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Abstract

Hopfield networks model complex systems with attractor states. However, there are
many systems where attractors are not static. Attractors may undergo bifurcations
under certain conditions; for example, cell fates have been described as attractor
states that can be stabilized or destabilized by signalling. In the case of neural
networks, retrieving a sequence of memories involves changing attractor states.
We provide an extension to the modern Hopfield network that connects network
dynamics to the landscape of any potential. With our model, it is possible to
control the bifurcations of attractors and simulate the resulting neuron dynamics.
By introducing controlled bifurcations, our formulation expands the application of
Hopfield models to real-world contexts where attractors do not remain static.

1 Introduction

Across disciplines, there are many systems where the interactions between many parts lead to distinct
patterns. Hopfield networks are useful for modelling the dynamics of such systems, from memory
retrieval to cell fate specification. Attractors do not change in the typical Hopfield network. However,
many biological contexts involve attractors that are stabilized or destabilized through bifurcations
due to external forces. For example, the process of cells differentiating into mature cell fates is often
described as a a ball rolling down valleys in a landscape, with attractor basins corresponding to the
cell fates (Waddington [1957]). In Rand et al. [2021], changes in cell fate mediated by signalling are
described by a landscape with bifurcating attractors. There has been significant work on formalizing
the geometry of cell fate landscapes (Raju and Siggia [2023]). However, these landscapes exist
in an abstract space whereas the actual biological process of differentiation occurs in a cell’s gene
regulatory network. We present an attractor network model that bridges the gap between changing
landscapes and network dynamics.

We propose an extension of modern Hopfield networks that involves attractor bifurcations controlled
by changing the parameters of a pseudo-potential. This work contributes the following:

• We generalize the Kanter and Sompolinsky [1987] construction for attractor networks with
correlated patterns to the case of modern Hopfield networks

• We show how the transformer-like version of the modern Hopfield model as described by
Ramsauer et al. [2020] can be interpreted as gradient descent along a pseudo-potential,
which is distinct from the Lyapunov/energy function commonly described

• We show how the pseudo-potential can be manipulated by changing an external parameter,
leading to attractors being created or destroyed by bifurcations
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• We demonstrate network dynamics in the case of pseudo-potentials constructed using classes
of bifurcations, such as the heteroclinic flip

2 Kanter and Sompolinsky construction

There are three relevant spaces in our model:

1. The space of neurons, described by continuous values {xi}. Let N be the total number of
neurons.

2. The space of attractors. This is described by mµ, which measures the alignment of the
network with pattern µ.

3. The space of parameters that control the bifurcations and pseudo-potential. These parameters
represent external factors, such as signals received by a cell.

In our formulation, the update rule determines the dynamics of neurons in the network while
minimizing the pseudo-potential in the space of attractors. Meanwhile, the control parameters
determine the attractors of the pseudo-potential. Varying the control parameters causes bifurcations
in attractor space, and the change in attractors causes the neurons to adopt a different pattern.

We will use the form of mµ described by Kanter and Sompolinsky [1987]. This is a general form
for the order parameters which reproduces the correct pattern retrieval dynamics whether or not the
patterns are correlated. Let ξmu

i indicate the value of the ith neuron in the µth attractor state. Then
we define the correlation matrix Aµν =

∑
i ξ

µ
i ξ

ν
i and its inverse gµν = (A−1)µν . mµ takes the

following form:

mµ =
1

N

∑
iν

gµνξ
ν
i xi

=
∑
ν

gµνm
ν

With a raised index, mν = 1
N

∑
i ξ

ν
i xi. In the case of uncorrelated patterns, gµν = δµν and

mµ = mν . In this notation, we have a covariant form mµ, a contravariant form mµ, and a metric
tensor gµν that is dependent on the correlations between patterns.

3 Modern Hopfield networks with bifurcations

We explain our model by starting from a well-known formulation of the modern Hopfield network.
From Krotov and Hopfield [2020], the update rule for the modern Hopfield network is given by:

τf
dxi

dt
=

∑
µ

ξµi σ(β
1

N

∑
i

ξµi xi)− xi

=
∑
µ

ξµi σ(βmµ)− xi

where σ(βmµ) =
exp (βmµ)∑
ν exp (βmν)

is the softmax function. τf is the time it takes to update a neuron.
This update rule states that the values of neurons shift towards a given stored pattern ξµ according to
the mµ, which measures the similarity between the network state and the stored pattern. β is inverse
temperature; at high temperatures, all attractor states are equally likely, and we no longer have a
pattern-retrieval model. Throughout this paper, we assume the temperature is on the order of N−1,
where N is the number of neurons. At this low temperature, the only fixed points of softmax are
values of mµ that correspond to one-hot vectors (Tiňo [2009]). In other words, only pure individual
patterns act as attractors.

