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Abstract

Foundation Models (FMs) are large-scale models trained on extensive datasets that
can be adapted to a wide range of downstream tasks with minimal fine-tuning. They
have recently also gained attention in Electrocardiogram (ECG) signal analysis.
One of the key properties of FMs is their transferability to a wide range of down-
stream scenarios. However, the adaptation of ECG FMs to downstream scenarios
with fewer available channels (i.e., wearable and portable devices) still has to be
properly investigated. In this work, we propose Self-DANA, an easy-to-integrate
solution that enables FMs to be adaptable to a reduced number of input channels,
ensuring resource efficiency and high performance. We also introduce Random
Lead Selection, a novel augmentation to build more robust and channel-agnostic
FMs. Our experiments on three datasets and five reduced-channel configurations
demonstrate that Self-DANA significantly enhances resource efficiency while
achieving superior or comparable performance to the literature alternative.

1 Introduction

Foundation Models (FM), as defined by [1], are large-scale machine learning models "trained on
broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide
range of downstream tasks". A pivotal role in their development and diffusion was played by Self-
Supervised Learning (SSL), a training paradigm where models learn useful general representations
from unlabeled data by solving auxiliary (pretext) tasks.
Our work primarily focuses on the Electrocardiogram (ECG), a bio-signal that records the heart’s
electrical activity. Recently, a growing interest in SSL methods for ECG analysis [2, 3] has emerged,
leading to the advent of the first ECG FMs [4–8]. Most of them rely on Self-Supervised Contrastive
Learning (SSCL), which learns meaningful representations by solving a contrastive pretext task.
One of the key properties of FMs is transferability, i.e., the ability to generalize to a wide range of
downstream scenarios. A key yet underexplored aspect in the ECG literature is FMs’ adaptability
from the standard 12-lead configuration to downstream scenarios involving a reduced number of
channels (or leads). This aspect is particularly crucial in the wearables or portable devices domain,
which often operates with a limited number of sensors or channels due to size, power consumption,
and user comfort constraints.
Channel-agnostic learning in the ECG field has been explored in PhysioNet/Computing in Cardiology
Challenge 2021 [9, 10], although focused on end-to-end approaches rather than in the context of
FMs. Most of the literature keeps the same channel configuration (usually 12-lead) for pre-train and

∗Corresponding author: giuliana.monachino@supsi.ch

Workshop on Learning from Time Series for Health, 39th Conference on Neural Information Processing Systems
(NeurIPS 2025).



fine-tune, requiring pre-training ad-hoc FMs with fewer leads in case of reduced-lead downstream
tasks (e.g. [5]). Other techniques rely on the combination of 12 leads, so this approach would not
even be possible [11, 12]. A better solution, instead, would be to have a single FM able to adapt to
any downstream scenario with minimal fine-tuning. To date, the only channel-agnostic ECG FM in
the literature is [4], which adopts the technique proposed by [13]. It includes Random Lead Masking
(RLM) during pre-training as contrastive learning augmentation and zero-padding to account for
the dimensionality mismatch in the fine-tuning phase. However, the use of zero-padding makes
this technique computationally inefficient, especially when only a few leads are available for the
downstream task.
In this work, we propose Self-DANA, an easy-to-integrate solution to make SSL architectures
adaptable to reduced lead configurations while ensuring resource efficiency and high performance.
It combines a dimension-adaptive architecture with an ad-hoc augmentation for SSCL pre-training.
This makes FMs adaptable and robust to reduced leads, while optimizing memory and computation.

2 Methods

2.1 Self-DANA
Self-DANA extends and optimizes for SSL frameworks the idea of Dimension Adaptive Neural
Architecture (DANA) proposed in [14] for supervised approaches. As in [14], the first component is
the introduction of the Dimension Adaptive Pooling (DAP) layer, to make the architecture adaptive to
variable input dimensions. In SSL, it also makes pre-trained models adaptable to any reduced-lead
configuration required in the downstream task. Differently to zero-padding, this technique uses
only the available channels, avoiding including additional values that consume memory without
contributing meaningful information. The second element of DANA is the Dimension Adaptive
Training (DAT). We adapt it to SSL frameworks by introducing RLS, a new ad-hoc augmentation.
Through contrastive-learning, it encourages the model to extract representations independent from
the given channel combinations.

2.2 Framework and architecture
We exploited SimCLR [15] as SSL framework for pretraining. Positive pairs are generated with three
different sequences of augmentations depending on the experiment.

• Base augmentations. We apply amplitude scaling, followed by one augmentation randomly
chosen from Gaussian noise, crop and resize, time masking, and time warping.

• Random Lead Masking (RLM). Introduced in [13], RLM consists of randomly masking a
subset of channels by setting their values to 0, while keeping the rest unaltered.

• Random Lead Selection (RLS). Our proposed augmentation consists of randomly selecting
only a subset of the input channels. For both RLM and RLS, we randomly choose, with uniform
probability, both the type (any of the 12 standard ECG leads) and the number of channels to
mask or to select, independently for each branch.

As a backbone, we propose a memory-efficient and dimension-adaptive variant of the architecture
exploited in [13] inspired by [16], which integrates a convolutional feature extractor and a transformer
encoder. To make the feature encoder architecture independent of the number of input channels, we
replaced the original 1D-convolutions with 2D-convolutions with kernel (1, k) and stride (1, s) (i.e.,
only temporal convolution), and we added a DAP layer on top of it. The latter reduces any input
dimension (C, T ) to (1, 156) by applying an average pooling. The backbone is followed by a single
linear layer (projection head) for pre-training and by a fully connected layer with sigmoid activation
(classification head) for the downstream tasks. More details are reported in the Appendix.

