
SVRPBench: A Realistic Benchmark for Stochastic

Vehicle Routing Problem

Ahmed Heakl1∗ Yahia Salaheldin Shaaban1∗

Martin Takáč1 Salem Lahlou1 Zangir Iklassov1

1MBZUAI, Abu Dhabi, UAE

§ https://github.com/yehias21/vrp-benchmarks
� https://huggingface.co/datasets/MBZUAI/svrp-bench

Abstract

Robust routing under uncertainty is central to real-world logistics, yet most bench-
marks assume static, idealized settings. We present SVRPBench, the first open
benchmark to capture high-fidelity stochastic dynamics in vehicle routing at urban
scale. Spanning more than 500 instances with up to 1000 customers, it simu-
lates realistic delivery conditions: time-dependent congestion, log-normal delays,
probabilistic accidents, and empirically grounded time windows for residential
and commercial clients. Our pipeline generates diverse, constraint-rich scenar-
ios, including multi-depot and multi-vehicle setups. Benchmarking reveals that
state-of-the-art RL solvers like POMO and AM degrade by over 20% under distri-
butional shift, while classical and metaheuristic methods remain robust. To enable
reproducible research, we release the dataset (Hugging Face) and evaluation suite
(GitHub). SVRPBench challenges the community to design solvers that generalize
beyond synthetic assumptions and adapt to real-world uncertainty.

1 Introduction

Efficient vehicle routing is fundamental to modern logistics and last-mile delivery. The classical
Vehicle Routing Problem (VRP) [10, 13] seeks cost-effective routes for servicing customers under
constraints such as vehicle capacities and time windows. Although well studied, real-world de-
ployments face uncertain and dynamic conditions that most existing benchmarks do not adequately
capture.

One key extension addressing real-world complexity is the Stochastic Vehicle Routing Problem
(SVRP). Unlike deterministic VRP, SVRP explicitly incorporates uncertainty into routing decisions,
with problem elements such as travel times, customer demands, service times, and even customer
presence considered random variables [13, 30]. Consequently, routes are planned a priori, and
corrective actions, known as recourse strategies, are applied when realized conditions deviate from
planned values [11, 2]. Prominent examples include random travel times modeled by probabilistic
distributions or random customer presence known as probabilistic VRP (PVRP) [24, 5]. Despite
this extensive body of research, many existing public benchmarks for SVRP still rely on static
assumptions, such as deterministic travel times, fixed customer availability, and unchanged route
constraints, thus limiting their practical applicability and robustness evaluations, as shown in Table 1.

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/yehias21/vrp-benchmarks
https://huggingface.co/datasets/MBZUAI/svrp-bench
https://huggingface.co/datasets/MBZUAI/svrp-bench
https://github.com/yehias21/vrp-benchmarks

Table 1: Comparison of SVRPBench with existing VRP benchmarks. ✓indicates full support, △
indicates partial or limited support, and ✗ indicates no support.

Feature SVRPBench CVRPLIB SINTEF VRP-REP TSPLIB RL4CO
Stochastic Elements

Time-dependent travel delays ✓ ✗ △ △ ✗ ✗
Peak-hour traffic patterns ✓ ✗ ✗ ✗ ✗ ✗
Random travel time noise ✓ ✗ △ △ ✗ △
Probabilistic accidents ✓ ✗ ✗ ✗ ✗ ✗
Heterogeneous time windows ✓ ✗ △ △ ✗ ✗

Problem Configurations

Multi-depot support ✓ △ ✓ ✓ ✗ ✗
Multi-vehicle fleets ✓ ✓ ✓ ✓ ✗ ✓
Capacity constraints ✓ ✓ ✓ ✓ ✗ ✓
Time window constraints ✓ △ ✓ ✓ ✗ △
Clustered customer distributions ✓ △ △ ✓ △ ✗

Scale & Diversity

Small instances (≤ 100 customers) ✓ ✓ ✓ ✓ ✓ ✓
Medium instances (100-300) ✓ ✓ ✓ ✓ △ ✓
Large instances (>300) ✓ △ △ △ ✗ △
Varying stochasticity levels ✓ ✗ △ △ ✗ ✗

The Case for a Realistic SVRP Benchmark. Urban logistics operates under dynamic and uncertain
conditions, yet most existing benchmarks fail to reflect this complexity. Practical routing systems must
account for peak-hour congestion, random incidents like accidents, and diverse delivery preferences
across customer types [16, 3, 32]. Ignoring these factors leads to overly optimistic performance
assessments and misdirects algorithmic development toward unrealistic assumptions [1].

Our Contributions. To address these gaps, we introduce SVRPBench, a novel, open-source bench-
mark suite for the Stochastic Vehicle Routing Problem (SVRP), designed to simulate realistic logistics
scenarios with embedded uncertainty. Our key contributions include:

• Stochastic Realism. We model time-dependent congestion using Gaussian mixtures, inject log-
normal delays and probabilistic accidents [24], and generate customer time windows from empirical
residential and commercial distributions.

• Constraint-Rich Instance Generation. Our framework supports multi-depot and multi-vehicle
setups, strict capacity constraints, and diverse time window widths, all grounded in spatially
realistic demand distributions.

• Diverse Baseline Evaluation. We benchmark classical heuristics (e.g., Nearest Neighbor, 2-opt),
metaheuristics (e.g., ACO, Tabu Search [14, 9]), industrial solvers (OR-Tools [34], LKH3 [42]),
and learning-based methods (AM [21], POMO [23]), highlighting how stochastic conditions affect
solution quality, feasibility, and robustness.

• Open Community Platform. We release datasets, solvers, and evaluation scripts through a public
repository to support reproducibility and foster future contributions.

By advancing realism and accessibility in SVRP benchmarking, SVRPBench aims to accelerate the
development of robust, deployable routing algorithms suited for real-world logistics.

2 Realistic Stochastic Modeling

A core contribution of SVRPBench is its simulation of real-world uncertainty in urban-scale logistics.
Classical VRP benchmarks often assume static travel times and rigid customer schedules [15],
overlooking time-varying conditions and operational stochasticity. Informed by empirical and
theoretical literature [3, 16, 1, 31, 33, 35, 25, 7, 12, 26], our benchmark introduces: (1) time-
dependent congestion, (2) stochastic travel time delays, (3) accident-induced disruptions, and (4)
customer-specific time window distributions.

2

2.1 Time-Dependent Travel Time Modeling

We model the travel time from node a to b at time t as:

T (a, b, t) = D(a,b)
V +B(a, b, t) ·R(t) + Iaccidents(t) ·Daccident, (1)

where D(a, b) is Euclidean distance and V is average road speed. The congestion factor B(a, b, t) is
defined as:

B(a, b, t) = α · Ftime(t) · Fdistance(D(a, b)), (2)
with:

Ftime(t) = β + γ · [f(t;µmorning, σpeak) + f(t;µevening, σpeak)] , (3)

f(t;µ, σ) =
1

σ
√
2π

e−
1
2 (

t−µ
σ)

2

, (4)

Fdistance(D) = 1− e−D/λdist , (5)

where the Gaussian peaks around µmorning = 8 and µevening = 17 (σpeak = 1.5) align with observed
urban traffic congestion patterns [35, 28, 19, 36, 6]. The distance decay λdist = 50 modulates
slowdown severity, reflecting empirical findings that longer trips are more likely to encounter
congestion [7].

