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Abstract

Detecting rumors on social media has become a
critical task in combating misinformation. Ex-
isting propagation-based rumor detection meth-
ods often focus on the static propagation graph,
overlooking that rumor propagation is inher-
ently dynamic and incremental in the real world.
So recent propagation-based rumor detection
models attempt to use the dynamic graph that is
associated with coarse-grained temporal infor-
mation. However, these methods fail to capture
the long-term time dependency and detailed
temporal features of propagation. To address
these issues, we propose a novel adaptive Slid-
ing Window and memory-augmented Attention
Model (SWAM) for rumor detection. The adap-
tive sliding window divides the sequence of
posts into consecutive disjoint windows based
on the propagation rate of nodes. We also pro-
pose a memory-augmented attention to capture
the long-term dependency and nodes’ depths
in the propagation graph. Multi-head attention
mechanism is applied between nodes in the
memorybank and incremental nodes to itera-
tively update the memorybank, and the depth
information of nodes is also considered. Fi-
nally, the propagation features of nodes in the
memorybank are utilized for rumor detection.
Experimental results on two public real-world
datasets demonstrate the effectiveness of our
model compared with the state-of-the-art base-
lines.

1 Introduction

Social media has become an essential platform
for daily communication and information sharing.
With the widespread use of social media, an increas-
ing number of people share a variety of posts online.
However, this also facilitates the rapid spread of
rumors, which have a detrimental impact on pub-
lic trust and societal discourse. Therefore, rumors
detection on social media is crucial to mitigating
their harmful effects.
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Figure 1: The propagation rate over time on two

datasets.

Rumor detection mainly relies on machine learn-
ing methods based on feature engineering to iden-
tify rumors (Castillo et al., 2011; Yang et al.,
2012; Feng et al., 2012; Kwon et al., 2013). With
the development of deep learning, various neu-
ral networks, such as Recurrent Neural Networks
(RNNs), Convolutional Neural Networks (CNNSs),
and Graph Neural Networks (GNNs) have been
proposed for the automatic rumor detection (Ma
et al., 2016, 2018; Liu and Wu, 2018; Bian et al.,
2020). For GNN-based methods, events are usually
modeled as propagation graphs to capture the char-
acteristics of the spreading process. Some studies
(Bian et al., 2020; Nguyen et al., 2020; Min et al.,
2022; Tian et al., 2022) have explored the static
propagation graph of events and achieved superior
detection performance. They consider the static
graph structure of the final state of event propa-
gation and ignore the temporal dynamics of the
propagation.

Recent studies (Lao et al., 2021; Chang et al.,
2024; Choi et al., 2021; Sun et al., 2022a; Xu et al.,
2024) have explored the temporal dynamics of
events and proposed the dynamic graphs to model
the spread of events on social media. These dy-
namic propagation-based rumor detection methods
typically divide rumor events on social media into
multiple time snapshots, where each snapshot rep-
resents the propagation state at a fixed time point.
Those methods, usually built by GNNs, empha-
size the transformation and aggregation of nodes’



features but fail to capture the detailed temporal
features of propagation, such as speed, depth, and
breadth. A metric propagation rate is defined to
measure the speed of event propagation. Figure 1
illustrates the propagation rates of nodes at various
timestamps on both the TWITTER and DRWeibo
datasets. It is observed that the propagation speeds
of rumor and non-rumor vary at different stages. In
the early stages, both rumor and non-rumor exhibit
a sharply fluctuated speed. Then when the event’s
propagation continues, the speed of non-rumors
becomes stable while rumors’ speeds still change.
In addition, dividing the propagation process into
fixed snapshots makes it challenging to model the
event spread over a long time effectively.