2.3 Datasets
Pre-training We pre-trained all the models on a large collection of 12-lead ECGs, from seven open-
access datasets: Code-15% [17, 18], Off-test [19, 20] and five datasets from PhysioNet/Computing in
Cardiology Challenge 2021 [9, 10, 21, 22]: (Ningbo [23], Chapman-Shaoxing [24], INCART, CPSC
and CPSC-extra [25]. This amounts to a total of 406’117 recordings from 295’245 different subjects
(855’424 5-second 12-lead ECG windows after segmentation).
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Fine-tuning The main experiments have been conducted on the out-of-domain Georgia dataset
[9, 10, 21, 22], for consistency with [13]. We additionally conducted performance comparison on
two other out-of-domain datasets (i.e., never seen during pre-training): PTB-XL [21, 26, 27], a
well-known benchmarking dataset, and CinC2017 dataset [21, 28], recorded with a single-lead heart
monitor. Georgia and PTB-XL have been used to classify cardiac abnormalities (23 for Georgia and
22 for PTB-XL) in a multi-label setting (up to 7 for each ECG) from reduced-lead ECGs; CinC2017,
instead, to address a binary atrial fibrillation detection task. Georgia includes 9’458 12-lead ECGs,
PTB-XL 21’604 12-lead ECGs, and CinC2017 8’528 single-lead (lead I) ECGs. To evaluate model
adaptability to various reduced-leads configurations, five reduced-lead datasets have been extracted
from Georgia and PTB-XL, by selecting the following leads from the original datasets, as in [13]:
12-lead, 6-lead (I, II, III, aVF, aVL, aVR), 3-lead (I, II, V2), 2-lead (I, II), and 1-lead (I).

All datasets have been preprocessed using the same procedure: resampling at 500 Hz, segmentation
into non-overlapping 5s windows, and filtering. More details are provided in the Appendix.

2.4 Experiments
Three main experiments have been conducted and repeated five times with different seeds. Pre-training
and fine-tuning experimental setup is also graphically represented in the Appendix.

(i) DAP layer We examined whether the DAP layer adoption, compared to zero-padding, enhances
resource efficiency without sacrificing performance. We pre-trained a baseline model (PT-base) with
all 12 leads and only the base augmentations. We then fine-tuned on the five reduced-leads datasets:

• FT-base-ZP: zero-padding is applied to match the required input number of channels (12)
• FT-base-DAP: the DAP layer is exploited to adapt to the available number of channels

(ii) Self-DANA We evaluated whether the combination with the ad-hoc RLS augmentation is
beneficial for the DAP layer approach. We also compared this setup with the RLM-based approach to
ensure that the improved computational efficiency was not associated with a performance deterioration.
We pre-trained PT-RLM applying the base augmentations and RLM and PT-RLS applying the base
augmentations and RLS. We then fine-tuned them on the five reduced-leads datasets:

• FT-RLM-ZP: PT-RLM model has been fine-tuned on the downstream task, applying zero-
padding to keep the number of channels always equal to 12, as in [13].

• FT-RLM-DAP: PT-RLM model has been fine-tuned on the downstream task without zero-
padding, exploiting the DAP layer to keep the reduced number of channels.

• Self-DANA: PT-RLS model has been fine-tuned on the downstream task without zero-padding,
exploiting the DAP layer to keep the reduced number of channels.

(iii) Channel-adaptive FM vs channel-specific supervised models We investigated the benefit of
fine-tuning a channel-adaptive FM on the desired task and lead configuration, rather than training
different channel-specific models from scratch. Specifically, for each of the five reduced-lead
configurations, we trained a dedicated fully supervised model using only the available channels.

Evaluation We assessed both classification performance and computational efficiency during fine-
tuning. Performance on Georgia test set is primarily evaluated through CinC score, introduced for
the challenge [9, 10] and used in [13]. Additionally, macro AUROC, macro F1 score, and weighted
F1 score have been computed for Georgia and PTB-XL datasets, while AUROC, macro F1 score,
weighted F1 score, and accuracy for CinC2017. Computational efficiency is evaluated in terms of
peak memory usage and training time normalized by the number of epochs, for both CPU and GPU.

3 Results

3.1 Performance
Table 1 includes the results of experiments (i), (ii), and (iii) on Georgia dataset. Additional evaluation
with other metrics and with PTB-XL and CinC2017 datasets is provided in the Appendix.

(i) DAP layer For all configurations, FT-base-DAP achieves comparable or slightly better per-
formance than FT-base-ZP. It proves the feasibility of using the DAP layer as an alternative to
zero-padding, without causing a performance drop.
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Table 1: CinC score obtained in experiments (i), (ii) and (iii) on the five Georgia reduced-leads test
sets. Results are reported as mean ± standard deviation. Best results (highest CinC score) in bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Supervised 0.578 ± 0.006 0.573 ± 0.007 0.574 ± 0.005 0.581 ± 0.002 0.547 ± 0.003

FT-base-ZP 0.600 ± 0.005 0.589 ± 0.004 0.595 ± 0.009 0.590 ± 0.006 0.562 ± 0.004
FT-base-DAP 0.600 ± 0.005 0.595 ± 0.003 0.600 ± 0.005 0.598 ± 0.005 0.568 ± 0.005

FT-RLM-ZP 0.612 ± 0.006 0.606 ± 0.002 0.610 ± 0.003 0.611 ± 0.006 0.585 ± 0.004
FT-RLM-DAP 0.612 ± 0.006 0.603 ± 0.007 0.608 ± 0.003 0.609 ± 0.005 0.578 ± 0.003

Self-DANA 0.619 ± 0.009 0.613 ± 0.004 0.617 ± 0.009 0.618 ± 0.008 0.583 ± 0.004

Table 2: Peak CPU and GPU memory and average epoch training time for FT-RLM-ZP and Self-
DANA during fine-tuning. Best results (lowest peak memory and lowest normalized time) in bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Pe
ak

C
PU

m
em

.
(M

B
) FT-RLM-ZP 58.68 58.68 58.68 58.68 58.68

Self-DANA 58.68 29.39 18.00 18.00 18.00

Pe
ak

G
PU

m
em

.
(G

B
) FT-RLM-ZP 23.19 23.19 23.19 23.19 23.19

Self-DANA 23.19 18.84 16.66 15.93 15.21

A
vg

C
PU tim

e
(s

) FT-RLM-ZP 137.71 ± 6.59 123.50 ± 11.28 123.56 ± 10.52 119.39 ± 7.34 118.82 ± 8.92
Self-DANA 140.43 ± 3.74 116.37 ± 0.89 105.95 ± 0.76 102.72 ± 0.79 98.84 ± 0.88

