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ABSTRACT

Integrating Low-rank Adaptation (LoRA) and Mixture-of-Expert (MoE) is the
mainstream for applying LLMs in multi-task scenarios. Existing works assume
that different experts can share common knowledge and hold the specific infor-
mation dynamically. Thus, they employ router to select appropriate experts for
different tasks. Despite the achieved progress, most of them tune LoRA modules
indiscriminately, which will cause the learned information in LoRA from previous
task to be overwritten by the fine-tuning of subsequent tasks. Therefore, existing
works still face the problem of cataclysmic forgetting of both common and specific
information in LoRA. To tackle this problem, in this paper, we propose a novel
Mixture of Shared and Exclusive Experts framework (MoSE) for better multi-task
fine-tuning of LLMs. Different from most existing works, we first separate the
LoRA experts into routing experts for task-specific information and shared ex-
perts for common knowledge. For routing experts, we develop a feature-wise
module to select the most appropriate experts and tuning their parameters entirely.
For shared experts, we aim to maintain as much common knowledge as possible.
Thus, we design a novel Top-k-selection tuning strategy to selectively fine-tune
certain parameters of shared experts. Then, we adopt a balanced data sampling
and expert assignment strategies to mitigate task imbalance and ensure fair expert
utilization. Finally, we conduct extensive experiments over diverse multi-task sce-
narios to demonstrate the effectiveness of MoSE. Moreover, MoSE exhibits strong
continual learning ability, effectively adapting to new tasks while retaining prior
knowledge (average 3.3% and 7.4% improvement compared with advanced base-
lines in sequential continual learning).

1 INTRODUCTION

The success of Deepseek-V3 (Liu et al., 2024a), and Qwen3 (Yang et al., 2025a) has proven the
potential of Mixture-of-Expert (MoE) structure, inspiring the integration of Low-Rank Adapter
(LoRA) and MoE for general multi-task solver tuning. Various methods have been proposed to
improve the generalization capability of LLMs across multi-task scenarios, such as MixLoRA (Li
et al., 2024), MultiLoRA (Wang et al., 2023a), MOELoRA (Liu et al., 2024c), and Lorahub (Huang
et al., 2024). They all have achieved impressive performance in multi-task scenarios.

By comparing these works, the basic motivation is to use different experts to memorize knowledge
from different tasks. Then, a task router is employed to activate appropriate experts for target tasks,
reducing the computational cost and inference latency. Moreover, these works claimed that the
expert overlap among different tuning steps can also be treated as sharing common task knowledge.
For example, HMoRA (Liao et al., 2025) uses sparse routing to implicitly share experts across
tasks with similar demands. In contrast, ViMoE (Han et al., 2024) augmented sparse experts with an
additional shared expert, leveraging routing strategies tailored to vision tasks to stabilize training and
separate global from specialized representations. Both approaches achieve promising performance
in their respective domains.

In practice, we argue that common knowledge should be preserved as much as possible, requiring
fewer updates to avoid overwriting, while task-specific information needs to be acquired rapidly
through accurate expert selection. However, most existing works fail to satisfy this requirement. For
one thing, the router does not memorize the roles of selected experts. Therefore, the expert with
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Figure 1: (a) Router selects experts for tasks while expert roles are not distinguished. (b) Explicit
expert roles where shared expert dominates due to excessively large weights.

common knowledge in task A might be selected to learn task-specific information when facing task
B, as shown in Figure 1(a). This situation do not only cause the catastrophic forgetting of knowledge
from previous tasks, but also lead to high tuning cost due to the ineffective common knowledge shar-
ing across different tasks. For another, even some works use shared experts to memorize common
knowledge, they still use the same strategy to tune the entire shared experts with routing experts at
each step, leading to larger weight in inference phrase and limited impact of other experts. Taking
Figure 1(b) as an example, in the multi-task GLUE setting the shared expert tends to receive larger
weights during inference, thereby dominating the prediction process and suppressing contributions
from the routing experts. These phenomena raise an important question: “How to achieve effec-
tive sharing of common knowledge while retaining task-specific information when fine-tuning
LLMs in multi-task scenarios? ”

