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ABSTRACT

We investigate the use of in-context learning and prompt engineering to estimate
the contributions of training data in the outputs of instruction-tuned large lan-
guage models (LLMs). We propose two novel approaches: (1) a similarity-based
approach that measures the difference between LLM outputs with and without
provided context, and (2) a mixture distribution model approach that frames the
problem of identifying contribution scores as a matrix factorization task. Our
empirical comparison demonstrates that the mixture model approach is more robust
to retrieval noise in in-context learning, providing a more reliable estimation of
data contributions.

1 INTRODUCTION

Training Data Attribution (TDA) refers to the task of quantifying the contributions of different data
sources on the output of a model (Park et al., 2023; Nguyen et al., 2023). This task is essential
for debugging the curating corpora processes for training and for improving the training of neural
networks Xia et al. (2024); Qin et al. (2025). Understanding the contribution of data sources allows us
to assess the monetary value of proprietary training data, which is crucial for fair compensation and
data management (Ghorbani & Zou, 2019; Nohyun et al., 2022; Choe et al., 2024). Unlike retraining-
or gradient-based approaches, our methods require no model internals and instead exploit in-context
learning behavior, making them directly applicable to black-box LLMs.

Existing TDA methods fall mainly into two categories: retraining-based methods and influence
function-based methods, as detailed in recent surveys (Hammoudeh & Lowd, 2024; Worledge et al.,
2024). Retraining approaches such as those of (Feldman & Zhang, 2020; Ghorbani & Zou, 2019)
involve retraining the model without the target data source. However, this method is computationally
expensive. The influence function approaches (Koh & Liang, 2017; Pruthi et al., 2020; Chen et al.,
2021; Park et al., 2023), relax the need for full retraining by requiring only a few gradient calculations
with respect to the data. Despite their efficiency, these methods rely on a linear approximation of the
neural network around the target data point, which can be inaccurate. Critically, the influence function
approaches compute the attribution score for a dataset as a linear function (usually an average or
sum) of the attribution scores for each data point in the dataset (Hammoudeh & Lowd, 2024; Park
et al., 2023). This approach fails to provide a holistic view of the contributions of an entire dataset to
the model’s output. Additionally, both methods require access to the internals of LLMs, which is
not feasible for some popular models. A related technique, Machine Unlearning (Ginart et al., 2019;
Sekhari et al., 2021) is still expensive to obtain the contribution scores.

We explore the use of in-context learning and prompt engineering to estimate the contributions of
each dataset as a whole in the outputs of instruction-tuned LLMs. We propose two approaches: (1)
A similarity-based approach, which posits that providing a dataset as context to an LLM trained on
that dataset changes its output less compared to when the LLM was not trained on the dataset. (2) A
mixture distribution model approach, where we model the behavior of LLMs using a new mixture
distribution. This approach transforms the problem of identifying contribution scores into a matrix
factorization problem, which we solve using the alternating projected least squares method. Both
approaches utilize Retrieval Augmented Generation (RAG) (Lewis et al., 2020) to accommodate
large data sources.

In the experiments, we evaluated four instruction-tuned LLMs: Mistral 7B (Jiang et al., 2023),
Bloomz (Le Scao et al., 2023), Microsoft/Phi-3-mini (Abdin et al., 2024) and GPT 4.0 (Achiam et al.,
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2023) on a set of binary Q&A datasets, BoolQ (Clark et al., 2019). In addition to the widely used
BoolQ dataset, we create two new datasets: FakeQ, a synthetically modified version of BoolQ with
altered queries and contexts, and a novel dataset constructed from Olympic 2024 Paris information,
which serves as a realistic dataset that none of the LLMs have encountered during training. We
evaluate our methods on these three datasets: BoolQ (likely seen), FakeQ (synthetic unseen but
structurally similar), and Olympic2024 (constructed after model training and guaranteed unseen).

Finally, to ensure the reliability of our proposed contribution estimation metrics, we fine-tune these
LLMs in the Olympic 2024 dataset under varying conditions, such as different learning rates, and
evaluate the consistency of the metrics. Once validated, the metrics are further used to assess and
rank popular unlearning techniques. Our contributions are two novel black-box methods for Training
Data Attribution (TDA): (i) the Shapley Context Method (SCM), a similarity-based residual measure,
and (ii) Context Mixture Factorization (CMF), a mixture-model formulation that is robust to retrieval
noise. We evaluate these against Trak (Park et al., 2023) as a baseline. To mitigate concerns about
ground truth, we validate our metrics using controlled fine-tuning on the Olympic2024 dataset, where
attribution values increase monotonically with known exposure.

2 METHODOLOGY

An LLM processes knowledge from different sources. Our goal is to examine different prompts and
see if we can uncover the sources of this knowledge.

In our setting, we have tuples in the format of question, context, and outcome: (q, c, y). Our LLM
outputs M(q|c) = p(y|q, c). When we do not use any context, we denote c = ∅. Our goal is to
quantify the contributions of the training datasets D1, . . . , Dn in p(y|q, c). We assume that we have
a query set Q = {q1, . . . , qm}. For simplicity of notation, without loss of generality, we describe the
methods for binary outcome y ∈ {0, 1}.