To address these issues, we define the propaga-
tion rate to consider the propagation speed of an
event and propose adaptive sliding windows to ad-
just the number of nodes in consecutive windows.
We also propose a novel memory-augmented at-
tention to capture the node’s depth and long-term
posts’ interactions in the propagation graph. Specif-
ically, we first define an initial window and then
dynamically adjust the number of nodes in the sub-
sequent window based on the propagation rate of
the nodes within the previous window. We take the
initial window as a memorybank and update it in-
crementally with nodes from subsequent windows.
Furthermore, we integrate hierarchical information
from the propagation structure to enhance the uti-
lization of structural relationships between nodes.
Finally, we leverage the representations from the
memorybank to enhance the effectiveness of the
proposed model. The main contributions of this
paper can be summarized as follows:

* We propose an adaptive sliding window to dy-
namically allocate nodes to consecutive win-
dows, and the number of nodes in each win-
dow is determined by the propagation rate of
the previous window’s nodes.

* We propose the adaptive Sliding Window
and memory-augmented Attention Model
(SWAM) for rumor detection. Memory-
augmented attention saves initial nodes in a
memorybank and incrementally updates this
memorybank with new nodes using multi-
head attention. The depths of nodes are also
considered to capture the interactions between
posts in the propagation graph.

* We conduct extensive experiments on two real-

world datasets to demonstrate the effective-
ness of our proposed model on rumor detec-
tion.

2 Related Work

2.1 Rumor Detection

Traditional rumor detection methods rely on hand-
crafted feature engineering to extract rumor fea-
tures (Castillo et al., 2011; Feng et al., 2012). With
the advancement of deep learning, numerous neural
network-based methods have been introduced for
rumor detection. These approaches can be broadly
categorized into content-based methods (Ma et al.,
2019; Dun et al., 2021; Xu et al., 2022; Nguyen
et al., 2020; Dou et al., 2021; Tian et al., 2022;
Min et al., 2022) and propagation structure-based
methods (Bian et al., 2020; He et al., 2021; Wei
et al., 2021; Sun et al., 2022b; Ma et al., 2022; Liu
et al., 2023). The propagation structure-based ru-
mor detection models focus on capturing structural
features to better detect rumors. Various propaga-
tion structure-based methods have been extensively
proposed. Bian et al. (2020) model the propaga-
tion structure from both top-down and bottom-up
to study the bidirectional spread of rumors. Works
(He et al., 2021; Sun et al., 2022b; Liu et al., 2023;
Cui and Jia, 2024) use augmentation techniques
to construct augmented graphs and leverage con-
trastive learning to capture the propagation pro-
cess. Tao et al. (2024) decompose the graph struc-
ture into subgraph components to model the bidi-
rectional propagation process. Moreover, in addi-
tion to the aforementioned static graphs, dynamic
graphs have also gained increasing attention for
rumor detection. Some works (Lao et al., 2021;
Chang et al., 2024) incorporate temporal informa-
tion as part of the node features to capture the dy-
namic modeling process of the propagation graph.
Works (Choi et al., 2021; Sun et al., 2022a; Xu
et al., 2024) model the dynamic process of rumor
propagation by dividing the dynamic graph into
different graph snapshots to model the dynamics
of rumor propagation. However, these methods
overlook the dynamic nature of rumor spread, such
as varying propagation rates, the depth of influ-
ence over time, and the breadth across different
social groups. Addressing these temporal features
is crucial for improving the performance of rumor
detection.



2.2 Dynamic Graph Neural Networks

Graphs are used to represent relationships or con-
nections between nodes and provide an effective
means of describing and modeling complex sys-
tems and structures in the real world. Graph Neural
Networks (GNNs), such as GCN(Kipf and Welling,
2016), GAT(Velickovic et al., 2017), and GIN(Xu
et al., 2019), combine graph-based computations
with deep learning techniques, achieving outstand-
ing performance across various graph-related tasks.
To further explore the development of dynamic
graphs in real-world, Dynamic GNNs (DGNNs)
integrate temporal information with GNNss to cap-
ture both structural information and temporal in-
formation. The dynamic GNN models have shown
exceptional performance across a wide range of
tasks and attracted significant attention. GNNs and
RNNs are often utilized in dynamic graphs, with
GNNs employed for processing graph structures
and RNNs used for handling temporal information
(Liang et al., 2023; Li et al., 2024; Casadesus-Vila
et al., 2024). Works (You et al., 2022; Zhu et al.,
2023) focus on snapshot updates and fusion in dy-
namic graphs. Some study (Wang et al., 2021; He
et al., 2023) underscore the integration of temporal
and graph-based information to investigate the ef-
fectiveness of dynamic graph modeling. Different
from the above works, we propose the adaptive slid-
ing window and memory-augmented attention to
capture the dynamics of rumors. Our study focuses
on modeling rumor dynamics under real-world tem-
poral contexts.

