). All power curves
are calculated from 1,000 Monte-Carlo calculated p-values using Equation (5) with B = 300
and test statistic given in Equation (G15) with their respective resampling procedures. The
blue, red, and purple power curves denote the power of the ART using the adaptive proce-
dure described in Algorithm 2 and ¢ = 0.25,0.50, 0.75, respectively. The green power curve
denotes the power of the uniform #id sampling procedure. The black dotted line in the right
panel shows the oo = 0.05 line. Finally, the standard errors are negligible with a maximum
value of 0.016.

compute the power as the proportion of 1,000 Monte-Carlo p-values less than
a = 0.05.

For the left panel of Figure G2, we increase sample size when there exist
both main effects and interaction effects of X. More specifically, we vary our
sample size n = (450, 600, 750, 1,000, 1,300) while fixing the main effects of
X and Z at 0.6 and a stronger interaction effect at 0.9 (these refer to the
coefficients of the logistic response model defined in Appendix G). For the
right panel of Figure G2, we increase the main effects of X and Z with no
interaction effect and a fixed sample size at n = 1,000. We also vary the
exploration parameter € in Algorithm 2 to e = 0.25,0.5,0.75.

Both panels of Figure G2 show that the power of the ART with the pro-
posed adaptive sampling procedure is uniformly greater than that of the CRT
with a typical uniform éid sampling procedure (green). For example when
n = 1,000 in the left panel, there is a difference in 8.5 percentage points (59%
versus 67.5%) between the iid sampling procedure and the adaptive sampling
procedure with e = 0.5 (red). When the main effect is as strong as 1.2 in the
right panel, there is a difference in 24 percentage points (57% versus 81%)
between the #id sampling procedure and the adaptive sampling procedure with
e = 0.5. Additionally, when the main effect is 0 in the right panel, thus under
Hy, the power of all methods, as expected, has type-1 error control as the
power for all methods are near v = 0.05 (dotted black horizontal line).
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