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ABSTRACT

Predicting severe diabetic complications from longitudinal patient traces can enable
proactive care. Where multi-institutional EHR integration is impractical, standard-
ized health-insurance claims offer broad, longitudinal coverage despite clinical
sparsity. We study this setting in Brazil’s TUSS billing-code ecosystem and present
a claims-only framework for forecasting complications (angiopathies, amputations,
renal failure) 6–12 months ahead. TUSS codes are represented with skip-gram
embeddings, and absolute timing is injected via fixed sinusoidal time embeddings
added directly to event vectors; a BiLSTM with self-attention summarizes long,
irregular histories. On anonymized data from 3.9 million individuals, the model
achieves an AUC of 0.907 and an Average Precision of 0.631, outperforming
capacity-matched baselines. Ablations show that temporal encoding and attention
are complementary, with large gains only when combined. We further observe
robust transfer to a second operator and concordant blinded field validations that
surfaced previously unrecognized high-risk patients. While our contribution is a
methodological instantiation rather than an architectural novelty, the work offers a
careful case study of claims-only prediction at a national scale, design lessons for
modeling sparse transactional health data, and practical evidence for its utility in
real-world risk stratification.

1 INTRODUCTION

Diabetes mellitus is a major global health challenge, driving substantial morbidity, mortality, and
costs through late-stage complications such as angiopathies, amputations, and renal failure (22).
Early identification of high-risk patients could enable preventive interventions, yet building accurate
predictors typically requires large, longitudinal cohorts with consistent follow-up. Electronic Health
Records (EHRs) provide rich clinical detail, but assembling multi-institutional corpora suitable
for robust learning is hindered by interoperability barriers, heterogeneous semantics, and privacy
constraints (26). As a result, many predictive studies remain confined to single centers or narrowly
scoped populations.

Administrative claims offer a complementary substrate: they are standardized for reimbursement
and cover large populations over long horizons, albeit with sparser clinical detail. In Brazil’s
supplementary health system, the Padrão TISS standard governs information exchange between
payers and providers, and the TUSS terminology unifies codes for procedures, medications, and
materials across the private sector (18). This creates a nationally consistent vocabulary of transactional
events that parallels international billing standards such as ICD and CPT (11). While claims are
not designed to capture full clinical intent, their scale and regularity make them attractive for risk
prediction when EHR integration is impractical.

This work examines whether claims-only longitudinal histories, encoded with TUSS codes, can
support early prediction of severe diabetic complications. Focusing on a single clinical area and
data source, the study provides a large-scale case analysis of the opportunities and limitations of
claims-based modeling in a national ecosystem. Three challenges are central: (i) representing a
large and evolving code vocabulary, (ii) incorporating absolute time information from irregular event
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streams, and (iii) coping with the sparsity and noise inherent to transactional data, which reflect
reimbursement practices as well as clinical state.

To address these, we combine dense TUSS embeddings, absolute sinusoidal Time Embeddings
(23), and a BiLSTM with self-attention to summarize patient histories, augmented with simple
demographic covariates. While modern Transformers dominate recent clinical sequence modeling
(21), this study investigates how far a parameter-efficient recurrent backbone can be pushed when
paired with principled temporal and code representations.

Contributions. This paper makes the following contributions:

1. National-scale claims case study. The first large-scale analysis of diabetic complication
prediction using Brazil’s TUSS-coded claims, with transparent documentation of cohort
construction and modeling design.

2. Temporal design insights. Evidence that absolute sinusoidal Time Embeddings and self-
attention are complementary: each adds modest benefit alone, but their combination yields
the largest gains in AUC and average precision.

3. Reproducibility and fairness. Clear reporting of sampling strategies, ablations, and
evaluation protocols (ROC/PR curves), alongside discussion of claims-specific biases,
generalizability, and fairness considerations.