We assume that we have k, k = 1, . . . ,K, relevant datasets about a topic and we want to quantify
their contributions in the generation of the outputs by our LLM.

2.1 THE NON-PARAMETRIC APPROACH: THE SHAPLEY CONTEXT METHOD (SCM)

The key idea of this approach is that if an LLM uses the information from the kth dataset, providing
the kth dataset as a context will not change the output much.

This assumption follows prior work in data Shapley (Ghorbani & Zou, 2019). and influence functions
(Koh & Liang, 2017), where residual changes in predictions are treated as marginal contributions.
SCM captures the direct effect of adding dataset context, making it sensitive to immediate residual
changes but less robust to retrieval noise. We later validate this empirically.

We define the following similarity scores:

sk = sim(y , y|ck), (1)

where ck is the context from the kth dataset.

Usually, the desired information can be found in multiple data sets (Ghorbani & Zou, 2019). To
consider the impact of datasets in presence of other datasets, we define the following scores to be
used in the Shapley formula (Shapley, 1953):

sS = sim(y , y|cS).
Intuitively, this measures the marginal gain in similarity when dataset Dk is added.

The Shapley values are computed as follows:

ϕk =
∑

S⊆{D1,...,DK}\{Dk}

CS,K(sS∪{Dk} − sS), (2)

where CS,K = |S|!(K − |S| − 1)!/K! are the normalization constants. This formula finds the
residual increase in the similarity by including Dk, when we already have included another set
S ⊆ {D1, . . . , DK} \ {Dk}. The following Algorithm describes the details of our Shapley Context
Method (SCM).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 THE SEMI-PARAMETRIC APPROACH: CONTEXT MIXTURE FACTORIZATION (CMF)

Mixture modeling has long been used to capture latent source contributions in machine learning
(Nguyen et al., 2023). Here we adapt this idea for dataset attribution: separating a base component
(π0) from dataset-specific components improves robustness to retrieval noise.

We propose a model to summarize the behavior of LLMs. Our model explicitly contains attribution
scores and captures the entirety of the datasets used for its training. We use a mixture distribution
approach, which defines:

p(y|q) = π0p̃0(y|q) +
K∑

k=1

πkp̃k(y|q), (3)

where p̃0 denotes a general-purpose language model and p̃k denote the language models specialized
on each of the relevant datasets k = 1, . . . ,K. The distributions p̃k, k = 0, . . . ,K, are latent, and
we do not intend to explicitly estimate them. Intuitively, CMF is expected to outperform SCM in
noisy RAG settings because π0 explicitly accounts for background contributions, reducing variance
in dataset-specific weights. This robustness also explains why SCM–CMF gaps vary across models:
CMF separates background from dataset-specific influence, while SCM reflects only the marginal
residual.

Remark 1: Given the modularity of LLM structures, this assumption is not fully realistic. However,
this assumption provides a holistic view of the contributions of each dataset, captured by distributions
p̃k, k = 1, . . . ,K. Thus, model (3) serves as a useful tool to statistically summarize the behavior of
the LLM.

Remark 2: Model (3) can capture the scenarios where an LLM uses data from multiple sources, but
does not model the scenarios where the LLM uses the interaction of data from multiple sources.

We model the impact of providing context from a dataset k ∈ {1, . . . ,K} as an intervention in the
probability distribution:

p(y|q, ck) = π0p̃0(y|q) + (1− π0)p̃k(y|q). (4)

The key assumption is that both Eq. (3) and (4) do not have context terms on the right-hand side
quantities.

Goal: Our goal is to identify πk, k = 1, . . . ,K. We want to do this without explicitly estimating
p̃k, k = 1, . . . ,K.

Formulating as a Matrix Factorization Problem. For each of the m queries, we perform K + 1
prompts (or the maximum 2K prompts) and write the results in a linear equation as follows:

P = ΠP̃ , (5)

where P ∈ [0, 1](K+1)×m, Π ∈ [0, 1](K+1)×(K+1), and P̃ ∈ [0, 1](K+1)×m. We observe the
quantity on the left-hand side, but none of the quantities in the right-hand side.

Eq. (5) expresses observed outputs as a mixture of latent dataset-specialized models, making
attribution equivalent to estimating mixture weights.

This is a matrix factorization problem with a special structure. We assume that p̃k(y|q) can be
obtained by some clever prompts. We can make assumptions about p̃k(y|q) that allow recovery of
the mixture parameters of π.

Remark 3: Instead of K + 1 prompts, we can have up to 2K prompts. However, for the prompts that
use multiple datasets, we need to assume the form of the resulting distribution, similar to Eq. (4).
An alternative is to impose priors on π and P̃ to improve identifiability. We will discuss the second
approach in the next section.

