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ABSTRACT

Once a proprietary program written in a compiled language like C is successfully
compiled, it is typically distributed as a binary executable. Consequently, security
analysis of the program, including vulnerability detection, relies solely on the
binary. Binary-level detection methods have been developed over the years, with
machine learning (ML)-based methods becoming increasingly popular. However,
the scarcity of high-quality, publicly available datasets limits the development
of ML-based binary vulnerability detectors, as existing binary-level vulnerability
datasets are often synthetic and fail to reflect real-world vulnerabilities. At the
same time, existing real-world source-code vulnerability datasets cannot be di-
rectly compiled, as they typically consist of standalone function snippets rather
than compilable programs. To address this limitation, we present Compote, a
COMPilation AI-Orchestrated Transformation Engine that automatically wraps
standalone C functions with the minimal scaffolding, such as headers, mocks, and
main(), needed for successful compilation of C functions without altering the
original code. Applying Compote to real-world functions from ten public datasets
of vulnerable code yields a dataset comprising 18K compilable C functions along
with their compiled binary versions. Our dataset represents a novel, large-scale,
realistic, labeled benchmark spanning both source and binary domains. To evaluate
our dataset, we fine-tune state-of-the-art vulnerability detection models. We show
that models trained and tested exclusively on existing (synthetic) datasets achieve
up to 98.97% F1 but drop to 29.28% when tested on the real-world vulnerabilities
in our dataset. This demonstrates the inability of models trained on synthetic
datasets to generalize effectively to real-world binary vulnerabilities, resulting in a
significant drop in detection performance. We release Compote and our datasets
to the research community to support further research on building and evaluating
effective and practical binary vulnerability detection models.

1 INTRODUCTION

One of the main steps in software development with compiled languages is translating high-level code
into machine-executable instructions - a process known as compilation (Wu & Tang, 2023). However,
not all code segments are directly compilable without modification. Compiled languages like C
require complete, self-contained programs with all supporting components (e.g., header files, mock
functions, and include directives) correctly defined and available (Kabir et al., 2024). Nevertheless,
these prerequisites create barriers when immediate compilation and execution of code snippets is
necessary - such as during testing, analysis, or debugging. This complicates testing standalone source
files and creates friction when working with incomplete contexts.

To address this challenge, we introduce Compote, an AI-based tool designed to automatically
transform standalone C functions into fully compilable programs. Compote receives an isolated
C code snippet and generates all the necessary wrapper code to satisfy compilation requirements
- including a main() function, required headers, and mock definitions, producing a complete, self-
contained C program that can be successfully compiled and executed. To the best of our knowledge,
Compote is the first tool that automates this process using AI-driven workflow techniques while
ensuring that the underlying function remains unchanged. Specifically, we implemented Compote
as an AI-orchestrated workflow. This automation capability reduces manual effort and enables
developers, researchers, and security analysts to compile and analyze code more efficiently.
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While Compote is broadly applicable across many tasks such as function testing, automated binary
debugging, and reverse engineering, one area where this automation can prove particularly useful
is binary-level vulnerability detection. As machine learning (ML) advances, it has become a key
method for automatically detecting vulnerabilities in code. However, ML models rely heavily on
high-quality training data. In the context of binary-level vulnerability detection, the availability of
suitable training datasets is severely limited: currently, only three main publicly available datasets
exist Juliet (NSA Center for Assured Software, 2017), NDSS18 (Le et al., 2019) and BinPool (Arasteh
et al., 2025). Juilet and NDSS18 datasets are semi-synthetic and lack real-world complexity, while the
third Arasteh et al. (2025) is derived from real-world projects. See detailed explanation in Section 2.

The source code level vulnerability detectors benefit from a plethora of high-quality datasets derived
from real-world projects Wang et al. (2021); Bhandari et al. (2021); Chakraborty et al. (2021); Zhou
et al. (2019); Chen et al. (2023); Ding et al. (2024); Fan et al. (2020); Ni et al. (2024); Wang et al.
(2024); He & Vechev (2023). While these datasets provide a realistic foundation for vulnerability
detection research, they cannot be directly compiled, since they contain partial code snippets rather
than complete programs that meet compilation requirements. This limitation prevents the use of these
datasets to train binary-level vulnerability detectors. Compiling these datasets would create binary-
level datasets, alleviating the scarcity of training sets at the binary level and potentially improving
binary-level vulnerability detectors.

To bridge this gap between high-quality source-level vulnerability datasets and binary-level vulnera-
bility detection, we applied Compote to process existing source-level datasets, thereby generating
two new datasets: CompRealVul_C which consists of compilable C functions derived from source
code snippets using Compote, labeled as vulnerable or non-vulnerable. CompRealVul_Bin contains
the compiled binary versions of these functions, maintaining the vulnerability labels. Unlike semi-
synthetic datasets (Juilet and NDSS18), CompRealVul_C and CompRealVul_Bin datasets are derived
from real-world source code, ensuring they capture the complexity of actual software vulnerabilities.

To evaluate our approach, we fine-tuned and trained state-of-the-art binary-level vulnerability detec-
tion models using both the CompRealVul_Bin dataset and the widely used Juliet Test Suite (from
the public GitHub repository Richardson (2024)). Our results show that models trained solely on
synthetic datasets like Juliet struggle to generalize to real-world vulnerabilities, achieving only modest
performance on realistic examples. In contrast, training on the Juliet Test Suite enriched with samples
from CompRealVul_Bin led to consistent improvements in detection accuracy and generalization.
This combined setup offered a more diverse and representative training environment, helping models
with different architectures better distinguish between vulnerable and non-vulnerable code. Even
when improvements were modest, they demonstrate the value of using the CompRealVul_Bin dataset
as a more realistic benchmark for vulnerability detection.