A
vg

G
PU

tim
e

(s
) FT-RLM-ZP 139.58 ± 0.97 139.81 ± 0.54 139.88 ± 0.37 139.68 ± 0.49 140.00 ± 0.41

Self-DANA 140.13 ± 0.10 122.08 ± 0.08 113.10 ± 0.16 110.17 ± 0.22 107.43 ± 0.12

(ii) Self-DANA Self-DANA consistently outperforms FT-base-DAP across all configurations, with
RLS enhancing model robustness, even in the absence of lead configuration mismatch (12-lead). The
combination of DAP layer and RLM (FT-RLM-DAP) achieves lower performance than Self-DANA
and FT-RLM-ZP, suggesting that RLM needs to be combined with zero padding to better exploit its
potential. Finally, Self-DANA is comparable or slightly superior to FT-RLM-ZP, further establishing
our approach as a valid alternative to the RLM technique.
We provide reference CinC score values from the literature, even though test datasets and conditions
were slightly different, and contrary to us, the other works included Georgia also in pre-training
(in-domain). The performance obtained by [13] with SimCLR framework and RLM on Georgia and
CPSC test sets combined are: 0.578± 0.015 for 12-lead, 0.497± 0.002 for 6-lead, 0.535± 0.015 for
3-lead, 0.484±0.004 for 2-lead and 0.393±0.012 for 1-lead configurations (mean ± 95% confidence
interval). The winner [29] of the PhysioNet/Computing in Cardiology Challenge 2021 obtained an
average CinC score of 0.61 (mean between 12, 3, and 2 leads) on the (unavailable) Georgia test set.

(iii) Channel-adaptive FM vs channel-specific supervised models Self-DANA consistently
outperforms the supervised counterpart across all five configurations, further supporting that it is ben-
eficial to exploit a channel-adaptive FM to obtain a model robust to reduced-lead lead configurations.

3.2 Resource efficiency
In Table 2, we compared Self-DANA and the reference FT-RLM-ZP in terms of resource efficiency.
Both the peak GPU and CPU memory required by Self-DANA are considerably lower for all reduced-
lead configurations and, as expected, decrease with the number of available channels. Self-DANA
saves up to 34.41% GPU memory and up to 69.32% CPU memory, highlighting its superior efficiency.
With Self-DANA, the average time per training epoch is lower, or comparable for the 12-lead case,
and the standard deviations are considerably lower, indicating greater stability in the results.

4 Conclusions
Self-DANA offers an easy-to-integrate yet powerful solution for adapting FMs to reduced-lead
scenarios, achieving performance comparable to the alternative proposed in the literature with
significantly improved memory and computational efficiency. By combining the DAP layer, to avoid
zero-padding, with our RLS augmentation, for enhanced robustness to reduced-leads configurations,
Self-DANA stands out as a strong candidate for portable and wearable applications. Future works will
assess its applicability to non-CL frameworks and other signal modalities and multimodal settings.
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A Technical Appendices and Supplementary Material
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Figure 1: Overview of the experimental design, including the pre-training and fine-tuning procedures.
The diagram illustrates how the Dimension Adaptive Pooling (DAP) layer and Random Lead Selection
(RLS) components were integrated and evaluated across different experimental conditions.

A.1 Base augmentations

This section provides a description and parameters related to the five augmentations exploited in the
base augmentations sequence. Amplitude scaling, Gaussian noise, crop and resize, time masking,
and time warping have been selected as they are basic augmentation techniques usually exploited in
the literature for ECG signals and are suitable for our context. To encourage the model to learn more
robust representations, we apply first amplitude scaling, followed by one augmentation randomly
chosen from the remaining four.

Amplitude scaling It multiplies the signal’s amplitude by a random scaling factor s. This trains
the model to be invariant to amplitude differences that may arise from patient-specific variations
or electrode placement, encouraging the encoder to focus on morphological patterns and temporal
structure rather than absolute signal magnitude. Based on the results of [30], we randomly select,
for each ECG window, a scaling factor s in the range of 0.5 to 1.7, meaning that the ECG will be
rescaled between 50% and 170% of its original amplitude.

Gaussian noise It simulates the noise inherently present in real-world settings, due to electrode
movement, muscle artifacts, etc. The augmented ECG view is obtained by adding Gaussian noise
ϵ ∼ N (0, σ2). Based on the results of [30], we randomly select, for each ECG window, a standard
deviation value σ in the range of 0.1 to 0.25, introducing minor variability while preserving the core
structure of the signal.

Crop and resize It consists of cropping a random contiguous portion of the ECG signal and then
resizing it back to the original length via interpolation. This transformation changes the temporal
resolution but retains overall shape information. Following [31], a portion of the signal, with a
randomly determined length between 50% and 100% of the original signal, is randomly cropped. The
cropped segment is then resized to the target length using cubic spline interpolation.

Time masking It emulates signal dropout or corruption by setting a random portion of the signal
to zero. This improves the model’s robustness to missing or noisy data, forcing it to reconstruct or
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interpret partial signals. Based on the results of [30, 31], we randomly select the masking ratio within
the range of 0% to 50% of the signal length and then mask with zeros a random portion of the desired
length.

Time warping It transforms the temporal structure of signals by stretching or squeezing random
segments, helping the model handle variations in heart rate and temporal dynamics. A random number
of segments, ranging from 4 to 9, is first selected. These segments are then randomly designated to
be either stretched by a factor of 2 or squeezed by a factor of 0.5. To match the original length after
these temporal modifications, resampling is performed using piecewise cubic Hermite interpolating
polynomials (PCHIP). For the implementation, we refer to [32, 33].

A.2 Architectural details

Pre-training and fine-tuning experimental setup is graphically represented in Figure 1. The DAP layer
has been included also in FT-base-ZP and FT-RLM-ZP, to ensure a fair comparison, but it is inactive,
i.e., it is used as a classic average pooling layer, since the input channels are always 12, as in the
pre-training phase.

Backbone A detailed scheme of the backbone architecture with hyperparameters is provided in
Table 3, while a graphical overview is shown in Figure 2. The convolutional feature extractor includes
four convolutional blocks, while the transformer encoder comprises a convolutional positional encoder
and a sequence of 12 transformer-encoder blocks, each with 12 self-attention heads. The transformer
encoder is identical to the one used in [13], while in the feature encoder, we replaced 1D convolutions
with 2D convolutions and added the DAP layer on top. Moreover, since it was not needed with the
SimCLR framework, the masking and quantization operations present in [13] have been omitted.

Pre-training For the pre-training phase, we exploited a projection head consisting of a fully
connected layer with input dimension 768 and output dimension 256, followed by a 1D batch
normalization layer applied to the 256 output neurons, as in [13]. The backbone comprises 90’367’616
parameters, and the projection head contributes an additional 197’376, resulting in a total parameter
count of 90’564’992.
For the self-supervised pre-training with the SimCLR framework, we employed the original loss
function, i.e., the NT-Xent loss function, defined as

ℓi,j = − log
exp

(
sim(zi,zj)

τ

)
2N∑
k=1

1[k ̸=i] exp
(

sim(zi,zk)
τ

) (1)

where zi and zj are the projected representations of the positive pair, sim(u,v) = u⊤v
∥u∥∥v∥ is the

cosine similarity, τ is a temperature parameter, and N is the batch size.
Specifically, we set τ = 0.5 and N = 128.