Alternating Projected Least Squares. We can have multiple estimates for π from Eq. (5). We
can resolve this issue by encouraging solutions that have lower variance. We achieve this by using
two regularizers: an entropy regularizer for π to assume that the sources contribute equally and a
regularizer that encourages P̃ to be less informative.
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π̂ = argmin
π

min
P̃

∥∥∥P −ΠP̃
∥∥∥2
F
− λπH(π) + λP̃ ∥P̃ − 1/2∥2F , (6)

s.t. π ⪰ 0, 1⊤π = 1, 0 ⪯ P̃ ⪯ 1.

where ∥ · ∥F and H(·) denote the Frobenius norm and Shannon’s entropy. We use entropy regulariza-
tion on π to encourage the null hypothesis of “equal contributions of all sources”. Regularization of
the Frobenius norm implies that, unless there is strong evidence, the outputs of the latent probabilities
P̃ should be 1/2. Note that regularizers are vital for obtaining a non-trivial solution and in the
absence of them, there are many solutions to the problem.

The problem in Eq. (6) is biconvex; ie, fixing π or P̃ , the problem is convex (Gorski et al., 2007).
Thus, we solve it by the alternating least-squares method. We further assist in the regularization
terms by randomly initializing P̃ to be around 1/2 and π to be around 1/(K + 1). We can obtain the
confidence intervals for both SCM and CMF by bootstrapping (Tibshirani & Efron, 1993).

3 IMPLEMENTATION

3.1 PROMPT ENGINEERING

For simplicity of evaluation and without loss of generality, we used Q&A datasets, where the answers
are binary Yes/No. To instruct the LLMs to provide direct boolean responses, we used prompt
engineering. Initially, we tested various prompts without explicitly instructing the model to answer
with ”Yes” or ”No.” Diverse examples used in this process are provided in Appendix A. Through
iterative testing, we found that the responses improved when the model was explicitly instructed to
provide a Boolean answer. This led to our final prompt:

Prompt: ”Given the context below, answer the question that follows with only ’Yes’, ’No’, or ’I
don’t know’ if the context is insufficient.
{question}? The answer to this question is ”

Although this final prompt worked well for GPT-4, Bloomz, and Mistral 7B, generating straightfor-
ward ”Yes,” ”No,” or ”I don’t know” responses, it was harder to instruct Phi-3-mini. Even with the
final prompt, Phi-3-mini often generated more text than just a simple boolean response.

Therefore, calculating similarities was straightforward for GPT-4, Bloomz, and Mistral 7B, but we
had to devise another solution for Phi-3-mini. The embedding similarity API on GPT-4 was not
precise enough as it did not focus primarily on the context of the generated response. To calculate the
similarity for Phi-3-mini, we created a zero-shot classification layer (which takes 1000 characters)
between the prediction and the result to measure similarity more accurately.

3.2 USING RAG

Given the limitations of LLM context windows, fitting entire datasets directly into the context is
impractical. To address this, we used Retrieval Augmented Generation (RAG) (Lewis et al., 2020) to
enhance context by retrieving relevant documents from databases before generating responses. The
process involves splitting the documents into semantically relevant chunks using the RecursiveChar-
acterTextSplitter from the HuggingFace Transformers library, computing embeddings for all chunks
with a model like thenlper/gte-small, and storing these embeddings in a vector database using FAISS
(Facebook AI Similarity Search) Johnson et al. (2019). When a question is posed, it is embedded, and
a similarity search is performed against the vector database to find the closest matching documents.
These retrieved documents are then provided as context for the LLMs along with the original question,
allowing the LLMs to generate responses augmented with additional context. We used a chunk size
of 512 and a top-k value of 3, ensuring the context was trimmed to 2000 characters for conciseness.
We study the effectiveness of RAG in the Appendix C. While we focus on BoolQ-style binary QA for
tractability, our framework is general and can extend to multi-class or free-form generation. Future
work will apply SCM and CMF to such outputs, building on case studies like OLMoTrace.
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4 EXPERIMENTS

Simplified setup to demonstrate our methodology:

Step 1: Task Selection We use three datasets for our evaluation: (1) the BoolQ Q&A dataset
(Clark et al., 2019), which consists of tuples in the form (question, relevant context, binary answer),
representing a dataset which we treat as likely seen during pretraining; (2) the FakeQ dataset,
constructed by altering the queries and contexts in BoolQ to ensure the dataset remains unseen by the
LLMs; and (3) The Olympic 2024 dataset, a newly created dataset based on the Paris 2024 Olympics
(detailed in Appendix B), is designed to simulate real-world scenarios with Yes/No questions and
relevant contexts. The latter two datasets allow us to evaluate the attribution metrics on datasets
to which the LLMs have not been exposed during pretraining. Using BoolQ (likely seen), FakeQ
(unseen but structurally similar), and Olympic2024 (constructed post-training and guaranteed unseen)
allows us to systematically test attribution under different exposure assumptions. These datasets were
selected to control exposure. Although we cannot confirm pretraining details for closed models, the
contrast between BoolQ (likely seen), FakeQ (synthetically unseen), and Olympic2024 (constructed
post-training) provides a minimal sanity check against stylistic confounds.

Step 2: LLM Selection We examined four instruction-tuned LLMs: GPT-4 (1.76 trillion parameters),
Bloomz (176 billion parameters), Mistral 7B (7.3 billion parameters), and Phi-3-mini (3.8 billion
parameters). We report the accuracy of these LLMs on BoolQ in Table 9. Given that the dataset is
binary, we prompted the LLMs to answer ”Yes” or ”No” to each question, or to say ”I don’t know” if
they could not provide a definite response (see Section 3.1).