On anonymized longitudinal data from ∼3.9 million individuals across two health operators, the
proposed pipeline predicts severe diabetic complications 6–12 months in advance with strong perfor-
mance, outperforming capacity-matched baselines. Beyond headline metrics, the analysis provides
practical lessons for modeling sparse transactional health data at national scale.

2 RELATED WORK

Deep sequence models have become central to modeling longitudinal healthcare data for risk predic-
tion, diagnosis forecasting, and patient stratification. Early architectures based on recurrent networks
and attention mechanisms, such as RETAIN, established strong baselines for visit-level prediction
tasks, while more recent approaches increasingly leverage self-attention to capture long-range depen-
dencies and heterogeneous inputs (8; 17). Transformer-based models specialized for EHR, including
BEHRT and its successors, incorporate visit position and patient age directly into embeddings and
consistently outperform recurrent networks on multi-label diagnosis prediction; recent surveys docu-
ment their rapid adoption across both structured and unstructured modalities (16; 21; 10). Temporal
convolutional networks (TCNs) have also emerged as competitive alternatives for handling long
clinical sequences (3; 24).

Representation learning for medical codes is another active area. One-hot encodings of diagnosis,
procedure, or medication codes are high-dimensional and fail to capture similarity across concepts.
Learned embeddings, adapted from natural language processing, map codes to dense vectors using co-
occurrence statistics and have been shown to improve downstream prediction tasks (19; 8; 6). Beyond
visit-sequence embeddings such as Med2Vec, more recent approaches draw on large multimodal
corpora or code descriptions processed with language models, enabling alignment across ontologies
such as ICD, CPT, NDC, and SNOMED (4; 6).

Handling irregular sampling remains a key methodological challenge in clinical time series. Archi-
tectures such as GRU-D, T-LSTM, and Phased-LSTM introduce explicit modeling of elapsed time
or decay to address missingness and non-uniform observation intervals (7; 5; 20). More recently,
self-supervised Transformers for irregular series and continuous-time neural controlled differential
equations (CDEs) aim to mitigate sparsity without requiring resampling (25; 14). Complemen-
tary to architectural innovation, several approaches inject explicit time embeddings into inputs.
Time2Vec learns periodic and time-aware embeddings, while continuous-time positional encodings
and sinusoidal date embeddings provide alternative formulations for irregular sequences (13; 15; 23).

Administrative claims data represent a distinct modeling context. Unlike EHRs, claims are collected
primarily for reimbursement, resulting in broad longitudinal coverage but comparatively sparse
clinical detail. In health systems where ICD diagnosis codes and CPT/HCPCS procedure codes
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Figure 1: Example of a TUSS claim data series of a patient.

are included, claims datasets have supported robust disease prediction and population-level risk
stratification (9; 12; 1). In Brazil’s supplementary health system, however, the TISS standard
mandates the use of TUSS codes for procedures, materials, medications, and daily rates (2). These
codes are primarily transactional and often lack standardized diagnosis fields, making the prediction
task more reliant on utilization patterns. This contrasts with claims datasets in other regions and
raises specific challenges for embedding design and interoperability, including potential mappings to
international terminologies such as LOINC and SNOMED (see Table 2).

Recent discussions of fairness in health AI emphasize that claims-derived models are shaped by
provider incentives and policy structures, which may propagate inequities. Best practices now
recommend explicit consideration of subgroup performance, bias sources, and mitigation strategies
when deploying predictive systems in sensitive clinical domains.

Table 1: TUSS Examples
TUSS Description

10101012 Clinic Visit
10101039 Emergency Room Care
40901475 Color Doppler of Aorta and Iliac Arteries
90019415 Dipyrone 500mg

Table 2: TUSS Interoperability
Terminology Hemoglobin A1c

TUSS 40302733
CPT 83037

LOINC 4548-4
SNOMED CT 43396009

3 METHODOLOGY

3.1 DATA AND COHORT DEFINITION

We analyze anonymized longitudinal claims from two Brazilian health insurers that are both com-
pliant with the national TISS/TUSS standard. Operator 1 (training/evaluation) includes ∼3.9M
beneficiaries and 62.7B claim lines (Jan/2013–Sep/2020). Operator 2 (transfer validation) covers
∼628,779 beneficiaries (2006–2019) with typically longer individual histories. Each record is a tuple
(TUSS code, service date), with demographics (age, sex). In Figure 1, there is a real example of a
TUSS series of a patient from Operator 1.