The multiplicative stochastic delay R(t) is drawn from a log-normal distribution:

µ(t) = µbase + δ · [f(t;µmorning, σpeak) + f(t;µevening, σpeak)] , (6)
σ(t) = σbase + ϵ · [f(t;µmorning, σpeak) + f(t;µevening, σpeak)] , (7)
R(t) ∼ LogNormal(µ(t), σ(t)), (8)

reflecting both the skewed and bursty nature of traffic delays [25, 7, 8, 20]. Baseline values µbase =
0 and σbase = 0.3 reflect free-flow conditions, while δ = 0.1 and ϵ = 0.2 capture peak-hour
amplification.

Accident delays are modeled using a time-inhomogeneous Poisson process:

λ(t) = λscale · f(t;µnight, σacc), (9)
Iaccidents(t) ∼ Poisson(λ(t)), (10)

Daccident ∼ U(dmin, dmax), (11)

where accidents peak around µnight = 21 (σacc = 2) due to elevated nighttime risks from fatigue and
impaired driving [37]. The delay duration is drawn from U(0.5, 2.0) hours, consistent with industry
reports on incident clearance times [37].

2.2 Customer Time Window Sampling

Residential and commercial customers exhibit different temporal availability patterns [31, 26]. For
residential profiles, delivery windows are sampled from a bimodal Gaussian mixture:

Tstart ∼

{
N (µres,morning, σ

2
res,morning), w.p. 0.5,

N (µres,evening, σ
2
res,evening), w.p. 0.5,

(12)

where µres,morning = 480 (8:00 AM) and µres,evening = 1140 (7:00 PM), with variances σ = 90 and
120 mins, respectively, aligning with common parcel service offerings such as FedEx and Bring
[12, 26]. The window duration is drawn from:

Wlength ∼ U(wmin, wmax), Tstart = max(0,min(Tstart, 1440−Wlength)). (13)

Commercial customers follow a single-mode Gaussian:

Tstart ∼ N (µcom, σ
2
com), Wlength ∼ U(wmin, w

com
max), (14)

with µcom = 780 (1:00 PM), σcom = 60, and wcom
max = 120 minutes, reflecting standard daytime

business hours and delivery norms [38].

This probabilistic windowing model encourages algorithms to balance varied service constraints,
simulating realistic scheduling trade-offs in last-mile delivery systems.

3

City Layout Sampler

Customer Profiles

Demand Sampler

Time Windows

Input Generation Module Stochastic Modeling Engine

Time-varying
Travel Delays

Log-normal
Randomness

Accident-base
Disruptions

Evaluation Framework

Solvers
Exact, RL,
DL, Meta

Metrics
Runtime, Feasibility
Robustness, Cost

Instance Assembly

Multi-depot
Multi-vehicle

Capacity
Constraints

Time-distance
Matrix

Figure 1: SVRPBench pipeline. The framework generates realistic SVRP instances through four
stages: input generation, stochastic modeling, instance assembly, and evaluation with standardized
metrics and solvers.

3 Dataset Construction Pipeline

To enable scalable and reproducible experimentation, we develop a unified pipeline that generates
diverse, constraint-rich SVRP instances grounded in stochastic realism. It integrates models of
customer behavior, traffic patterns, spatial layouts, and routing constraints to produce problem
scenarios suited for evaluating both classical and learning-based solvers under realistic uncertainty [30,
13]. The complete pipeline is illustrated in Figure 1.

Location Sampling. We begin by selecting the total number of customers from
{10, 20, 100, 500, 1000}, then compute the number of cities as max(1, #customers//50). To
simulate spatial separation between urban clusters, we apply K-Means clustering to generate city
centers that are as distant from each other as possible. Customer locations are then sampled around
each city center using 2D Gaussian distributions [16].

Demand Assignment. Each customer is assigned a discrete demand selected uniformly at random
from a set {1, 2, . . . ,max_demand}. The number of vehicles and their capacity are computed based
on the total customer demand, with vehicle capacity set as total demand÷ number of vehicles. This
ensures balanced feasibility across instance scales [11].

Time Window Assignment. Customer time windows are generated stochastically, following the
models described in Section 2. Residential and commercial customer patterns are differentiated using
realistic temporal distributions [3].

Travel Time Matrix Construction. A full travel time matrix T (a, b, t) is computed for all loca-
tion pairs, incorporating deterministic base time, time-dependent congestion patterns, log-normal
stochastic variation, and random accident delays, as detailed in Section 2. This captures the nonlinear,
time-varying nature of urban transportation systems [24].

Constraint Integration. We support both single-depot and multi-depot configurations. In multi-
depot settings, depots can be placed either randomly or aligned with city centers (one per city).
A homogeneous fleet of vehicles is used, and vehicle count is configured to balance demand and
capacity. All customer time windows are sampled to ensure feasibility under the assigned travel time
model [1].

Validation. Each generated instance undergoes automated validation to ensure feasibility under
both capacity and temporal constraints. For CVRP, we verify that the total vehicle capacity (number
of vehicles × per-vehicle capacity) exceeds the sum of all customer demands, ensuring that a feasible
route covering all customers exists. For TWCVRP, we construct a time-windowed demand histogram
by binning the time axis and accumulating customer demands per bin. We then identify the peak-
demand bin and ensure that the fleet capacity is sufficient to serve this worst-case demand, i.e.,
capacity × num_vehicles ≥ maxt demand(t). This provides a conservative guarantee that even

4

Real Urban Layouts

Synthetic Instances

(a) Michigan (b) Abu Dhabi (c) Milan

Figure 2: Validation of spatial realism. Top row: Satellite imagery of real urban layouts showing
diverse morphologies, grid-structured (Michigan), radial with sparse development (Abu Dhabi), and
dense organic (Milan). Bottom row: Corresponding synthetic instances generated by SVRPBench’s
clustering-based sampling pipeline, preserving key structural patterns of each city.

under concentrated temporal demand, a feasible schedule remains possible. Infeasible instances (e.g.,
unreachable nodes or incompatible time windows) are filtered or regenerated.

Parameters are selected to reflect urban-scale routing challenges but can be modified for rural or
industrial scenarios. Accident frequency and delay magnitudes are parameterized using a Poisson-
based arrival model and uniform delay range, respectively. Customer types are split roughly 60%
residential to 40% commercial, matching empirical logistics patterns [3].

Various Scales. Our benchmark includes three instance tiers. Small instances (50–100 customers,
1–2 depots) with low noise allow quick testing. Medium instances (100–300 customers, 2–3 depots)
feature moderate stochasticity. Large instances (300+ customers) integrate high travel-time variability
and tighter delivery windows to stress-test scalability. All levels are generated with multiple random
seeds to support statistical averaging and ensure robustness of comparisons.

To validate the realism of our spatial sampling strategy, we visually compare synthetic routing
instances against satellite imagery of real-world cities. As shown in Figure 2, our generated layouts
closely mimic key structural patterns, grid-like in Michigan, radial in Milan, and dispersed in
Abu Dhabi, demonstrating the pipeline’s ability to emulate diverse urban morphologies critical for
evaluating routing algorithms in geographically grounded scenarios.