Step 3: Alternative Dataset Collection We collected five datasets on different topics. The corpora
were sourced from a subset of the Wikipedia Field of Science dataset available on Hugging Face,
specifically the fields of Chemistry, Natural Science, History and Archaeology, Biology, and Law.
Each of these data sets contains more than a million samples in five categories. The five science
domains, drawn from Wikipedia, were not intended as unseen data but as broad controls; their lower
attribution compared to BoolQ highlights that general background knowledge contributes less to
BoolQ-style QA than task-specific data.

Step 4: Evaluation First, we evaluated the methods on the BoolQ dataset, which is closely related
to the questions asked, providing a baseline for how well the methods estimate attribution for data
sources that align closely with the LLMs’ pretraining. Successful methods should estimate a higher
weight for BoolQ, as a proxy for the relevant data used during training.

To further test the robustness of the proposed methods, we created two new datasets: (1) FakeQ,
derived by altering the queries and contexts in BoolQ to ensure it is entirely unseen by the LLMs,
and (2) Olympic2024, a dataset based on the Paris 2024 Olympics, designed as a real-world dataset
with binary Yes/No questions and relevant contexts that are guaranteed to be unseen by the LLMs
(trained prior to 2024). These data sets allowed us to investigate how attribution metrics behave when
the datasets have no prior exposure during LLM training.

To demonstrate the validity of the attribution metrics, we performed a series of experiments involving
fine-tuning the LLMs on the Olympic2024 dataset with increasing learning rates or iterations. By
fine-tuning the LLMs incrementally on a previously unseen dataset, we created a progression of
models. For each fine-tuned model, we applied the contribution estimation methods and observed
that the metrics increased monotonically, reflecting the LLMs’ growing reliance on the dataset.

Finally, we extend our evaluation to machine unlearning algorithms, leveraging the established metrics
to rank well-known unlearning methods based on their ability to effectively reduce the contribution
of a target dataset. By applying attribution metrics to LLMs subjected to unlearning processes, we
assessed whether the influence of the targeted dataset was effectively diminished.

4.1 RESULTS AND ANALYSIS

In general, SCM and CMF demonstrate their ability to effectively identify the most influential
datasets, with CMF providing more robust attributions by accounting for noise and base contributions.
Importantly, while attribution values for BoolQ may appear expected, the Olympic2024 experiments
show the methods also capture signal in genuinely novel data, supporting their use beyond trivial
cases.

5
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We also performed an evaluation using Trak (Park et al., 2023) as a popular baseline. Trak provides
a different perspective on attribution of data sets by scoring the impact of training data on model
predictions. For our methods to “work,” we expect: high attribution for BoolQ (seen/familiar), lower
for FakeQ (synthetic unseen), and lowest for Olympic2024 (novel). Larger CMF–SCM gaps indicate
stronger robustness to retrieval noise. We present the results for BoolQ, FakeQ, and Olympic2024 in
Tables 1, 2, and 3.The Trak scores for Bloomz and Phi-3-mini in the BoolQ, FakeQ, and Olympic2024
datasets are shown in Tables 1, 2, and 3. The gap between CMF and SCM narrows on FakeQ and
Olympic2024 because neither dataset was seen during training, reducing overlap. In contrast, BoolQ
shows the largest gap, consistent with its alignment to pretraining data.

Table 1: Attribution values for the context on BoolQ

Algorithm Bloomz GPT-4 Mistral 7B Phi-3
SCM 0.48 0.59 0.57 0.50
CMF 0.63 0.62 0.61 0.59
Trak 0.61 – – 0.58

Table 2: Attribution values for the context on FakeQ

Algorithm Bloomz GPT-4 Mistral 7B Phi-3
SCM 0.32 0.36 0.33 0.28
CMF 0.46 0.43 0.41 0.38
Trak 0.39 – – 0.35

Table 3: Attribution values for the context on Olympic2024

Algorithm Bloomz GPT-4 Mistral 7B Phi-3
SCM 0.08 0.11 0.09 0.07
CMF 0.16 0.14 0.12 0.10
Trak 0.12 – – 0.09

Detailed Analysis of Attribution Coefficients Tables 4 and 5 show the attribution results obtained
by the SCM and CMF algorithms for the BoolQ data set. Both algorithms successfully identify the
BoolQ dataset as the most influential dataset. This is because the BoolQ context is more directly
related to the questions. Chemistry, Natural Science, History and Archaeology, Biology, and Law
have lower ϕk values, showing that while they contribute to the context, their impact is less significant
compared to BoolQ. Note that in CMF, we need to calculate πBoolQ

1−πBase
to directly compare it with

ϕBoolQ estimated by SCM. This shows that CMF assigns higher attribution values than SCM due to
its robustness in accounting for noise in retrieval-augmented generation (RAG) systems.

