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Abstract

Biological and artificial neural networks create internal representations for com-
plex tasks. In artificial networks, the ability to form task-specific representations
is shaped by datasets, architectures, initialization strategies, and optimization al-
gorithms. Previous studies show that different initializations lead to either a lazy
regime, where representations stay static, or a rich regime, where they evolve
dynamically. This work examines how initialization affects learning dynamics
in deep linear networks, deriving exact solutions for λ-balanced initializations,
which reflect the weight scaling across layers. These solutions explain how rep-
resentations and the Neural Tangent Kernel evolve from rich to lazy regimes,
with implications for continual, reversal, and transfer learning in neuroscience
and practical applications.

1 Introduction

Biological and artificial neural networks learn internal representations that enable complex tasks
such as categorization, reasoning, and decision-making. Both systems often develop similar repre-
sentations from comparable stimuli, suggesting shared information processing mechanisms Yamins
et al. (2014). Although not yet fully understood, this similarity has garnered significant interest from
neuroscience, AI, and cognitive science Haxby et al. (2001); Laakso & Cottrell (2000); Morcos et al.
(2018); Kornblith et al. (2019); Moschella et al. (2022). The success of neural models relies on their
ability to form these representations and extract relevant features from data to build internal repre-
sentations, a complex process that in machine learning is defined by two regimes: lazy and rich Saxe
et al. (2014); Pennington et al. (2017); Chizat et al. (2019); Bahri et al. (2020). Despite significant
advances, these learning regimes and their characterization are not yet fully understood and would
benefit from clearer theoretical predictions, particularly regarding the influence of prior knowledge
(initialization) on the learning regime. We discuss related works in the appendix A.
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Our contributions. (1) We derive exact solutions for the gradient flow in unequal-input-output
two-layer deep linear networks, under a broad range of lambda-balanced initialization conditions
(Section 2). (2) We model the full range of learning dynamics from lazy to rich, showing that this
transition is influenced by a complex interaction of architecture, relative scale, and absolute scale,
(Section 3). (3) We present applications relevant to both the neuroscience and machine learning
field, providing exact solutions for continual learning dynamics, reversal learning dynamics, and
transfer learning (Section 4).

2 Exact Learning Dynamics

Setting Consider a supervised learning task where input vectors xn ∈ RNi , from a set of P
training pairs {(xn,yn)}Pn=1, need to be mapped to their corresponding target output vectors
yn ∈ RNo . We learn this task with a two-layer linear network model that produces the output
predictionŷn = W2W1xn, with weight matrices W1 ∈ RNh×Ni and W2 ∈ RNo×Nh , where
Nh is the number of hidden units. The network’s weights are optimized using full batch gradi-
ent descent with learning rate η (or respectively time constant τ = 1

η ) on the mean squared er-
ror loss L(ŷ,y) = 1

2

〈
||ŷ − y||2

〉
, where ⟨·⟩ denotes the average over the dataset. The dynam-

ics are completely determined by the input covariance and input-output correlation matrices of the
dataset, defined as Σ̃xx = 1

P

∑P
n=1 xnx

T
n ∈ RNi×Ni and Σ̃yx = 1

P

∑P
n=1 ynx

T
n ∈ RNo×Ni ,

and the initialization W2(0),W1(0). Our objective is to describe the entire dynamics of the net-
work’s output and internal representations based on this initialization and the task statistics. We
consider an approach first introduced in the foundational work of Fukumizu Fukumizu (1998) and
extended in recent work by Braun et al. (2022), which rather than consider the dynamics of the
parameters directly, we consider the dynamics of a matrix of the important statistics. In partic-
ular, defining Q =

[
W1 WT

2

]T ∈ R(Ni+No)×Nh , we consider the (Ni + No) × (Ni + No)

matrix QQT (t) =

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) W2W
T
2 (t)

]
, which is divided into four quadrants with inter-

pretable meanings. The approach tracks several key statistics collected in the matrix. The off-
diagonal blocks contain the network function Ŷ(t) = W2W1(t)X, which can be used to eval-
uate the dynamics of the loss as shown in Fig. 1. The on-diagonal blocks capture the cor-
relation structure of the weight matrices, allowing for the calculation of the temporal evolution
of the network’s internal representations. This includes the representational similarity matrices
(RSM) of the neural representations within the hidden layer, as first defined by Braun et al.
(2022),RSMI = XTWT

1 W1(t)X, RSMO = YT (W2W
T
2 (t))

+Y, where + denotes the pseu-
doinverse; and the network’s finite-width NTK Jacot et al. (2018); Lee et al. (2019); Arora et al.
(2019b) NTK = INo

⊗ XTWT
1 W1(t)X + W2W

T
2 (t) ⊗ XTX, where I is the identity matrix

and ⊗ is the Kronecker product. Hence, the dynamics of QQT describes the important aspects of
network behaviour.

We extend previous solutions Fukumizu (1998); Braun et al. (2022); Kunin et al. (2024) and derive
exact solutions for the dynamics of QQT in unequal-input-output under a broad range of lambda-
balanced initialization conditions. See Appendix B.2 for a further discussion of the assumptions
and their relation to previous works. The proof of the Theorem and lemma leading to the theorem
is in Appendix C. With this solution we can calculate the exact temporal dynamics of the loss,
network function, RSMs and NTK (Fig. 1A, C) over a range of lambda-balanced initializations.
Implementation and simulation. Simulation details are in Appendix F.7.

3 Rich and Lazy Learning

In this section we aim to gain a deeper understanding of the transition between the rich and lazy
regimes by examining the dynamics as a function of lambda – the relative scale - as it varies between
positive and negative infinity.

Dynamics of the singular values. Here we examine a lambda-balanced linear network initial-
ized with task-aligned weights. Previous research Saxe et al. (2019a) has demonstrated that initial
weights that are aligned with the task remain aligned throughout training, restricting the learning
dynamics to the singular values of the network. As shown in Fig.4 B, as λ approaches zero, the
dynamics resemble sigmoidal learning curves that traverse between saddle points, characteristic of
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the rich regime Braun et al. (2022). In this regime the network learns the most salient features first,
which can be beneficial for generalization Lampinen & Ganguli (2018). Conversely, as shown in
Fig.4 A and C, as the magnitude of λ increases, the dynamics become exponential, characteristic of
the lazy regime. In this regime, all features are treated equally and the network’s dynamics resemble
that of a shallow network. Overall, our results highlight the critical influence of both the absolute
scale and the relative scale λ has in shaping the learning dynamics, from sigmoidal to exponential,
steering the network between the rich and lazy regimes. The proof can be found in Appendix D.1.

Figure 1: A The temporal dynamics of the numerical
simulation of the loss, network function, correlation
of input and output weights, and the NTK (row 1-5
respectively) are exactly matched by the analytical so-
lution for λ = −2 . B λ = 0.001 Large initial weight
values. C λ = 2 initial weight values.

The dynamics of the representations. We
examine how the representations of the pa-
rameters W1 and W2 evolve during train-
ing. With lambda-balanced initializations,
the structure persists throughout training,
allowing us to recover the dynamics up
to a time-dependent orthogonal transfor-
mation. The singular values Sλ of the
weights are adjusted based on λ, splitting
the representation into two parts (Theorem
D.2). Using QQT (t), we capture the tem-
poral dynamics of hidden layer activations
and analyze whether the network adopts a
rich or lazy representation, depending on
λ. Upon convergence, the internal repre-
sentation satisfies WT

1 W1 = ṼS̃2
1Ṽ

T and
W2W

T
2 = ŨS̃2

2Ũ
T , with detailed proof

in Theorem D.3. For a hierarchical se-
mantic task Saxe et al. (2014); Braun et al.
(2022), the representational similarity of in-
puts (ṼS̃ṼT ) and targets (ŨS̃ŨT ) aligns
with the task structure. When training a
two-layer network with relative scale λ =
0, the representational similarity matrices
match the task upon convergence (Theorem
D.3). As λ approaches positive or negative
infinity, the network transitions to the lazy
regime, adopting task-agnostic representa-
tions (Theorem D.4, Fig. 2). The NTK be-
comes static and identity-like, while downscaled representations remain structured. This property
can enhance generalization during fine-tuning, as shown in Section 4. In contrast, large Gaussian
initializations result in lazy learning, lacking structural representation. We propose a new semi-
structured lazy regime, where initialization determines whether task-specific features reside in input
or output layers.
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Figure 2: A A semantic learning task with the SVD of the input-output correlation matrix of the
task. (top) U and V represent the singular vectors, and S contains the singular values. (bottom) The
respective RSMs for the input and for the output task. B Simulation results and C Theoretical input
and output representation matrices after training, showing convergence when initialized with varying
lambda values, according to the initialization scheme described in F.7. D Final RSMs matrices after
training converged when initialised from random large weights. E After convergence, the network’s
sensitivity to input noise (top panel) is invariant to λ, but the sensitivity to parameter noise increases
as λ becomes smaller (or larger) than zero.

Representation robustness and sensitivity to noise. In appendix D.3 we examine the relationship
between the learning regime and the robustness of the learned representations to added noise in
the inputs and parameters. In practice, parameter noise could be interpreted as the noise occurring
within the neurons of a biological network. We find that a rich solution may enable a more robust
representation in such systems.

The impact of the architecture. Thus far, we have found that the magnitude of the relative scale
parameter λ determines the extent or rich and lazy learning. Here, we explore how a network’s
learning regime is influenced by the interaction of its architecture and the sign of the relative scale.
We consider three types of network architectures, depicted in Fig. 3A: funnel networks, which nar-
row from input to output (Ni > Nh = No); inverted-funnel networks, which expand from input
to output (Ni = Nh < No); and square networks, where input and output dimensions are equal
(Ni = Nh = No). Our solution, QQT , captures the NTK dynamics across these different network
architectures. To examine the NTK’s evolution under varying λ initializations, we compute the ker-
nel distance from initialization, as defined in Fort et al. (2020). As shown in Fig. 3B, we observe
that funnel networks consistently enter the lazy regime as λ → ∞, while inverted-funnel networks
do so as λ→ −∞. The NTK remains static during the initial phase, rigorously confirming the rank
argument first introduced by Kunin et al. (2024) for the multi-output setting. In the opposite limits
of λ, these networks transition from a lazy regime to a rich regime. During this second alignment
phase, the NTK matrix undergoes changes, indicating an initial lazy phase followed by a delayed
rich phase. We further investigate and quantify this delayed rich regime, showing the NTK move-
ment over training in Fig. 3C. This behavior is also quantified in Theorem D.6, which describes the
rate of learning in this network. For square networks with equal input and output dimensions, this
behavior is discussed in Section 3. Across all architectures, as λ → 0, the networks consistently
transition into the rich regime. Altogether, we further characterize the delayed rich regime in wide
networks.