We make the following contributions to the field: (1) We release two new datasets: CompRealVul_C
and CompRealVul_Bin The former consists of real-world compilable C functions wrapped by Com-
pote, while the latter contains their compiled binary versions. Both datasets include vulnerability
labels, whilst CompRealVul_C includes also CWE indicators, supporting vulnerability research and
detection. (2) We introduce Compote, an AI-based tool that automatically transforms standalone C
source code snippets into compilable and executable binaries by generating the necessary wrapper
code and build context (3) We demonstrate how Compote can help address the real-world prob-
lem of binary-level vulnerability detection by generating high-quality binary datasets from existing
source-code level datasets.

2 BACKGROUND AND RELATED WORK

The automatic transformation of code snippets into compilable, self-contained units has long been
an area of interest in both academic research and industry applications. In the context of the C
programming language, this often involves wrapping isolated functions by inserting the necessary
scaffolding: header files, type definitions, macros, and declarations that make the code compilable.

One approach to enabling such transformations is the use of automated tools designed to systemati-
cally modify C code according to predefined patterns or structural rules. For example, the creators
of Coccinelle Padioleau et al. (2008) have devised the Semantic Patch Language (SmPL) to specify
transformation rules in a syntax similar to C, enabling tasks like modifying function signatures,
replacing deprecated patterns, and inserting missing structural elements. Le et al. (2019) proposed
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an automated tool for detecting and fixing errors in incomplete C/C++ code snippets, allowing their
compilation into binary functions. This method was used to construct a dataset of 32,281 binary
functions across multiple platforms and architectures, derived from originally non-compilable code
samples sourced from the NDSS18-SOURCE DATASET (Li et al., 2018). Another set of tools focuses
on dependency resolution in C code. Clang-Include-Fixer (Team, 2016) suggests missing #include
directives by analyzing unresolved symbols using a dedicated indexing and Abstract Syntax Tree;
while Include What You Use (IWYU) (Project, 2011) helps ensure that only the necessary headers
are explicitly included, removing any that are redundant.

Additionally, research has focused on inferring missing types and imports using program analysis
or statistical methods. Subramanian et al. (2014) infers fully qualified names through constraint
solving. Saifullah et al. (2019) improves ranking with statistical models based on context and naming
patterns, though it remains probabilistic. SNR (Dong et al., 2022) combines constraint extraction
with a library knowledge base and resolves imports using the Soufflé Datalog solver (Jordan et al.,
2016) , achieving 91.0% accuracy while compiling 73.8% of incomplete snippets.

A recent approach, ZS4C (Kabir et al., 2024), leverages LLMs to iteratively transform incomplete
code snippets into compilable units through interactions with a compiler, achieving a 95.1% compila-
tion success rate on Java and Python datasets. While effective, this method can unintentionally modify
parts of the original code, potentially altering its intended behavior. In contrast, Compote explicitly
preserves the original C function throughout the wrapping and compilation process, ensuring that the
code semantics and any associated labels–such as vulnerability annotations–remain intact.

While prior work has addressed atomic challenges in making C code snippets compilable–such as
inserting missing includes, resolving types and symbols, or fixing syntax and semantic errors–these
capabilities are distributed across specialized tools. For instance, Clang-Include-Fixer (Team, 2016)
and IWYU (Project, 2011) focus on header resolution, Coccinelle (Padioleau et al., 2008) supports
structural code transformations, and Joern-based (Yamaguchi et al., 2014) tools repair incomplete
syntax and semantics. However, no single tool offers a unified environment that systematically
combines all these steps into a cohesive wrapping process. Compote addresses this gap by providing
an all-in-one solution that automates the complete transformation pipeline, ensuring that C functions
are preserved and transformed into compilable units without altering their core logic.

Challenges in Binary-Level Vulnerability Detection. Detecting vulnerabilities in binary code is a
complex task in cybersecurity. Unlike source code analysis, which benefits from rich syntactic and
semantic context, binary analysis operates on compiled executables where key information—such as
variable names, data types, and control structures—is often lost or obfuscated (Zeng, 2012; Adhikari
& Kulkarni, 2025; McCully et al., 2024). This lack of high-level context significantly increases the
difficulty of identifying security flaws. Despite the fact that analyzing binary-level instructions is
much harder compared to source code analysis, binary analysis remains critical for practical reasons,
particularly when source-code is unavailable.

Although binary-level analysis provides substantial value, the progress of research in the area of
vulnerability detection is often hindered by the lack of large-scale, compilable datasets that reflect
diverse code patterns and structures. In recent years, ML has emerged as a promising approach for
binary vulnerability detection with static analysis by learning patterns indicative of insecure behavior
directly from binary code or its intermediate representations, such as assembly (Grieco et al., 2016;
Shin et al., 2015). Recent papers have applied a range of ML approaches (Xu et al., 2017; Zhou et al.,
2019); and transformer-based LLMs to this task (Brust et al., 2023).

The success of ML models in binary vulnerability detection is inherently tied to the quality of their
training data. However, in the domain of binary vulnerability detection, a critical bottleneck remains:
the lack of large-scale, realistic, and well-labeled datasets. The primary existing datasets, such as the
Juliet Test Suite (NSA Center for Assured Software, 2017) and the NDSS18-compiled dataset (Le
et al., 2019) are synthetic or semi-synthetic. Vulnerabilities in these datasets are generated according
to specific templates (e.g., based on Common Weakness Enumerations - CWEs) or derived from
simplified scenarios, limiting their diversity and realism. As a result, models trained exclusively
on these datasets often show high benchmark performance but fail to generalize to real-world
codebases (Chakraborty et al., 2021).