Fine-tuning For the fine-tuning phase, we replaced the projection head with a classification head
composed of a fully connected layer with input dimension 768 and output dimension 23 (number of
classes of the downstream task) and a sigmoid activation function. The classification head accounts
for a total of 796 parameters.
To address the cardiac abnormality classification task, where multiple labels can be associated with a
single recording, we employed a binary cross-entropy loss function applied independently to each of
the 23 output neurons, enabling the model to learn the presence or absence of each class.

Source code For the implementation of the encoder and projection head architecture, we refer
to the source code provided in [34], reporting the architecture exploited in [13] and [4]. Unless
otherwise specified in this Appendix, we kept the same hyperparameters as in the original work and
code. The rest of the code structure, including the SimCLR framework, builds upon the selfEEG
library [32, 33].
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Table 3: Detailed backbone architecture with hyperparameters.

Layer Hyperparameters Output Shape
input - [B, C, 2500]

Convolutional feature encoder

Conv2D k=(1,2), s=(1,2) [B, 256, C, 1250]
GroupNorm n_groups=256, eps=1e-5 [B, 256, C, 1250]
GELU - [B, 256, C, 1250]
Conv2D k=(1,2), s=(1,2) [B, 256, C, 625]
GELU - [B, 256, C, 625]
Conv2D k=(1,2), s=(1,2) [B, 256, C, 312]
GELU - [B, 256, C, 312]
Conv2D k=(1,2), s=(1,2) [B, 256, C, 156]
GELU - [B, 256, C, 156]
Adaptive Avg Pool out_dim=(1,156) [B, 256, 1, 156]
Flatten dim=2 [B, 256, 156]

Transpose - [B, 156, 256]
LayerNorm norm_shape=256, eps=1e-05 [B, 156, 256]
Linear in_dim=256, out_dim=768 [B, 156, 768]
Dropout p=0.1 [B, 156, 768]

Convolutional positional encoder

Conv1D k=128, s=1, pad=64, groups=16 [B, 768, 157]
Padding - [B, 768, 156]
GELU - [B, 768, 156]
Transpose - [B, 156, 768]

Transformer encoder

LayerNorm norm_shape=768, eps=1e-05 [B, 156, 768]
Dropout p=0.1 [B, 156, 768]
Transpose - [156, B, 768]

Transformer-encoder blocks (x 12)

MultiHead Attention embed_dim=768, n_heads=12, dropout=0.1, q=k=v=768 [156, B, 768]
Dropout p=0.1 [156, B, 768]
LayerNorm norm_shape=768, eps=1e-05 [156, B, 768]
Linear in_dim=768, out_dim=3072 [156, B, 3072]
GELU - [156, B, 3072]
Linear in_dim=3072, out_dim=768 [156, B, 768]
Dropout p=0.1 [156, B, 768]
LayerNorm norm_shape=768, eps=1e-05 [156, B, 768]
Transpose - [B, 156, 768]
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Figure 2: Graphical representation of backbone architecture.
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A.3 Datasets

This section supplies further information about the datasets exploited in pre-training and fine-tuning
experiments. Then, the datasets’ analyses in terms of distributions of recordings and labels across the
split sets and the preprocessing applied are also provided.

CPSC and CPSC-extra CPSC and CPSC-extra datasets, from PhysioNet/Computing in Cardiology
Challenge 2021, derive from the China Physiological Signal Challenge in 2018 (CPSC2018). It
consists of two sets of 6,877 (male: 3,699; female: 3,178) and 3,453 (male: 1,843; female: 1,610) of
12-ECG recordings lasting from 6 seconds to 60 seconds. Each recording is sampled at 500 Hz.

INCART St Petersburg INCART 12-lead Arrhythmia Database (INCART) dataset, from Phys-
ioNet/Computing in Cardiology Challenge 2021, consists of 74 annotated recordings extracted from
32 Holter records. Each record is 30 minutes long and contains 12 standard leads, each sampled at
257 Hz.

Chapman-Shaoxing and Ningbo Chapman University, Shaoxing People’s Hospital (Chapman-
Shaoxing) dataset and Ningbo First Hospital (Ningbo) dataset, from PhysioNet/Computing in Cardi-
ology Challenge 2021, contain a total of 45,152 ECGs (all shared as training data). Each recording is
10 seconds long with a sampling frequency of 500 Hz.

Code-15% CODE-15% dataset is a subset of the larger CODE dataset, created through stratified
sampling to include 15% of the patients. It consists of 345,779 annotated 12-lead ECG exams from
233,770 patients. The data was collected by the Telehealth Network of Minas Gerais (TNMG), a
public telehealth system serving most municipalities in Minas Gerais, Brazil, between 2010 and 2016.

Off-test Offline Test Set of ECG Multi-label Classification (Off-test dataset is the offline test set for
the study "Practical arrhythmias detection algorithm for wearable 12-lead ECG via self-supervised
learning on large-scale dataset." It includes 7,000 12-lead wearable ECG recordings, each 15 seconds
long with a sampling frequency of 500 Hz. The data covers 60 rhythm classes, all reviewed and
diagnosed by cardiologists and spanning a wide range of normal and abnormal heart conditions.

Georgia Georgia dataset, from PhysioNet/Computing in Cardiology Challenge 2021, represents
a unique demographic of the Southeastern United States. It includes 20,672 ECG recordings, with
10,344 used for training, 5,167 for validation, and 5,161 for testing. Each ECG lasts between 5 and
10 seconds and is sampled at a frequency of 500 Hz.
We used just the training set of this dataset since it is the only one made available. Each recording is
associated with multiple (up to 7) cardiac abnormalities, for a total of 833 different label combinations.

PTB-XL PTB-XL dataset contains 21’799 clinical 12-lead ECG recordings, each 10 seconds long,
from 18’869 patients aged 0 to 95 years (median age 62), with a balanced gender distribution.
The data was collected using Schiller AG devices between 1989 and 1996 and with a sampling
frequency of 500 Hz. Each ECG was annotated by up to two cardiologists with a report string,
which was converted into a standardized set of 71 standardized SCP-ECG diagnostic, form, and
rhythm statements, and validated by technical experts. Along with the raw waveform data, the dataset
includes patient metadata such as age, sex, weight, and height. The dataset is valuable for its broad
representation of cardiac conditions, including many healthy controls, and comprehensive annotations
with unique ECG and patient identifiers.
In our work, we exploited the recommended split provided with the dataset. Each recording is
associated with multiple (up to 7) cardiac abnormalities, for a total of 682 different label combinations.