Because diagnosis fields are inconsistent, a proxy diabetes cohort is defined via repeated HbA1c
testing: individuals with ≥ 2 HbA1c exams (TUSS 40302733) within 12 months are included. This
yields ∼105k patients in Operator 1 and ∼33k in Operator 2.

We forecast the first severe diabetes-related complication 6–12 months ahead, using curated TUSS sets
for angiopathy, amputation, and renal failure (Appendix A). In Operator 1, 1,019 patients experience
an outcome. For each patient, we extract all (code, date) events in a 90–720 day observation window
before an index date. Positive sequences end ≥180 days before the first complication; negatives
come from patients without complications. No information from the prediction horizon leaks into the
observation window.
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Figure 2: Data length distribution based on the number of individual TUSS codes and time length.

Figure 3: Modeling scheme where the prediction is based on the probability of a complication code
occurring after more than six months.

The Operator 1 diabetes cohort used for supervised training includes 105k patients, with 57% female
(60k) and 43% male (45k). The average age is 47 years (SD 17). Figure 2 shows the distribution of
sequence lengths: most patients have fewer than 1,000 claim records, yet these records typically span
multiple years, with some histories extending up to the maximum window of 92 months.

Validation/test preserves natural prevalence. During training, positives are oversampled within
mini-batches to 1:1 to stabilize optimization under ∼1% prevalence.

3.2 INPUT REPRESENTATION

We learn dTUSS = 200-dimensional embeddings for ∼170k unique TUSS codes via skip-gram with
negative sampling over the whole Operator 1 dataset, treating each beneficiary history as a document
(context window 15).

Absolute time is encoded with fixed sinusoidal embeddings tet ∈ R200:

tet[2i] = sin
(
datet
P 2i/d

)
, tet[2i+ 1] = cos

(
datet
P 2i/d

)
,

with P=10,000 days. This provides continuous absolute time without modifying the backbone.

Each event vector is
et = tusst + tet ∈ R200.

Demographics are appended at the sequence level: sex (one-hot) and age (normalized, capped at
120).

3.3 MEDATTENTION ARCHITECTURE

The used architecture schematic can be seen in Figure 4. Given a sequence E = (e1, . . . , eL),
L ≤ 500:

1. BiLSTM. Hidden size 128 per direction, producing H ∈ RL×256.
2. Self-attention pooling. Following structured attention:

u = tanh(HW1 + b1), α = softmax(uw2 + b2), c = α⊤H.
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Figure 4: Proposed framework with all connected components.

3. Classifier. Concatenate c with age/sex and pass through a 2-layer MLP (64 units, ReLU,
dropout 0.4) to output complication probability.

3.4 BASELINES AND CAPACITY CONTROL

We compare against: (i) a 4-layer MLP, (ii) a 6-layer, 8-head Transformer, and (iii) a 3-block Temporal
Convolutional Network (TCN). All models use the same inputs, splits, optimizer, and training budget.
Parameter counts are controlled for fairness: MedAttention ∼35M, Transformer ∼41M, TCN ∼35M,
and MLP ∼60M. A BiLSTM backbone was retained for prospective validation feasibility; however,
contemporary Transformer/TCN baselines are also included for completeness.

3.5 TRAINING AND REGULARIZATION

Models are implemented in PyTorch and trained with SGD (momentum 0.9, learning rate 0.01,
L2=10−6). Regularization includes token-level dropout (0.2) and LockedDropout (0.2). Mini-
batches (size 128) oversample positives to 1:1 during training. Loss is binary cross-entropy. Early
stopping uses validation AUC.