Table 4: Shapley Values (ϕk) using SCM Algorithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
ϕBoolQ 0.48 0.59 0.57 0.50
ϕChemistry 0.10 0.08 0.09 0.10
ϕNatural Sci 0.12 0.09 0.10 0.11
ϕHistory 0.11 0.10 0.10 0.11
ϕBiology 0.10 0.07 0.08 0.10
ϕLaw 0.09 0.07 0.08 0.08

6
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Table 5: π and πBoolQ
1−πBase

values using the CMF algorithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
πBase 0.05 0.08 0.06 0.05
πBoolQ 0.60 0.62 0.61 0.59
πChemistry 0.09 0.07 0.08 0.09
πNatural Sci 0.07 0.08 0.07 0.06
πHistory 0.08 0.10 0.09 0.07
πBiology 0.06 0.06 0.05 0.05
πLaw 0.05 0.10 0.08 0.06
πBoolQ
1−πBase

0.63 0.67 0.65 0.62

Table 6: TRAK Scores for Different Sources using Phi-3 and Bloomz models. Positive scores indicate
datasets that contribute positively to the model’s output, while negative scores indicate a lesser or
inverse influence.

Dataset Phi-3 Bloomz
BoolQ 0.58 0.61
Chemistry -0.08 -0.10
Natural Science 0.20 0.22
History 0.18 0.19
Biology -0.05 -0.06
Law 0.07 0.09

Across the three datasets (see Tables 10–13 in Appendix D), CMF consistently assigns higher attribu-
tion values than SCM. This is because CMF explicitly accounts for background model contributions
(πBase) and dataset-specific contributions (πk), making it more robust to noise and improving attribu-
tion granularity. The difference between CMF and SCM is most pronounced for datasets with strong
alignment with the pre-training data of the model, such as BoolQ, where CMF captures a clearer
and stronger attribution signal. Since BoolQ contains questions and contexts similar to those likely
encountered during model training, CMF detects these relationships with greater sensitivity.

For FakeQ and Olympic2024, both unseen during pre-training, the gap between CMF and SCM
narrows. This is expected as neither data set has direct overlap with pre-training data, leading to
lower attribution values across the board. However, CMF still assigns slightly higher attributions
compared to SCM, particularly for FakeQ. This suggests that while FakeQ is designed to be unseen,
it retains enough linguistic patterns and contextual structures resembling BoolQ for CMF to register
a weak but measurable connection. In contrast, Olympic2024 shows the lowest attribution values,
reflecting its novel and domain-specific nature. This trend underscores the ability of the CMF
to differentiate datasets not only based on direct exposure but also through latent associations in
linguistic or contextual patterns, making it a more reliable metric for evaluating dataset contributions.

These findings validate the superior sensitivity of CMF in identifying relevant data influences, even
for datasets with no explicit pre-training overlap. At the same time, they illustrate that both methods
converge to lower attribution values when applied to data sets entirely outside of the prior knowledge
of the model, confirming the robustness of SCM and CMF in distinguishing between the data sets
seen and the novel ones.

For BoolQ, Trak identified it as the most influential dataset, which aligns well with our methods.
However, our CMF approach provides a more detailed and accurate attribution of dataset contributions,
particularly in quantifying the base model’s influence and managing the noise inherent in retrieval-
augmented generation (RAG) systems. CMF consistently assigns higher attribution values compared
to SCM and Trak, reflecting its robustness in capturing the alignment between BoolQ and the model
training data.

For FakeQ, Trak shows lower attribution scores compared to BoolQ, as expected for an unseen
dataset. CMF again outperforms SCM and Trak by effectively taking advantage of the syntactic
similarity of FakeQ to BoolQ, capturing its partial alignment with training data. SCM also performs
reasonably well, but is less sensitive to subtle contributions, and Trak provides scores comparable to
SCM, though it lacks the granularity CMF offers.

7
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Figure 1: (left) SCM Attribution Values vs. Learning Rate for Olympic2024 Dataset: Attribution
values increase with fine-tuning. (right) CMF Attribution Values vs. Learning Rate for Olympic2024
Dataset: CMF shows higher attribution values, reflecting its robustness during fine-tuning.

Table 7: SCM and CMF Attribution Scores for the Olympic2024 Dataset.
Before Finetuning After Finetuning After Unlearning

Unlearning Method LLM SCM CMF SCM CMF SCM CMF
Gradient Ascent Bloomz 0.08 0.16 0.75 0.85 0.25 0.34

Phi-3 0.07 0.10 0.72 0.82 0.28 0.37

Fine-tuning Bloomz 0.08 0.16 0.75 0.85 0.22 0.31
with Random Labels Phi-3 0.07 0.10 0.72 0.82 0.24 0.33

Unlearning with Bloomz 0.08 0.16 0.75 0.85 0.30 0.41
Adversarial Samples Phi-3 0.07 0.10 0.72 0.82 0.33 0.42

For Olympic2024, being entirely novel and unrelated to training data, all methods report significantly
lower attribution values. CMF continues to demonstrate superior performance by reflecting even
minimal data-set contributions while maintaining a clear distinction between seen and unseen data.
SCM and Trak exhibit a smaller gap between Olympic2024 and FakeQ, indicating their limited ability
to fully capture the novelty of datasets.

Case Study: Evaluation of Unlearning Methods We applied attribution metrics to assess the
effectiveness of machine unlearning methods. As shown in Table 7, three unlearning methods:
Gradient Ascent (Golatkar et al., 2020; Liu et al., 2024), Fine-tuning with Random Labels (Golatkar
et al., 2020), and Unlearning with Adversarial Samples (Cha et al., 2024) were evaluated based on
their ability to reduce the influence of the Olympic2024 dataset on Bloomz and Phi-3 models.