The Juliet Test Suite (NSA Center for Assured Software, 2017) includes 64,099 C/C++ test cases
covering 118 CWEs and is designed for compilation. Test cases focus on demonstrating specific types

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

of flaws, though they may unintentionally include other unrelated issues. Alongside the flawed code,
it typically includes similar, non-flawed code constructs for comparison. However, as a synthetic
dataset, it lacks the variability and complexity of real-world code. Moreover, although each test case is
meant to be unique, duplicates can arise during pre-processing, extraction, or compilation (Brust et al.,
2023). These limitations restrict the depth of analysis and the practical applications the dataset can
support, highlighting the need for a dataset that better captures real-world complexity and structural
diversity. The NDSS18-compiled dataset (Le et al., 2019) comprises 32,281 functions compiled
into 17,977 Windows binaries and 14,304 Linux binaries. However, to the best of our knowledge, it
is only available in an embedded representation of the compiled samples, making it unsuitable for
evaluations like ours that require access to the original binaries. A recent study Arasteh et al. (2025)
compiled the Debian Project (2025) at the binary level, producing both pre-patch (vulnerable) and
post-patch versions. The dataset also includes metadata identifying the specific file and function
where each vulnerability occurs, and comprises 910 source-level functions and 7,280 corresponding
binary functions. However, because the entire project was compiled as a single unit, only the full
project binary is available after compilation.

In contrast, using our Compote, we generated the CompRealVul dataset, allowing each function
to be compiled in isolation. To support this transformation, Compote, automatically wraps stan-
dalone C functions with the necessary elements for successful compilation, enabling rich, real-world
source-code level datasets to be transformed into compilable binaries. Leveraging this tool, we
introduce CompRealVul_Bin, a new dataset of real-world binary functions labeled for vulnerability
detection. This approach bridges the compilation gap, supports realistic dataset generation, and lays
the groundwork for more robust and accurate binary-level vulnerability detection models.

3 OUR METHOD

To facilitate the automated generation of compiled binaries from standalone C func-
tions, Compote incrementally refines and validates code until it successfully compiles
or a maximum iteration limit is reached. We implemented Compote as a workflow
of transitions between state machines, some of which rely on an LLM for completion.

Figure 1: Compote workflow as a state machine.

In our implementation, we used the GPT-4o-
mini OpenAI (2024) API as the underlying
LLM. This design enables breaking down the
process into several modular components, mak-
ing it straightforward to add, remove, or mod-
ify the system’s logic. To transform standalone
functions into compiled binary-ready code units,
Compote’s operation is broken down into four
main components: (i) Code Wrapping; (ii) Com-
pilation and Validation; (iii) Error-Based Revi-
sion; and (iv) Function Calling; as illustrated in
Figure 1. The following subsections describe
the main components of this process.

Code Wrapping. The workflow begins by
fetching a single C function, referred to as a
"target function". Once fetched, a dedicated LLM model generates additional code, which, together
with the target function, forms a minimal C program that meets compilation requirements. This
includes adding necessary headers, declarations, stubs, and a main function with a call to the target
function. The LLM is instructed to leave the function’s intact, while ensuring compilability, as
illustrated in Figure 2 that in Appendix Section B.1.

Compilation and Validation. Once the minimally compilable program code is generated, we need
to ensure that the target function remains unchanged by the LLM. Although the LLM is instructed
to preserve the content of the original function and only generate code around it (such as wrappers,
headers, and the main function), in practice, the LLM may still modify the body of the function, either
unintentionally or as part of an optimization attempt. Since preserving the functional integrity of
the snippet is critical to maintaining its ground truth label (e.g., vulnerable or non-vulnerable), such
modifications are not acceptable for our purposes. To prevent modifications to the target function, we
overwrite its body in the minimally compilable program (returned by the code wrapping component)
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with the original version of the target function. This ensures that the function being compiled is
identical to the one extracted and labeled, thereby preventing the LLM from altering its semantics.
This mechanism preserves the vulnerability characteristics of the minimally compilable program
exactly as they appear in the target function, enabling reliable and reproducible binary-level results.
At this stage, the Compilation and Validation component attempts to compile the resulting minimally
compilable program. If compilation errors occur–ranging from syntax issues to missing symbols or
type mismatches–the minimally compilable program, along with the compilation errors, is sent to the
error-based revision component.

If no compiler errors are returned, the process results in a compiled binary. Before announcing
a successful result, we ensure that the target function was called by the main() function of the
minimally compilable program. If the target function was called, the process concludes. If not, the
process continues by passing the minimally compilable program to the Function Calling component.

Error-Based Revision. If compilation fails, the process enters the Error-Based Revision phase.
Here, the LLM revises the code , using two sources of context: (i) the last generated version of the
minimally compilable program and (ii) the compiler error messages from the last compilation attempt.
As illustrated in Figure 3 in Appendix Section B.1, at this stage the LLM is instructed to produce a
targeted correction rather than regenerating the code from scratch.

Function Calling. A critical requirement of the process is that the code compiles and that the target
function is executed in the resulting program. The Function Calling component addresses scenarios
where the minimally compilable program compiles successfully, yet the validation step reveals that the
target function is never invoked from the main() function. As illustrated in Figure 4 in Appendix
Section B.1, the dedicated LLM of this phase is provided with the current minimally compilable
program and is instructed to: (i) locate the existing main() function; (ii) insert a call to the original
target function within main(); (iii) analyze the target function’s signature to determine, declare,
and initialize appropriate arguments for the call directly within main(). This step often requires the
LLM to synthesize reasonable placeholder values or structures that satisfy the type requirements for
successful compilation; (iv) strictly avoid modifying any other parts of the code, including the target
function’s body, existing statements in main(), or global definitions/includes. After the LLM of
this component generates the modified code with the added function call, the process loops back to
the Compilation and Validation phase.