Figure 3: A. Schematic representations of the network architectures considered, from left to right:
funnel network, square network, and inverted-funnel network. B. The plot shows the NTK kernel
distance from initialization, as defined in Fort et al. (2020) across the three architecture depicted
schematically. C. The NTK kernel distance away from initialization over training time.
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4 Application

Continual learning. In line with the framework presented by Braun et al. (2022), our approach de-
scribes the exact solutions of the networks dynamics trained across a sequence of tasks. As detailed
in Appendix E.1, we demonstrate that, regardless of the chosen value of lambda, training on subse-
quent tasks can result in the overwriting of previously acquired knowledge, leading to catastrophic
forgetting McCloskey & Cohen (1989); Ratcliff (1990); French (1999).

Reversal learning. As demonstrated in Braun et al. (2022), reversal learning theoretically does
not succeed in deep linear networks as the initalization aligns with the separatrix of a saddle point.
While simulations show that the learning dynamics can escape the saddle point due to numerical
imprecision, the process is catastrophically slowed in its vicinity. However, when λ is non-zero,
reversal learning dynamics consistently succeed, as they avoid passing through the saddle point
due to the initialization scheme. This is both theoretically proven and numerically illustrated in
Appendix E.2. We also present a spectrum of reversal learning behaviors controlled by the relative
scale λ, ranging from rich to lazy learning regimes. This spectrum has the potential to explain the
diverse dynamics observed in animal behavior, offering insights into the learning regimes relevant
to various neuroscience experiments.

Transfer learning. We consider how different λ initializations influence generalization to a new
feature after being trained on an initial task. We observe in Appendix figure 7 that the task specific
structure of the data is effectively transferred to the new feature when the representation is task-
specific and λ is zero. Conversely, when the output feature representation is lazy, meaning the
hidden representation lacks adaptation, no task specific generalization is observed. Strikingly, when
λ is positive, the task specific structure in the input weights remains small but structured, while the
output weights exhibit a lazy representation and the network generalizes to the task specific features.
This suggests that the lazy regime structure can be beneficial for transfer learning.

5 Discussion

We derive exact solutions to the learning dynamics within a tractable model class: deep linear net-
works. We examine the transition between the rich and lazy regimes by analyzing the dynamics as a
function of λ—the relative scale—across its full range from positive to negative infinity. Our anal-
ysis demonstrates that the relative scale, λ, plays a crucial role in managing the transition between
rich and lazy regimes.
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A Related Work

Lazy regime. Extensive research has identified a fundamental phenomenon in overparameterized
neural networks: during training, these networks frequently remain near their linearized form, un-
dergoing minimal changes in the parameter space Chizat et al. (2019). Consequently, they adopt
learning dynamics akin to kernel regression, characterized by the Neural Tangent Kernel (NTK)
matrix and exhibiting exponential learning behavior Du et al. (2018); Jacot et al. (2018); Du et al.
(2019); Allen-Zhu et al. (2019a,b); Zou et al. (2020). This behavior, known as the lazy or kernel
regime, typically occurs in infinitely wide architectures and can be triggered by large variance ini-
tialization at the start of training Jacot et al. (2018); Chizat et al. (2019). While the lazy regime offers
valuable insights into how networks converge to a global minimum, it does not fully account for the
generalization capabilities of neural networks trained with standard initializations. It is, therefore,
widely believed that another regime, driven by small or vanishing initializations, underpins some of
the successes of neural networks.

Rich regime. In contrast, the rich feature-learning regime is characterized by a NTK that evolves
throughout training, accompanied by non-convex dynamics that navigate saddle points Baldi &
Hornik (1989); Saxe et al. (2014, 2019b); Jacot et al. (2021). This regime features sigmoidal learn-
ing curves and simplicity biases, such as low-rankness Li et al. (2020) or sparsity Woodworth et al.
(2020). Numerous studies have shown that the absolute scale of initialization drives the rich regime,
which typically emerges at small initialization scales Chizat et al. (2019); Geiger et al. (2020). How-
ever, it’s also been shown that even at small initialization scales, differences in weight magnitudes
between layers can induce the lazy learning regime Azulay et al. (2021); Kunin et al. (2024). This
highlights the significance of both absolute scale (initialization variance) and relative scale (differ-
ence in weight magnitude between layers) in generating diverse learning dynamics. Beyond absolute
scale and relative scale, additional aspects of initialization can profoundly affect feature learning,
including the effective rank of the weight matrices Liu et al. (2023), layer-specific initialization
variances Yang & Hu (2020); Luo et al. (2021); Yang et al. (2022), and the use of large learning
rates Lewkowycz et al. (2020); Ba et al. (2022); Zhu et al. (2023); Cui et al. (2024). These findings
illustrate the effect of initialization on inducing complex learning behavior through the resulting
dynamics. Here we develop a solvable model which captures these diverse phenomena.

Rich and lazy regimes in the brain. The distinction between rich and lazy learning may also hold
implications for neuroscience, where neural representations have been argued to have task-specific
or task-agnostic characteristics in different settings Farrell et al. (2023a); Ostojic & Fusi (2024);
Tye et al. (2024). The lazy regime can be linked to the non-linear mixed selectivity of neurons,
where task variables are represented in a high-dimensional space which mixes various potentially
relevant variables Raposo et al. (2014); Tang et al. (2019); Rigotti et al. (2013); Bernardi et al.
(2020). Conversely, the rich regime aligns with linear mixed selectivity Tye et al. (2024) and the
manifold learning regime, where the brain encodes tasks on a structured, low-dimensional, task-
specific manifold, as observed in grid cells within the entorhinal cortex Chaudhuri et al. (2019);
Bernardi et al. (2020); Flesch et al. (2022).

Linear networks. Our work builds upon a rich body of research on deep linear networks, which,
despite their simplicity, have proven to be valuable models for understanding more complex neu-
ral networks Baldi & Hornik (1989); Fukumizu (1998); Saxe et al. (2014). Previous research has
extensively analyzed convergence Arora et al. (2018a); Du & Hu (2019), generalization properties
Lampinen & Ganguli (2018); Poggio et al. (2018); Huh (2020), and the implicit bias of gradient
descent Arora et al. (2019a); Woodworth et al. (2020); Chizat & Bach (2020); Kunin et al. (2022)
in linear networks. These studies have also revealed that deep linear networks have intricate fixed
point structures and nonlinear learning dynamics in parameter and function space, reminiscent of
phenomena observed in nonlinear networks Arora et al. (2018b); Lampinen & Ganguli (2018).
Seminal work by Saxe et al. (2014) laid the groundwork by providing exact solutions to gradient
flow dynamics under task-aligned initializations, demonstrating that the largest singular values are
learned first during training. This analysis has been extended to deep linear networks Arora et al.
(2018b, 2019a); Ziyin et al. (2022) with more flexible initialization schemes Gidel et al. (2019);
Tarmoun et al. (2021); Gissin et al. (2019). This work directly builds on the matrix Riccati for-
mulation proposed by Fukumizu (1998); Braun et al. (2022) which extends these solutions to wide
networks. We extend and refine these results to obtain the dynamics for lambda-balanced initializa-
tion dynamics of networks to more clearly demonstrate the impact of initialization on rich and lazy
learning regimes also developed in Tu et al. (2024) for a set of orthogonal initalizations. Our work
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extends previous analysis Xu & Ziyin (2024); Kunin et al. (2024) of these regime to wide networks.
Previous studies leveraged these solutions primarily to characterize convergence rates; however, our
work goes beyond this by providing a comprehensive characterization of the complete dynamics of
the system Tarmoun et al. (2021).

Infinite-width networks. Recent advances in understanding the rich regime have largely stemmed
from examining how the initialization variance and layer-wise learning rates must scale in the
infinite-width limit to maintain consistent behavior in activations, gradients, and outputs. Several
studies have employed statistical mechanics tools to derive analytical solutions for the rich popu-
lation dynamics of two-layer nonlinear neural networks initialized using the mean field parameter-
ization Mei et al. (2018); Rotskoff & Vanden-Eijnden (2018); Chizat & Bach (2018); Sirignano &
Spiliopoulos (2020); Rotskoff & Vanden-Eijnden (2022); Sirignano & Spiliopoulos (2020). Other
methods for analyzing deep network dynamics include the NTK limit, where the network effectively
performs kernel regression without feature learning Jacot et al. (2018); Lee et al. (2019); Arora et al.
(2019b). Our solution allows us to the study the evolution of the NTK and the influence of absolute
scale and relative scale on the transition between lazy and rich learning in finite width networks
Jacot et al. (2021); Xu & Ziyin (2024); Kunin et al. (2024); Chizat et al. (2019). Furthermore, these
approaches typically require numerical integration or operate within a limited learning regime, and
are unable to describe the learning dynamics of hidden representations. Instead, our work focuses
on the impact of initialization on representation learning dynamics and derives explicit analytical
solutions within tractable models.

B Preliminaries

B.1 Appendix: Balanced Condition

Definition B.1 (Definition of λ-balanced property (Saxe et al. (2013), Marcotte et al. (2023))). The
weights W1,W2 are λ-balanced if and only if there exists a Balanced Coefficient λ ∈ R such that:

B(W1,W2) = W T
2 W2 −W1W

T
1 = λI (1)

where B is called the Balanced Computation.
For λ = 0 we have Zero-Balanced given as A1 (). W1(0)W1(0)

T = W2(0)
TW2(0).

Theorem B.2. Balanced Condition Persists Through Training

Suppose at initialization

W2(0)
TW2(0)−W1(0)W1(0)

T = λI (2)

Then for all t ≥ 0

W2(t)
TW2(t)−W1(t)W1(t)

T = λI (3)

Proof. Consider:

τ
d

dt

[
W2(t)W2(t)

T −W1(t)W1(t)
T
]
=

(
τ
d

dt
W2(t)

)T

W2(t) +W2(t)
T

(
τ
d

dt
W2(t)

)
−
(
τ
d

dt
W1(t)

)
W1(t)

T −W1(t)

(
τ
d

dt
W1(t)

)T

= W1(t)
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)T

W2(t)

+W2(t)
T
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W1(t)

−W2(t)
T
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W1(t)

−W1(t)
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W2(t)

= 0
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Note that W2(t)
TW2(t)−W1(t)W1(t)

T is conserved for any initial value λ.