3 Methodology
3.1 Problem Definition

Rumor detection can be defined as a classification
task. Formally, let C = {C},Cy,...,C,} be the
rumor detection dataset, where C; is the i-th event
and n is the number of events. For each event
C ={P1, Py,...,Pc|,G}, Py is the source post,
other P; represents the j-th responsive post, and
|C| is the number of posts in the event C. All
posts in the event C' are ordered chronologically
and the set of timestamps for posts is denoted as
T = {t1,to,... ,t|c|}, where t; = 0 represents
the timestamp of the source post and other ¢; rep-
resents the timestamp of the j-th responsive post.
G = (V, A, X) is the propagation graph with the
root node P;, where V refers to the set of nodes
corresponding to posts. A € {0,1}C1XICl rep-
resents the adjacency matrix, where if there is a

response relationship between node P, and P,,
Aup = Apu = 1, otherwise A, = Ay, = 0.
X € RICXd denotes the node feature matrix,
where d is the node embedding dimension. Ru-
mor detection aims to learn a function f : C — )
that classifies each event into one of the categories
Y € {F,T} (i.e., Rumor or Non-Rumor).

3.2 Overview

We propose a novel adaptive Sliding Window with
memory-augmented Attention Model (SWAM) for
rumor detection. As illustrated in Figure 2, we will
explain three steps in a pipeline which include ini-
tialization, adaptive sliding window, and memory-
augmented attention.

3.3 Adaptive Sliding Window

In the real world, the rate of event propagation
varies across different stages. To model this phe-
nomenon, we propose an adaptive sliding window
to partition nodes of a rumor propagation graph
into multiple windows. This mechanism allows for
adaptive adjustment of the window size based on
the dynamics of rumor spread, making it more flex-
ible and suitable for modeling the spread of rumors
over time.

Specifically, for an event C, the adaptive sliding
window divide the propagation graph into k sequen-
tial windows W = {W;, Wh, ..., W)}, with each
window containing a different number of nodes.
W serves as the base for the subsequent windows.
For subsequent windows, the adjustment of the win-
dow size in W; is determined by the propagation
rate of nodes in W, _1.

3.3.1 Window Initialization

For an event C, given an initial set of nodes as the
first window Wy = {P1, P, ..., Py, |}, where
Wi contains the source post and early respon-
sive posts, and |W;| is the number of nodes in
W,. The corresponding timestamp set is 77 =
{tl,tg, - 7t|W1|}'

We introduce a propagation rate function (W),
which calculates the propagation rate of nodes
within a window based on timestamp. Formally,
given a window W;, its timestamp set is 7; =
{ti;tiv1, .-, tpw, }- The propagation rate is calcu-
lated as follows:

Atj = tj+1 - tj7j € [iv ‘W7,| - 1] (1)
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Figure 2: Overview of the proposed framework SWAM which takes three steps in a pipeline: initialization, adaptive

sliding window, and memory-augmented attention.

where At; represents timestamp intervals, A%, rep-
. . . J

resents the propagation rate per unit of time, and
|W/| is the number of non-zero timestamp inter-
vals.

We calculate the propagation rate r(W;) of
nodes in Wi, defining it as the base rate r for ad-
justing the size of subsequent windows.

r=rW) 3)

3.3.2 Dynamic Window Adjustment

The acquisition of subsequent window nodes is
carried out in two stages: basic node allocation and
dynamic window adjustment.

For the i-th window W;, we first evenly dis-
tribute the remaining |C' — E;;ll W;| nodes across
the remaining k& — (¢ — 1) windows.
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S N Y

“4)

where b represents the number of basic node allo-
cations.