Putting it all together. Compote takes each target function and cycles it through the steps illustrated
in Figure 1. The process continues for every function until a successful result is produced or a
predefined maximum number of iterations is reached (see Figure 5 in Appendix Section B.1).

4 COMPREALVUL DATASETS

Existing datasets of vulnerable code can be broadly categorized into compilable source code datasets
and non-compilable source code datasets. Compilable datasets, such as Juliet (NSA Center for
Assured Software, 2017) and the NDSS18 (Le et al., 2019), can be compiled and thus enable research
at the binary level. However, they are not based on real-world samples but are instead synthetic
or semi-synthetic, failing to capture the complexity, diversity, and unpredictability of real-world
vulnerabilities. Non-compilable datasets, such as Devign (Zhou et al., 2019), ReVeal (Chakraborty
et al., 2021), BigVul (Fan et al., 2020), and others (Wang et al., 2021; Bhandari et al., 2021; Chen
et al., 2023; Ding et al., 2024; Ni et al., 2024; Wang et al., 2024; He & Vechev, 2023), are mined from
real-world repositories and reflect authentic vulnerability patterns, often based on security patches
and developer activity. However, because they are non-compilable, they cannot be transformed into
binary code, limiting their usefulness for training models that operate at the binary level.

To bridge this gap, we introduce CompRealVul, a novel, real-world-based compilable dataset designed
to support both source and binary vulnerability detection. To build CompRealVul, we first constructed
the CompRealVul_Raw dataset by collecting samples from ten existing datasets (Wang et al., 2021;
Bhandari et al., 2021; Chakraborty et al., 2021; Chen et al., 2023; Ding et al., 2024; Fan et al., 2020;
Ni et al., 2024; Wang et al., 2024; He & Vechev, 2023; Zhou et al., 2019) which themselves were built
from real-world projects, often based on security patch commits from repositories such as GitHub. As
a result, CompRealVul_Raw dataset amounted to 49,832 samples, which were then processed through
Compote. The samples that were successfully wrapped and compiled formed the CompRealVul_C
(C source) and CompRealVul_Bin (binary) datasets. CompRealVul_C contains labeled C functions
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(vulnerable = 1, non-vulnerable = 0) and CWE-ID, ready for compilation, enabling researchers to
explore the effects of different compiler configurations. CompRealVul_Bin is the compiled version
of CompRealVul_C, generated using gcc with the -O0 optimization level. Additional details on
how this dataset was created are provided in Section 5.2. We provide a comparison between existing
datasets and CompRealVul in Table 1.

Table 1: Overview of vulnerability detection datasets.

Dataset Type Compilable Origin Total Size Vul / Non-Vul Language

Juliet (2018)
Richardson (2024)
NIST Source ✓ Synthetic 64,099 46,491 / 46,490 C/C++

28,886 Java
NDSS18 (2019) (Le
et al., 2019)

Embedding ✓ Semi-synth. 8,991 4,490 / 4,501 C

BinPool
(2025) (Arasteh et al.,
2025)

Metadata , Binary, CSV ✓ Real 910 pairs 910 / 910 Mostly C, C++

Devign (2019) (Zhou
et al., 2019)

Source × Real 27,318 12,512 / 14,806 C

ReVeal
(2021) (Chakraborty
et al., 2021)

Source × Real 22,740 2,251 / 20,489 C

BigVul (2020) (Fan
et al., 2020)

Source × Real 188,636 10,973 / 177,695 C/C++

PatchDB (2021) (Wang
et al., 2021)

Source × Real 35,815 12,073 / 23,742 C/C++

CveFixes
(2021) (Bhandari et al.,
2021)

Source × Real 277,948 126,599 / 151,349 Multi

DiverseVul
(2023) (Chen et al.,
2023)

Source × Real 349,437 18,945 / 330,492 C/C++

PrimeVul (2024) (Ding
et al., 2024)

Source × Real 235,768 6,968 / 228,800 C

MegaVul (2024) (Ni
et al., 2024)

Source × Real 339,548 17,380 / 322,168 C/C++

ReposVul
(2024) (Wang et al.,
2024)

Source × Real 51,957 721 / 51,236 C, C++, Python, Java

SEVN (2023) (He &
Vechev, 2023)

Source × Real 803 pairs 803 / 803 C, C++, Python

CompRealVul (2025) Source & Binary ✓ Real C: 18,538
Binary: 18,538 8,141 / 10,397 C

5 EVALUATION

5.1 EVALUATION OF COMPOTE

To assess the capability of Compote to generate valid compilation wrappers, we used it to compile
the CompRealVul_Raw dataset (described in Section 4). We implemented Compote as a Python
script based on the functionality of the LangGraph package (Inc., 2024), and ran it on a 64-core
AMD EPYC (3.2 GHz) CPU Linux system with 256 GB of DDR memory (no GPU was used).
After running the script, we examined the results and analyzed two main factors: (i) the number
of functions successfully compiled; and (ii) the number of iterations required for each test case
to compile successfully. Out of 49,832 functions, Compote was able to compile 18,538 functions
(forming the CompRealVul_C dataset), achieving a success rate of 37.2%. Figure 6 that in Appendix
Section B.3 illustrates the distribution of successful compilations across iterations, with the maximum
iteration threshold set to five. Most functions compiled on the first attempt (9,354), with a mean of
1.7 and a median of 1.0 iterations, demonstrating Compote’s efficiency. These results indicate the
effectiveness of Compote as a practical tool for wrapping and compiling standalone C functions.