B.2 Discussion Assumptions

• A2 (Whitened input). The input data is whitened, that is Σ̃xx = I.

• A3 (Lambda-balanced). The network’s weight matrices are lambda-balanced at the begin-
ning of training, that is W2(0)

TW2(0)−W1(0)W1(0)
T = λI. If this condition holds at

initialization, it will persist throughout training Saxe et al. (2014); Arora et al. (2018a). For
completeness, we prove this in Appendix B.

• A4 (Dimensions). The hidden dimension of the network is defined as Nh = min(Ni, No),
ensuring the network is neither bottlenecked (Nh < min(Ni, No)) nor overparameterized
(Nh > min(Ni, No)).

• A5 (Full-rank). The input-output correlation of the task and the initial state of the network
function have full rank, that is rank(Σ̃xy) = rank(W2(0)W1(0)) = min(Ni, No).

Whittened Inputs. Although the whitened input assumption is quite strong, it is commonly used
in analytical work to obtain exact solutions, and much of the existing literature relies on these solu-
tions Fukumizu (1998); Braun et al. (2022); Kunin et al. (2024) . Kunin et al. (2024) goes further by
exploring the implicit bias of the trajectory without relying on exact solutions. When X⊺X is low-
rank, they can only predict the trajectories in the limit as λ→ ±∞. If the interpolating manifold is
one-dimensional, the solution can be solved exactly in terms of λ (black dots).

Dimension. Fukumizu assumed equal input and output dimensions Ni = No, but allowed for a
bottleneck in the hidden dimension of the network Nh ≤ Ni = No. The work by Braun et al. (2022)
extended Fukumizu (1998) solutions to cases with unequal input and output dimensions Ni ̸= No,
but to so did not allow a bottleneck Nh = min{Ni, No} and added an assumption on the invertibility
of a statistic of the singular vector overlap between the model and the input-output statistics. In our
work we allow for unequal input and output Ni ̸= No and do not introduce an additional invertibility
assumption.

Balancedness. The main distinction between our work and prior works is that both Fukumizu
(1998) and Braun et al. (2022) assumed zero-balanced W1(0)W1(0)

T = W2(0)
TW2(0), while

we relax this assumption to λ-balanced. The zero-balanced condition restricts the networks to a
rich setting. We develop solutions to explore the continuum between the rich and the lazy regime.
While some works, such as Tarmoun et al. (2021), have considered removing this constraint, their
solutions remain in an unstable and mixed form. Our work, in its form enable the understanding
of different learning regimes by exploring initialization properties beyond just absolute scale and
demonstrate that this transition can be accessed and controlled by adjusting a key parameter: the
relative scale. Other studies, such as Kunin et al. (2024) and Xu & Zheng (2024), have similarly
relaxed the balancedness assumption but were limited to single-output neuron settings.

C Appendix: Exact learning dynamics with prior knowledge

C.1 Appendix: Fukumizu Approach

Lemma C.1. We introduce the variables

Q =

[
WT

1
W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (4)

Defining

F =

[
−λ

2 I (Σ̃yx)T

Σ̃yx λ
2 I

]
, (5)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2. (6)
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Proof. We introduce the variables

Q =

[
WT

1
W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (7)

We compute the time derivative

τ
d

dt
(QQT ) = τ

[
dWT

1

dt W1 +WT
1

dW1

dt
dWT

1

dt W2 +WT
1

dW2

dt
dW2

dt W1 +W2
dW1

dt
dWT

2

dt W2 +WT
2

dW2

dt

]
. (8)

Using equations 18 and 19, we compute the four quadrants separately giving

τ

(
dWT

1

dt
W1 +WT

1

dW1

dt

)
= (9)

= (Σyx −W2W1)
TW2W1 +WT

1 W
T
2 (Σ

yx −W2W1) (10)

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 − (W2W1)

TW2W1 (11)

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 −WT

1 W1W
T
1 W1 − λWT

1 W1, (12)

τ

(
dWT

1

dt
WT

2 +WT
1

dWT
2

dt

)
= (13)

= (Σyx −W2W1)
TW2W

T
2 +WT

1 W1(Σ
yx −W2W1)

T (14)

= (Σyx)TW2W
T
2 +WT

1 W1(Σ
yx)T −WT

1 W1W
T
1 W

T
2 −WT

1 W
T
2 W2W

T
2 , (15)

τ

(
dW2

dt
W1 +W2

dW1

dt

)
= (16)

= (Σyx −W2W1)W
T
1 W1 +W2W

T
2 (Σ

yx −W2W1) (17)

= ΣyxWT
1 W1 +W2W

T
2 Σ

yx −W2W
T
2 W2W1 −W2W1W

T
1 W1, (18)

τ

(
dW2

dt
WT

2 +W2
dWT

2

dt

)
= (19)

(Σ̃yx −W2W1)W
T
1 W

T
2 +W2W1(Σ̃

yx −W2W1)
T (20)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1(W2W1)

T (21)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1W

T
1 W

T
2 (22)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W

T
2 W2W

T
2 + λW2W

T
2 . (23)

Defining

F =

[
−λ

2 I (Σ̃yx)T

Σ̃yx λ
2 I

]
, (24)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2. (25)

We write τ d
dt (QQT ) for completeness

τ
d

dt
(QQT ) =

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]2
(26)
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=

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (27)

=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (28)

=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1W
T
1 W1 +WT

1 W2W
T
2 W1 WT

1 W1W
T
1 W2 +WT

1 W2W
T
2 W2

W2W1W
T
1 W1 +W2W

T
2 W2W1 W2W1W

T
1 W2 +W2W

T
2 W2W

T
2

] (45)

The four quadrants of 8 are equivalent to equations 12, 15, 18, and 23 respectively.

C.2 QQT Diagonalisation

Lemma C.2. If F = PΛP T is symmetric and diagonalizable, then the matrix Riccati differential
equation τ d

dt (QQT ) = FQQT +QQTF − (QQT )2 with initialization QQT (0) = Q(0)Q(0)T

has a unique solution for all t ≥ 0, and the solution is given by

QQT (t) = eF
t
τ Q(0)

[
I+Q(0)TP

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)

]−1

Q(0)T eF
t
τ . (29)

This is true even when there exists Λi = 0.

Proof. First we show that there exists a unique solution to the initial value problem stated. This is
true by Picard-Lindelöf theorem. Now we show that the provided solution satisfies the ODE. Let

L = eF
t
τ Q(0) and C = I+Q(0)TP

(
e2Λ

t
τ −I

2Λ

)
P TQ(0) such that solution QQT (t) = LC−1LT .

The time derivative of QQT is then given by

τ
d

dt
(QQT ) = τ

(
d

dt
(L)C−1LT +L

d

dt
(C−1)LT +LC−1 d

dt
(LT )

)
(30)

Solving for these derivatives individually, we find

τ
d

dt
(L) = τ

d

dt
eF

t
τ Q(0) = F eF

t
τ Q(0) = FL (31)

τ
d

dt
(C−1) = −τC−1 d

dt
(C)C−1 = −τC−1Q(0)TP

d

dt

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)C−1 (32)

We consider the derivative of the fraction serpately,

τ
d

dt

(
e2Λ

t
τ − I

2Λ

)
= e2Λ

t
τ (33)

this is true even in the limit as λi → 0. Plugging these derivatives back in we see that the solution
satisfies the ODE. Lastly, let t = 0, we see that the the solution satisfies the initial conditions.
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In Appendix C.2 we prove that this equation is the unique solution to the initial value problem
derived in Lemma C.2 no matter the value of Λ. However, as discussed in Braun et al. (2022), the
solution in this form is not very useable or interpretable due to the matrix inverse mixing the blocks
of QQT . Additionally, we need to diagonalize F . To do so we consider the compact singular value
decomposition SVD(Σ̃yx) = ŨS̃ṼT . Here, Ũ ∈ RNo×Nh denote the left singular vectors, S̃ ∈
RNh×Nh the square matrix with ordered, non-zero eigenvalues on its diagonal, and Ṽ ∈ RNi×Nh

the corresponding right singular vectors. For unequal input-output dimensions (Ni ̸= No), the right
and left singular vectors are not square. Accordingly, for the case Ni > Nh = No, we define
Ũ⊥ ∈ RNo×|No−Ni| as a matrix containing orthogonal column vectors that complete the basis for
Ũ, i.e., make

[
Ũ Ũ⊥] orthonormal, and Ṽ⊥ ∈ RNi×|No−Ni| as a matrix of zeros. Conversely,

when Ni = Nh < No, then Ṽ⊥ is a matrix containing orthogonal column vectors that complete
the basis for Ṽ and Ũ⊥ is a matrix of zeros. Using this SVD structure we can now describe the
eigendecomposition of F.

C.3 F Diagonalization

Lemma C.3. Under assumptions of full-rank 5, the eigendecomposition of F = PΛPT where

P =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

√
2Ṽ⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√
2Ũ⊥

)
, Λ =

S̃λ 0 0

0 −S̃λ 0
0 0 λ⊥

 (34)

and the matrices S̃λ, λ⊥, H̃ , and G̃ are the diagonal matrices defined as:

S̃λ =

√
S̃2 +

λ2

4
I, λ⊥ = sgn(No −Ni)

λ

2
I, H̃ = sgn(λ)

√
S̃λ − S̃

S̃λ + S̃
, G̃ =

1√
I+ H̃2

. (35)

Beyond the invertibility of F , notice from the equation (Fukumizu solution) we need to understand
the relationship between F and Q(0). To do this the following lemma relates the structure between
the SVD of the model with the SVD structure of the individual parameters.