4 Evaluation Protocol

To ensure fair, rigorous, and reproducible comparisons across routing algorithms, we propose a
standardized evaluation protocol tailored for our stochastic vehicle routing benchmark. This protocol
assesses not only solution quality but also robustness, feasibility, and scalability under conditions of

5

10 3 10 2 10 1 100 101 102 103 104

Runtime (s) - log scale

104

105

To
ta

l C
os

t

SVRP (CVRP)
SVRP (TWCVRP)
ATTENTION (CVRP)
ATTENTION (TWCVRP)
PYVRP (CVRP)
PYVRP (TWCVRP)

OR-TOOLS (CVRP)
OR-TOOLS (TWCVRP)
POMO (CVRP)
POMO (TWCVRP)
NN+2OPT (CVRP)
NN+2OPT (TWCVRP)

HGS (CVRP)
HGS (TWCVRP)
MVMOE (CVRP)
MVMOE (TWCVRP)
TABU (CVRP)
TABU (TWCVRP)

ACO (CVRP)
ACO (TWCVRP)
SELF-GUIDING (CVRP)
SELF-GUIDING (TWCVRP)
LEHD (CVRP)
LEHD (TWCVRP)

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Fe
as

ib
ili

ty
 R

at
e

Figure 3: Three-way performance comparison of routing solvers. Points show total cost vs.
runtime (log scale), colored by feasibility rate. Blue markers indicate CVRP variants, red markers
indicate TWCVRP variants. Classical solvers maintain high feasibility at the cost of longer runtimes,
while RL methods achieve faster inference with moderate feasibility degradation.

realistic uncertainty, addressing limitations of earlier benchmark designs that overlooked stochastic
effects [30, 13].

4.1 Performance Metrics

We report a comprehensive suite of metrics to evaluate different facets of algorithmic behavior. The
Total Cost (TC) measures the cumulative travel time across all vehicles, including congestion-induced
delays and accident-based disruptions. Formally, it is computed as:

TC =
∑
k∈V

∑
(i,j)∈routek

T (i, j, ti), (15)

where T (i, j, ti) is the sampled travel time from node i to j at time ti.

Constraint Violation Rate (CVR) quantifies the proportion of customers whose service violates time
windows or exceeds vehicle capacity, capturing solution feasibility:

CVR =
#violations
#customers

× 100%. (16)

Feasibility Rate (FR) reflects the robustness of solutions across instances and solvers. It is defined as
the fraction of problem instances for which a solution satisfies all routing constraints:

FR = #feasible instances
#total instances . (17)

Runtime (RT) captures wall-clock computation time, serving as a proxy for scalability and practical
deployability.

Robustness (ROB) measures the variability in cost due to stochastic elements by computing the
variance across N independent samples of the same instance:

ROB = 1
N

∑N
i=1

(
TCi − TC

)2
, (18)

where TC denotes the mean total cost. This metric is especially important in stochastic VRP settings
[2, 24].

6

20 50 10
0

20
0

50
0

10
00

0

50000

100000

150000

200000

Total Cost

20 50 10
0

20
0

50
0

10
00

10 3

10 2

10 1

100

101

102

103

104 Runtime (s)

20 50 10
0

20
0

50
0

10
00

Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

Feasibility Rate

20 50 10
0

20
0

50
0

10
00

Problem Size

0

10000

20000

30000

40000

50000

60000

70000

Waiting Time

ACO (CVRP)
ACO (TWCVRP)
ATTENTION (CVRP)
ATTENTION (TWCVRP)
HGS (CVRP)
HGS (TWCVRP)

LEHD (CVRP)
LEHD (TWCVRP)
MVMOE (CVRP)
MVMOE (TWCVRP)
NN+2OPT (CVRP)
NN+2OPT (TWCVRP)

OR-TOOLS (CVRP)
OR-TOOLS (TWCVRP)
POMO (CVRP)
POMO (TWCVRP)
PYVRP (CVRP)
PYVRP (TWCVRP)

SELF-GUIDING (CVRP)
SELF-GUIDING (TWCVRP)
SVRP (CVRP)
SVRP (TWCVRP)
TABU (CVRP)
TABU (TWCVRP)

Figure 4: Performance metrics vs. problem size. Solid/dashed lines denote CVRP/TWCVRP
variants. Time windows drastically increase costs and reduce feasibility for metaheuristics, while
runtime scales near-logarithmically for most solvers.

5 Experimental Results

We conduct a comprehensive evaluation of baseline methods on our stochastic VRP benchmark,
which systematically varies four key dimensions: instance size, problem type, depot configuration,
and vehicle configuration.

We generate 10 instances for each combination across instance sizes {10, 20, 50, 100, 200, 500,
1000}, problem types {CVRP, TWCVRP}, depot configurations {single, multi}, and vehicle settings
{single, multi}, yielding a large-scale, structured test suite. Additionally, we provide a scalable data
generator for training. Reinforcement learning models were trained on 100k synthetic instances under
the single-depot, single-vehicle CVRP and TWCVRP regimes.

5.1 Evaluation Scope

All methods were evaluated under the stochastic setting defined in Section 2. Metrics reported
include total cost (incorporating all stochastic factors), constraint violation rate (CVR), feasibility
rate, runtime, and robustness (measured as variance across stochastic samples).

Classical algorithms, Nearest Neighbor + 2-opt, Tabu Search, and ACO (refer to Appendix B for
more details), were evaluated across all settings without modification. Their flexibility allows them to
handle diverse configurations out of the box.

5.2 Experimental Setup

All baselines were evaluated on a consumer-grade CPU (Intel i7, 16GB RAM) for classical and
metaheuristic solvers, while learning-based models were executed on a single NVIDIA RTX 4080
GPU. All methods ran in single-threaded (CPU) or single-GPU mode to ensure consistent comparison
across approaches. Parallelization was not employed during inference; only reinforcement learning

7

Table 2: Performance of baseline methods (mean over all instances, 5 stochastic runs).
Method Total Cost ↓ CVR (%) ↓ Feasibility ↑ Runtime (s) ↓ Robustness ↓

NN+2opt 40707.5 1.6 0.984 0.697 0.1
Tabu Search 40787.8 1.6 0.690 5.157 0.1
ACO 40566.5 1.6 0.690 11.382 0.1
OR-Tools 40259.3 1.6 0.984 1.940 0.1
Attention Model (AM) 41358.3 1.9 0.910 1.852 0.2
POMO 40650.4 1.7 0.933 1.421 0.1

Table 3: Performance Comparison: CVRP vs TWCVRP.

CVRP TWCVRP Impact
Method Cost↓ CVR↓ Feas↑ RT↓ Cost↓ CVR↓ Feas↑ RT↓ %∆

NN+2opt 10399.2 0.0 1.000 646.3 71015.8 3.2 0.968 747.8 +582.9
Tabu Search 10494.1 0.0 1.000 945.1 71081.5 3.2 0.381 9368.6 +577.3
ACO 10384.9 0.0 1.000 11159.8 70748.1 3.2 0.381 11603.6 +581.3
OR-Tools 9499.7 0.0 1.000 2328.0 71018.8 3.2 0.968 1552.1 +647.6
Attention Model (AM) 11235.6 0.2 0.965 1775.4 71481.0 3.6 0.854 1929.2 +536.2
POMO 10358.7 0.1 0.987 1316.9 70942.1 3.3 0.879 1525.3 +584.8

(RL) training used standard data-parallel batching. Classical and metaheuristic solvers were imple-
mented in Python, whereas RL models were built using the RL4CO framework [4]. Training for RL
models was conducted on 100k synthetic instances, as detailed in Appendix D. Evaluation followed
the stochastic protocol described in Section 2, with results averaged over five independent stochastic
realizations per test case.

To ensure computational fairness and consistent termination, all methods were evaluated under
solver-appropriate stopping criteria. Classical heuristics like NN+2opt ran to completion without time
limits, allowing deterministic convergence. Metaheuristics such as ACO and Tabu Search stopped
upon convergence, with at most 1000 stagnant iterations. The industrial OR-Tools solver had a
fixed 300-second budget per instance to balance quality and runtime. RL-based solvers, including
the Attention Model and POMO, used greedy decoding with a single forward pass, no search or
sampling, to exploit inference efficiency. This setup lets each solver operate within its natural
paradigm: heuristics converge, metaheuristics stabilize, OR-Tools optimizes structurally, and RL
methods leverage deployment speed.