CinC2017 The 2017 PhysioNet/CinC Challenge (CinC2017) dataset consists of single-lead ECGs
recorded with the AliveCor device, which were provided by the company for use in the challenge. The
training set comprises 8’528 recordings with durations ranging from 9 seconds to over 60 seconds,
while the test set includes 3’658 recordings of similar lengths. All recordings were sampled at 300
Hz and underwent bandpass filtering as part of the device’s preprocessing. The dataset includes four
label categories: normal sinus rhythm, atrial fibrillation (AF), other rhythms, and noisy signals. In
our study, we used only the training set of the CinC2017 dataset, splitting it into train, validation,
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and test sets. For the classification task, we framed it as a binary problem: distinguishing AF from
non-AF recordings (normal sinus rhythm, other rhythms, and noisy recordings).

Preprocessing All pre-training and fine-tuning datasets have been prepared using the same pro-
cedure: resampling at 500 Hz, segmentation into non-overlapping 5s windows, and pre-processing.
First, resampling was done, when needed, to a frequency of 500 Hz. Then, each recording has
been segmented into non-overlapping 5s windows. Finally, each window has been pre-processed
by removing the mean and applying a 5th-order moving average filter and a Butterworth 4th-order
band-pass filter with cutoff frequencies of 0.5 and 40 Hz.

Splits Pre-training datasets have been split into training and validation sets according to an 80:20
ratio and source dataset stratification. Fine-tuning datasets, instead, have been split into training,
validation, and test sets according to an 80:10:10 ratio and label stratification. All the splits have been
performed on a subject basis to ensure all the recordings of a subject fall in the same split set.

A.4 Experimental settings

Training details During the pre-training phase, we employed the Adam optimizer with an expo-
nential decay setting an initial learning rate lr = 5e − 5 and a decay factor γ = 0.97. We trained
our models for a maximum of 100 epochs, applying early stopping based on validation loss with a
patience of 10 and a minimum improvement threshold of 1e− 5. During the fine-tuning phase, we
employed the Adam optimizer with an exponential decay setting an initial learning rate lr = 1e− 5
and a decay factor γ = 0.97. We trained our models for a maximum of 50 epochs, applying early
stopping based on validation loss with a patience of 10 and a minimum improvement threshold of
1e− 3. We repeated the fine-tuning five times with different seeds (0, 1, 2, 3, 4). In experiments i and
ii, full fine-tuning was carried out to address the downstream tasks.
The experiments have been performed on a cluster with an L40S GPU with 46068 MiB of RAM.

Data sampling strategies For batch generation, we exploited two different sampling strategies
for the pre-training and fine-tuning phases. During pre-training, we employed a batch size of 128
5s-segments. We populate the batches by sampling the segments from the whole pre-training set
with uniform distribution. During fine-tuning, we employed a batch size of 128 5s-segments. To
balance the labels distribution in the batch, we first select one of the 23 cardiac abnormalities with
random uniform sampling (class sampling); we then randomly chose a subject (subject sampling)
and a recording (recording sampling) containing the desired label; and, finally, we randomly select
a 5s-segment from that recording. An epoch is concluded after Nb = Tr/N batches, where Tr is
equal to the number of 5s segments in the train set, and N is the batch size.
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A.5 Supplementary results

Datasets analysis Table 4 and 5 report the number of subjects, recordings, and 5s windows for each
split set of pre-training and fine-tuning datasets, respectively. The label distribution in the Georgia
and PTB-XL multi-label datasets and its corresponding splits is presented in two forms: by counting
the occurrence of each label across recordings (see Table 6 and Figure 3 for Georgia and Table 8
and Figure 4 for PTB-XL), and by analyzing the different unique label combinations assigned to
the recordings (see Table 7 for Georgia and Table 9 for PTB-XL). For CinC2017, instead, the label
distribution is reported in Table 10 and Figure 5.

Table 4: Number of subjects (sbj), recordings (rec), and 5s windows (win) in training and validation
sets of the pre-training datasets

Train Validation

sbj rec win sbj rec win

Code-15% 186131 274850 549700 46601 68712 137424
Ningbo 27923 27923 55846 6981 6981 13962
INCART 25 59 21240 7 15 5400
Off-test 5600 5600 16800 1400 1400 4200
Chapman-Shaoxing 8198 8198 16396 2049 2049 4098
CPSC 5493 5493 16138 1384 1384 4024
CPSC-extra 2741 2741 8175 712 712 2021

Total 236111 324864 684295 59134 81253 171129

Table 5: Number of subjects (sbj), recordings (rec), and 5s windows (win) in training, validation and
test sets of the fine-tuning datasets

Train Validation Test

sbj rec win sbj rec win sbj rec win

Georgia 6745 6745 13450 1147 1147 2292 1566 1566 3130
PTB-XL 14960 17284 34568 1900 2160 4320 1870 2160 4320
CinC2017 7608 7608 43649 464 464 5472 456 456 5472
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Table 6: Number of 5s windows in which each label is present in train, validation, test, and whole
Georgia dataset. A description of the label acronym is also provided.

Label Description All Train Validation Test
TAb T wave abnormal 4605 3074 598 933
NSR Normal sinus rhythm 3487 2787 350 350
SB Sinus bradycardia 3345 2331 414 600
LQT Prolonged QT interval 2774 1825 355 594
STach Sinus tachycardia 2522 1728 336 458
LAD Left axis deviation 1878 1098 280 500
TInv T wave inversion 1620 889 238 493
IAVB First degree av block 1535 891 224 420
PAC Premature atrial contraction 1277 720 186 371
AF Atrial fibrillation 1138 676 158 304
RBBB Right bundle branch block 1110 647 170 293
QAb Q wave abnormal 927 527 118 282
SA Sinus arrhythmia 909 559 118 232
IRBBB Incomplete right bundle branch block 809 392 128 289
LQRSV Low QRS voltages 747 463 108 176
PVC Premature ventricular contractions 713 326 111 276
LBBB Left bundle branch block 462 250 74 138
NSIVCB Nonspecific intraventricular conduction disorder 406 154 64 188
AFL Atrial flutter 372 178 56 138
LAnFB Left anterior fascicular block 360 174 56 130
BBB Bundle branch block 231 120 40 71
RAD Right axis deviation 163 49 29 85
Brady Bradycardia 12 6 2 4

Figure 3: Label distribution of the Georgia dataset and in its train, validation, and test subsets. Labels’
acronyms are described in Table 6.
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Table 7: Number of 5s windows for each set of labels in training, validation, test, and whole Georgia
dataset. Only the first and the last 25 more frequent label combinations (out of 833) are reported here.