Then we calculate the propagation rate (W, _1)
of the window W;_;. If r(W;_1) exceeds r, we
expand the size of W; by adding more nodes based
on b. If r(W;_1) is below r, we reduce the size
of W; by removing nodes based on b. If r(W;_1)

equals r, the size of VV; remains unchanged.
b+ab r(Wi—1) >r
(Wil = qb
b—ab
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where |W;| represents the final number of nodes
contained in W;. « is a hyperparameter utilized to
control the window size.

After obtaining the nodes in W;, we update
r(W;_1) to the new base rate.

T4 T(Wi_l) (6)

The adjustment process is iteratively applied to
subsequent windows until all nodes are assigned.
Finally, we can obtain the windows WV that includes
the dynamic variation in the number of nodes and
ensures that each window reflects the underlying
rumor spread effectively.

W:{WlaWQa"'awk} (7)

3.4 Memory-Augmented Attention

To fully leverage the nodes within the window, we
propose a novel attention mechanism designed to
iteratively update a memorybank with incoming
nodes from different windows in a structured man-
ner. This mechanism combines the multi-head at-
tention mechanism with node depth information,



dynamically updating the memorybank by leverag-
ing both node features and structural characteristics.
The key idea is to treat the nodes in the first window
as initial memory states and gradually incorporate
the nodes from subsequent windows as incremental
updates.

Specifically, for the sliding window W of event
C, the nodes in W serve as the initial memorybank
M and the subsequent windows {W;}¥_, act as
incremental nodes. We update M with the nodes
from subsequent windows through attention-based
interaction.

34.1 Depth Embedding Layer

Since the self-attention mechanism does not inher-
ently account for the depth of nodes in the propa-
gation structure, we introduce a node depth embed-
ding layer to incorporate depth-related information.
This depth embedding provides a basis for encod-
ing hierarchical relationships between nodes. This
helps capture the hierarchical structure of the ru-
mor propagation graph and the relative position of
nodes within the graph.

To calculate the depths of the nodes in both W,
and W, we first merge the nodes from the two win-
dows into a unified propagation graph. Specifically,
we construct a new adjacency matrix by combining
the adjacency matrices A; of W and Ay of Wh.
Then we map each node to a unique depth value,
which can capture the node’s level in the propaga-
tion structure and help the model better understand
the structural dependencies among nodes within
the graph.

depth = ComputeDepth([A1; A2])  (8)

D = Epg(depth) )

where C'ompute Depth is a function that calculates
the depth of each node in the propagation graph.
EpE denotes the trainable depth embedding layer,
and D denotes the depth embedding.

3.4.2 Memorybank Initialization

We initialize the memorybank M using the nodes
from W;. Specifically, we encode the feature ma-
trix X, of W using an MLP to obtain the initial
state of M.

M = MLP(X;) (10)

Similarly, we also encode X, of W» to obtain
the representations of incremental nodes.

S = MLP(X,) (11)

3.4.3 Incremental Updates with Multi-Head
Attention

To update the memorybank efficiently, we apply
multi-head attention mechanism between the mem-
orybank M and incremental nodes S. To utilize
the structural position of each node in the graph,
we introduce the node depth information based on
node features.

M=M+Dy, (12)
S=8+Da, (13)

Since not all incremental nodes contribute
equally to the memorybank, we design memory-
augmented attention to measure the importance of
incremental nodes with respect to memorybank.
In this attention mechanism, queries come from
the representation M, keys and values come from
S. By calculating the similarity between memory-
bank and incremental nodes, incremental nodes are
assigned different weights to represent the impor-
tance.

Q=WoM,K=WgS, V=W, (14
T
Attn(Q, K, V) = softmax(c\?/i% )WV (15)
H
Z = || Attni(Q,K,V) (16)

i=1
where ), K and V are the queries, keys and values
transformed by trainable parameter matrices Wy,
Wik and Wy,. dj, is the dimension of queries and
keys. | is the concatenation operation. H is the
number of heads.