We can rewrite this update rule as follows:
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τf
dxi

dt
=

∑
µ

ξµi σ(−β
∂V

∂mµ
)− xi (1)

V (m⃗) = −
∑
µ

1

2
mµmµ (2)

In this format, we can consider a new interpretation: this equation determines the steepness of the
pseudo-potential V in the directions of the stored states, then moves the system towards the stored
state with the steepest corresponding direction.

In the usual modern Hopfield network, softmax pushes the system towards the stored state µ with
the highest-value mµ. This creates an attraction towards the highest-overlapping state. The pseudo-
potential has only quadratic terms, which correspond to a simple well potential. Consider a more
complicated pseudo-potential, V{a} with corresponding parameters {a}. For example, for a cusp
bifurcation with three attractors, we may have Va,b(m⃗) = (m2 −m1)

4 + a(m2 −m1)
2 + b(m2 −

m1) +
1
2m

2
0. In this case, the parameters controlling the potential (and therefore the bifurcations) are

a and b.

To minimize the parameterized pseudo-potential V{a}, we add it to the quadratic potential terms:
V = −

∑
µ

1
2m

µmµ + V{a}. The resulting update rule is:

τf
dxi

dt
=

∑
µ

ξµi σ(β(mµ −
∂V{a}

∂mµ
))− xi

By adding terms corresponding to the gradient of the pseudo-potential, we are now able to control
bifurcations of the attractors of the Hopfield network.

This maintains the original attractors of the usual Hopfield network while also including the dynamics
of a changing landscape. At the minima of V{a}, ∂V{a}

∂mµ
= 0 and the update rule takes the form of the

usual modern Hopfield model. In other words, near the minima of the parameterized pseudo-potential,
the effective pseudo-potential is once again a simple well.

4 Heteroclinic flip example

In this section, we demonstrate the model with a particular choice of pseudo-potential. In cell fate
differentiation, two cell types with a shared progenitor have previously been modelled with two types
of bifurcations: the heteroclinic flip and the double cusp (Raju and Siggia [2023]). We take the
heteroclinic flip as defined by Sáez et al. [2022]:

Va,b(x, y) = x4 + y4 + y3 − 4x2y − ax+ by − y2

This potential is shown in 1(a) for varying values of a, b. The three attractors of this system are located
at (x0, y0) and (x1±, y1) (let x1 = |x1±|). We need a change of coordinates from x, y to m⃗. Since
there are three attractors, m⃗ = (m0,m1,m2). Let y = y0m0− y1(m0−1) = (y0− y1)m0+ y1 and
x = x1(m2−m1). With this change of coordinates, (x0, y0) corresponds to m⃗ = (1, 0, 0), (x1+, y1)
corresponds to m⃗ = (0, 1, 0), and (x1−, y1) corresponds to m⃗ = (0, 0, 1). Using Einstein notation
for implicit summation, we can rewrite the potential as follows:

h0 = (y0 − y1, 0, 0)

h12 = (0,−x1, x1)

Va,b(m⃗) = (h12,µmµ)
4 + (h0,µmµ + y1)

4 + (h0,µmµ + y1)
3 − 4(h12,µmµ)

2(h0,µmµ + y1)

− ah12,µmµ + b(h0,µmµ + y1) + c(h0,µmµ + y1)
2
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Figure 1: Modern Hopfield network with bifurcations controlled by a varying pseudo-potential. (a)
The potential describing a heteroclinic flip. The spheres indicate points where the gradient is zero
(saddle points are marked with X’s). In the first box, there are three attractors and two saddle points.
Parameter b is varied first, causing a bifurcation where the attractor corresponding to pattern 0 and the
adjacent saddle point are destroyed. Then, parameter a is varied so that the attractor corresponding to
pattern 2 collides with the other saddle point and they are both destroyed, leaving just the attractor
corresponding to pattern 1. (b) A diagram showing the connections between saddle nodes (marked
by X’s) and attractors (marked by circles). In (a), attractor 0 is destabilized by colliding with saddle
node 0, and attractor 2 is destabilized by colliding with saddle node 1. (c) The dynamics in attractor
space (top) and neuron space (bottom) corresponding to the changes in potential. Pink lines indicate
the time points where each of the potential are in the states shown in (a). mµ measures alignment
with pattern µ. The xi values plotted in blue (orange) correspond to the neuron with the highest value
in pattern 0 (1).

Now we have a pseudo-potential described in the space of attractors. The dynamics are determined
by τf

dxi

dt =
∑

µ ξ
µ
i σ(β(mµ − ∂Va,b

∂mµ
)) − xi. For the sake of simplicity, we assumed uncorrelated

patterns for Figure 1. We can vary the parameters a, b and see the corresponding changes in attractor
space and neuron space (Figure 1(c)).