Proof. We leave for the reader by computing

F = PΛP T (36)

C.4 Solution Unequal-Input-Output

Theorem C.4. Under the assumptions of whitened inputs, 2, lambda-balanced weights 3, no bot-
tleneck 4, and full rank 5, the temporal dynamics of QQT are

QQT (t) =

(
Z1A

−1ZT
1 Z1A

−1ZT
2

Z2A
−1ZT

1 Z2A
−1ZT

2

)
,

where the variables Z1 ∈ RNi×Nh , Z2 ∈ RNo×Nh , and A ∈ RNh×Nh are defined as

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T (37)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0) (38)

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)

+W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T (39)
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Proof. We start and use the diagonalization of F to rewrite the matrix exponential of F and F . Note
that PTP = PPT = I and therefore PT = P−1.
e
F t

τ = Pe
Γ
P

T

=
1

√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

√
2V⊥

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)
√
2U⊥

] 
e
S̃λ

t
τ 0 0

0 e
−S̃λ

t
τ 0

0 0 e
λ⊥

t
τ

 1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

√
2V⊥

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)
√
2U⊥

]T

=
1

√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

Ũ(G̃ − H̃G̃) −Ũ(G̃ + H̃G̃)

] e
S̃λ

t
τ 0

0 e
−S̃λ

t
τ

 1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)

]T
+ 2

1
√
2

[
Ṽ⊥
Ũ⊥

]
e
λ⊥

t
τ

1
√
2

[
Ṽ⊥
Ũ⊥

]T

= Oe
Λ t

τ O + 2Me
λ⊥

t
τ M

T . (40)

eF
t
τ F−1eF

t
τ − F−1 = OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT −OΛ−1OT +M(eλ⊥

t
τ − I)(λ⊥)

−1MT .
(41)

F = OΛOT + 2Mλ⊥M
T (42)

Where M = 1√
2

[
Ṽ⊥
Ũ⊥

]T
. Placing these expressions into equation 29 gives

QQT (t) =
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0)[

I+
1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT +M(eλ⊥

t
τ − I)λ−1

⊥ MT
)
Q(0)

]−1

(43)

Q(0)T
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]T

OTQ(0) =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T (
W T

1 (0)
W2(0)

)

=
1√
2

(
(G̃− H̃G̃)Ṽ TW T

1 (0) + (G̃+ H̃G̃)ŨTW2(0)

(G̃+ H̃G̃)Ṽ TW T
1 (0)− (G̃− H̃G̃)ŨTW2(0)

)

=
1√
2

(
BT

−CT

)
(44)

where

B = W2(0)
T Ũ(G̃+ H̃G̃) +W1(0)Ṽ (G̃− H̃G̃) ∈ RNh×Nh (45)

C = W2(0)
T Ũ(G̃− H̃G̃)−W1(0)Ṽ (G̃+ H̃G̃) ∈ RNh×Nh (46)

OeΛt/τ =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)(
eS̃λ

t
τ 0

0 e−S̃λ
t
τ

)

=
1√
2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

)
(47)

OeΛt/τOTQ(0) =
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

)(
BT

−CT

)

=
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

)
(48)
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2Meλ⊥
t
τ MTQ(0) = 2

1√
2

[
Ṽ⊥
Ũ⊥

] [
eλ⊥

t
τ 0

0 eλ⊥
t
τ

]
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥ 0

0 Ũ⊥e
λ⊥

t
τ ŨT

⊥

] [
W1(0)

T

W2(0)

]
=

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

Ũ⊥e
λ⊥

t
τ ŨT

⊥W2(0)

]
(49)

Putting it together we get the expressions for Z1(t) and Z2(t)

[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0) =

=
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

)
+

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

Ũ⊥e
λ⊥

t
τ ŨT

⊥W2(0)

]
(50)

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T (51)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0) (52)

We now compute the terms inside the inverse

Q(0)TM(eλ⊥
t
τ )λ−1

⊥ MTQ(0)

=
[
W1(0) W2(0)

T
] 1√

2

[
Ṽ⊥
Ũ⊥

] [
eλ⊥

t
τ 0

0 eλ⊥
t
τ

] [
λ⊥ 0
0 λ⊥

]−1
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=
[
W1(0) W2(0)

T
] [eλ⊥

t
τ λ−1

⊥ Ṽ⊥Ṽ
T
⊥W1(0)

T

eλ⊥
t
τ λ−1

⊥ Ũ⊥Ũ
T
⊥W2(0)

]
=
[(

W1(0)Ṽ⊥e
λ⊥

t
τ λ−1

⊥ ṼT
⊥W1(0)

T +W2(0)
T Ũ⊥e

λ⊥
t
τ λ−1

⊥ ŨT
⊥W2(0)

)]
(53)

Q(0)TMλ−1
⊥ MTQ(0) = 2

[
W1(0) W2(0)

T
] 1√

2

[
Ṽ⊥
Ũ⊥

] [
λ⊥ 0
0 λ⊥

]−1
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=
[
W1(0) W2(0)

T
] [Ṽ⊥

Ũ⊥

] [
λ−1
⊥ Ṽ⊥Ṽ

T
⊥W1(0)

T

λ−1
⊥ Ũ⊥Ũ

T
⊥W2(0)

]
=
[
W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
T +W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)
]

(54)

Now
1

2
Q(0)TO

(
e2Λ

t
τ − I

)
Λ−1OT =

1

4
[B −C]

(
eΛ

t
τ − I

)
Λ−1

(
BT

−CT

)
=

1

4

(
B
(
e2S̃λ

t
τ − I

)
(S̃λ)

−1BT −C
(
e−2S̃λ

t
τ − I

)
(S̃λ)

−1CT
)

(55)

Putting it all together

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)

+W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T (56)

18



So, final form:
QQT (t) =[(

1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]
[
I+

1

4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)
T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T

]−1

[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]T
(57)

C.5 Stable solution Unequal-Input-Output

Theorem C.5. Given the assumptions of Theorem C.4 further assuming that B is invertible and
defining eλ⊥

t
τ = sgn(No −Ni)

λ
2 , the temporal evolution of QQT is described as follows:

QQT (t) = Z
[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ (58)

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CTB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+ e−S̃λ
t
τ e

λ
2

t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

ZT

Z =

 1
2 Ṽ

[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

1
2Ũ

[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ


(59)

Proof. We start from
QQT (t) =[(

1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]
[
I+

1

4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)
T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T

]−1

[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]T
(60)
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We extract B−T e−S̃λ
t
τ from all terms as exemplified bellow

OeΛt/τOTQ(0) =
1

2

Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
Ũ
[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]BT eS̃λ
t
τ (61)

and rewrite the dynamis as

QQT (t) =[(
1
2 Ṽ (G̃− H̃G̃)− 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

1
2Ũ(G̃+ H̃G̃) + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

)]
[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ +

1

4

((
I− e−2S̃λ

t
τ

S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−2S̃λ

t
τ − I

S̃λ

)
CTB−T e−S̃λ

t
τ

)

+e−S̃λ
t
τ B−1W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+e−S̃λ
t
τ B−1W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

[(
1
2 Ṽ (G̃− H̃G̃)− 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

1
2Ũ(G̃+ H̃G̃) + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

)]T
(62)

QQT (t) = 1
2 Ṽ

[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

1
2Ũ

[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ


[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CTB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+ e−S̃λ
t
τ e

λ
2

t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

 Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

Ũ
[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ

T

(63)

where eλ⊥
t
τ = sgn(No −Ni)

λ
2 is a scalar
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C.5.1 Proof Exact learning dynamics with prior knowledge unequal dimension

We follow a similar derivation presented in Braun et al. (2022) and start with the following equation

QQT (t) =
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0)︸ ︷︷ ︸

L[
I+

1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT +M(eλ⊥

t
τ − I)λ−1

⊥ MT
)
Q(0)

]−1

︸ ︷︷ ︸
C−1

(64)

Q(0)T
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
︸ ︷︷ ︸

R

=LC−1R, (65)

Substituting our solution into the matrix Riccati equation then yields

τ
d

dt
QQT = FQQT +QQTF− (QQT )2 (66)

⇒ τ
d

dt
LC−1R

?
= FLC−1R+ LC−1RF− LC−1RLC−1R. (67)

Using the chain rule ∂(AB) = (∂A)B+A(∂B) and the identities

d

dt
(A−1) = A−1(

d

dt
A)A−1 and

d

dt
(etA) = AetA = etAA (68)

τ
d

dt
QQT = τ

d

dt
LC−1R (69)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(70)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (71)

Next, we note that

O =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T

(72)

OTO =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)
(73)

= I (74)

OTM =
1√
2

[
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

]
1√
2

[
Ṽ⊥
Ũ⊥

]
(75)

=
1

2

[
(G̃− H̃G̃)T ṼT Ṽ⊥ + (G̃+ H̃G̃)T ŨT Ũ⊥
(G̃+ H̃G̃)T ṼT Ṽ⊥ − (G̃− H̃G̃)T ŨT Ũ⊥

]
(76)

= 0 (77)
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and

MTO =
1√
2

[
ṼT

⊥ ŨT
⊥
](Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)
(78)

=
1

2

[
ṼT

⊥Ṽ(G̃− H̃G̃) + ŨT
⊥Ũ(G̃+ H̃G̃)

ṼT
⊥Ṽ(G̃+ H̃G̃)− ŨT

⊥Ũ(G̃− H̃G̃)

]
(79)

= 0. (80)
we get

τ
d

dt
QQT = τ

d

dt

(
LC−1R

)
(81)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(82)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (83)

with

τ

(
d

dt
L

)
C−1R = τ

(
O

1

τ
ΛeΛ

t
τ OT + 2M

λ⊥I

2τ
eλ⊥

t
τ MT

)
Q(0)C−1R (84)

=
(
OΛeΛ

t
τ OT +Mλ⊥Ie

λ⊥
t
τ MT

)
Q(0)C−1R (85)

= (Oλ⊥O
T + 2Mλ⊥M

T )
(
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

)
Q(0)C−1R (86)

= FLC−1R, (87)

τLC−1

(
d

dt
R

)
= τLC−1Q(0)T

(
O

1

τ
eΛ

t
τ ΛOT + 2Meλ⊥

t
τ
λ⊥I

2τ
MT

)
(88)

= LC−1Q(0)T
(
O

1

τ
eΛ

t
τ ΛOT + 2Meλ⊥

t
τ
λ⊥I

2τ
MT

)
(89)

= LC−1RF (90)
and

τL

(
d

dt
C−1

)
R = −τLC−1

(
d

dt
C

)
C−1R (91)

= −LC−1

[
τ
1

2
Q(0)TO2

1

τ
e2Λ

t
τ ΛΛ−1OTQ(0) (92)

+ τ
1

2
Q(0)T 4

1

τ
Meλ⊥

t
τ λ⊥ (λ⊥)

−1
MTQ(0)

]
C−1R

= −LC−1

[
Q(0)TOe2Λ

t
τ OTQ(0) + 2Q(0)TMeλ⊥

t
τ MTQ(0)

]
C−1R (93)

= −LC−1

[
Q(0)TOeΛ

t
τ OTOeΛ

t
τ OTQ(0)

+ 2Q(0)TOeΛ
t
τ OTM︸ ︷︷ ︸

0

eλ⊥
t
τ MTQ(0) (94)

+ 2Q(0)TMeλ⊥
t
τ MTO︸ ︷︷ ︸

0

eΛ
t
τ OTQ(0)

+ 4Q(0)TMeλ⊥
t
τ MTMeλ⊥

t
τ MTQ(0)