We concatenate the multi-head attention repre-
sentation Z with the incremental node representa-
tion S to incrementally update the memorybank.
The final concatenated result is updated to memo-
rybank M.

M — Concat(Z,8) (17)

3.4.4 [TIterative Update Process

This process of applying multi-head attention mech-
anism to the memorybank and incremental nodes is
repeated iteratively for subsequent window. Finally,
we obtain a final memorybank M that incorporates
all the information from the nodes across all win-
dows. We then apply mean-pooling operators to
obtain the final representation z of the event.

z = MEAN(M) (18)
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Table 1: Rumor detection results on TWITTER and DRWeibo datasets. Abbrev.: Rumor (F), Non-Rumor (T).

3.5 Training Objective

To calculate the labels of the rumors, we apply a
fully connected layer followed by a softmax layer,

y = softmax(Wysz + by) (19)

where ¢ is the predicted probability distribution.
Wp and b are weight and bias parameters respec-
tively.

Our rumor detection model is trained with
the cross-entropy loss L¢ of the predictions and
ground truth labels, which defined as:

1V
Lo==Y_ yilogi (20)
i
where y; denotes ground-truth label and ¢j; denotes
the predicted probability distribution for the i-th
event.

4 [Experiments

Refer to Appendix A for details of the datasets,
experimental setup and comparison models.

4.1 Experimental Results

Table 1 presents the rumor detection results of
various methods on the TWITTER and DRWeibo
datasets. The results clearly demonstrate the strong
competitiveness of SWAM across both datasets.
In terms of all evaluation metrics, SWAM consis-
tently outperforms other models. Notably, its per-
formance surpasses that of state-of-the-art models

such as PSGT and TrustRD. This confirms the ad-
vantage of combining adaptive sliding window and
memory-augmented attention for learning the evo-
lution of rumor propagation. Although BiGCN uti-
lizes the rumor propagation structure and EBGCN
employs edge enhancement to explore latent re-
lationships within the propagation graph, neither
method captures the key features of how rumors
and non-rumors spread at different stages of the
propagation process. Similarly, while significant
performance improvements have been achieved in
rumor detection by combining graph augmentation
and contrastive learning in methods like GACL,
RDEA, and TrustRD, they fail to account for the dy-
namic evolution of rumor propagation. The use of
transformers in PSGT, while effective in capturing
dependencies between posts, similarly overlooks
the dynamic nature of rumor propagation, leading
to inferior performance compared to SWAM. Com-
pared to the static graph-based approaches men-
tioned above, DynGCN models the dynamic propa-
gation of rumors. It constructs multiple temporal
snapshots and sequential snapshots for rumor de-
tection but fails to explicitly differentiate the time
span of rumor events and the depth of their propaga-
tion paths. In contrast, SWAM model leverages the
adaptive sliding window to deal with the dynamic
and uneven nature of rumor propagation. Addition-
ally, it employs memory-augmented attention to
capture long-range dependencies between posts.
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Table 2: Results of ablation study.
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Figure 3: Performance of sensitivity of window size.

4.2 Ablation Study

We demonstrate the effectiveness of the SWAM
framework from two aspects: the use of the
adaptive sliding window and the incorporation of
memory-augmented attention. The variants are de-
fined as follows: (1) w/o D: removing the node
depth information; (2) w/o S: removing the adap-
tive sliding window; (3) w/o A: removing the
memory-augmented attention.

As shown in Table 2, when we remove the depth
information from the memory-augmented attention,
the accuracy on TWITTER and DRWeibo drops
by 0.85% and 2.32%. Depth information reflects
a node’s hierarchical position or level within the
propagation structure. By incorporating depth in-
formation into the node features, the model can
better capture the hierarchical relationships in the
graph. When we remove the adaptive sliding win-
dow, the performance on TWITTER and DRWeibo
significantly decreases by 1.61% and 1.44%. The
adaptive sliding window adjusts the number of
nodes according to the propagation rate, providing
a dynamic reflection of the rumor’s spread inten-
sity and trends over time. This approach allows for
more accurate identification of key moments and
important nodes in the rumor propagation process.
When the entire attention mechanism is removed,
the model’s performance deteriorates significantly.
We can observe that the model can flexibly handle
varying numbers of incremental nodes with the at-

tention mechanism. By continuously updating the
memorybank, the model accumulates historical in-
formation and makes node feature representations
not only depend on neighboring nodes but also
consider the overall information.