We show an example using correlated patterns and real gene expression data in section S1. The
correlation between patterns changes the geometry and the metric tensor gµν .

5 Conclusion
Associative memory networks are a rich set of models that provide a way to understand dynamic
systems containing attractor states. There are many directions to expand these models. In this paper,
we presented a construction that connects the world of attractor networks to bifurcations and potential
landscapes. By connecting the spaces of neurons, attractors, and bifurcation parameters, we provide
a framework for modelling complex systems where processes occur in all three spaces at once. In the
supplementary information, we show how this construction can be used to simulate cell fate dynamics
using real gene expression data for the stored patterns. We also discuss the model’s relation to the
bipartite graph formulation of modern Hopfield networks introduced by Krotov and Hopfield [2020].
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Figure S1: Modern Hopfield network with a heteroclinic flip, using gene expression data as the
stored patterns. The same bifurcations occur as in Figure 1, causing inner cell mass (ICM) cells to
differentiate into primitive endoderm (PrE) cells instead of epiblast (Epi). Gene expression dynamics
for two genes in particular are shown. Gata6 is associated with the PrE fate while Nanog is associated
with Epi.

Supplementary Information

S1 Heteroclinic flip with gene expression data

We can apply the concept of attractor networks controlled by parametrized potentials to cell fate
specification. In this case, neurons correspond to genes and patterns correspond to the gene expression
profiles of cell types. Related cell types express many genes in common, so gµν ̸= δµν . Raju and
Siggia [2023] suggest that one of the earliest cell fate decisions – the specification of inner cell mass
into epiblast or primitive endoderm – can be modelled by either a heteroclinic flip or double cusp. We
used gene expression data in the form of single-cell RNA-sequencing (scRNA-seq) corresponding to
these three cell types from Deng et al. [2014] and Liu et al. [2022]. We used these gene expression
profiles as the values of ξµi . Then, starting in the inner cell mass state, we varied the potential the
same way as in Figure 1.

Figure S1 shows the dynamics in cell fate space and gene expression space. The correlation between
cell types causes a bias towards the primitive endoderm state, which causes the network to leave
the separatrix leading towards the remaining saddle node before the second bifurcation occurs. The
gene expression dynamics of two genes are shown. Mature primitive endoderm cells are known to
highly-express Gata6 while mature epiblast cells highly-express Nanog.

S2 Relation to bipartite formulation

The Krotov and Hopfield [2020] formulation of modern Hopfield networks describes a bipartite graph
of hidden neurons hµ and visible neurons vi with continuous values governed by the equations:
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τf
dvi
dt

=

Nh∑
µ=1

ξµi f({h
µ})− vi

τh
dhµ

dt
=

Nf∑
i=1

ξµi g({vi})− hµ

f({hµ}) = ∂Lh

∂hµ

g({vi}) =
∂Lv

∂vi

where ξµi denotes the connection between hidden neuron µ and visible neuron i. When considering
the non-bipartite version of the modern Hopfield network, where any neuron may be connected to
any other neuron, ξµi is the value of the µth pattern at the ith neuron. In order to retrieve the typical
Hopfield dynamics, τf is approximated as zero and so hµ ≈

∑
i ξ

µ
i gi

In this notation, mµ =
∑

j ξ
µ
j vj . In order to introduce the ∂V

∂mµ
as written in the main text, we note

that:
∂

∂mµ
V ({mµ}) =

∂vi
∂mµ

∂

∂vi
V ({

∑
j

ξµj vj})

∂vi
∂mµ

=
∑
j

Bijξ
µ
j

B = (ξT ξ)−1

Thus, our equations can be written in the same formulation as Krotov and Hopfield [2020] if we make
the following changes:

τf
dvi
dt

=
∑
µ

ξµi fµ − vi

τh
dhµ

dt
=

∑
i,j

giBijξ
µ
j − hµ

E(t) = [
∑
i

vigi − Lv] + [
∑
µ

hµfµ − Lh]−
∑
µ,i,j

giBijξ
µ
j fµ

We make the following choices for the Lagrangian functions Lv, Lh:

Lv = −V ({
∑
j

ξµj vj})

Lh = log(
∑
µ

ehµ)

fµ =
∂Lh

∂hµ
= σ(hµ)

gi =
∂Lv

∂vi
= −∂V

∂vi

For τh ≈ 0, hµ ≈
∑

i,j giBijξ
µ
j , we retrieve the same update rule as before.

In the bipartite formulation, our model introduces an asymmetry between the visible and hidden
neurons. In Krotov and Hopfield [2020], E(t) is shown to monotonically decrease as time passes
on the condition that the Hessians of the Lagrangians are positive definite. Since Lv is no longer
necessarily positive definite, we cannot make the same argument.
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