]
C−1R

= −LC−1RLC−1R. (95)
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Finally, substituting equations 84, 88 and 91 into the left hand side of equation 67 proves equality.
□

D Rich-Lazy

D.1 Dynamics of the Singular Values

Theorem D.1. Under the assumptions of Theorem C.4 and with a task-aligned initialization given
by W1(0) = RS1Ṽ

T and W2(0) = ŨS2R
T , where R ∈ RNh×Nh is an orthonormal matrix, then

the network function is given by the expression W2W1(t) = ŨS(t)Ṽ T where S(t) ∈ RNh×Nh is
a diagonal matrix of singular values with elements sα(t) that evolve according to the equation,

sα(t) = sα(0) + γα(t;λ) (s̃α − sα(0)) , (96)

where s̃α is the α singular value of S̃ and γα(t;λ) is a λ-dependent monotonic transition function
for each singular value that increases from γα(0;λ) = 0 to limt→∞ γα(t;λ) = 1 defined as

γα(t;λ) =
s̃λ,αsλ,α sinh

(
2s̃λ,α

t
τ

)
+
(
s̃αsα + λ2

4

)
cosh

(
2s̃λ,α

t
τ

)
−
(
s̃αsα + λ2

4

)
s̃λ,αsλ,α sinh

(
2s̃λ,α

t
τ

)
+
(
s̃αsα + λ2

4

)
cosh

(
2s̃λ,α

t
τ

)
+ s̃α (s̃α − sα)

, (97)

where s̃λ,α =
√
s̃2α + λ2

4 , sλ,α =
√
sα(0)2 +

λ2

4 , and sα = sα(0). We find that under different
limits of λ, the transition function converges pointwise to the sigmoidal (λ → 0) and exponential
(λ→ ±∞) transition functions,

γα(t;λ)→

 e2s̃α
t
τ −1

e2s̃α
t
τ −1+ s̃α

sα(0)

as λ→ 0,

1− e−|λ| t
τ as λ→ ±∞

. (98)

Proof. According to Theorem C.4, the network function is given by the equation

W2W1(t) = Z2(t)A
−1(t)ZT

1 (t), (99)
which depends on the variables of the initialization B and C. Plugging the expressions for a task-
aligned initialization W1(0) and W2(0) into these variables we get the following simplified expres-
sions,

B = R
(
S2(G̃+ H̃G̃) + S1(G̃− H̃G̃)

)
︸ ︷︷ ︸

DB

, (100)

C = R
(
S2(G̃− H̃G̃)− S1(G̃+ H̃G̃)

)
︸ ︷︷ ︸

DC

, (101)

where we define the diagonal matrices DB and DC for ease of notation. Using these expressions,
we now get the following time-dependent expressions for Z2(t), A−1(t), and Z1(t),

Z1(t) =
1

2
Ṽ
(
(G̃− H̃G̃)eS̃λ

t
τ DB − (G̃+ H̃G̃)e−S̃λ

t
τ DC

)
RT (102)

Z2(t) =
1

2
Ũ
(
(G̃+ H̃G̃)eS̃λ

t
τ DB + (G̃− H̃G̃)e−S̃λ

t
τ DC

)
RT (103)

A(t) = R

(
I+

(
e2S̃λ

t
τ − I

4S̃λ

)
D2

B −

(
e−2S̃λ

t
τ − I

4S̃λ

)
D2

C

)
RT (104)

Plugging these expressions into the expression for the network function, notice that the R terms
cancel each other resulting in following equation

W2W1(t) = Ũ


(
(G̃− H̃G̃)eS̃λ

t
τ DB − (G̃+ H̃G̃)e−S̃λ

t
τ DC

)(
(G̃+ H̃G̃)eS̃λ

t
τ DB + (G̃− H̃G̃)e−S̃λ

t
τ DC

)
4I+

(
e
2S̃λ

t
τ −I

S̃λ

)
D2

B −
(

e
−2S̃λ

t
τ −I

S̃λ

)
D2

C


︸ ︷︷ ︸

S(t)

Ṽ T ,

(105)
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Notice that the middle term is simply a product of diagonal matrices. We can factor the numerator
of this expressions as,

(G̃2− H̃2G̃2)e2S̃λ
t
τ D2

B +
(
(G̃− H̃G̃)2 − (G̃+ H̃G̃)2

)
DBDC − (G̃2− H̃2G̃2)e−2S̃λ

t
τ D2

C

(106)
We can further factor this expression as,

G̃2(I− H̃2)
(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− 4G̃2H̃DBDC . (107)

Putting it all together we find that S(t) can be expressed as,

S(t) =
G̃2(I− H̃2)

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− 4G̃2H̃DBDC

4I+
(

e2S̃λ
t
τ −I

S̃λ

)
D2

B −
(

e−2S̃λ
t
τ −I

S̃λ

)
D2

C

. (108)

Now using the relationship between H̃ and G̃ we use the following two identities:

G̃2(I− H̃2) =
S̃

S̃λ

, 4G̃2H̃ =
λ

S̃λ

(109)

Plugging these identities into the previous expression and multiplying the numerator and denomina-
tor by S̃λ gives,

S(t) =
S̃
(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− λDBDC

4S̃λ + e2S̃λ
t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (110)

Add and subtract S̃
(
4S̃λ +D2

C −D2
B

)
from the numerator such that

S(t) = S̃ −
S̃
(
4S̃λ +D2

C −D2
B

)
+ λDBDC

4S̃λ + e2S̃λ
t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (111)

Using the form of DB and DC notice the following two identities:

DBDC =
λ

S̃λ

(
S̃ − S2S1

)
, D2

C −D2
B = − 4

S̃λ

(
S̃S2S1 +

λ2

4
I

)
(112)

From the second identity we can derive a third identity,

4S̃λ +D2
C −D2

B = 4
S̃

S̃λ

(
S̃ − S2S1

)
(113)

Plugging the first and third identities into the numerator for the previous expression gives,

S(t) = S̃ −
(4S̃2+λ2I)

S̃λ

(
S̃ − S2S1

)
4S̃λ + e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (114)

Multiply numerator and denominator by S̃λ

4 and simplify terms gives the expression,

S(t) = S̃ − S̃λ
2

S̃λ
2
+ S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− S̃λ

4 (D2
B −D2

C)

(
S̃ − S2S1

)
. (115)

Thus we have found the transition function,

γ(t;λ) =

S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
D2

C −D2
B

)
S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
4S̃λ +D2

C −D2
B

) . (116)
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We will use our previous identities and the definitions of D2
B and D2

C to simplify this expression.
Notice the following identity,

S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
= S̃λSλ sinh

(
2S̃λ

t

τ

)
+

(
S̃S(0) +

λ2

4
I

)
cosh

(
2S̃λ

t

τ

)
(117)

Putting it all together we get

γ(t;λ) =
S̃λSλ sinh

(
2S̃λ

t
τ

)
+
(
S̃S(0) + λ2

4 I
)
cosh

(
2S̃λ

t
τ

)
−
(
S̃S(0) + λ2

4 I
)

S̃λSλ sinh
(
2S̃λ

t
τ

)
+
(
S̃S(0) + λ2

4 I
)
cosh

(
2S̃λ

t
τ

)
+ S̃

(
S̃ − S(0)

) (118)

We will now show why under certain limits of λ this expression simplifies to the sigmoidal and
exponential dynamics discussed in the previous section.

Sigmoidal dynamics. When λ = 0, then S̃λ = S̃ and Sλ = S(0). Notice, that the coefficients for
the hyperbolic functions all simplify to S̃S(0). Using the hyperbolic identity sinh(x) + cosh(x) =
ex, we can simplify the expression for the transition function to

γ(t;λ) =
S̃S(0)e2S̃

t
τ − S̃S(0)

S̃S(0)e2S̃
t
τ − S̃S(0) + S̃2

. (119)

Dividing the numerator and denominator by S̃S(0) gives the final expression.

Exponential dynamics. In the limit as λ → ±∞ the expressions S̃λ → |λ|
2 and Sλ → |λ|

2 .

Additionally, in these limits because λ2

4 I ≫ S̃S(0) then
(
S̃S(0) + λ2

4 I
)
→ λ2

4 I. As a result of

these simplifications the coefficients for the hyperbolic functions all simplify to λ2

4 I. As a result we
can again use the hyperbolic identity sinh(x) + cosh(x) = ex to simplify the expression as

γ(t;λ) =
λ2

4 e|λ|
t
τ − λ2

4 I

λ2

4 e|λ|
t
τ + S̃

(
S̃ − S(0)

) . (120)

Dividing the numerator and denominator by λ2

4 results in all terms without a coefficient proportional
to λ2 vanishing, which simplifying further gives the final expression.

Figure 4: Simulated and analytical dynamics of the singular values of the network function with
relative scale lambda A λ = −2 B λ = 0 C λ = 2 initialized as described in F.7.

D.2 Dynamics of the representation from the Lazy to the Rich Regime

The lazy and rich regimes are defined by the dynamics of the NTK of the network. Lazy learning
occurs when the NTK is constant, rich learning occurs when it is not. (Farrell et al. (2023b))
The NTK intuitively measures the movement of the network representations through training. As
shown in (Braun et al. (2022)), in specific experimental setup, we can calculate the NTK of the
network in terms of the internal representations in a straightforward way:

NTK = INo ⊗XTWT
1 W1(t)X+W2W

T
2 (t)⊗XTX (121)

In order to better understand the effect of λ on NTK dynamics, we first prove some theorems in-
volving the Singular Values of the λ-balanced weights, and the representations of a λ-balanced
network.
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D.2.1 Lambda-balanced singular value

Theorem D.2. Under a λ-Balanced initialization 3, if the network function W2W1(t) =

U(t)S(t)V T (t) is full-rank 5 and we define Sλ(t) =
√

S2(t) + λ2

4 I. , then we can recover the pa-

rameters W2(t) = U(t)S2(t)R
T (t), W1(t) = R(t)S1(t)V

T (t) up to time-dependent orthogonal
transformation R(t) of size Nh ×Nh, where

S1(t) =
((

Sλ(t)− λI
2

) 1
2 0max(0,Ni−No)

)
S2(t) =

((
Sλ(t) +

λI
2

) 1
2 0max(0,No−Ni)

)
(122)

Proof. We prove the case Ni ≤ No and Nh = min(Ni, No). The proof for No ≤ Ni follows the
same structure. Let USV T = W2(t)W1(t) be the Singular Value Decomposition of the product
of the weights at training step t. We will use W2 = W2(t),W1 = W1(t) as a shorthand.