Set of labels All Train Validation Test
NSR 3487 2787 350 350
SB 1433 1145 144 144
STach 1016 812 102 102
TAb 893 713 90 90
LQT 808 644 82 82
SA 386 306 40 40
LQT, TAb 384 304 40 40
LAD 340 272 34 34
PAC 322 254 34 34
TInv 288 228 30 30
AF 285 225 30 30
IAVB 258 206 26 26
STach, TAb 258 206 26 26
TAb, QAb 226 178 24 24
RBBB 224 176 24 24
LQRSV 207 163 22 22
IAVB, SB 203 159 22 22
TAb, TInv 187 147 20 20
TAb, SB 178 142 18 18
PVC 134 106 14 14
SA, SB 134 106 14 14
IRBBB 128 100 14 14
AF, TAb 126 98 14 14
LAD, SB 125 97 14 14
LAnFB 96 76 10 10

...

LAD, STach, IAVB, BBB, LBBB, PAC 2 0 0 2
AF, TInv, IRBBB 2 0 0 2
PAC, SA, SB 2 0 0 2
QAb, TAb, SB, LQT, SA 2 0 0 2
LAnFB, TAb, SA 2 0 0 2
IAVB, SA, PAC 2 0 0 2
NSIVCB, AFL, SB 2 0 0 2
LAnFB, LQT, SB 2 0 0 2
AF, TAb, PVC, QAb 2 0 0 2
NSIVCB, LAD, LQT, SB 2 0 0 2
AF, TAb, IRBBB, RBBB, LQT 2 0 0 2
PAC, TAb, SA, QAb 2 0 0 2
LAD, TAb, SB, LQT, PAC 2 0 0 2
RAD, TAb, QAb 2 0 0 2
LAD, TAb, IRBBB, TInv, AFL 2 0 0 2
LAD, TAb, TInv, STach 2 0 0 2
LAD, TAb, IAVB, TInv, LQT, PAC 2 0 0 2
LAD, STach, PVC, IRBBB 2 0 0 2
RAD, SA, TInv 2 0 0 2
QAb, TInv, SB 2 0 0 2
AF, TAb, TInv, AFL 2 0 0 2
AF, TAb, PAC 2 0 0 2
AF, TAb, IRBBB, RBBB, SB 2 0 0 2
LAD, IAVB, BBB, LBBB, PVC 2 0 0 2
BBB, RBBB, PAC 1 0 0 1
RAD, TAb, TInv, IRBBB 1 0 0 1
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Table 8: Number of 5s windows in which each label is present in train, validation, test, and whole
PTB-XL dataset. A description of the label acronym is also provided.

Label Description All Train Validation Test
NSR Normal sinus rhythm 36184 28894 3658 3632
LAD Left axis deviation 10292 8278 984 1030
TAb T wave abnormal 4690 3722 460 508
LAnFB Left anterior fascicular block 3252 2594 338 320
AF Atrial fibrillation 3028 2454 278 296
IRBBB Incomplete right bundle branch block 2236 1810 216 210
STach Sinus tachycardia 1652 1304 172 176
IAVB First degree av block 1594 1286 146 162
NSIVCB Nonspecific intraventricular conduction disorder 1578 1248 168 162
SA Sinus arrhythmia 1544 1262 148 134
SB Sinus bradycardia 1274 1038 108 128
PAC Premature atrial contraction 1110 888 130 92
QAb Q wave abnormal 1096 852 134 110
RBBB Right bundle branch block 1084 860 104 120
LBBB Left bundle branch block 1072 886 86 100
RAD Right axis deviation 686 550 74 62
LPR Prolonged PR interval 680 542 80 58
PR Pacing rhythm 592 496 48 48
TInv T wave inversion 588 456 54 78
LQRSV Low QRS voltages 364 294 32 38
LQT Prolonged QT interval 236 188 22 26
AFL Atrial flutter 146 120 18 8

Figure 4: Label distribution of the PTB-XL dataset and in its train, validation, and test subsets.
Labels’ acronyms are described in Table 8.
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Table 9: Number of 5s windows for each set of labels in training, validation, test, and whole PTB-XL
dataset. Only the first and the last 25 more frequent label combinations (out of 682) are reported here.

Set of labels All Train Validation Test
NSR 18532 14818 1830 1884
LAD, NSR 3820 3022 394 404
NSR, TAb 2222 1730 244 248
LAD, NSR, LAnFB 1336 1080 142 114
AF 1030 836 98 96
IRBBB, NSR 928 740 104 84
NSR, SA 696 564 58 74
PR 552 468 40 44
NSR, SB 526 420 58 48
NSIVCB, NSR 470 354 68 48
TAb, AF 400 334 34 32
LAD, AF 390 310 38 42
LAD, TAb, NSR 364 294 30 40
LAD, LBBB, NSR 346 286 32 28
NSR, STach 338 262 46 30
NSR, PAC 334 252 48 34
NSR, QAb 334 254 46 34
NSR, IAVB 308 270 24 14
STach 288 226 28 34
NSR, LBBB 248 202 24 22
IRBBB, LAD, NSR 236 194 22 20
NSR, RBBB 218 172 26 20
NSIVCB, LAD, NSR 216 180 16 20
NSR, RAD 214 162 30 22
SA 210 170 24 16

...