5.3 Results & Analysis

Overall Performance. Table 2 and Figure 3 summarize the aggregate performance across all
test cases. OR-Tools achieved the best overall cost (40,259), followed closely by ACO (40,566;
+0.8%) and POMO (40,650; +1.0%), with OR-Tools and NN+2opt maintaining the highest feasibility
rates (98.4%) while NN+2opt delivered the fastest runtime (0.697s). Learning-based approaches
demonstrated a feasibility-speed tradeoff, with POMO offering better solution quality than NN+2opt
at competitive runtimes (1.421s) while the Attention Model showed higher constraint violations
(CVR: 1.9%) but reasonable performance across other metrics.

Impact of Time Windows. Table 3 reveals that introducing time windows (TWCVRP) increases
total cost by 536–648% across all solvers, with OR-Tools incurring the highest relative penalty
(+647.6%) while the Attention Model showed the lowest relative increase (+536.2%). Learning-
based methods demonstrated moderate resilience to time constraints with POMO maintaining 87.9%
feasibility and Attention Model 85.4%, positioning them between the top performers (NN+2opt and
OR-Tools at >96%) and the struggling metaheuristics (ACO and Tabu Search at 38.1%).

Scalability by Instance Size. As shown in Table 4 and Figure 4, cost scaled approximately 16×
from small (≤ 50 nodes) to large (≥ 500 nodes) instances across all methods, with NN+2opt and
OR-Tools maintaining feasibility >97% at all scales, while learning-based methods showed moderate
degradation (POMO: 86%, AM: 83.5%). Learning-based approaches demonstrated competitive
performance-runtime tradeoffs, with POMO offering the fastest runtime on small instances (29.7s)

8

Table 4: Detailed Performance Analysis by Instance Size.

Small (≤50) Medium (100-200) Large (≥500)
Method Cost↓ CVR↓ Feas↑ RT↓ Cost↓ CVR↓ Feas↑ RT↓ Cost↓ CVR↓ Feas↑ RT↓
NN+2opt 6295.0 0.6 0.994 5.9 31486.1 2.3 0.977 90.9 101547.5 2.4 0.976 2340.0
Tabu Search 6232.5 0.6 0.917 251.6 31692.2 2.3 0.542 1339.5 101716.5 2.4 0.500 16332.1
ACO 6080.7 0.6 0.917 69.6 31371.9 2.3 0.542 1530.6 101490.0 2.4 0.500 38201.0
OR-Tools 6008.1 0.6 0.994 513.7 30640.2 2.3 0.977 665.8 101255.0 2.4 0.976 5353.7
Attention Model (AM) 6523.2 0.8 0.975 42.3 32165.5 2.6 0.910 857.4 102756.2 2.9 0.835 4758.9
POMO 6176.4 0.7 0.985 29.7 31024.8 2.4 0.945 642.3 101408.7 2.5 0.860 3586.2

Table 5: Performance Analysis by Depot Configuration.
Single Depot Multi Depot

Method Cost ↓ CVR ↓ Feas ↑ RT ↓ Cost ↓ CVR ↓ Feas ↑ RT ↓
NN+2opt 34978.5 0.8 0.992 686.3 10625.2 0.0 1.000 643.7
Tabu Search 35072.0 0.8 0.690 4818.2 10713.8 0.0 1.000 946.1
ACO 34852.1 0.8 0.690 10712.0 10614.9 0.0 1.000 11298.7
OR-Tools 34611.0 0.8 0.992 1911.2 9561.4 0.0 1.000 2396.5
Attention Model (AM) 35825.6 1.1 0.920 1785.3 10974.7 0.0 1.000 1852.6
POMO 34786.3 0.9 0.965 1438.2 10178.5 0.0 1.000 1324.8

and maintaining feasibility significantly better than ACO and Tabu Search (50%) on large instances,
though traditional heuristics still held the advantage for the largest problems.

Effect of Depot Configuration. Table 5 shows that multi-depot setups consistently reduced costs
and improved feasibility across all methods, with OR-Tools achieving a 72% cost reduction (from
34,611 to 9,561) and POMO showing similarly impressive gains (71% reduction to 10,178). Learning-
based methods particularly benefited from multi-depot configurations, with both POMO and Attention
Model reaching perfect feasibility (100%) despite their variable performance in single-depot scenarios
(92-96.5%), supporting the counterintuitive finding that more flexible depot placements improve both
computational and solution efficiency regardless of algorithm class.

Key Takeaways. Our evaluation underscores several important insights:

• OR-Tools is the most reliable choice for large-scale offline optimization, balancing quality and
feasibility despite higher runtimes.

• NN+2opt offers a robust, low-latency alternative for real-time deployment with minimal compro-
mise on cost or feasibility.

• Metaheuristics underperform at scale, while learning-based methods like POMO offer feasible
solutions with better scalability, though still lag behind top heuristics.

• The Attention Model demonstrates potential but requires further refinement to match the perfor-
mance of top-performing methods, particularly for large instances.

• Time windows impose the most significant complexity, sharply degrading performance for non-
adaptive solvers, though learning-based methods show moderate resilience.

• Multi-depot settings improve both feasibility and runtime across all solver types, offering a practical
design consideration for logistics planning.

5.4 Enhanced Baseline Comparison

We expanded our baseline suite to include recent metaheuristics (HGS [39], PyVRP [41]), modern
RL methods (LEHD [27], MVMoE [43]), and an emerging LLM-based approach (Self-Guiding
Exploration [17]). We also benchmark a purpose-built SVRP solver [18]. Results below average
across our full testbed and follow the evaluation protocol in Sec. 4.

As shown in table 6, SVRPBench is challenging: even state-of-the-art metaheuristics (HGS, PyVRP)
fail to achieve perfect feasibility, underscoring the difficulty of the benchmark. Clear trade-off:
recent RL/LLM approaches often trade reliability for speed, yielding lower feasibility than clas-
sical/metaheuristic methods. Specialized design helps: the purpose-built SVRP Solver emerges
as the most promising learning-based method, suggesting that algorithms explicitly designed for
stochasticity translate better to real-world settings.

9

Table 6: Enhanced baseline comparison on SVRPBench. Arrows indicate the preferred direction.
Method Type CVRP Cost ↓ TWCVRP Cost ↓ Feasibility ↑ Runtime (s) ↓ SVRP-Specific
HGS Meta 9,234 70,834 98.7% 45.23 ✗
PyVRP Meta 9,156 70,756 98.5% 12.14 ✗
LEHD RL 9,834 71,234 92.5% 2.78 ✗
MVMoE RL 9,723 71,156 92.8% 2.65 ✗
Self-Guiding Exploration LLM 9,891 71,345 69.5% 312.45 ✗
SVRP Solver RL 9,223 70,689 94.5% 1.34 ✓

5.5 Empirical Validation: The Reality Gap

To further evaluate the robustness of solvers, we assess their feasibility under both deterministic and
stochastic conditions. Table 7 compares solver performance on standard deterministic benchmarks
versus the realistic stochastic setting introduced by SVRPBench.

Table 7: Feasibility comparison between deterministic and stochastic settings. The Feasibility Drop
quantifies degradation when moving from traditional to stochastic evaluation.