By properties of Singular Value Decomposition, we can write W2 = US2R
T ,W1 = RS1V

T ,
where R is an orthonormal matrix and S2,S1 are diagonal (possibly rectangular) matrices.

The Balanced property states that W T
2 W2 − W1W

T
1 = λI. We know this holds for any t

since this is a conserved quantity in linear networks.

Hence

RST
2 S2R

T −RS1S1R
T = λI (123)

ST
2 S2 − S1S1 = λI (124)

The matrices S1,S2, have shapes (Nh, Ni), (No, Nh) respectively. We introduce the diagonal ma-
trices Ŝ1 of shape (Nh, Ni), Ŝ2 of shape (Ni, Nh) such that the zero matrix has size (No−Ni, Nh)
:

S1 =
(
Ŝ1

)
, S2 =

(
Ŝ2

0

)
(125)

Hence

ST
2 S2 − S1S1 = λI (126)

From the equation above and the fact that Ŝ1Ŝ2 = S we derive that:

Ŝ2 =

(√
λ2I+ 4S2 + λI

2

) 1
2

, Ŝ1 =

(√
λ2I+ 4S2 − λI

2

) 1
2

, (127)

Hence

W2 = U

((√
λ2I+4S2+λI

2

) 1
2

0max(0,No−Ni)

)
,RT , W1 = R

((√
λ2I+4S2−λI

2

) 1
2

0max(0,Ni−No)

)
V T

(128)
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D.2.2 Convergence proof

With our solution, QQT (t), which captures the temporal dynamics of the similarity between hidden
layer activations, we can analyze the network’s internal representations in relation to the task. This
allows us to determine whether the network adopts a rich or lazy representation, depending on the
value of λ. Consider a λ-Balanced network training on data Σyx = Ũ S̃Ṽ T . We assume that the
convergence is toward global minima and B is invertible

Theorem D.3. Under the assumptions of Theorem C.5, the network function converges to ŨS̃ṼT

and acquires the internal representation, that is WT
1 W1 = ṼS̃2

1Ṽ
T and W2W

T
2 = ŨS̃2

2Ũ
T

Proof. As training time increases, all terms including a matrix exponential with negative exponent
in Equation 58 vanish to zero, as Sλ = S̃λ is a diagonal matrix with entries larger zero

As training time increases, all terms in the equations vanish to zero. Terms in Equation 58 decay as

lim
t→∞

e−
√

S̃2+λ2I
4

t
τ = 0. (129)

and

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ = 0. (130)

where S̃λ = S̃λ is a diagonal matrix with entries larger zero

Therefore, in the temporal limit, eq. 58 reduces to

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(131)

=

[
Ṽ(G̃− H̃G̃)

Ũ(H̃G̃+ G̃)

] [
S̃λ

−1
]−1 [

(Ṽ(G̃− H̃G̃))T (Ũ(H̃G̃+ G̃))T
]

(132)

=

[
Ṽ(G̃− H̃G̃)S̃λ(G̃− H̃G̃)T ṼT Ṽ(G̃− H̃G̃)S̃λ(H̃G̃+ G̃)T ŨT

Ũ(H̃G̃+ G̃)S̃λ(G̃− H̃G̃)T ṼT Ũ(H̃G̃+ G̃)S̃λ(H̃G̃+ G̃)T ŨT

]
.

(133)

(G̃− H̃G̃)S̃λ(G̃+ H̃G̃) =
Sλ(1− H̃2)

1 + H̃2
= S̃ (134)

S̃λ(G̃− H̃G̃)2 =
S̃λ(1 + H̃2)

1 + H̃2
− S̃λ(2H̃)

1 + H̃2
=

√
4S̃2 + λ2I− λI

2
(135)

S̃λ(G̃+ H̃G̃)2 =
S̃λ(1 + H̃2)

1 + H̃2
+

S̃λ(2H̃)

1 + H̃2
=

√
4S̃2 + λ2I+ λI

2
(136)

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(137)

=

[
ṼS2

1Ṽ
T ṼS̃ŨT

ŨS̃ṼT ŨS2
2Ũ

T

]
. (138)
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D.2.3 Representation in the limit

Theorem D.4. Under the assumptions of Theorem C.5, training on data Σyx = Ũ S̃Ṽ T , as λ→∞
the representation tends to

W2W
T
2 = Ũ

(
λI 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT W T

1 W1 =
1

λ
Ṽ

(
S̃2 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

As λ→ −∞

W2W
T
2 = − 1

λ
Ũ

(
S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT , W T

1 W1 = Ṽ

(
−λI 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

As λ→ −∞

W2W
T
2 = − 1

λ
Ũ

(
S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT , W T

1 W1 = Ṽ

(
−λI 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

Proof. We start from the representation derived in D.3 and using the Taylor expansion of f(x) =√
1 + x2, we compute

√
λ2I+ 4S̃2 + λI

2
=
|λ|
√
1 +

(
2S̃
λ

)2
+ λI

2
(139)

|λ|
(
1 +

(
2S̃
λ

)2
+O(λ−4)

)
+ λI

2
=
|λ|+ λ

2
+

S̃2

|λ|
+O(λ−3) (140)

Hence

lim
λ→∞

√
λ2I+ 4S̃2 + λI

2
= λI, lim

λ→−∞

√
λ2I+ 4S̃2 + λI

2
=

S̃2

|λ|
= − S̃2

λ
(141)

Similarly, √
λ2I+ 4S̃2 − λI

2
=
|λ| − λ

2
+

S̃2

|λ|
+O(λ−3) (142)

lim
λ→∞

√
λ2I+ 4S̃2 − λI

2
=

S̃2

λ
, lim

λ→−∞

√
λ2I+ 4S̃2 − λI

2
=

S̃2

|λ|
= −λI (143)

Since Ũ , Ṽ are independent of λ:

lim
λ→±∞

W2W
T
2 = Ũ

(
lim

λ→±∞
S2

)
ŨT (144)

lim
λ→±∞

W T
1 W1 = Ṽ

(
lim

λ→±∞
S1

)
Ṽ T (145)

As |λ| → ∞, one of the network representations approaches a scaled identity matrix, while the
other tends toward zero. Intuitively, this suggests that the representations shift less and less as |λ|
increases. Next, we demonstrate that the NTK becomes progressively less variable as |λ| grows and
ultimately converges to zero.
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D.2.4 NTK movement

Relationship between λ and the NTK of the network
Theorem D.5. Under the assumptions of Theorem C.5, consider a linear network training on data
Σyx = Ũ S̃Ṽ T . At any arbitrary training time t ≥ 0, let W2(t)W1(t) = U∗S∗V ∗T . Then,

1. For any λ ∈ R:

NTK(0) = INo
⊗XTV

(√
λ2I+4S∗2−λI

2 0
0 0

)
V TX

+U

(√
λ2I+4S∗2+λI

2 0
0 0

)
UT ⊗XTX

(146)

NTK(t) = INo ⊗XTV ∗
(√

λ2I+4S∗2−λI
2 0
0 0

)
V ∗T

+U∗
(√

λ2I+4S∗2+λI
2 0
0 0

)
U∗T ⊗XTX

(147)

2. As λ→∞:

NTK(t)− NTK(0)→ 1

λ

(
INo
⊗XTV ∗S̃∗2V ∗TX − INo

⊗XTV S̃2V TX
)
→ 0

(148)

3. As λ→ −∞:

NTK(t)− NTK(0)→ 1

λ

(
US̃2UT ⊗XTX −U∗S̃∗2U∗T ⊗XTX

)
→ 0 (149)

Proof. Follows by substituting the expressions for the network representations in terms of λ from
(Braun et al. (2022))’s expression for the NTK of a linear network. Similarly, follows from substi-
tuting the limit expressions for the network representations and the fact that the Kronecker product
is linear in both arguments.

The theorem above demonstrates that as |λ| → ∞, the NTK of a λ-Balanced network remains
constant. This indicates that the network operates in the lazy regime throughout all training steps.
This finding is significant as it highlights the impact of weight initialization on learning regimes.

D.3 Representation robustness and sensitivity to noise

As derived in (Braun et al., 2024), the expected mean squared error under additive, independent and
identically distributed input noise with mean µ = 0 and variance σ2

x is〈
1

2P

P∑
i=1

||W2W1 (xx + ξi)− yi||22

〉
ξx

= σ2
x||W2W1||2F + c, (150)

where c = 1
2 Tr(Σ̃

yy) − 1
2 Tr(Σ̃

yxΣ̃yxT ) is a noise independent constant that only depends on
the statistics of the training data. In Theorem D.3 we show that the network function converges to
ŨS̃ṼT and therefore

σ2
x||W2W1||2F = σ2

x||ŨS̃ṼT ||2F
= σ2

x||S̃||2F

= σ2
x

Nh∑
i=1

S̃2
i

(151)
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As derived in (Braun et al., 2024), under the assumption of whitened inputs (Assumption 2), in the
case of additive parameter noise with µ = 0 and variance σ2

W, the expected mean squared error is〈
1

2P

P∑
i=1

|| (W2 + ξW2) (W1 + ξW1)xi − yi||22

〉
ξW1

,ξW2

=
1

2
Niσ

2
W||W2||2F +

1

2
Noσ

2
W||W1||2F +

1

2
NiNhNoσ

4 + c.

(152)

Using Theorem D.3, we have

||W1||2F = Tr(WT
1 W1)

= Tr

(√
λ2I+ 4S̃2 + λI

2

)

=
1

2

(
Nh∑
i=1

√
λ2 + 4S̃2

i + λ

) (153)

and
||W2||2F = Tr(W2W

T
2 )

= Tr

(√
λ2I+ 4S̃2 − λI

2

)

=
1

2

(
Nh∑
i=1

√
λ2 + 4S̃2

i − λ

)
.

(154)

To find the λ that minimises the expected loss, we substitute the equations for the norms, take the
partial derivative with respect to λ and set it to zero

∂ ⟨L⟩ξW1
,ξW2

∂λ

!
= 0

⇔1

4
Niσ

2
W

∂

∂λ

( Nh∑
i=1

√
λ2 + 4S̃2

i − λ
)
+

1

4
Noσ

2
W

∂

∂λ

(
Nh∑
i=1

√
λ2 + 4S̃2

i + λ

)
= 0

⇔Ni

Nh∑
i=1

λ√
λ2 + 4S̃2

i

−NiNh +No

Nh∑
i=1

λ√
λ2 + 4S̃2

i

+NoNh = 0

⇔
Nh∑
i=1

λ√
λ2 + 4S̃2

i

= Nh
Ni −No

Ni +No
.