AF, QAb, LAnFB 2 2 0 0
IRBBB, TAb, SB 2 2 0 0
NSR, LQRSV, IAVB 2 0 0 2
QAb, LPR, NSR, LAD, LAnFB 2 0 2 0
LAD, PAC, RBBB 2 2 0 0
AF, LAD, QAb, LQRSV 2 2 0 0
NSR, TAb, SB 2 2 0 0
LQRSV, RAD, STach 2 2 0 0
NSR, TAb, IAVB, IRBBB, LAD 2 2 0 0
LAD, PAC, LQT 2 2 0 0
RBBB, STach, IAVB 2 2 0 0
AF, RBBB, RAD, IAVB 2 2 0 0
IRBBB, PR, RAD 2 0 0 2
NSIVCB, RAD, SB 2 2 0 0
NSR, SB, IRBBB, LAD, LAnFB 2 2 0 0
NSR, TAb, QAb, IAVB 2 2 0 0
IRBBB, SB, IAVB 2 2 0 0
LAnFB, LAD, NSR, SA 2 2 0 0
PR, SB 2 0 0 2
NSIVCB, LAD, IAVB, LAnFB 2 2 0 0
RBBB, IAVB 2 0 2 0
IRBBB, LAD, AF, LQRSV 2 2 0 0
LAD, QAb, STach 2 2 0 0
LAD, QAb, SB, LAnFB 2 2 0 0
LBBB, AF, IAVB 2 0 2 0
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Table 10: Number of 5s windows in which each label is present in train, validation, test, and whole
CinC2017 dataset. A description of the label acronym is also provided.

Label Description All Train Validation Test
not AF Not atrial fibrillation 49760 39800 4980 4980
AF Atrial fibrillation 4833 3849 492 492
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Figure 5: Label distribution of the CinC2017 dataset and in its train, validation, and test subsets.
Labels’ acronyms are described in Table 10.
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Learning curves Figure 6 and 7 report the validation and training loss obtained, respectively, during
the pre-training and fine-tuning of all the models and configurations considered in our experiments.

Figure 6: Training and validation loss curves during pre-training for the three models (PT-base,
PT-RLM and PT-RLS).

17



Figure 7: Training and validation loss curves during fine-tuning for all the models and reduced-lead
configurations of our experiments.
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Other single-lead models Table 11 reports the performance obtained by repeating our experiments
with each of the 12 standard ECG leads in a single-lead setting. Self-DANA achieves the best
performance for all 12 single-lead configurations, except for I, III, and aVF, for which it is comparable
to the best results.

Table 11: CinC score obtained in experiments (i), (ii) and (iii) on the Georgia test sets of the 12
single-lead configurations. Results are reported as mean ± standard deviation. Best results (highest
CinC score) in bold.

I II III aVR aVL aVF

Supervised 0.547
±0.003

0.563
±0.003

0.510
±0.008

0.569
±0.006

0.516
±0.003

0.536
±0.003

FT-base-ZP 0.562
±0.004

0.577
±0.005

0.539
±0.008

0.579
±0.001

0.541
±0.005

0.554
±0.006

FT-base-DAP 0.568
±0.005

0.582
±0.003

0.545
±0.004

0.582
±0.003

0.544
±0.002

0.558
±0.003

FT-RLM-ZP 0.585
±0.004

0.599
±0.008

0.560
±0.004

0.597
±0.008

0.562
±0.004

0.575
±0.005

FT-RLM-DAP 0.578
±0.003

0.596
±0.010

0.567
±0.008

0.589
±0.010

0.557
±0.005

0.575
±0.005

Self-DANA 0.583
±0.004

0.600
±0.005

0.564
±0.005

0.607
±0.008

0.567
±0.004

0.574
±0.005

v1 v2 v3 v4 v5 v6

Supervised 0.531
±0.006

0.533
±0.007

0.541
±0.005

0.551
±0.009

0.548
±0.006

0.545
±0.007

FT-base-ZP 0.549
±0.004

0.550
±0.002

0.559
±0.003

0.567
±0.007

0.569
±0.004

0.572
±0.003

FT-base-DAP 0.550
±0.002

0.550
±0.002

0.560
±0.008

0.572
±0.004

0.579
±0.002

0.575
±0.002

FT-RLM-ZP 0.568
±0.004

0.573
±0.003

0.578
±0.009

0.589
±0.010

0.590
±0.006

0.585
±0.006

FT-RLM-DAP 0.571
±0.001

0.569
±0.003

0.573
±0.006

0.579
±0.007

0.590
±0.002

0.584
±0.006

Self-DANA 0.572
±0.011

0.573
±0.004

0.584
±0.005

0.596
±0.005

0.597
±0.004

0.595
±0.003
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Other metrics Table 12, 13, and 14 report the performance obtained on the Georgia dataset in
terms of macro AUROC, macro F1 score, and weighted F1 score, respectively. Self-DANA always
achieves the best performance for all configurations, or performance comparable to the best results,
confirming our findings.

Table 12: Macro AUROC obtained in experiments (i), (ii) and (iii) on the five Georgia reduced-leads
test sets. Results are reported as mean ± standard deviation. Best results (highest macro AUROC) in
bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Supervised 0.808
±0.010

0.814
±0.012

0.812
±0.006

0.832
±0.007

0.775
±0.010

FT-base-ZP 0.828
±0.003

0.813
±0.003

0.830
±0.006

0.831
±0.009

0.800
±0.006

FT-base-DAP 0.828
±0.003

0.823
±0.004

0.829
±0.007

0.842
±0.004

0.810
±0.001

FT-RLM-ZP 0.843
±0.008

0.836
±0.008

0.843
±0.007

0.849
±0.011

0.812
±0.006

FT-RLM-DAP 0.843
±0.008

0.835
±0.009

0.840
±0.008

0.848
±0.010

0.812
±0.006

Self-DANA 0.844
±0.004

0.840
±0.005

0.844
±0.004

0.853
±0.004

0.813
±0.008

Table 13: Macro F1 score obtained in experiments (i), (ii) and (iii) on the five Georgia reduced-leads
test sets. Results are reported as mean ± standard deviation. Best results (highest macro F1 score) in
bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Supervised 0.394
±0.007

0.389
±0.009

0.386
±0.002

0.396
±0.008

0.358
±0.005

FT-base-ZP 0.427
±0.004

0.423
±0.009

0.415
±0.007

0.421
±0.004

0.389
±0.007

FT-base-DAP 0.427
±0.004

0.427
±0.002

0.422
±0.005

0.430
±0.003

0.397
±0.007

FT-RLM-ZP 0.450
±0.008

0.447
±0.006

0.448
±0.002

0.448
±0.004

0.418
±0.004

FT-RLM-DAP 0.450
±0.008

0.450
±0.007

0.445
±0.005

0.447
±0.005

0.412
±0.005

Self-DANA 0.446
±0.007

0.448
±0.004

0.448
±0.001

0.449
±0.006

0.419
±0.003

PTB-XL dataset Table 15, 16, and 17 report the performance obtained on the PTB-XL dataset in
terms of macro AUROC, macro F1 score, and weighted F1 score, respectively. For all configurations,
Self-DANA achieves the best performance or performance comparable to the best results, confirming
the findings obtained with the Georgia dataset.
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Table 14: Weighted F1 score obtained in experiments (i), (ii) and (iii) on the five Georgia reduced-
leads test sets. Results are reported as mean ± standard deviation. Best results (highest weighted F1
score) in bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Supervised 0.498
±0.006