3.6 EVALUATION PROTOCOL

Operator 1 is split at the patient level into train/validation/test (70/15/15), stratified by outcome.
We report ROC AUC and Average Precision (AP) as primary threshold-independent metrics under
imbalance, and F1 at the validation-optimal threshold. Metrics are averaged over 10 runs (mean±sd).
95% CIs for AUC are obtained via bootstrap (Appendix C). For transfer, a model trained on Operator 1
is evaluated directly on Operator 2 (frozen encoder; threshold chosen on Operator 2 validation).
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Figure 5: ROC curve of MedAttention Figure 6: Precision-Recall curve of MedAttention

Table 3: Predictive performance on Operator 1 (mean ± sd over 10 runs). Best results in bold.
Model AUC F1 AP

MLP 0.781± 0.013 0.189± 0.064 0.234± 0.035
TCN 0.750± 0.001 0.064± 0.002 0.051± 0.001
Transformer 0.875± 0.005 0.279± 0.049 0.641± 0.011
MedAttention 0.907± 0.003 0.334± 0.051 0.631± 0.003

4 RESULTS

4.1 EVALUATION SETUP

Given severe class imbalance (∼1% positives), we treat threshold-independent metrics as primary
and report ROC AUC and Average Precision (AP). Thresholded F1 scores are reported at validation-
selected operating points. Full ROC and PR curves appear in Fig. 5–6.

4.2 COMPLICATION PREDICTION PERFORMANCE

Across 10 runs on Operator 1, MedAttention achieves an AUC of 0.907 ± 0.003 and AP of
0.631 ± 0.003, outperforming capacity-matched baselines (Table 3). The Transformer baseline
reaches a slightly higher AP (0.641) but lower AUC (0.875). MedAttention also yields the best F1

score (0.334 ± 0.051), reflecting stronger thresholded discrimination. These results indicate that
combining recurrent modeling with explicit absolute-time features and self-attention produces robust
risk stratification from sparse claims sequences.

4.3 ABLATION STUDY

Ablations on Operator 1 (Table 4) show that neither Time Embeddings (TE) nor self-attention (Att)
alone is sufficient: TE alone provides no benefit, and Att alone yields modest gains. Only their
combination (BiLSTM+TE+Att, i.e., MedAttention) produces large improvements (AUC 0.907, AP
0.631). This supports the view that TE supplies temporally grounded signals which attention then
exploits to emphasize clinically informative events.

4.4 TRANSFER AND FIELD VALIDATION

A model trained on Operator 1 generalized well to Operator 2 without retraining (AUC 0.92, AP
0.70), approaching the performance of a model trained natively on Operator 2 (AUC 0.95, AP 0.80).
To assess real-world utility, both operators conducted blinded field validations in which beneficiaries
with predicted complication risk above 80% were flagged for review. Follow-up confirmed that
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Table 4: Ablation results on Operator 1. All models share the training setup.
Model Configuration AUC F1 AP

BiLSTM 0.741 0.065 0.050
BiLSTM + TE 0.735 0.064 0.047
BiLSTM + Att 0.817 0.083 0.089
BiLSTM + Att + TE (MedAttention) 0.907 0.334 0.631

these high-risk groups exhibited substantially higher rates of adverse outcomes (hospitalizations,
ICU admissions, mortality) and markedly higher healthcare costs compared to the broader diabetic
population. Notably, 41 of the 140 high-risk patients flagged in Operator 2 were not previously
enrolled in monitoring programs but were subsequently reviewed by clinical experts and confirmed as
high-risk diabetics, leading to their inclusion in targeted monitoring. This demonstrates the model’s
ability to surface previously unrecognized patients in need of proactive care.

At Operator 1, 243 beneficiaries were flagged as high-risk with predicted complication risk above 80%
but no prior complication codes. Specialists examined outcomes to confirm patient status. Among
the flagged cohort, two deaths related to chronic disease were recorded, along with multiple serious
events including strokes (6), heart disease (31), renal failure (12), and peripheral vasculopathy (2).
A substantial fraction experienced hospitalizations (34%) or ICU admissions (16%). Many were
already under monitoring, but those not yet enrolled were incorporated into existing care-management
programs.