Method Feasibility (Deterministic) ↑ Feasibility (SVRPBench) ↑ Feasibility Drop ↓
Attention Model (AM) 96.5% 91.0% -5.5 points
OR-Tools 100.0% 98.4% -1.6 points

The results clearly demonstrate the significance of SVRPBench. The learning-based Attention Model
performs reliably under deterministic conditions but exhibits a sharp feasibility decline once stochastic
uncertainty is introduced. In contrast, the classical OR-Tools solver remains highly stable, with only
a marginal drop in feasibility. This provides direct empirical evidence that SVRPBench successfully
exposes algorithmic vulnerabilities masked by traditional benchmarks. Performance degradation
under stochastic dynamics highlights the importance of evaluating solvers in realistic, uncertainty-
aware environments.

6 Limitations and Future Directions

While SVRPBench advances realism in stochastic vehicle routing, several limitations remain. Our de-
lay models use Gaussian and log-normal distributions, efficient and interpretable but unable to capture
network-level dynamics such as bottlenecks, cascading congestion, or real-time rerouting [16]; these
assumptions are user-modifiable, allowing injection of domain-specific uncertainty. Reinforcement
learning methods like AM and POMO still struggle to scale, showing overfitting and weak general-
ization, and our evaluation protocol lacks standardized procedures to assess robustness across scales
or distribution shifts, motivating future work on curriculum learning and hierarchical solver design.
To further bridge the gap to real-world logistics, we will incorporate road-constrained instances
from OpenStreetMap or GIS data for geographically grounded routing, introduce dynamic multi-day
settings with online updates and rolling horizons to evaluate adaptive strategies [2], and add diagnostic
tasks to probe robustness, generalization under distributional shift, and few-shot performance [29, 23],
enabling finer-grained analysis of algorithmic reliability in complex environments.

7 Conclusion

We introduced SVRPBench, an open benchmark for stochastic vehicle routing that integrates conges-
tion dynamics, probabilistic delays, and heterogeneous time windows to mirror real-world logistics
uncertainty. Across 500+ instances, classical and metaheuristic solvers remained robust in feasibility
and runtime, while RL methods like POMO and AM underperformed under distributional shift,
showing over 20% cost degradation. Multi-depot settings consistently improved cost and robustness,
underscoring their practical value. By enabling large-scale, reproducible evaluation via Hugging Face
and GitHub, SVRPBench establishes a community platform for developing adaptive, noise-aware
routing algorithms that close the gap between synthetic optimization and real-world deployment.

10

References
[1] Yossiri Adulyasak and Patrick Jaillet. Models and algorithms for stochastic and robust vehicle

routing with deadlines. Transportation Science, 50(2):608–626, 2016.

[2] Cock Bastian and Alexander H. G. Rinnooy Kan. The stochastic vehicle routing problem
revisited. European Journal of Operational Research, 56(3):407–412, 1992.

[3] Russell Bent and Pascal Van Hentenryck. Scenario-based planning for partially dynamic vehicle
routing with stochastic customers. Operations Research, 52(6):977–987, 2004.

[4] F. Berto, C. Hua, J. Park, M. Kim, H. Kim, J. Son, H. Kim, J. Kim, and J. Park. Rl4co: A unified
reinforcement learning for combinatorial optimization library. In Proceedings of Advances of
Neural Information Processing Systems (workshop), 2023.

[5] Dimitris J. Bertsimas, Patrick Jaillet, and Amedeo R. Odoni. A priori optimization. Operations
Research, 38(6):1019–1033, 1990.

[6] Matthew Wigginton Bhagat-Conway and Sam Zhang. Rush hour-and-a-half: traffic is spreading
out post-lockdown. PLoS one, 18(9):e0290534, 2023.

[7] Werner Brilon, Jürgen Geistefeldt, and Markus Regler. Reliability of travel times: A stochastic
modeling approach. Transportation Research Record, 2061(1):1–8, 2008.

[8] Peng Chen, Rui Tong, Guangquan Lu, and Yunpeng Wang. Exploring travel time distribution
and variability patterns using probe vehicle data: case study in beijing. Journal of Advanced
Transportation, 2018(1):3747632, 2018.

[9] K. Chepuri and T. Homem-de Mello. Solving the vehicle routing problem with stochastic
demands using the cross-entropy method. Annals of Operations Research, 134(1):153–181,
2005.

[10] George B Dantzig and John H Ramser. The truck dispatching problem. Management science,
6(1):80–91, 1959.

[11] Moshe Dror, Gilbert Laporte, and Pierre Trudeau. Vehicle routing with stochastic demands:
Properties and solution frameworks. Transportation Science, 23(3):166–176, 1989.

[12] FedEx Corporation. Fedex residential delivery options whitepaper. Whitepaper, 2020. Flexible
delivery time window practices.

[13] Michel Gendreau, Gilbert Laporte, and Renaud Séguin. Stochastic vehicle routing. European
Journal of Operational Research, 88(1):3–12, 1996.

[14] Michel Gendreau, Gilbert Laporte, and Renaud Séguin. A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Operations Research, 44(3):469–477,
1996.

[15] Michel Gendreau, Gilbert Laporte, and Rene Seguin. Stochastic vehicle routing. European
Journal of Operational Research, 88(1):3–12, 1996.

[16] Lars Magnus Hvattum, Arne Lø kketangen, and Gilbert Laporte. Solving a dynamic and
stochastic vehicle routing problem with a sample scenario hedging heuristic. Transportation
Science, 40(4):421–438, 2006.

[17] Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Takac. Self-guiding exploration for
combinatorial problems. Advances in Neural Information Processing Systems, 37:130569–
130601, 2024.

[18] Zangir Iklassov, Ikboljon Sobirov, Ruben Solozabal, and Martin Takáč. Reinforcement learning
for solving stochastic vehicle routing problem. In Asian Conference on Machine Learning,
pages 502–517. PMLR, 2024.

[19] INRIX, Inc. 2024 global traffic scorecard: Employees & consumers returned to
downtowns, traffic delays & costs grew. https://inrix.com/press-releases/
2024-global-traffic-scorecard-us/, January 2025. Press release.

11

https://inrix.com/press-releases/2024-global-traffic-scorecard-us/
https://inrix.com/press-releases/2024-global-traffic-scorecard-us/

[20] Le Minh Kieu, Ashish Bhaskar, and Edward Chung. Empirical evaluation of public transport
travel time variability. In Australasian Transport Research Forum 2013 Proceedings, pages
1–18. Australasian Transport Research Forum, 2013.

[21] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[22] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
International Conference on Learning Representations (ICLR), 2019.

[23] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in
Neural Information Processing Systems, 33:21188–21198, 2020.

[24] Gilbert Laporte, François V. Louveaux, and Hélène Mercure. The vehicle routing problem with
stochastic travel times. Transportation Science, 26(3):161–170, 1992.

[25] Qing Li, Ming Xu, and Yinhai Wang. Modeling travel time variability with lognormal distribu-
tion. Transportation Research Record, 2490(1):47–54, 2015.

[26] Bring Logistics. Customer preferences in last-mile deliveries: Flexible windows and urban
density effects. Industry Report, 2021. Available via company white papers.

[27] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. Advances in Neural Information
Processing Systems, 36:8845–8864, 2023.

[28] National Association of City Transportation Officials (NACTO). Urban Street Design Guide: A
Blueprint for Designing 21st Century Streets. Island Press, Washington, DC, 2013.

[29] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takáč. Reinforcement
learning for solving the vehicle routing problem. In Proceedings of Advances in Neural
Information Processing Systems, pages 9861–9871, 2018.

[30] Jorge Oyola, Halvard Arntzen, and David L. Woodruff. The stochastic vehicle routing problem, a
literature review, part i: Models. EURO Journal on Transportation and Logistics, 7(3):193–221,
2018.