The results indicate that Unlearning with Adversarial Samples consistently outperforms the other
methods, achieving the highest reduction in attribution values for both SCM and CMF metrics. The
ability of this method to target specific data points for unlearning is reflected in the reduced values
for πOlympic

1−πBase
. In contrast, Gradient Ascent and Fine-tuning with Random Labels achieve moderate

reductions, with Gradient Ascent slightly outperforming Random Labels in most cases.

Runtime Comparison The CMF algorithm is faster than the SCM algorithm as it requires fewer
queries with shorter context sizes. Using an AWS EC2 G6 instance (g6.16xlarge), the total runtime
for CMF, involving 7 runs, ranges from 77 to 94 minutes for all LLMs. In contrast, the SCM
method, which requires 25 runs, results in a total runtime of 352 to 384 minutes. The runtimes
of both algorithms are dominated by the RAG search time. This substantial reduction in run-time
demonstrates the efficiency of the CMF method, making it more suitable for scenarios demanding
both accuracy and computational efficiency.

For Trak, the runtime is significantly higher due to its high memory requirements. Trak requires about
20 GB of GPU memory for a model with 1 million parameters. Scaling this to larger models, Trak’s
memory requirements become impractical for large LLMs with modest computing resources. Running
Trak on our LLMs would necessitate approximately 600 GB of GPU memory and significantly more
computational time, making CMF and SCM more feasible for our use case.
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Validation of Attribution Metrics through Fine-Tuning To establish the reliability of the attri-
bution metrics, we performed a fine-tuning experiment on the Olympic2024 dataset. Fine-tuning
was performed incrementally, with the learning rate increasing progressively. Figures 1(a) and 1(b)
demonstrate that the attribution values increase monotonically with fine-tuning, confirming that
the metrics effectively capture the growing dependence of LLM on the data set. For both SCM
and CMF, the Olympic2024 attribution values increase with fine-tuning, but CMF shows higher
attribution values due to its ability to handle noise more robustly. These results validate the ability of
the proposed metrics to quantify the influence of fine-tuned data on LLMs.

The incremental increase in attribution values also reflects a nonlinear growth pattern, as the effects
of fine-tuning diminish at higher learning rates, resulting in a plateau. This plateau effect is more
prominent in SCM as it lacks the noise handling capabilities of CMF. This observation demonstrates
the practical applicability of these metrics in scenarios where data influence evolves over time as a
result of fine-tuning.

Deep Dive into RAG Noise Effect We computed the mean similarities (sS) and residuals (rk,S =
sS∪{Dk} − sS) for the BoolQ datasets in all LLMs, as shown in Table 8. These metrics provide a
nuanced understanding of how data sets influence model outputs.

For the BoolQ dataset, the high negative residual for Bloomz (-0.32) indicates that adding the BoolQ
context significantly influences the model output. This substantial change highlights the alignment
of the data set with the pre-existing knowledge of the model, as seen in the high similarity score
(sS = 0.86). In contrast, GPT-4’s low residual (-0.03) and high similarity score (sS = 0.76)
suggest that it has been preexposed to similar data during training, resulting in minimal performance
changes when BoolQ context is added. Mistral 7B, with a positive residual (0.06), demonstrates a
strong reliance on the added BoolQ context, suggesting that it benefits greatly from this additional
information. Similarly, Phi-3’s small positive residual (0.03) indicates partial exposure to similar data
but with room for improvement when additional context is provided. We present the results on FakeQ
and Olympics2024 data in Appendix E. Together, these findings confirm that our metrics capture
both strong pretraining overlap (BoolQ) and novel data (Olympic2024), with CMF better isolating
background noise.

Table 8: Mean similarities sS and residuals rk,S for different LLMs (with standard deviations).

LLM sS sS∪{Dk} rk,S

Bloomz 0.86 (0.03) 0.54 (0.02) -0.32 (0.02)
GPT-4 0.76 (0.02) 0.72 (0.02) -0.03 (0.02)
Mistral7B 0.73 (0.03) 0.69 (0.03) 0.06 (0.02)
Phi-3 0.60 (0.03) 0.63 (0.02) 0.03 (0.02)

5 CONCLUSION AND DISCUSSION

Our results demonstrate that both proposed algorithms can successfully attribute LLM outputs to
relevant training data. In particular, BoolQ serves as a proxy for “seen” knowledge: GPT-4 showed
minimal change when BoolQ context was added, suggesting prior exposure, while Bloomz exhibited
a large residual, indicating stronger reliance. CMF further disentangles dataset-specific and base
model contributions, offering robustness to retrieval noise and lower computational cost compared to
SCM. Fine-tuning experiments on Olympic2024 provide a controlled ground truth, confirming that
attribution values increase predictably with known exposure.

Looking ahead, we see several natural directions. First, attribution should be scaled to much larger
corpora, for example by batched prompting, adaptive sampling, or streaming updates in CMF. Second,
extending beyond binary QA to free-form and multi-class outputs will require new signals, such as
token-level or perplexity-based metrics. Third, retrieval design itself (e.g., chunk size, reranking, or
long-context strategies) merits study, as it shapes the stability of attribution. Finally, our methods
can be combined with complementary approaches such as string-based attribution and memorization
audits, and evaluated on datasets with verified training exposure. Together, these directions point
toward more comprehensive and practical frameworks for training data attribution in black-box
LLMs.