Misclassifications were primarily linked to utilization patterns unrelated to diabetes but resembling
high-acuity care, such as oncology treatments and high-risk pregnancies. These cases highlight an
intrinsic limitation of claims-only modeling, where signals reflect utilization intensity rather than
explicit clinical intent. Despite this, the blinded evaluations led both operators to validate the model
as a useful tool for targeted monitoring and proactive care management.

4.5 RISK FACTOR ANALYSIS

Spearman correlations between per-patient code frequencies and predicted risk (Operator 2) reveal
that ∼89% of codes correlate positively with risk, consistent with utilization intensity reflecting acuity.
Most associations are weak (0–0.2), suggesting the model relies on combinations and timing of events
rather than single markers. Positively associated categories include hospitalization/ICU rates and
cardiovascular/renal markers (e.g., metoprolol, furosemide, morphine, creatinine, BNP). Negative
associations arise from outpatient behavioral health codes and Type 1 diabetes immunoassays (anti-
GAD). These patterns align with clinical expectations while underscoring that predictive signals in
claims are compositional and temporal.

5 DISCUSSION

This study demonstrates that clinically actionable risk stratification is feasible using claims-only lon-
gitudinal histories encoded with the Brazilian TUSS standard. Although the backbone is deliberately
simple, the combination of distributional embeddings for high-cardinality billing codes, absolute
sinusoidal Time Embeddings (TE), and sequence-level self-attention yielded strong and consistent
gains under extreme imbalance. Ablations confirm a clear synergy: TE alone provides little benefit,
and attention alone adds modest discrimination, but together they produce large improvements in
threshold-independent metrics.

External evaluation shows that a model trained on a large national operator transfers effectively to a
distinct regional operator, despite differences in benefit mix and care pathways. This suggests that
standardized coding and reimbursement processes induce transferable structure across claims popula-
tions. At the same time, performance portability should be viewed as a starting point: recalibration
and monitoring will remain necessary as coding practices and policies evolve.
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Overall, these findings provide design lessons for modeling sparse, irregular, transactional sequences.
They clarify when a parameter-efficient recurrent backbone, augmented with principled time encoding
and attention, can remain competitive against more complex architectures in claims-centric settings.

6 LIMITATIONS AND BROADER IMPACT

Administrative claims are collected for reimbursement rather than clinical intent. They omit nu-
ance, conflate severity with billing intensity, and reflect provider incentives, which may introduce
misclassification, spurious associations, and fairness risks. Our diabetes cohort definition, based on
repeated HbA1c tests, excludes underdiagnosed or poorly monitored patients, limiting coverage. The
study focuses on a single disease and two operators; although transfer results are promising, broader
validation across conditions, payers, and time periods is required. Concept drift (e.g., policy updates,
coding changes) further motivates ongoing monitoring.

Claims encode historical access and utilization patterns that differ across demographic and so-
cioeconomic groups. Without safeguards, models may reproduce and amplify inequities, echoing
well-documented failures of cost-based risk adjustment. Responsible use, therefore, requires: (i)
clear intended-use statements, (ii) subgroup performance and calibration audits, (iii) fairness-aware
recalibration where needed, (iv) human-in-the-loop oversight, and (v) transparent reporting following
contemporary guidelines.

Beyond methodological insights, this work highlights the practical value of routinely collected claims
data for population health management. In Brazil and comparable health systems, complications such
as amputations and renal failure are leading drivers of disability and cost; early identification of high-
risk individuals could enable targeted monitoring and preventive interventions that reduce avoidable
hospitalizations, improve quality of life, and lower expenditures. Because billing standards such as
ICD and CPT serve similar roles internationally, the design lessons drawn from TUSS may generalize
to other claims ecosystems, broadening the applicability of claims-based AI beyond Brazil. More
broadly, this study illustrates how scalable, non-invasive data sources can complement electronic
health records when integration is infeasible, opening a pathway toward equitable, proactive care at a
national scale.