To tackle the above problem, in this paper, we propose a novel Mixture of Shared and Exclusive Ex-
perts framework (MoSE) for better multi-task fine-tuning of LLMs. Following the advanced MoE
framework, MoSE separates LoRA experts into shared and routing experts to capture common
knowledge and task-specific information. For routing experts, we design a feature-wise gating mech-
anism to select suitable experts for task-specific learning. For shared experts, considering the target
of memorizing and sharing common knowledge, we develop a novel Top-k-selection strategy to se-
lectively updates parameters with consistent gradients. Thus, the catastrophic forgetting and tuning
frequency problems can be well mitigated. Moreover, to address the imbalance in routing expert
selection, we adopt a balanced expert assignment strategy to stabilize the tuning process. Finally,
we conduct extensive experiments over multiple LLMs across various multi-task scenarios. Ex-
perimental results demonstrate that our proposed MoSE can maintain as much common knowledge
as possible and surpass other advanced baselines by a large margin. Specifically, MoSE achieves
average improvements of 3.3% and 7.4% over MixLoRA and MultiLoRA in sequential continual
learning, demonstrating stronger knowledge sharing and greater resistance to forgetting.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) adapts large language models (LLMs) to downstream tasks
by updating only a small subset of parameters. Representative approaches include Prompt Tuning
(Lester et al., 2021), Prefix Tuning (Li & Liang, 2021), Adapters (Houlsby et al., 2019), and LoRA
(Hu et al., 2022). Prompt- and Prefix-based methods inject trainable vectors into the input, whereas
Adapters and LoRA insert lightweight modules into the network for internal adaptation. Among
them, LoRA has become particularly popular for its efficiency and scalability, as it decomposes
weight updates into two trainable low-rank matrices. Building on this idea, several extensions have
been proposed: AdaLoRA (Zhang et al., 2023a) dynamically allocates rank budgets; LoRA+ (Hayou
et al., 2024) applies separate learning rates; MoSLoRA (Wu et al., 2024) introduces a learnable
mixer; and RoSE-LoRA (Wang et al., 2024a) enforces sparsity to update only critical parameters.
Although these methods are effective in single-task settings, they rely on a fixed shared subspace,
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which restricts flexibility and degrades performance in multi-task scenarios (Wang et al., 2023a).
This limitation underscores the need for more adaptive and disentangled architectures that can better
capture task-specific variations while still leveraging shared knowledge.

2.2 MULTI TASK LEARNING

Multi-Task Learning (MTL) trains a unified model across tasks to improve generalization and data
efficiency (Zhang et al., 2023b), but traditional approaches often struggle with task heterogeneity
and gradient conflict (Liu et al., 2019). Parameter-Efficient Fine-Tuning (PEFT) methods have re-
cently gained traction in MTL for their scalability and low overhead. Among them, LoRA is widely
adopted, yet its reliance on a shared subspace can cause interference when tasks diverge (Yang
et al., 2024; Zhao et al., 2025). To alleviate this, recent work integrates LoRA with Mixture-of-
Experts (MoE): MultiLoRA (Wang et al., 2023a) employs parallel LoRA modules with routing,
MoELoRA (Liu et al., 2024c) applies task-specific gating, AdaMoE (Zeng et al., 2024) enables
token-adaptive routing with null experts, and MoLA (Gao et al., 2024) prioritizes higher-layer ex-
pert allocation. To further address these limitations, our approach introduces a structured design
with a shared expert for common knowledge and routing experts for task-specific features.

2.3 CONTINUAL LEARNING

Continual Learning (CL) aims to train models sequentially on multiple tasks without catastrophic
forgetting—the loss of previously acquired knowledge (Wang et al., 2024b). Classical approaches
include regularization-based methods such as Elastic Weight Consolidation (Kirkpatrick et al.,
2017), which protect important parameters, and replay-based strategies that rehearse prior data (Re-
buffi et al., 2017). While PEFT has gained popularity for efficient adaptation, most methods remain
single-task oriented and lack mechanisms for knowledge preservation, often resulting in severe for-
getting. To address this, recent works extend PEFT for CL: I-LoRA (Li et al., 2025) introduces dual-
memory branches, GainLoRA (Liang & Li, 2025) employs gated integration, LoRI (Zhang et al.,
2025) applies task-aware masking, NTK-CL (Liu et al., 2024b) leverages orthogonal EMA-based
updates, and CL-LoRA (He et al., 2025) uses dual adapters to disentangle shared and task-specific
knowledge. Although MoSE is not explicitly designed for CL, its architecture naturally supports re-
tention: by combining a shared expert, task-specific routing, and sparse gradient updates, it reduces
interference and preserves generalizable features, thereby offering strong forgetting resistance in
sequential task settings.

3 TECHNICAL DETAILS OF MoSE

3.1 LOW-RANK ADAPTION

LoRA (Hu et al., 2022) enables parameter-efficient fine-tuning by injecting low-rank adapters into
pre-trained weights. Instead of updating the full matrix W0 ∈ Rdout×din , it adds a low-rank update
during the forward pass as follows:

h = W0x+ αBAx, (1)

where A ∈ Rr×din , B ∈ Rdout×r, and r ≪ min(din, dout). This significantly reduces the number of
trainable parameters while preserving model expressiveness.

3.2 MoSE FRAMEWORK

Figure 2 illustrates the overall structure of our proposed MoSE, including a structurally explicit
shared expert and multiple routing experts. To achieve the efficient common knowledge sharing
and task-specific information keeping, we develop different learning strategies for different experts.
Next, we will introduce each of them in detail.