9
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A PROMPTS

General Question Prompt: “Read the context provided and answer the following question:
{question}”

Contextual Understanding Prompt: “Based on the information in the context, what can you
conclude about the following question? {question}”

Summarization Prompt: “After considering the context below, summarize your answer to this
question: {question}”

Opinion-Based Prompt: “Given the details in the context, what is your opinion on the following
question: {question}”

Detail Extraction Prompt: “Extract relevant information from the context to answer this question:
{question}”

Fact-Checking Prompt: “Using the context provided, verify the accuracy of the following statement:
{question}”

B OLYMPIC 2024 DATASET

The Olympic 2024 dataset was constructed by sourcing textual snippets from publicly available Kag-
gle datasets Kaggle (2024) related to the Paris 2024 Olympics. Since no structured QA dataset existed
for this event, question-answer pairs were manually generated for each context snippet to create a
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well-defined evaluation framework. For each retrieved context, three binary (Yes/No) question-answer
pairs were created: one for training, one for validation, and one for testing. The training set was
used to fine-tune the models, allowing them to incorporate Olympic-related information. The valida-
tion set was used to evaluate attribution metrics, ensuring that the methods assessed data influence
without direct exposure during training. The test set was reserved for evaluating generalization after
fine-tuning and unlearning experiments. This design follows the structure of BoolQ, making it easier
to analyze how fine-tuning impacts attribution and how well unlearning methods reduce the model’s
reliance on the dataset.

C EFFECTIVENESS OF RAG

To evaluate the effectiveness of context provision using RAG, we designed an experiment to measure
the accuracy of various LLMs when answering questions from the BoolQ dataset. The experiment
compared the models’ performance across different scenarios: without any context, with only the
BoolQ context, with contexts from five other datasets, and with all datasets combined. The results are
summarized in Table 9.

Table 9: Accuracy of LLMs with Different Contexts.

Context Bloomz GPT-4 Mistral 7B Phi-3
No Context 0.43 0.73 0.68 0.70
BoolQ as RAG 0.74 0.87 0.85 0.82
Five Datasets Only 0.35 0.64 0.60 0.45
All Data + BoolQ 0.73 0.84 0.82 0.83

The baseline setting (No Context) reveals inherent differences in the LLMs’ capabilities. GPT-
4 has the highest baseline accuracy at 0.73, followed by Phi-3 at 0.70 and Mistral 7B at 0.68,
indicating robust pretraining for these models. Bloomz shows lower accuracy at 0.43, highlighting its
dependency on contextual data.

When the BoolQ context is provided using RAG, all models show significant accuracy improvements,
with GPT-4 reaching 0.87, Mistral 7B at 0.85, and Phi-3 at 0.82. Bloomz also improves to 0.74,
though it remains lower than the others. Providing context from five datasets (excluding BoolQ) leads
to accuracy drops for all models, with Bloomz at 0.35, GPT-4 at 0.64, Mistral 7B at 0.60, and Phi-3
at 0.45. This indicates that less relevant data are less effective in understanding BoolQ queries.

Combining all data sets with the BoolQ context results in slight decreases in accuracy for GPT-4
(0.84) and Mistral 7B (0.82), suggesting that additional data sets introduce noise. Bloomz and Phi-3
show minimal changes, indicating that additional data do not significantly impact their performance
once the BoolQ context is included. These results emphasize the importance of relevant contextual
information in improving LLM performance, with GPT-4 consistently outperforming other models
due to its extensive training.

D ADDITIONAL DETAILED RESULTS

Tables 10 and 11 display the attribution results for the FakeQ dataset, which was constructed by
altering the queries and contexts in BoolQ to ensure that it is unseen by the LLMs. SCM Attribution
(ϕFakeQ): The attribution values for FakeQ are noticeably lower than those for BoolQ. For example,
ϕFakeQ ranges from 0.28 to 0.36 in LLM, compared to 0.48 to 0.59 for ϕBoolQ. This reflects the lack
of prior exposure to FakeQ in the training data, leading to a reduced alignment with the preexisting
knowledge of the model.

CMF Attribution (πFakeQ): CMF assigns higher scores than SCM, with πFakeQ
1−πBase

ranging from
0.48 to 0.53 in LLM. This increase indicates the sensitivity of the CMF to the structural similarities
between FakeQ and BoolQ. Although FakeQ is unseen, its construction retains the semantic patterns
of BoolQ, allowing the models to leverage these structural similarities.

Tables 12 and 13 present the attribution results for the Olympic2024 dataset, which is entirely unseen
and constructed to simulate real-world scenarios. The findings here are markedly different:
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SCM Attribution (ϕOlympic2024): The Olympic2024 attribution values are significantly lower than
both BoolQ and FakeQ. For example, ϕOlympic2024 ranges from 0.07 to 0.11 in LLMs. This is expected
since Olympic2024 is entirely unrelated to the models’ pre-training data, and its context does not
align with the questions posed.