7 CONCLUSION

We presented a claims-only framework for forecasting severe diabetic complications from Brazil’s
standardized TUSS billing data. By combining learned embeddings of billing codes with absolute
Time Embeddings and a BiLSTM with self-attention, the proposed MedAttention model achieved
strong discrimination on a large national cohort (AUC 0.907, AP 0.631) and transferred effectively
to a second operator with different population and benefit mix. Ablations show that explicit absolute-
time signals and attention are complementary, yielding the largest gains when combined.

The key practical takeaway is that routinely collected claims can support proactive risk stratification
when multi-institutional EHR integration is infeasible. Responsible deployment requires careful
operating-point selection, calibration monitoring, and governance to mitigate claims-specific biases.
Looking ahead, promising directions include capacity-controlled comparisons with long-sequence
Transformers and TCNs, richer interpretability of code–time interactions, fairness-aware recalibration
and subgroup audits, and prospective impact evaluation in real care-management programs. We
position these findings not as architectural novelty but as design lessons for modeling sparse claims
sequences at the national scale.

8 REPRODUCIBILITY STATEMENT

All methodological details necessary to reproduce our results are included in the paper and appendices.
We describe data preprocessing (cohort selection, outcome definitions, observation windows), model
architecture (embedding sizes, time encoding, BiLSTM/attention design), baselines with parameter
counts, training setup (optimizer, regularization, hyperparameters), and evaluation protocols (splits,
metrics, calibration). The anonymized claims datasets analyzed here are not publicly shareable due to
contractual and privacy restrictions, and we do not release source code. However, the framework is
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fully specified such that researchers can implement it with comparable claims or EHR datasets in
other health systems.
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A COMPLICATION TARGET TUSS CODES

TUSS Code Description

20103026 Bilateral amputation stump preparation
20103034 Bilateral amputation (prosthetic training)
20103042 Unilateral amputation (stump preparation)
20103050 Unilateral amputation prosthetic training
30718015 Amputation at arm level
30720036 Amputation at forearm level - surgical treatment
30721105 Wrist and forearm amputation stump - revision
30722063 Amputation at metacarpal level surgical treatment
30722071 Finger amputation
30722080 Transmetacarpal amputation
30722098 Transmetacarpal amputation with finger transposition
30722241 Digital amputation stump revision
30725038 Amputation at thigh level surgical treatment
30727049 Leg amputation - surgical treatment
30728010 Amputation at ankle level surgical treatment
30729017 Amputation at foot level - surgical treatment
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TUSS Code Description

30729025 Amputation/disarticulation of toes per segment surgical treatment
40601234 Diagnostic procedure in limb amputation - non-oncological cause
30724120 Hip disarticulation surgical treatment
30726069 Knee disarticulation surgical treatment
30101280 Surgical debridement - per topographic unit (TU)
30730031 Surgical debridement of wounds or extremities
30729122 Fasciotomy or plantar fascia resection - surgical treatment
30730074 Fasciotomy
30730082 Fasciotomy - per compartment
30730090 Decompressive fasciotomies
30906423 Upper limb arterial revascularization
30906113 Transoperative transluminal angioplasty - per artery
30912024 Transluminal angioplasty of the aorta or branches or of the pulmonary artery and branches (per vessel)
30912032 Percutaneous transluminal angioplasty of multiple vessels, with stent implantation
30912040 Percutaneous transluminal balloon angioplasty 1 vessel
40813070 Supra-aortic trunk angioplasty
40813177 Percutaneous transluminal angioplasty
40813185 Percutaneous transluminal angioplasty for treatment of arterial obstruction
30909031 Chronic hemodialysis (per session)
30909139 Acute case hemodepuration
30909023 Continuous hemodialysis (12h)
30909015 Acute case hemodepuration
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