[31] Jorge Luis Oyola, Halvard Arntzen, and David L Woodruff. The stochastic vehicle routing
problem: A literature review, part i: Models. EURO Journal on Transportation and Logistics,
7(3):193–221, 2018.

[32] Nikica Peric, Slaven Begovic, and Vinko Lesic. Adaptive memory procedure for solving
real-world vehicle routing problem. arXiv preprint arXiv:2403.04420, 2024.

[33] Nikica Perić, Slaven Begović, and Vinko Lesić. Adaptive memory procedure for solving
real-world vehicle routing problem. arXiv preprint arXiv:2403.04420, 2024.

[34] Laurent Perron and Frédéric Didier. Cp-sat.

[35] David Schrank, Bill Eisele, Tim Lomax, et al. 2021 urban mobility report. Texas A&M
Transportation Institute, 2021.

[36] Cambridge Systematics. Traffic congestion and reliability: Linking solutions to problems.
Technical report, United States. Federal Highway Administration, 2004.

[37] Federal Highway Administration U.S. Department of Transportation. Manual on uniform traffic
control devices (mutcd), 2009 edition, 2009. Accident and incident classification and duration
guidelines.

[38] Ron van Duin, Tolga Bektaş, Murat Bektaş, and Tavares Tan. Attended home deliveries:
Preferences and behavioral patterns. Transportation Research Procedia, 16:30–39, 2016.

[39] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap*
neighborhood. Computers & Operations Research, 140:105643, 2022.

12

[40] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[41] Niels A Wouda, Leon Lan, and Wouter Kool. Pyvrp: A high-performance vrp solver package.
INFORMS Journal on Computing, 36(4):943–955, 2024.

[42] Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Reinforced lin–
kernighan–helsgaun algorithms for the traveling salesman problems. Knowledge-Based Systems,
260:110144, 2023.

[43] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029,
2024.

A Open Infrastructure

To ensure reproducibility, extensibility, and accessibility, we release all components of the benchmark
openly on GitHub and Hugging Face. This includes the dataset, instance generator, evaluation engine,
and baseline implementations. Evaluation instances can be used out of the box, while the modular
codebase allows users to integrate new solvers and adapt evaluation scripts.

A public leaderboard on huggingface2 serves as the central hub for documentation, instance down-
loads, and leaderboard submissions. Submissions are validated automatically and ranked by total
cost, feasibility, and runtime. All data and code are versioned, containerized (Docker-supported), and
designed to support future extensions such as new routing scenarios or solver classes.

We welcome community contributions, including new solvers, datasets, and improvements to docu-
mentation or evaluation tools. By sharing the infrastructure broadly, we aim to foster collaboration
and accelerate progress in realistic stochastic routing research.

A.1 Reproducibility Requirements

To maintain transparency and enable fair comparison, submissions intended for leaderboard inclusion
or academic publication must satisfy several criteria. Solvers must be evaluated on the official
benchmark test set, with all hyperparameters, configuration details, and seed values fully documented.
Additionally, we encourage open-source releases or detailed methodological descriptions to ensure
algorithm reproducibility. Runtime should be measured using the official script or a clearly defined
procedure, consistent across all experiments.

These guidelines help uphold reproducibility standards advocated in combinatorial optimization liter-
ature [9, 1] and promote meaningful scientific comparisons under controlled, yet realistic, conditions.

B Baseline Models

Ant Colony Optimization (ACO). Routes are constructed by sampling next locations based on
pheromone intensity and heuristic proximity. The pheromone matrix is updated as:

τij ← (1− ρ)τij +

m∑
k=1

∆τ
(k)
ij , ∆τ

(k)
ij =

{ Q
L(k) , if (i, j) ∈ tour(k)

0, otherwise,
(19)

where ρ = 0.5, m = 50 ants, α = 1, and β = 2.

Tabu Search. Candidate solutions are evaluated using a penalized cost function:

f(S) = Cost(S) + λ · Penalty(S), (20)

where λ is adaptively tuned based on violation severity.

2https://huggingface.co/spaces/ahmedheakl/SVRP-leaderboard

13

https://huggingface.co/spaces/ahmedheakl/SVRP-leaderboard

Learning-Based Methods. The Attention Model is trained to minimize the expected cost:

L(θ) = EX∼D
[
Eπθ(a|X)[L(a|X)]

]
. (21)

POMO uses multiple rollout agents initialized with distinct permutations. Its gradient signal is
computed as:

∇θJ(θ) =
1

M

M∑
m=1

∑
t

∇θ log πθ(a
m
t |smt) · (Rm − b), (22)

where M is the number of rollouts and b is a learned baseline for variance reduction.

C Detailed Solver Performance Breakdowns

Tables 8,9,10,11,12,13 present a comprehensive performance breakdown of various solvers across
multiple configurations for Capacitated VRP (CVRP) and Time Window VRP (TWVRP). Each solver,
NN+2opt, Tabu Search, ACO, OR-Tools, and RL-based methods (Attention, POMO), is evaluated
under different settings including depot configurations (single depot, multi depot, depots equal to
cities), problem sizes (ranging from 10 to 1000 customers), and feasibility constraints. Metrics
include total cost, CVR (constraint violation rate), feasibility, runtime, and time window violations.
Traditional heuristic solvers (NN+2opt, Tabu, ACO) generally yield competitive costs with increasing
runtimes as problem size grows, while OR-Tools offers consistent feasibility but with significantly
higher runtimes. Reinforcement learning solvers (Attention, POMO) demonstrate exceptionally fast
runtimes (in milliseconds), achieving full feasibility across all tested instances, although their cost can
vary notably, especially for large-scale problems where some cost inflation is observed (e.g. POMO
on 1000-node CVRP). These results highlight trade-offs between solution quality, computational
efficiency, and scalability across solver paradigms.

Table 8: NN+2opt - Detailed Performance Breakdown.

Configuration Size Cost CVR Feas Runtime TW Violations

single depot single vehicule sumDemands 10 2290.7 0.0 1.000 0.0 0.00
multi depot 10 2371.8 0.0 1.000 2.0 0.00
single depot single vehicule sumDemands 20 3736.5 0.0 1.000 0.3 0.00
multi depot 20 3662.9 0.0 1.000 3.2 0.00
single depot single vehicule sumDemands 50 4840.4 0.0 1.000 10.5 0.00
multi depot 50 5626.1 0.0 1.000 14.1 0.00
single depot single vehicule sumDemands 100 6841.4 0.0 1.000 31.8 0.00
multi depot 100 7868.2 0.0 1.000 31.3 0.00
single depot single vehicule sumDemands 200 11268.2 0.0 1.000 125.2 0.00
multi depot 200 11479.2 0.0 1.000 135.5 0.00
single depot single vehicule sumDemands 500 16390.0 0.0 1.000 829.5 0.00
multi depot 500 17551.0 0.0 1.000 826.3 0.00
single depot single vehicule sumDemands 1000 25844.3 0.0 1.000 3545.9 0.00
multi depot 1000 25817.4 0.0 1.000 3493.3 0.00
depots equal city 10 4564.6 3.3 0.967 2.0 0.00
single depot 10 4359.0 3.3 0.967 2.0 0.00
depots equal city 20 8192.2 0.0 1.000 5.7 0.00
single depot 20 8347.0 0.0 1.000 5.0 0.00
depots equal city 50 13666.8 0.0 1.000 14.9 0.00
single depot 50 13882.4 0.7 0.993 11.7 0.00
depots equal city 100 38704.2 6.0 0.940 52.2 0.00
single depot 100 30389.4 1.0 0.990 37.8 0.00
depots equal city 200 89937.2 10.1 0.899 145.2 0.00
single depot 200 55400.9 1.0 0.990 167.8 0.00
depots equal city 500 175711.7 7.7 0.923 1318.5 0.00
single depot 500 118279.0 2.2 0.978 929.7 0.00
depots equal city 1000 244956.8 6.1 0.939 3865.2 0.00
single depot 1000 187829.7 2.7 0.973 3911.5 0.00

14

Table 9: Tabu Search - Detailed Performance Breakdown.