(155)

It follows, that under the assumption that Ni = No, the equation reduces to

Nh∑
i=1

λ√
λ2 + 4S̃2

i

= 0. (156)

We note, that the denominator is always positive and therefore, that the left-hand side of the equation
is always larger zero for any λ > 0, and smaller than zero for any λ < 0. The euqation is therefore
only solved for λ = 0.

D.4 Effect of the architecture from the lazy to the Rich Regime

Theorem D.6. Under the conditions of Theorem C.5, when λ⊥ > 0, the network enters a regime
referred to as the delayed-rich phase. In this phase, the learning rate is determined by two competing
exponential factors:

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ
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and

e−
√

S̃2+λ2

4 I t
τ .

As λ increases, different parts of the network exhibit distinct learning behaviors: some components
adapt quickly and converge exponentially with lambda, while others are constrained by the singular
values of the network, resulting in slower adaptation.

Proof. The solution to Theorem C.5 is governed by two time-dependent terms:

e−
√

S̃2+λ2I
4

t
τ and eλ⊥

t
τ e−

√
S̃2+λ2

4 I t
τ .

The first term exhibits exponential decay with rate λ, approaching zero as time progresses:

lim
t→∞

e−
√

S̃2+λ2I
4

t
τ = 0.

The second term also decays, but at a rate governed by the singular values S̃, as λ tends to infinity:

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ = 0.

Since

λ⊥ −
√

S̃2 +
λ2

4
I > 0,

we have

lim
λ→∞

(
λ⊥ −

√
S̃2 +

λ2

4
I

)
= S̃.

Thus, as λ increases, the convergence rate slows for certain parts of the network (those governed by
larger singular values), while other components continue to learn more quickly. This explains the
delay observed in the delayed-rich regime.

E Appendix: Application

E.1 Appendix: Continual Learning

We build upon the derivation presented in Braun et al. (2022) to incorporate the dynamics of contin-
ual learning throughout the entire learning trajectory. Utilizing the assumption of whitened inputs,
the entire batch loss for the ith task is

Li (Tj) =
1

2P
∥W2W1Xi −Yi∥2F

=
1

2P
Tr
(
(W2W1Xi −Yi |) (W2W1Xi −Yi |)T

)
=

1

2P
Tr
(
W2W1XiX

T
i (W2W1)

T
)
− 1

P
Tr
(
W2W1XiY

T
i

)
+

1

2P
Tr
(
YiY

T
i

)
=

1

2
Tr
(
W2W1(W2W1)

T
)
− Tr

(
W2W1Σ̃

yxT

i

)
+

1

2
Tr
(
Σ̃yy

i

)
=

1

2
Tr

((
W2W1 − Σ̃yx

i

)(
W2W1 − Σ̃yx

i

)T
− Σ̃yx

i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
=

1

2

∥∥∥W2W1 − Σ̃yx
i

∥∥∥2
F
−1

2
Tr
(
Σ̃yx

i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
︸ ︷︷ ︸

c

.

Hence, the extent of forgetting, denoted as F for task Ti during training on task Tk subsequent to
training the network on task Tj , specifically, the relative change in loss, is entirely dictated by the
similarity structure among tasks.
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Fi (Tj , Tk) = Li (Tk)− Li (Tj)

=
1

2

∥∥∥Σ̃yx
k − Σ̃yx

i

∥∥∥2
F
+ c− 1

2

∥∥∥W2W1 − Σ̃yx
i

∥∥∥2
F
− c

=
1

2

(∥∥∥Σ̃yx
k − Σ̃yx

i

∥∥∥2
F
−
∥∥∥W2W1 − Σ̃yx

i

∥∥∥2
F

)
.

It is important to note that the amount of forgetting is a function of the weight trajectories. Therefore,
we have analytical solutions for trajectories of forgetting as well.

Figure 5: Continual learning. A Top: Network training from small zero-balanced weights across
a sequence of tasks (colored lines represent simulations, and black dotted lines represent analytical
results). Bottom: Evaluation loss for the tasks in the sequence (dotted lines) while training on the
current task (solid lines). As the network optimizes its function on the current task, the loss on
previously learned tasks increases.

Figure. 5 panel was generated by training a linear network with Ni = 5, Nh = 10, No = 6
subsequently on four different random regression tasks with N = 25. The learning rate was η =
0.05 and the initial weights were small (σ = 0.0001).

E.2 Appendix: Reversal Learning

As first introduced in Braun et al. (2022), in the following discussion, we assume that the input and
output dimensions are equal. We denote the i-th columns of the left and right singular vectors as ui,
ũi, and vi, ṽi, respectively.

Reversal learning occurs when both the task and the initial network function share the same left and
right singular vectors, i.e., U = Ũ and V = Ṽ, with the exception of one or more columns of the
left singular vectors, where the direction is reversed: −ui = ũi.

It is important to note that if a reversal occurs in the right singular vectors, such that −vi = ṽi, this
can be equivalently represented as a reversal in the left singular vectors, as the signs of the right and
left singular vectors are interchangeable.
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In the reversal learning setting, both B = S2Ũ
T Ũ(G̃ + H̃G̃) + S1V

T Ṽ (G̃ − H̃G̃) and
C = S2Ũ

T Ũ(G̃− H̃G̃)− S1V
T Ṽ (G̃+ H̃G̃) are diagonal matrices.

In the case where lambda is zero, the same argument given in Braun et al. (2022) follows, the
diagonal entries of C are zero if the singular vectors are aligned and non zero if they are reversed.
Similarly, diagonal entries of B are non-zero if the singular vectors are aligned and zero if they are
reversed. Therefore, in the case of reversal learning, B is a diagonal matrix with 0 values and thus
is not invertible. As a consequence, the learning dynamics cannot be described by Equation 37.
However, as B and C are diagonal matrices, the learning dynamics simplify. Let bi, ci, si and s̃i
denote the i-th diagonal entry of B, C, S and S̃ respectively, then the network dynamics can be
rewritten as

W2W1(t) =
1

2
Ũ
[
(G̃+ H̃G̃)eS̃λ

t
τ BT + (G̃− H̃G̃)e−S̃λ

t
τ CT

)
[
S−1
λ +

1

4
B
(
e2S̃λ

t
τ − I

)
S̃−1
λ BT − 1

4
C
(
e−2S̃λ

t
τ − I

)
S̃−1
λ CT

]−1

(157)
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t
τ C
)
ṼT
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i (158)

=

Ni∑
i=1

sλib
2
i s̃λi − sλic

2
i s̃ie

−4s̃i
t
τ

4s̃λie−2s̃i
t
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2
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2
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(
e−2s̃λi

t
τ − e−4s̃λi

t
τ

) ũiṽ
T
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(159)

It follows, that in the reversal learning case, i.e. b = 0, for each reversed singular vector, the
dynamics vanish to zero

lim
t→∞

−sλic2i s̃ie−4s̃λi
t
τ

4s̃λ,ie−2s̃λi
t
τ + sic2i

(
e−2s̃λi

t
τ − e−4s̃λi

t
τ

) ũiṽ
T
i = 0. (160)

Analytically, the learning dynamics are initialized on and remain along the separatrix of a saddle
point until the corresponding singular value of the network function decreases to zero and stays
there, indicating convergence to the saddle point. In numerical simulations, however, the learning
dynamics can escape the saddle points due to the imprecision of floating-point arithmetic. Despite
this, numerical optimization still experiences significant delays, as escaping the saddle point is time-
consuming Lee et al. (2022). In contrast, when the singular vectors are aligned (c = 0), the equation
governing temporal dynamics, as described in Saxe et al. (2014), is recovered. Under these con-
ditions, training succeeds, with the singular value of the network function converging to its target
value.

lim
t→∞

Ni∑
i=1

sλib
2
i s̃λi

4s̃λie−2s̃λi
t
τ + sλib2

i

(
1− e−2s̃λi

t
τ

) ũiṽ
T
i =

sλib
2
i s̃λi

sλib2
i

ũiṽ
T
i (161)

= s̃λiũiṽ
T
i . (162)
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Figure 6: Plot showing the steps to convergence for two tasks: (1) the reversal learning task and (2)
a randomly sampled continual learning task across a range of λ values. The reversal learning task
exhibits catastrophic slowing at λ = 0.

In summary, in the case of aligned singular vectors, the learning dynamics can be described by
the convergence of singular values. However in the case of reversal learning, analytically, training
does not succeed. In simulations, the learning dynamics escape the saddle point due to numerical
imprecision, but the learning dynamics are catastrophically slowed in the vicinity of the saddle point
as shown in figure 6 .

In the case where λ is non-zero, the diagonal of C are also non-zero; this is true regardless of
whether they are reversed or aligned. Similarly, the diagonal entries of B remain non-zero whether
the singular vectors are aligned or reversed. Therefore, in the case of reversal learning, B is a
diagonal matrix with elements that are zero. In figure 6

E.3 Appendix: Generalization and structured learning

We study how the representations learned for different λ initializations impact generalization of
properties of the data. To do this, we consider the case where a new feature is associated to a
learned item in a dataset and how this new feature may then be related to other items based on prior
knowledge. In particular, we first train each network (for different values of −10 ≤ λ ≤ 10) on
the hierarchical semantic learning task in Section 3 and then add a new feature (e.g., ‘eats worms’)
to a single item (e.g., the goldfish) (Fig. 7A), correspondingly increasing the output dimension to
represent the novel feature. In order to learn the new feature without affecting prior knowledge,
we append a randomly initialized row to W2 and train it on the single item with the new feature,
while keeping the rest of the network frozen. Thus, we only change the weights from the hidden
layer to the new feature which may produce different behavior depending on how the hidden layer
representations vary based on λ. After training on the new feature-item association, we query the
network with the rest of the data to observe how the new feature is associated with the other items.
We find that as λ increases positively, the network better transfers the hierarchy such that it projects
the feature onto items based on their distance to the trained item (Fig. 7B,C). For example, after
learning that a goldfish eats worms, the network can extrapolate the hierarchy to infer that another
fish, or birds, may also eat worms; instead, plants are not likely to eat worms. Alternatively, as λ
becomes more negative, the network ceases to infer any hierarchical structure and only learns to map
the new feature to the single item trained on. In this case, after learning that a goldfish eats worms,
the network does not infer that other fish, birds, or plants may also eat worms.