CMF Attribution (πOlympic2024): CMF similarly assigns lower attribution scores to Olympic2024
compared to BoolQ and FakeQ, with πOlympic2024

1−πBase
ranging from 0.15 to 0.20. However, the CMF values

remain slightly higher than SCM, demonstrating its ability to account for small signal contributions
even in unseen datasets. The behavior of the Olympic2024 attribution metrics highlights their
reliability in distinguishing between datasets that are seen (BoolQ), partially similar (FakeQ), and
entirely novel (Olympic2024). The low residuals for Olympic2024, particularly for models such as
GPT-4, suggest minimal influence from prior training data, further validating the robustness of the
attribution methods.

Metric Bloomz GPT-4 Mistral 7B Phi-3
ϕFakeQ 0.32 0.36 0.33 0.28
ϕChemistry 0.08 0.06 0.07 0.08
ϕNatural Sci 0.09 0.07 0.08 0.09
ϕHistory 0.08 0.07 0.08 0.08
ϕBiology 0.07 0.05 0.06 0.07
ϕLaw 0.06 0.05 0.06 0.06

Table 10: Shapley Values (ϕk) using SCM Algorithm on FakeQ Dataset.

Table 11: π and πFakeQ
1−πBase

values using the CMF algorithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
πBase 0.06 0.09 0.07 0.06
πFakeQ 0.45 0.48 0.47 0.42
πChemistry 0.10 0.07 0.08 0.09
πNatural Sci 0.08 0.07 0.07 0.08
πHistory 0.09 0.08 0.08 0.08
πBiology 0.07 0.06 0.06 0.06
πLaw 0.06 0.06 0.06 0.06
πFakeQ
1−πBase

0.49 0.53 0.51 0.48

Metric Bloomz GPT-4 Mistral 7B Phi-3
ϕOlympic2024 0.08 0.11 0.09 0.07
ϕChemistry 0.04 0.03 0.04 0.05
ϕNatural Sci 0.05 0.04 0.04 0.05
ϕHistory 0.05 0.04 0.05 0.05
ϕBiology 0.04 0.03 0.03 0.04
ϕLaw 0.03 0.02 0.03 0.03

Table 12: Shapley Values (ϕk) using SCM Algorithm on Olympic2024 Dataset.

Table 13: π and πOlympic2024

1−πBase
values using the CMF algorithm.

Metric Bloomz GPT-4 Mistral 7B Phi-3
πBase 0.08 0.11 0.09 0.08
πOlympic2024 0.15 0.18 0.16 0.14
πChemistry 0.07 0.05 0.06 0.06
πNatural Sci 0.06 0.05 0.06 0.06
πHistory 0.07 0.06 0.06 0.06
πBiology 0.06 0.05 0.05 0.05
πLaw 0.05 0.05 0.05 0.05
πOlympic2024
1−πBase

0.16 0.20 0.18 0.15
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E EXTENDED DEEP DIVE INTO RAG NOISE EFFECT

For the FakeQ dataset, the results reveal its controlled construction and structural similarity to
BoolQ. Bloomz exhibits a moderately negative residual (-0.16) and a slightly reduced similarity score
(sS = 0.78), indicating that although FakeQ is not identical to BoolQ, its design allows the model to
relate to it effectively. GPT-4 maintains a low residual (-0.03), reinforcing its robustness in handling
data sets that resemble those encountered during training. Mistral 7B and Phi-3 show small positive
residuals (0.03 and 0.04, respectively), suggesting that these models benefit from the added FakeQ
context while exhibiting a less direct alignment compared to BoolQ.

For the Olympic2024 dataset, the results underscore its novelty. Bloomz has a less negative residual
(-0.13) and a reduced similarity score (sS = 0.72), highlighting the limited alignment of this entirely
novel data set with the model’s pre-existing knowledge. GPT-4 continues to display a low residual
(-0.03), showing its robustness even when handling unseen data. Mistral 7B and Phi-3 exhibit small
positive residuals (0.03 and 0.05, respectively), indicating their reliance on added context to improve
performance. The lower similarity scores across all models for Olympic2024 reflect the unique nature
of the data set, distinguishing it from the other data sets.

Table 14: Mean similarities sS and residuals rk,S for FakeQ across different LLMs (with standard
deviations).

LLM sS sS∪{Dk} rk,S

Bloomz 0.78 (0.04) 0.62 (0.03) -0.16 (0.03)
GPT-4 0.69 (0.03) 0.66 (0.02) -0.03 (0.02)
Mistral 7B 0.65 (0.04) 0.68 (0.03) 0.03 (0.03)
Phi-3 0.58 (0.04) 0.62 (0.03) 0.04 (0.03)

Table 15: Mean similarities sS and residuals rk,S for Olympic2024 across different LLMs (with
standard deviations).

LLM sS sS∪{Dk} rk,S

Bloomz 0.72 (0.05) 0.59 (0.04) -0.13 (0.04)
GPT-4 0.64 (0.03) 0.61 (0.03) -0.03 (0.03)
Mistral 7B 0.60 (0.04) 0.63 (0.03) 0.03 (0.03)
Phi-3 0.55 (0.05) 0.60 (0.04) 0.05 (0.04)
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