4.3 Sensitivity of Window Size

In the SWAM framework, the number of sliding
windows k is a crucial parameter. To assess the
impact of this hyperparameter on model perfor-
mance, we experiment with different window size
to observe the performance variations.

As shown in Figure 3, when the number of
windows is small, the model’s performance on
both datasets is suboptimal. A limited number of
windows may compress the propagation process,
which causes some windows to contain an exces-
sive number of nodes. The slower-spreading nodes
may not be sufficiently represented and make it
difficult to capture finer-grained propagation paths
accurately. As the number of windows increases
beyond a certain threshold, the model can dynami-
cally evolve to capture more nuanced propagation
changes. It can reveal hierarchical structures and
variations in propagation rates during the rumor
spread and ultimately achieve optimal results. As
the number of windows continues to increase, al-
though the propagation tree can be divided more
finely, the number of nodes in each window de-
creases. This results in each window covering a
more localized segment of the propagation process
and reduce the ability to capture long-range propa-
gation patterns. It can be observed that TWITTER
exhibits significant fluctuations in performance dur-
ing the rising phase (windows 3-7), followed by
a sharp decline in later stages. This is due to the
relatively short propagation time on TWITTER,
where information spreads quickly between nodes,
making stability more susceptible to fluctuations.
During the ascending phase (spanning 3-5 win-
dows), the curve of DRWeibo remains relatively
stable. Although performance declines slightly as
the number of windows increases, the propagation
process is slow and sustained over a longer duration
and allow it to maintain a relatively stable state.

4.4 Early Rumor Detection

This experiment investigates the task of early-stage
rumor detection on social media, aiming to en-
able timely identification of rumors. Following
the method in Sun et al. (2022b), we formulate
the task by defining a series of detection deadlines.
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Figure 4: A memory-augmented attention example from TWITTER. We use blue to represent the attention values
of the nodes in memorybank, with the darker the color, the greater the attention value. We use gray to represent the
incremental nodes. The numbers corresponding to the nodes represent the posting order. incre. is an abbreviation

for “incremental”.
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Figure 5: Results of early rumor detection.

Figure 5 presents the early detection performance
of SWAM, compared with PSGT, TrustRD, and
DynGCN across different deadlines. As the detec-
tion deadline increases, the accuracy of all models
improves. Notably, SWAM consistently outper-
forms the baselines at each deadline, highlighting
its effectiveness in early rumor detection.

4.5 Case Study

The memory-augmented attention in SWAM is ca-
pable of capturing the key nodes that significantly
influence rumor propagation at various stages. To
visually demonstrate this effect, we conducted a
case study on the attention distribution during ru-
mor propagation. We select an event from the
TWITTER dataset for illustration. The content
of source post is “Plumber suing car dealership for
$1M after truck he traded in ends up in the hands of
ISIS”, which is a rumor event. The rumor event has
been reposted 24 times over time. Figure 4a shows
the content of the source post and the reposts, and
the four incremental updates of the memorybank
are shown from Figure 4b to Figure 4e.

During the first incremental update, it is ob-
served that node 2 has the darkest color. The incre-
mental nodes contain factual descriptions as well
as sarcasm. As a result, the model shows varying

levels of attention to nodes of different types in
the memorybank. Specifically, the sarcastic tone
raises doubts about whether the event is a rumor,
triggering the feature keywords related to rumor
detection, which leads the model to focus more on
these types of nodes. The situation is similar for the
second incremental update. The nodes in the third
incremental update exhibit a clear bias towards crit-
icism, leading to greater attention being given to
nodes with similar expressions in the memorybank.
In the fourth incremental update, different nodes
receive varying levels of attention, revealing the
key nodes in the spread of rumors. Overall, the
memory-augmented attention can accurately cap-
ture the long-term dependencies between rumors
and identify the key features of their propagation.