5.2 EVALUATION OF COMPREALVUL_BIN DATASET IMPACT

In this section, we evaluate how the CompRealVul_Bin dataset influences the performance of binary-
level vulnerability detection models. We trained six RNN-based models and two LLM-based models
using four different training sets, along with two validation and test sets. These datasets consist
of various subsets and combinations of two core benchmark datasets: the Juliet Test Suite, a
widely used synthetic dataset (from the public GitHub repository Richardson (2024)), and our newly
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constructed CompRealVul_Bin, which includes real-world vulnerabilities. Full descriptions of both
core benchmark datasets are provided in Section 4. We describe this process in detail below.

Data Preparation. Before compilation, and to ensure compatibility between the two core benchmark
datasets, we retained in Juliet only files ending with the .c extension, since CompRealVul_Bin
contains only C functions. This involved removing all .cpp files from the Juliet Test Suite. After
this cleanup, each benchmark dataset went through compilation. The Juliet Test Suite was compiled
using its provided CMake configuration. Our CompRealVul_C dataset is built with Compote, which
transforms each function snippet into a fully compilable program. We then compile these programs
on a Linux system using GCC with the -O0 flag, producing executable binaries. Details on our
compilation success rates are available in Section 5.1.

Pre-processing. Next, we proceeded to pre-process the resulting binary samples. This step includes
two main stages: (i) converting all binary files into LLVM-IR format using the RetDec tool (Avast
Software, 2024); and (ii) applying a pre-processing method based on Schaad & Binder (2023), to
normalize the code and extract both vulnerable and non-vulnerable functions from the binary samples.
We lift binaries to LLVM-IR because detecting vulnerabilities in raw binaries is a well-known
challenge. LLVM-IR offers a more human-readable, assembly-like representation (LLVM Project)
that is compiler agnostic, making it easier to generalize across different compilation settings and
reduce variability from compiler-specific optimizations (McCully et al., 2024). Since lifting the
binary data to LLVM-IR may create unwanted residue, the data undergoes cleaning to eliminate noise
or tool-related artifacts, ensuring the resulting data is aligned for analysis (Engel et al., 2013). To
maintain compatibility between the two datasets, we also removed samples where the vulnerability
spanned more than a single function in the Juliet Test Suite. The output of this phase is a JSON
file containing functions from each benchmark dataset. Every function entry includes five attributes:
dataset name, file name, function name, normalized LLVM-IR function, label. The overall pre-
processing phase took approximately one and a half hours for CompRealVul_Bin; and 13 hours for
Juliet Test Suite to complete on a standard Linux-based machine (no GPU was used), as described
in Section 5.1.

Duplicate Elimination. Prior research has noted the presence of duplicates in benchmarks derived
from the Juliet Test Suite (Brust et al., 2023). While each Juliet test case starts out as unique,
duplicates tend to emerge during subsequent steps, such as extraction, pre-processing, or compilation
using various optimizations (Brust et al., 2023). In some cases, more than 90% of binary-level samples
produced from the Juliet dataset were identified as duplicates, emphasizing the challenges of using
synthetic benchmarks (Russell et al., 2018). To address this concern, following the pre-processing, we
implemented a duplicate elimination mechanism. Overall, we found that 74.3% of the pre-processed
Juliet dataset consisted of duplicate entries, totaling 44,258 out of 59,569 files. In comparison, in
CompRealVul_Bin, 1,270 out of 18,538 samples were identified as duplicates.

Sequence Length Filtering. After generating the final JSON files, we examined the length distri-
bution of the functions to determine a suitable truncation threshold. As shown in Figure 7 (at the
Appendix), only 706 functions exceed 4,096 tokens while using ModernBert-large (Warner et al.,
2024) tokenizer. Based on this observation, we set the maximum sequence length to 4,096 for all
models trained with this data; and excluded samples which exceeded this length during the training
phase.

Datasets splits. The data was split into several training, validation, and test sets (see Table 2).

5.2.1 EXPERIMENTAL SETUP & EVALUATION CRITERIA

We used all four training sets described in Table 2 to train or fine-tune 8 different models performing
binary-level vulnerability detection; totaling 32 distinct models for comparison. Specifically, we
fine-tune two distinct LLM architectures: ModernBERT-large (Warner et al., 2024) (encoder-only)
and StarCoder2-3B (Lozhkov et al., 2024) (decoder-only). We also train two different architectures
of simple RNN, two different architectures of LSTM, and two different architectures of GRU
architectures; inspired by the methodology described in Schaad & Binder (2022). In contrast, we
used longformer-base-4096 (Beltagy et al., 2020) for embedding the inputs. More details on the
architectures and the fine-tuning/training parameters, memory usage, and run-time are provided
in Table 5 and Table 6 in Appendix Section B.2. By leveraging 8 distinct architectures, we evaluate
how different model types perform with these datasets. All training and fine-tuning were conducted
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Table 2: Overview of training, validation, and testing splits for CompRealVul and Juliet-based
datasets. Vul=Vulnerability, non-Vul=non-vulnerability

Set Name Vul/non-Vul (Total) Explanation
Training Sets

CompRealVul_train 5,928/6,156 (12,084) Training set was created by splitting the pre-processed CompRealVul_bin dataset into 70% train,
10% validation, and 20% test, while maintaining a vulnerable to non-vulnerable ratio of 1:3 in
validation and testing sets. This is the 70% train part.