Interestingly, this setting highlights how asymmetries in the representations yielded by different λ
can actually benefit transfer and generalization. This can be shown by observing that the learning
of a new feature association only depends on the first layer W1. Let ŷf denote the vector of the
representation of the new feature f across items i in the dataset. Additionally, let w(f)T

2 be the new
row of weights appended to W2 which map the hidden layer to the new feature. Following Saxe
et al. (2019b), if w(f)T

2 is initialized with small random weights and trained on item H̃i, it will
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converge to

w
(f)T
2 = H̃T

i W
T
1 /∥W1H̃i∥22 (163)

ŷf = (H̃T
i W

T
1 W1H̃)/∥W1H̃i∥22 (164)

From this we can see that differences in the representations of the new feature across items ŷf across
λ are only influenced by W1.

In the case of the rich learning regime where λ = 0, the semantic relationship between features
and items is distributed across both layers. Instead, when λ > 0, the second layer W2 exhibits
lazy learning, yielding an output representation W2W

T
2 of a weighted identity matrix. However,

the first layer W1 still learns a rich representation of the hierarchy, albeit at a smaller scaling.
Furthermore, rather than distributing this learning across both layers, in the λ > 0 case, all learning
of the hierarchy occurs in the first layer, allowing it to more readily transfer this structure to the
learning of a new feature (which only depends on the first layer). Thus, in this case, the ‘shallowing’
of the network into the first layer is actually beneficial. Finally, we can also observe the opposite
case when λ < 0. Here, rich learning happens in the second layer, while the first layer is lazy and
learns to represent a weighted identity matrix. As such, these networks do not learn to transfer the
hierarchy of different items to the new feature.

Figure 7: Transfer learning for different λ. A A new feature (such as ‘eats worms’) is introduced
to the dataset after training on the hierarchical semantic learning task (Section 3). A randomly
initialized row is added to W2 and trained on a single item with the new feature (for example, the
goldfish), with the rest of the network frozen. The network is then tested on the transfer of the new
feature to other items, such that items closer to the goldfish in the hierarchy are more likely to have
the same feature. B The generalization loss on the untrained items with the new feature decreases
as λ increases. C As λ increases positively, networks better transfer the hierarchical structure of the
data to the representation of the new feature.

F Implementation and Simulations

The details of the simulation studies are described as follows. Specifically, Ni, Nh, and No represent
the dimensions of the input, hidden layer, and output (target), respectively. The total number of
training samples is denoted by N , and the learning rate is defined as η = 1

τ .

F.1 Lambda-balanced weight initialization

In practice, to initialize the network with lambda-balanced weights, we use Algorithm F.1. In this
algorithm, α serves as a scaling factor that controls the variance of the weights, allowing for adjust-
ments between smaller and larger weight initializations.
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Algorithm 1 Get λ-balanced
1: function GET LAMBDA BALANCED(λ, in dim, hidden dim, out dim, σ = 1)
2: if out dim > in dim and λ < 0 then
3: raise Exception(’Lambda must be positive if out dim ¿ in dim’)
4: end if
5: if in dim > out dim and λ > 0 then
6: raise Exception(’Lambda must be positive if in dim ¿ out dim’)
7: end if
8: if hidden dim < min(in dim, out dim) then
9: raise Exception(’Network cannot be bottlenecked’)

10: end if
11: if hidden dim > max(in dim, out dim) and λ ̸= 0 then
12: raise Exception(’hidden dim cannot be the largest dimension if lambda is not 0’)
13: end if
14: W1 ← σ · random normal matrix(hidden dim, in dim)
15: W2 ← σ · random normal matrix(out dim, hidden dim)
16: [U, S, V t]← SVD(W2 ·W1)
17: R← random orthonormal matrix(hidden dim)

18: S2equal dim ←
√(√

λ2 + 4 · S2 + λ
)
/2

19: S1equal dim ←
√(√

λ2 + 4 · S2 − λ
)
/2

20: if out dim > in dim then
21: S2←

[
S2equal dim 0

0 0hidden dim−in dim

]
22: S1←

[
S1equal dim

0

]
23: else if in dim > out dim then
24: S1←

[
S1equal dim 0

0 0hidden dim−out dim

]
25: S2← [S2equal dim 0]
26: end if
27: init W2 ← U · S2 ·RT

28: init W1 ← R · S1 · V t
29: return (init W1, init W2)
30: end function

F.2 Tasks

In the following, we describe the different tasks that are used throughout the simulation studies.

F.2.1 Random regression task

In the random regression task, the inputs X ∈ RNi×N are generated from a standard normal dis-
tribution, X ∼ N (µ = 0, σ = 1). The input data X is then whitened to satisfy 1

NXXT = I.
The target values Y ∈ RNo×N are independently sampled from a normal distribution with variance
scaled according to the number of output nodes, Y ∼ N (µ = 0, α = 1√

No
). Consequently, the

network inputs and target values are uncorrelated Gaussian noise, implying that a linear solution
may not always exist.

F.2.2 Semantic hierarchy

We use the same task as in Braun et al. (2022) and modify it to match the theoretical dynamics.
The modification ensures that the inputs are whitened. In the semantic hierarchy task, input items
are represented as one-hot vectors, i.e., X = I

8 . The corresponding target vectors, yi, encode the
item’s position within the hierarchical tree. Specifically, a value of 1 indicates that the item is a left
child of a node, −1 denotes a right child, and 0 indicates that the item is not a child of that node.
For example, consider the blue fish: it is a blue fish, a left child of the root node, a left child of the
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animal node, not part of the plant branch, a right child of the fish node, and not part of the bird,
algae, or flower branches, resulting in the label [1, 1, 1, 0,−1, 0, 0, 0]. The labels for all objects in
the semantic tree, as shown in Figure 2 A, are given by:

Y = 8 ∗



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (165)

The singular value decomposition (SVD) of the corresponding correlation matrix, Σ̃yx, is not unique
due to identical singular values: the first two, the third and fourth, and the last four values are the
same. To align the numerical and analytical solutions, this permutation invariance is addressed by
adding a small perturbation to each column yi, for i ∈ 1, ..., N , of the labels:

yi = yi ·
(
1 +

0.1

i

)
, (166)

resulting in singular values that are nearly, but not exactly, identical.

F.3 Figure 1

Panels B illustrates three simulations conducted on the same task with varying initial λ-balanced
weights respectively λ = −2, λ = 0, λ = 2. The regression task parameters were set with (σ =√
10). The network architecture consisted of Ni = 3, Nh = 2, No = 2,with a learning rate of

η = 0.0002. The batch size is N = 10. The zero-balanced weights are initialized with variance
σ = 0.00001. The lambda-balanced network are initialized with sigmaxy =

√
1 of a random

regression task with same architecture.

On Panel C , we plot the ballancedness W2(0)
TW2(0)−W1(0)W1(0)

T for a two layer network
initialised with Lecun initialization with dimension Ni = 40 ,Nh= 120 ,No=250

F.4 Figure 2

Panel A, B, C illustrates three simulations conducted on the same task with varying initial λ-balanced
weights respectively λ = −2, λ = 0, λ = 2 according to the initialization scheme described in F.7.
The regression task parameters were set with (σ =

√
10). The network architecture consisted of

Ni = 3, Nh = 2, No = 2 with a learning rate of η = 0.0002. The batch size is N = 10. The
zero-balanced weights are initialized with variance σ = 0.00001. The lambda-balanced network are
initialized with sigmaxy =

√
1 of a random regression task with same architecture.

F.5 Figure 3

Panel A, B, C illustrates three simulations conducted on the same task with varying initial λ-balanced
weights respectively λ = −2, λ = 0, λ = 2 according to the initialization scheme described in F.7.
The regression task parameters were set with (σ =

√
12). The network architecture consisted of

Ni = 3, Nh = 3, No = 3 with a learning rate of η = 0.0002. The batch size is N = 5. The
zero-balanced weights are initialized with variance σ = 0.0009. The lambda-balanced network are
initialized with sigmaxy =

√
12 of a random regression task with same architecture.

F.6 Figure 4

In Panel A presents a semantic learning task with the SVD of the input-output correlation matrix
of the task. U and V represent the singular vectors, and S contains the singular values. This
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decomposition allows us to compute the respective RSMs as USU⊤ for the input and V SV ⊤ for
the output task. The rows and columns in the SVD and RSMs are ordered identically to the items in
the hierarchical tree.

The results in Panel B display simulation outcomes, while Panel C presents theoretical input and
output representation matrices at convergence for a network trained on the semantic task described
in Braun et al. (2022); Saxe et al. (2013),. These matrices are generated using varying initial λ-
balanced weights set at λ = −2, λ = 0, and λ = 2, following the initialization scheme outlined
in F.7. The network architecture includes Ni = 8, Nh = 8, and No = 8 with a learning rate
of η = 0.001 and a batch size of N = 8. Zero-balanced weights are initialized with a variance
of σ = 0.00001, while λ-balanced networks are initialized with σxy =

√
1 based on a random

regression task with the same architecture.

Panel D illustrates results from running the same task and network configuration but initialized with
randomly large weights having a variance of σ = 1.

In panel E, we trained a two-layer linear network with Ni = Nh = No = 4 on a random regression
task for λ ∈ [−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5] to convergence. Subsequently, we added Gaussian
noise with µ = 0, σ ∈ [0, 0.5, 1] to the inputs (top panel) or synaptic weights (bottom panel) and
calculated the expected mean squared error.

F.7 Figure 5

Panel A illustrates schematic representations of the network architectures considered: from left to
right, a funnel network (Ni = 4, Nh = 2, No = 2), a square network (Ni = 4, Nh = 4, No = 4),
and an inverted-funnel network (Ni = 2, Nh = 2, No = 4).

Panel B shows the Neural Tangent Kernel (NTK) distance from initialization, as defined in Fort et al.
(2020), across the three architectures shown schematically. The kernel distance is calculated as:

S(t) = 1− ⟨K0,Kt⟩
∥K0∥F ∥Kt∥F

.

The simulations conducted on the same task with eleven varying initial λ-balanced weights in
[−9, 9]. The regression task parameters were set with (σ =

√
3). The task has batch size N = 10.

The network has with a learning rate of η = 0.01. The lambda-balanced network are initialized with
σxy =

√
1 of a random regression task.

Panel C shows the Neural Tangent Kernel (NTK) distance from initialization for the funnel archi-
tectures shown schematically with dimensions Ni = 3, Nh = 2, and No = 2. The simulations
conducted on the same task with twenty one varying initial λ-balanced weights in [−9, 9]. The re-
gression task parameters were set with (σ =

√
3). The task has batch size N = 30. The network

has with a learning rate of η = 0.002. The lambda-balanced network are initialized with σxy =
√
1

of a random regression task.
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