0.494
±0.008

0.486
±0.002

0.494
±0.007

0.448
±0.004

FT-base-ZP 0.540
±0.003

0.530
±0.001

0.521
±0.007

0.523
±0.004

0.483
±0.004

FT-base-DAP 0.540
±0.003

0.537
±0.004

0.527
±0.006

0.532
±0.003

0.489
±0.003

FT-RLM-ZP 0.560
±0.005

0.558
±0.004

0.552
±0.002

0.556
±0.003

0.520
±0.004

FT-RLM-DAP 0.560
±0.005

0.559
±0.005

0.551
±0.004

0.553
±0.004

0.513
±0.004

Self-DANA 0.557
±0.006

0.559
±0.002

0.554
±0.002

0.557
±0.004

0.519
±0.001

Table 15: Macro AUROC obtained in experiments (i), (ii) and (iii) on the five PTB-XL reduced-leads
test sets. Results are reported as mean ± standard deviation. Best results (highest macro AUROC) in
bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Supervised 0.859
±0.006

0.859
±0.002

0.853
±0.003

0.859
±0.002

0.825
±0.001

FT-base-ZP 0.923
±0.003

0.908
±0.004

0.913
±0.004

0.906
±0.007

0.869
±0.007

FT-base-DAP 0.923
±0.003

0.912
±0.002

0.916
±0.004

0.912
±0.003

0.872
±0.004

FT-RLM-ZP 0.926
±0.001

0.918
±0.004

0.922
±0.004

0.919
±0.004

0.884
±0.003

FT-RLM-DAP 0.927
±0.001

0.918
±0.004

0.924
±0.006

0.918
±0.003

0.888
±0.006

Self-DANA 0.929
±0.004

0.920
±0.008

0.923
±0.005

0.919
±0.005

0.884
±0.006

Table 16: Macro F1 score obtained in experiments (i), (ii) and (iii) on the five PTB-XL reduced-leads
test sets. Results are reported as mean ± standard deviation. Best results (highest macro F1 score) in
bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Supervised 0.390
±0.012

0.387
±0.009

0.377
±0.005

0.373
±0.013

0.338
±0.008

FT-base-ZP 0.437
±0.007

0.420
±0.007

0.415
±0.008

0.412
±0.006

0.356
±0.009

FT-base-DAP 0.438
±0.008

0.418
±0.012

0.422
±0.011

0.419
±0.012

0.372
±0.011

FT-RLM-ZP 0.438
±0.003

0.430
±0.009

0.426
±0.007

0.425
±0.008

0.390
±0.008

FT-RLM-DAP 0.437
±0.002

0.424
±0.006

0.426
±0.011

0.418
±0.008

0.391
±0.012

Self-DANA 0.441
±0.007

0.429
±0.017

0.419
±0.007

0.431
±0.010

0.389
±0.011
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Table 17: Weighted F1 score obtained in experiments (i), (ii) and (iii) on the five PTB-XL reduced-
leads test sets. Results are reported as mean ± standard deviation. Best results (highest weighted F1
score) in bold.

12 leads 6 leads 3 leads 2 leads 1 lead

Supervised 0.711
±0.007

0.720
±0.004

0.698
±0.002

0.702
±0.006

0.655
±0.005

FT-base-ZP 0.748
±0.005

0.743
±0.004

0.730
±0.005

0.731
±0.004

0.671
±0.004

FT-base-DAP 0.749
±0.005

0.741
±0.005

0.732
±0.004

0.734
±0.005

0.677
±0.005

FT-RLM-ZP 0.748
±0.003

0.749
±0.004

0.734
±0.002

0.740
±0.004

0.691
±0.004

FT-RLM-DAP 0.747
±0.003

0.746
±0.003

0.736
±0.005

0.735
±0.002

0.691
±0.004

Self-DANA 0.748
±0.004

0.749
±0.007

0.733
±0.002

0.742
±0.006

0.690
±0.002
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CinC2017 dataset Table 18, 19, 20, and 21 report the performance obtained on the CinC2017
dataset in terms of AUROC, macro F1 score, weighted F1 score, and accuracy, respectively. Self-
DANA achieves performance comparable to or superior to the best results, confirming the findings
obtained with the Georgia dataset.

Table 18: AUROC obtained in experiments (i), (ii) and (iii) on CinC2017 test set. Results are reported
as mean ± standard deviation. Best results (highest AUROC) in bold.

Lead I

Supervised 0.871
±0.032

FT-base-ZP 0.916
±0.008

FT-base-DAP 0.907
±0.003

FT-RLM-ZP 0.957
±0.012

FT-RLM-DAP 0.966
±0.002

Self-DANA 0.964
±0.005

Table 19: Macro F1 score obtained in experiments (i), (ii) and (iii) on CinC2017 test set. Results are
reported as mean ± standard deviation. Best results (highest macro F1 score) in bold.

Lead I

Supervised 0.663
±0.046

FT-base-ZP 0.733
±0.021

FT-base-DAP 0.724
±0.016

FT-RLM-ZP 0.805
±0.015

FT-RLM-DAP 0.825
±0.014

Self-DANA 0.824
±0.022
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Table 20: Weighted F1 score obtained in experiments (i), (ii) and (iii) on CinC2017 test set. Results
are reported as mean ± standard deviation. Best results (highest weighted F1 score) in bold.

Lead I

Supervised 0.848
±0.032

FT-base-ZP 0.890
±0.012

FT-base-DAP 0.885
±0.011

FT-RLM-ZP 0.926
±0.007

FT-RLM-DAP 0.934
±0.006

Self-DANA 0.934
±0.010

Table 21: Accuracy obtained in experiments (i), (ii) and (iii) on CinC2017 test set. Results are
reported as mean ± standard deviation. Best results (highest accuracy) in bold.

Lead I

Supervised 0.814
±0.044

FT-base-ZP 0.870
±0.016

FT-base-DAP 0.863
±0.015

FT-RLM-ZP 0.916
±0.008

FT-RLM-DAP 0.927
±0.008

Self-DANA 0.926
±0.013
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