Juliet_Regular_train 4,089/6,628 (10,717) A random split of Juliet after pre-processing. It assigns 70% for training, 10% for validation, and
20% for testing, ensuring vulnerable samples appear in all subsets. This is the 70% train part.

Juliet_CompRealVul_train 5,831/6,253 (12,084) This training set was constructed from Juliet to maintain a fair comparison with CompRe-
alVul_train. This dataset satisfies the following constraints: (i) it has the same total number of
samples (12,084) as CompRealVul_train; and (ii) it maintains a similar vulnerable/non-vulnerable
sample ratio. Since Juliet has only 5,831 vulnerable samples after pre-processing, we used all of
them and added enough non-vulnerable samples to reach the target size.

Combined_train 11,759/12,409 (24,168) This training set is the union of the CompRealVul_train and Juliet_CompRealVul_train sets.

Validation Sets
CompRealVul_val 432/1,296 (1,728) Validation set was created by splitting the pre-processed CompRealVul_bin dataset into 70% train,

10% validation, and 20% test, maintaining a vulnerable to non-vulnerable ratio of 1:3 in validation
and testing sets. This is the 10% validation part.

Juliet_Regular_val 579/952 (1,531) A random split of Juliet after pre-processing. It assigns 70% for training, 10% for validation, and
20% for testing, ensuring vulnerable samples are present in all subsets.

Testing Sets
CompRealVul_test 864/2,592 (3,456) The test set was created by splitting the pre-processed CompRealVul_bin dataset into 70% train,

10% validation, and 20% test, maintaining a vulnerable to non-vulnerable ratio of 1:3 in validation
and testing sets. This is the 20% test part.

Juliet_Regular_test 1,900/1,163 (3,063) A random split of Juliet after pre-processing. It assigns 70% for training, 10% for validation, and
20% for testing, ensuring vulnerable samples are present in all subsets. This is the 20% test.

on a Linux-based system with a 64-core AMD EPYC (3.2 GHz) CPU and 256 GB of DDR memory,
equipped with an NVIDIA RTX A6000 GPU.

To evaluate model performance, we use the traditional metrics of accuracy, precision, recall, and F1
score. We also incorporate the Vulnerability Detection Score (VD-S) metric introduced in Ding et al.
(2024), which specifically measures the false negative rate after the detector is calibrated to maintain
a false positive rate below a certain threshold (15% in our case).

5.2.2 EXPERIMENTAL RESULTS

We fine-tuned or trained (as applicable) and evaluated each model for each training set shown
in Table 2. This resulted in four different experiments per model - each for a training set. Table 3
and Table 4 present the evaluation results of RNN-based models and LLMs, respectively. Starting
with the RNN-based models in Table 3, we observe that models trained exclusively on the Juliet
benchmark (i.e., Juliet_Regular_train), a synthetic dataset, perform well only when tested on Juliet
itself. Their metrics drop sharply when tested on vulnerabilities sourced from real-world data, as
represented by CompRealVul_Bin. For example, the BiLSTM (2 layers) model shows a dramatic
increase in VD-S, from 21.75% (Juliet test) to 86.41% (CompRealVul_Bin test), demonstrating the
inability of synthetic-only training data to generalize to realistic scenarios.

Note, however, that even when models are trained and tested exclusively on CompRealVul_Bin, they
struggle to achieve better performance. While they perform better than models trained solely on Juliet
(as reflected by substantial differences in loss values), the modest accuracy and F1 scores suggest
that these RNN and LLM-based models still struggle to adequately learn the complex patterns of
real-world binary vulnerabilities. This may indicate that the intricacies of such vulnerabilities are
too complex for standard RNN architectures, and perhaps even for fine-tuned LLMs, to capture
effectively, highlighting the need for new, specialized architectures to address this problem.

We also note that a partial relief to this issue was achieved by training on a combined dataset of Juliet
and CompRealVul_Bin (i.e., Combined_train). This approach consistently improved precision, F1-
score, and AUC when testing for real world vulnerabilities (as they manifest in CompRealVul_test),
while maintaining more balanced VD-S scores compared to Juliet-only training. These results
demonstrate that combining real and synthetic data leads to models that are more robust in dealing
with real-world cases. Synthetic to real generalization gap phenomena were also observed in Table 4,
which provides details on the evaluation of LLMs - ModernBERT and StarCoder. ModernBERT
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achieves extremely high results on the Juliet dataset (e.g., 99.22% accuracy, 0% VD-S), but, like the
RNN models, struggles when applied to real-world data. Training on the Combined_train dataset
mitigates this drop, boosting all metrics, and confirming that the dataset we propose contributes to
better generalization even for large pre-trained models.

Table 3: Performance of RNN-based models on various train-test combinations.