5 Conclusion

In this paper, we propose a novel adaptive Slid-
ing Window with memory-augmented Attention
Model (SWAM) for rumor detection. SWAM takes
three steps in a pipeline: initialization, adaptive
sliding window, and memory-augmented attention.
The initial window consists of the source post and
early responsive posts. We propose an adaptive
sliding window to partition nodes of a rumor prop-
agation graph into multiple disjoint windows. A
novel memory-augmented attention is designed to
iteratively update a memorybank with incoming
nodes from different windows. This mechanism
combines the multi-head attention mechanism with
node depth information. Experiments on two pub-
lic datasets demonstrate that SWAM outperforms
the state-of-the-art baselines. In the future, we will
explore more approaches for temporal modeling to
enhance the performance of rumor detection fur-
ther.



Limitations

One limitation of our model is that the constructed
temporal information does not account for multi-
scale temporal encoding. If the dynamic changes
of an event are associated with different time scales
(such as minutes, hours, or days), it may lead to
suboptimal performance. In the future, we will
explore more approaches for temporal modeling
to enhance the performance of rumor detection
further.
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Statistics TWITTER DRWeibo
# Events 1077 5998

# Posts 60207 376659

# Non-Rumors 564 3160

# Rumors 513 2838
Avg. time length/tree | 416 Hours 1946 Hours
Avg. depth/tree 4.55 2.15

Table 3: Statistics of the datasets.

A Appendix

A.1 Datasets

We evaluate the proposed model on two real-world
datasets: TWITTER (Lin et al., 2022) and DR-
Weibo (Cui and Jia, 2024). TWITTER is an En-
glish dataset from Twitter and DRWeibo is a Chi-
nese dataset from Weibo. Both datasets contain
the post content, propagation structure and tem-
poral information. There are two binary labels in
the datasets: Rumor (F) and Non-Rumor (T). The
statistics of datasets are shown in Table 3. For
the TWITTER and DRWeibo datasets, we follow
(Sun et al., 2022b; Ma et al., 2023), and join the
source post with each responsive post in a [CLS]
Source Post [SEP] Responsive Post [SEP] manner
to emphasize the importance of the source post.

A.2 Implementation Details

The proposed model is implemented in PyTorch
framework. The parameters are optimized using
Adam algorithm. The learning rate is set to Se-4
and the batch size is set to 128. BERT (Devlin
et al., 2018) is used to encode the post content. The
node embedding dimension d is 768. acis 0.4. k is
set to 5. The number of attention heads H is 8. The
dropout of multi-head attention mechanism is 0.1.
The node hidden dimension is set to 128. We adopt
the evaluation method from (Bian et al., 2020) and
perform 10 runs of 5-fold cross-validation to report
the final results. The Accuracy (Acc.), Precision
(Prec.), Recall (Rec.), and F1-score (F1) are used
to measure the models.

A.3 Comparison Models

We compare the proposed model with the following
baselines:

* Bi-GCN (Bian et al., 2020) employs a top-
down and bottom-up propagation framework
to capture the patterns of rumor propagation
and dispersion.



* EBGCN (Wei et al., 2021) explores the edge-
enhanced rumor detection to capture propaga-
tion features.

¢ GACL (Sun et al., 2022b) is a rumor detec-
tion model using adversarial and contrastive
learning.

* RDEA (He et al., 2021) incorporates augmen-
tation strategies and self-supervised learning
for detection.

e TrustRD (Liu et al.,, 2023) builds self-
supervised learning and Bayesian network to
identify rumors.

¢ DynGCN (Choi et al., 2021) focuses on the
dynamic graph to model graph snapshots and
attention mechanisms representations.

* PSGT (Zhu et al., 2024) develops a propa-
gation structure-aware transformer to obtain
propagation relationships for interpretable ru-
mor detection.
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