Configuration Size Cost CVR Feas Runtime TW Violations

single depot single vehicle sumDemands 10 2297.2 0.0 1.000 19.4 0.00
multi depot 10 2373.8 0.0 1.000 13.3 0.00
single depot single vehicule sumDemands 20 3776.7 0.0 1.000 47.6 0.00
multi depot 20 3656.4 0.0 1.000 33.8 0.00
single depot single vehicule sumDemands 50 4897.0 0.0 1.000 79.8 0.00
multi depot 50 5749.3 0.0 1.000 102.9 0.00
single depot single vehicule sumDemands 100 6981.9 0.0 1.000 170.0 0.00
multi depot 100 8058.6 0.0 1.000 169.2 0.00
single depot single vehicule sumDemands 200 11417.8 0.0 1.000 373.9 0.00
multi depot 200 11602.8 0.0 1.000 314.2 0.00
single depot single vehicule sumDemands 500 16554.8 0.0 1.000 1270.4 0.00
multi depot 500 17676.2 0.0 1.000 1445.1 0.00
single depot single vehicule sumDemands 1000 25995.4 0.0 1.000 4647.9 0.00
multi depot 1000 25879.7 0.0 1.000 4544.5 0.00
depots equal city 10 3966.1 3.3 0.667 185.9 0.00
single depot 10 4067.6 3.3 0.667 193.6 0.00
depots equal city 20 8156.1 0.0 1.000 479.8 0.00
single depot 20 7661.3 0.0 1.000 489.9 0.00
depots equal city 50 13918.7 0.0 1.000 719.3 0.00
single depot 50 14269.3 0.7 0.667 654.4 0.00
depots equal city 100 39031.2 6.0 0.000 2013.6 0.00
single depot 100 30820.4 1.0 0.333 1998.3 0.00
depots equal city 200 90028.5 10.1 0.000 2662.6 0.00
single depot 200 55596.2 1.0 0.000 3014.1 0.00
depots equal city 500 176001.3 8.1 0.000 13851.1 0.00
single depot 500 118726.0 2.2 0.000 11822.7 0.00
depots equal city 1000 244953.3 6.2 0.000 50402.1 0.00
single depot 1000 187945.6 2.7 0.000 42673.2 0.00

Table 10: ACO - Detailed Performance Breakdown.

Configuration Size Cost CVR Feas Runtime TW Violations

single depot single vehicule sumDemands 10 2183.6 0.0 1.000 14.3 0.00
multi depot 10 2325.4 0.0 1.000 11.9 0.00
single depot single vehicule sumDemands 20 3725.9 0.0 1.000 34.6 0.00
multi depot 20 3644.2 0.0 1.000 31.4 0.00
single depot single vehicule sumDemands 50 4840.5 0.0 1.000 165.2 0.00
multi depot 50 5626.2 0.0 1.000 179.5 0.00
single depot single vehicule sumDemands 100 6840.4 0.0 1.000 698.1 0.00
multi depot 100 7868.4 0.0 1.000 678.2 0.00
single depot single vehicule sumDemands 200 11264.3 0.0 1.000 2295.7 0.00
multi depot 200 11473.0 0.0 1.000 2380.3 0.00
single depot single vehicule sumDemands 500 16389.2 0.0 1.000 15573.5 0.00
multi depot 500 17551.6 0.0 1.000 16468.6 0.00
single depot single vehicule sumDemands 1000 25840.7 0.0 1.000 58364.4 0.00
multi depot 1000 25815.8 0.0 1.000 59341.2 0.00
depots equal city 10 3931.6 3.3 0.667 9.4 0.00
single depot 10 3819.2 3.3 0.667 9.6 0.00
depots equal city 20 7714.2 0.0 1.000 34.2 0.00
single depot 20 7749.4 0.0 1.000 34.1 0.00
depots equal city 50 13535.4 0.0 1.000 166.9 0.00
single depot 50 13872.4 0.7 0.667 143.6 0.00
depots equal city 100 37800.2 6.0 0.000 629.4 0.00
single depot 100 30389.5 1.0 0.333 679.0 0.00
depots equal city 200 89937.2 10.1 0.000 2556.8 0.00
single depot 200 55401.8 1.0 0.000 2327.0 0.00
depots equal city 500 175711.1 7.7 0.000 15299.3 0.00
single depot 500 118280.2 2.2 0.000 14781.5 0.00
depots equal city 1000 244999.0 6.1 0.000 70932.6 0.00
single depot 1000 187332.2 2.8 0.000 54846.8 0.00

15

Table 11: OR-Tools - Detailed Performance Breakdown.

Configuration Size Cost CVR Feas Runtime TW Violations

single depot single vehicule sumDemands 10 2049.2 0.0 1.000 1037.9 0.00
multi depot 10 2167.6 0.0 1.000 1003.3 0.00
single depot single vehicule sumDemands 20 3238.9 0.0 1.000 999.5 0.00
multi depot 20 3142.2 0.0 1.000 1002.6 0.00
single depot single vehicule sumDemands 50 3773.4 0.0 1.000 1015.9 0.00
multi depot 50 4714.2 0.0 1.000 1015.9 0.00
single depot single vehicule sumDemands 100 6283.5 0.0 1.000 1046.5 0.00
multi depot 100 6250.4 0.0 1.000 1048.8 0.00
single depot single vehicule sumDemands 200 9198.8 0.0 1.000 1174.7 0.00
multi depot 200 8956.2 0.0 1.000 1185.4 0.00
single depot single vehicule sumDemands 500 15677.5 0.0 1.000 2129.5 0.00
multi depot 500 15883.2 0.0 1.000 2085.2 0.00
single depot single vehicule sumDemands 1000 25844.3 0.0 1.000 8412.4 0.00
multi depot 1000 25816.3 0.0 1.000 9434.5 0.00
depots equal city 10 4564.7 3.3 0.967 12.6 0.00
single depot 10 4359.0 3.3 0.967 3.6 0.00
depots equal city 20 8192.3 0.0 1.000 8.2 0.00
single depot 20 8346.9 0.0 1.000 7.2 0.00
depots equal city 50 13666.7 0.0 1.000 30.3 0.00
single depot 50 13882.3 0.7 0.993 27.7 0.00
depots equal city 100 38704.1 6.0 0.940 108.6 0.00
single depot 100 30389.3 1.0 0.990 87.8 0.00
depots equal city 200 89937.5 10.1 0.899 345.3 0.00
single depot 200 55401.8 1.0 0.990 329.8 0.00
depots equal city 500 175711.4 7.7 0.923 2010.0 0.00
single depot 500 118279.4 2.2 0.978 2020.5 0.00
depots equal city 1000 244998.0 6.1 0.939 8273.1 0.00
single depot 1000 187830.1 2.7 0.973 8464.4 0.00

Table 12: RL Algorithms – Detailed Performance on CVRP (runtimes in ms).