Model # Layers Train Test Loss Accuracy Precision Recall F1 VD-S AUC

BiGRU

1 layer

CompRealVul_train CompRealVul_test 0.71352 24.72% 24.01% 98.88% 38.64% 81.42% 52.73%
Combined_train CompRealVul_test 0.67956 55.35% 24.33% 40.90% 30.51% 82.92% 51.12%
Juliet_CompRealVul_train CompRealVul_test 0.85349 51.49% 22.50% 41.90% 29.28% 83.29% 48.04%
Juliet_Regular_train Juliet_Regular_test 0.44730 78.45% 67.53% 83.32% 74.60% 24.42% 88.87%

2 layers

CompRealVul_train CompRealVul_test 0.69852 39.42% 24.10% 71.07% 35.99% 84.66% 51.08%
Combined_train CompRealVul_test 0.76395 36.31% 23.85% 75.56% 36.25% 84.53% 49.96%
Juliet_CompRealVul_train CompRealVul_test 0.78228 50.39% 23.22% 46.38% 30.95% 85.04% 48.90%
Juliet_Regular_train Juliet_Regular_test 0.39970 82.11% 77.43% 74.63% 76.01% 22.36% 89.37%

BiLSTM

1 layer

CompRealVul_train CompRealVul_Bin 0.72001 23.97% 23.97% 100.00% 38.67% 81.55% 52.42%
Combined_train CompRealVul_test 0.71280 25.16% 23.99% 97.88% 38.54% 82.79% 51.10%
Juliet_CompRealVul_train CompRealVul_test 0.86882 46.89% 23.49% 53.87% 32.71% 83.92% 49.77%
Juliet_Regular_train Juliet_Regular_test 0.36560 83.19% 77.46% 78.59% 78.02% 20.46% 91.27%

2 layers

CompRealVul_train CompRealVul_test 0.67822 59.80% 24.27% 31.92% 27.57% 84.66% 50.99%
Combined_train CompRealVul_test 0.72102 34.13% 23.65% 78.43% 36.34% 83.67% 50.11%
Juliet_CompRealVul_train CompRealVul_test 0.71521 23.97% 23.97% 100.00% 38.67% 86.41% 48.71%
Juliet_Regular_train Juliet_Regular_test 0.37485 82.47% 76.26% 78.16% 77.20% 21.75% 90.83%

BiRNN

1 layer

CompRealVul_train CompRealVul_test 0.70200 41.00% 24.60% 70.70% 36.50% 82.40% 52.50%
Combined_train CompRealVul_test 0.70800 32.30% 24.30% 86.20% 37.90% 81.30% 52.00%
Juliet_CompRealVul_train CompRealVul_test 0.69200 52.40% 25.80% 52.60% 34.60% 83.00% 52.20%
Juliet_Regular_train Juliet_Regular_test 0.49700 75.40% 66.90% 69.60% 68.20% 40.50% 82.70%

2 layers

CompRealVul_train CompRealVul_test 0.68300 61.50% 26.20% 33.40% 29.40% 82.30% 52.40%
Combined_train CompRealVul_test 0.71100 47.50% 24.70% 58.00% 34.60% 82.40% 52.10%
Juliet_CompRealVul_train CompRealVul_test 0.78000 45.80% 23.90% 57.50% 33.70% 84.20% 50.60%
Juliet_Regular_train Juliet_Regular_test 0.52500 72.80% 60.40% 82.40% 69.70% 39.60% 83.20%

Table 4: Performance of pre-trained models (ModernBERT, StarCoder) on various train-test splits.

Model Train Test Loss Accuracy Precision Recall F1 VD-S AUC

ModernBERT

CompRealVul_train CompRealVul_test 0.73707 55.68% 23.61% 37.89% 29.09% 82.36% 50.87%
Combined_train CompRealVul_test 0.82691 40.48% 24.62% 71.80% 36.66% 81.74% 52.29%
Juliet_CompRealVul_train CompRealVul_test 6.51893 38.51% 23.70% 70.43% 35.47% 84.72% 49.60%
Juliet_Regular_train Juliet_Regular_test 0.07910 99.22% 98.97% 98.97% 98.97% 0.00% 99.91%

StarCoder

CompRealVul_train CompRealVul_test 0.73220 45.78% 24.60% 61.85% 35.20% 84.41% 50.65%
Combined_train CompRealVul_test 1.6977 44.16% 23.38% 60.05% 33.66% 84.79% 50.27%
Juliet_CompRealVul_train CompRealVul_test 12.219 38.21% 23.63% 72.55% 35.64% 100.00% 50.18%
Juliet_Regular_train Juliet_Regular_test 0.2338 96.57% 96.40% 94.50% 95.44% 0.02% 99.50%

6 CONCLUSION AND FUTURE WORK

We introduced Compote, a compilation wrapper tailored for standalone C code snippets, and released
two datasets: CompRealVul_C and CompRealVul_Bin. Our experimental results demonstrate that
binary-level vulnerability detection models trained solely on synthetic datasets struggle to generalize
to real-world scenarios. By augmenting existing datasets with CompRealVul_Bin, we show an
improvement in the ability of vulnerability detection models to handle more realistic and complex
code. While our findings suggest that combining synthetic and real-world data improves model
performance, current vulnerability detection models still fall short in fully capturing the complex
patterns and subtle semantics of real-world vulnerabilities. This limitation indicates that, although
datasets like CompRealVul_C, that can be compiled, bring us closer to realistic evaluation settings,
the models themselves still require further refinement. Several limitations of our approach should
be acknowledged. First, Compote was applied only to functions shorter than 2,500 characters, as
longer functions were more difficult for Compote to wrap successfully. Second, during the automated
decompilation and LLVM lifting process with RetDec, we observed unintended over-optimization,
similar to what was reported in Schaad & Binder (2022). This behavior can simplify the code to
the point that certain functions and potentially even vulnerabilities are omitted from the resulting
LLVM-IR representation of the binary. Future work can build on the CompRealVul_C dataset to
enhance model robustness and use CompRealVul_Bin as a real-world evaluation benchmark.

7 REPRODUCIBILITY

Upon acceptance, we will release both the code and the dataset.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
LLMs were used as assistive tools in this research. They supported coding (writing and fixing scripts),
writing and analysis (improving the text, structure, and interpretation of results), and knowledge
retrieval (related work and information about existing LLMs). All outputs from LLMs were carefully
checked and edited if needed by the authors, who take full responsibility for the final paper.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

The following list provides a structured overview of the appendix contents, indicating what each
section contains and referring to relevant figures and tables.

• Compote Prompts & Algorithm ( Section B.1)
See Section 3 for further explanation of the related figures.

– Figure 2: Prompt template used during the Initial Code Generation phase.
– Figure 3: Prompt template used during the Error-Based Revision phase.
– Figure 4: Prompt template for injecting a function call into main.
– Figure 5: Pseudo-code illustrating the iterative workflow of the compilation agent.

• Tables ( Section B.2)
See Section 5 for further explanation of the related tables.

– Table 5: Fine-tuning hyperparameters for transformer models.
– Table 6: Fine-tuning hyperparameters for the RNN models.

• Evaluation Figures ( Section B.3)
See Section 5 for further explanation of the related figures.

– Figure 6: Histogram of success iterations per sample.
– Figure 7: Function length distribution across datasets.
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B.1 COMPOTE PROMPTS & ALGORITHM

## Context
You are an expert in compilation of C code. You have been asked to add
code to the following standalone C function so that it compiles
successfully.
Your task is to transform this standalone C function into a complete,
compilable C program.

## Instructions
1. Complete the provided C code to ensure it compiles successfully

by adding necessary headers, a main function, and any stubs for
called functions.

2. Do not alter the input function at all.

## Output Format
- The result should be pure C code, suitable for compilation
without any additional text, comments, or explanation.

## Input Function:
{input_function}

Figure 2: Prompt template used during the Initial Code Generation phase. The LLM is instructed to
wrap a given C function in a complete, compilable program without altering the original function.

## Context
We have a C code snippet that fails to compile.
We want to correct the compilation errors while
preserving the existing function and its signature.

## Instructions
1. Review the compilation errors provided:
{compilation_errors}
2. Fix the code so it compiles successfully.
3. Do not modify the {function_signature} function content

or its signature.
4. Add only the necessary:

- Include headers
- main() function
- Stub functions (if any are called but not defined)

5. Do not include any additional text, comments,
or explanations in your response.

## Output Format
Return pure C code in a single block, suitable
for compilation without further modifications.

## Input C code:
{input_function}

Figure 3: Prompt template used during the Error-Based Revision phase. The LLM is instructed
to revise previously generated C code using compiler error messages while preserving the original
function and its signature.
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## Task
Modify the ‘main‘ function in the provided C code to add a valid function call to ‘{

function_name}‘.

## Target Function Signature
‘‘‘c
{cleaned_signature}
‘‘‘

## Instructions
1. Locate/Create ‘main‘: Find the ‘main‘ function. If it doesn’t exist, create a

basic one (‘int main(...) {{ /* Call here */ return 0; }}‘).
2. Add Call: Inside ‘main‘’s body, add *one* function call to ‘{function_name}‘.
3. CRITICAL - Arguments: Generate valid arguments strictly based on the *Target

Function Signature*. Declare and initialize necessary local variables *within ‘
main‘* just before the call. Ensure the arguments allow the code to compile.

4. CRITICAL - Preservation: Modify *only* the ‘main‘ function as needed to add the
call and its argument variables. DO NOT alter the target function’s definition,
other existing code in ‘main‘, includes, globals, or any other part of the file.

5. Output Only Code: Return *only* the complete, modified C code block, ready for
compilation. No extra text, comments, or explanations.

## Input C code:
{input_function}

Figure 4: Prompt template used during the Function Call Insertion phase. The LLM is instructed to
modify or create a main function that calls the specified target function using valid arguments based
on its signature, without altering any other part of the code.

Pseudo-code for the Compote workflow:

Input:
F = { f_1, f_2, ..., f_n } (a set of standalone C functions)
m (maximum number of iterations)

For each function f_i in F:
iteration <- 0
f_name <- func_name(f_i)
code <- LLM_Generate(f_i) # Code Wrapping

while iteration < m:
code <- OverwriteWithOriginalFunction(code, f_i)
(success, errors) <- Compile(code)
if success:

is_function_call <- IsFunctionCallInMain(code, f_name)
if is_function_call:

SaveSample(code)
break

else:
code <- AddFunctionCallInMain(code, f_name)
iteration <- iteration + 1

else:
code <- LLM_Revise(code, errors)
iteration <- iteration + 1

if (iteration = m) and (success = false):
# Log failure for f_i

Figure 5: Illustration of the iterative process for code generation, compilation, and error-driven
revision.
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B.2 TABLES

Table 5: Fine-tuning hyperparameters for transformer models
** Time per epoch for longest case

Model Type Params Batch Size LR Epochs LoRA Config GPU / Time Per Epoch
ModernBERT-large Encoder 395M 4 2e-5 20 – 40.42 GB / 3h
StarCoder Decoder 3B 2 2e-5 20 Rank=16, α=32, Dropout=0.05 35.45 GB / 6h

Table 6: Training hyper-parameters for models
** Time per epoch for longest case

Model Layers Unit Size Batch Size LR Epochs GPU / Time Per Epoch

BiGRU 1 128 32 2e-5 50 26.16 GB / 1.5h
2 128 32 2e-5 50 26.17 GB / 1.5h

BiRNN 1 128 32 2e-5 50 26.16 GB / 1.5h
2 128 32 2e-5 50 30.27 GB / 1.5h

BiLSTM 1 128 32 2e-5 50 26.67 GB / 1.5h
2 128 32 2e-5 50 26.68 GB / 1.5h

B.3 EVALUATION FIGURES
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Figure 6: Histogram of compilation success.
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Figure 7: Function length distribution across both datasets.
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