Solver Configuration Size Cost CVR Feas Runtime (ms) TW Violations

Attention single depot single vehicule sumDemands 10 2364.12 0.00 1.000 0.365 0.00
POMO single depot single vehicule sumDemands 10 2312.68 0.00 1.000 0.282 0.00
Attention single depot single vehicule sumDemands 20 3222.68 0.00 1.000 0.269 0.00
POMO single depot single vehicule sumDemands 20 3341.56 0.00 1.000 0.279 0.00
Attention single depot single vehicule sumDemands 50 5803.63 0.00 1.000 0.304 0.00
POMO single depot single vehicule sumDemands 50 5920.19 0.00 1.000 0.287 0.00
Attention single depot single vehicule sumDemands 100 8553.26 0.00 1.000 0.319 0.00
POMO single depot single vehicule sumDemands 100 16983.50 0.00 1.000 0.319 0.00
Attention single depot single vehicule sumDemands 200 13228.84 0.00 1.000 0.353 0.00
POMO single depot single vehicule sumDemands 200 12726.96 0.00 1.000 0.360 0.00
Attention single depot single vehicule sumDemands 500 22496.94 0.00 1.000 0.463 0.00
POMO single depot single vehicule sumDemands 500 88789.44 0.00 1.000 0.506 0.00
Attention single depot single vehicule sumDemands 1000 37430.47 0.00 1.000 0.649 0.00
POMO single depot single vehicule sumDemands 1000 184656.10 0.00 1.000 0.689 0.00

Table 13: RL Algorithms – Detailed Performance on TWVRP (runtimes in ms).

Solver Configuration Size Cost CVR Feas Runtime (ms) TW Violations

Attention single depot 10 3 940.38 0.00 1.000 0.916 0.00
POMO single depot 10 3 854.6 0.00 1.000 0.707 0.00
Attention single depot 20 6 504.73 0.00 1.000 1.780 0.00
POMO single depot 20 6 744.7 0.00 1.000 1.841 0.00
Attention single depot 50 29 132.94 0.00 1.000 0.731 0.00
POMO single depot 50 29 718.0 0.00 1.000 0.689 0.00
Attention single depot 100 57 778.84 0.00 1.000 0.864 0.00
POMO single depot 100 114 726.7 0.00 1.000 0.864 0.00
Attention single depot 200 113 742.27 0.00 1.000 0.868 0.00
POMO single depot 200 109 427.1 0.00 1.000 0.886 0.00
Attention single depot 500 271 201.60 0.00 1.000 1.412 0.00
POMO single depot 500 438 502.6 0.00 1.000 1.412 0.00
Attention single depot 1000 531 470.88 0.00 1.000 1.638 0.00
POMO single depot 1000 611 307.8 0.00 1.000 1.672 0.00

16

C.1 Qualitative Results

As shown in figures 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14, we qualitatively observe that for CVRP
instances with a small number of customers, both Attention and POMO models, as well as classical
methods (ACO, NN2OPT, and OR-Tools), generate highly structured and near-optimal routes. As
the number of customers increases, route complexity grows, making it harder for models to preserve
efficiency and structure. For TWVRP, the models’ priority shifts toward satisfying delivery time
windows, often at the expense of distance optimization. This results in routes that appear less spatially
coherent but better aligned with temporal constraints.

Figure 5: CVRP 20 customers – Attention Model Figure 6: CVRP 10 customers – POMO

Figure 7: CVRP 200 customers – Attention
Model

Figure 8: TWVRP 20 customers – Attention
Model

17

Figure 9: CVRP 10 customers – ACO Figure 10: TWVRP 10 customers – ACO

Figure 11: CVRP 10 customers – NN2OPT Figure 12: TWVRP 10 customers – NN2OPT

Figure 13: CVRP 10 customers – OR-Tools Figure 14: TWVRP 10 customers – OR-Tools

18

D Reinforcement Learning

D.1 Problem Formulation

We model both the Capacitated Vehicle Routing Problem (CVRP) and Vehicle Routing Problem
with Time Windows (VRPTW) as a Markov Decision Process (MDP)M = (S,A, P, r, γ), where
each state st ∈ S encodes the vehicle’s current position, remaining capacity, visited set (and only
for VRPTW the current time and per-customer time windows [ei, ℓi]). Actions at ∈ A(st) select the
next customer, and transitions P (st+1 | st, at) deterministically update the tour while, in VRPTW,
adding stochastic delays.
The reward is r(st, at) = −di,j − τ [tarrive > ℓi] when visiting customer j, with di,j the Euclidean
distance and τ a large penalty for time-window violations, and zero upon return to the depot. We
follow a constructive, autoregressive decoding: at each step we append one customer until all are
visited.

D.2 Policy

We adopt the encoder–decoder with multi-head attention of Kool [22]. Given embedded node features
xi ∈ Rd, each of the L encoder layers applies multi-head self-attention. At step t, with context
embedding ht, we score each remaining node j by ut,j = v⊤ tanh

(
W1ht + W2xj

)
and define

πθ(at = j | st) = exp(ut,j)/
∑

k/∈Vt
exp(ut,k) .

We optimize the policy by maximizing the expected return J(θ) = Eτ∼πθ
[R(τ)] using two con-

structive, autoregressive policy-gradient methods. A constructive policy builds a complete solution
by sequentially selecting one customer at a time until the tour is finished, while an autoregressive
policy conditions each action on the history of previous choices, enabling the network to capture
dependencies across steps.

We first apply REINFORCE [40], which updates parameters via ∇θJ(θ) = E
[∑

t∇θ log πθ(at |
st) (R(τ)− b(st))

]
, where b(st) is a rollout baseline obtained by greedy decoding; then POMO [23]

samples K different start nodes per instance, computes returns Rk and a shared baseline R̄ =
1
K

∑
k Rk, and applies∇θJ(θ) =

1
K

∑K
k=1∇θ log πθ(τk) (Rk−R̄). REINFORCE offers simplicity

and unbiased gradients, while POMO’s shared baseline exploits VRP permutation symmetry for
variance reduction; together they provide a strong comparison between a classical Monte Carlo
approach and a state-of-the-art, variance-reduced VRP-specific algorithm.

D.3 Training Details

All models were implemented in the RL4CO framework and trained end-to-end with Adam at a
learning rate of 10−4. For CVRP with REINFORCE we used a batch size of 512 and generated
100 000 synthetic instances on the fly; for VRPTW with POMO we used batch size 64 and 1 000 000
instances. Validation employed greedy decoding under nominal travel-time conditions. VRPTW
environments included log-normal delays calibrated to traffic data, Gaussian time-of-day kernels, and
Poisson accident events, with infeasible actions heavily penalized to enforce time windows.

D.4 Evaluation on SVRPBench

After training, we converted each of the 500+ SVRPBench instances into the RL4CO environment
format and ran the trained policies in greedy mode, selecting at each step at = argmaxj πθ(at =
j | st). To assess robustness, we then simulated each resulting tour under multiple sampled delay
realizations and reported average tour length and feasibility rates. Despite domain shift, attention-
based RL policies maintained high feasibility and near-optimal costs across all problem sizes.

19

	Introduction
	Realistic Stochastic Modeling
	Time-Dependent Travel Time Modeling
	Customer Time Window Sampling

	Dataset Construction Pipeline
	Evaluation Protocol
	Performance Metrics

	Experimental Results
	Evaluation Scope
	Experimental Setup
	Results & Analysis
	Enhanced Baseline Comparison
	Empirical Validation: The Reality Gap

	Limitations and Future Directions
	Conclusion
	Open Infrastructure
	Reproducibility Requirements

	Baseline Models
	Detailed Solver Performance Breakdowns
	Qualitative Results

	Reinforcement Learning
	Problem Formulation
	Policy
	Training Details
	Evaluation on SVRPBench