3.2.1 ROUTING EXPERT LEARNING

Similar to previous work, we intend that routing experts should be task-sensitive. Thus, we focus on
using task information to dynamically select appropriate experts with a task router. Specifically, we

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

×B A

FiLM Layer

Router

×B A×B A×

Routing Expert 2Routing Expert 1 Routing Expert nShared Expert

B A

LoRA Attention

MoSE FFN

×N

Norm Layer

Norm Layer

+

input

+

Mixture of LoRA Experts 

Shared
FFN

+

A

B

LoRA Expert 

Input Hidden States

Output Hidden States

Transformer Block

Sparse Update

Tokens in Task 1 Tokens in Task 2 Tokens in Task T

Figure 2: The architecture of our proposed MoSE framework.

first construct task embedding et by averaging the final-layer hidden states of 20 randomly selected
training samples. This operation avoids task-specific optimization and offers a lightweight, trans-
ferable alternative to approaches like MOELoRA (Liu et al., 2024c), which is in favor of improving
the generalization capability of MoSE.

After that, we employ Feature-wise Linear Modulation (FiLM) to condition input representations
on task embedding et, so that the router can be task-aware, which can be formulated as follows:

xmod = x⊙ (1 + γ(et)) + β(et), (2)

where γ(·) and β(·) are learned affine functions producing scale and shift parameters, and ⊙ de-
notes element-wise multiplication. One step further, to reduce the overhead of a fully parameterized
FiLM layer (O(dt · dh) parameters), we adopt a low-rank FiLM structure by decomposing the
transformation into two linear projections:

[γ(et), β(et)] = Wup · (Wdown · et) , (3)

where Wdown ∈ Rr×dt and Wup ∈ R2dh×r with r ≪ dh. This reduces parameters from 2dtdh to
2r(dt + dh), significantly improving efficiency while preserving expressiveness. Moreover, FiLM
is a lightweight, plug-and-play module for task-aware conditioning, readily adaptable to diverse
routing strategies and backbone architectures without structural modifications.

After obtaining the task-aware representation xmod, we apply Top-K Routing to compute expert
scores and select appropriate experts. Specifically, we first compute routing logits z = Wrx

mod +
br ∈ RK+1, where Wr ∈ R(K+1)×d and br ∈ RK+1 are learnable parameters. Among the K + 1
scores, we retain the score z0 for the shared expert, and select the top-k scores from the remaining
K routing experts. The final routing weights are obtained via a softmax over these k + 1 scores:

w = [w0, w1, ..., wk] = softmax (concat (z0,TopK(z1:K , k))) , (4)

where z1:K denotes the logits for the routing experts. The resulting w ∈ Rk+1 provides normalized
routing weights over the shared expert and the selected routing experts. The final output of the
MoSE module is computed as a weighted combination of the corresponding expert outputs:

MoSE(x) = w0 · Es(x) +
∑k

i=1
wi · Eji(x), (5)

where Es(·) denotes the shared expert and {Ej1 , . . . , Ejk} are the top-k routing experts. For rout-
ing experts, we use the same updating strategies with existing work (Zeng et al., 2024; Li et al.,
2024). For shared experts, since our target is to memorize and share as much common knowledge
as possible, we design a novel Top-k selection updating strategy, as detailed in the next section.

3.2.2 SHARED EXPERT LEARNING

As mentioned in Section 1, the shared expert is designed to facilitate efficient knowledge transfer
and parameter reuse. However, differences in objectives, input distributions, and semantics often
lead to gradient conflicts across tasks, producing compromises that fail to capture cross-task invari-
ances (Zhang et al., 2023b). Therefore, the key challenge for shared experts is managing conflicting
gradients from diverse tasks. A natural solution is to identify more consistent gradient directions
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across tasks, thereby reducing conflicts and enabling stable knowledge integration. Thus, the prob-
lem turns to “how to determine the updating parts in each learning process”. In response, we design
a simple but effective strategy: Top-k selection, which relies on parameter importance estimation.

For parameter importance estimation, we aim for more reliable assessments. Rather than relying
on raw gradient magnitudes, we adopt an Exponential Moving Average (EMA) of gradients as a
first-moment estimator, capturing the long-term importance of each parameter:

m
(t)
i = η ·m(t−1)

i + (1− η) · g(t)i , (6)

where g
(t)
i denotes the gradient of the ith parameter at step t, η ∈ (0, 1) is the hyper-parameter

of EMA, and m
(t)
i represent its momentum. Parameters with large momentum magnitudes are

viewed as consistently influential across training steps and are therefore prioritized. Moreover, larger
gradient values generally reflect directions endorsed by most samples within a batch, which helps
reduce conflicts and stabilize updates. Based on this, Top-k selection selects at each step the ktop
parameters with the highest importance scores:

Supdate = TopK
(
{|m(t)

i |}di=1, ktop

)
. (7)

Here, Supdate denotes the subset of trainable parameters of Es in Eq. 5, which are selected for updat-
ing. The remaining parameters of Es are frozen during each gradient step. Moreover, to enhance
tuning stability, we adopt a gradual sparsity schedule: training starts with a dense warm-up where all
parameters are updated, then gradually reduces the number of updated parameters ktop via a cosine
decay, thereby increasing sparsity over time. This smooth transition enables the model to shift from
full updates to the target sparse regime.

3.2.3 BALANCED EXPERTS LOADING

Apart from expert design, routing–expert selection also plays a crucial role in determining final
performance. To strengthen MoSE’s effectiveness, we further introduce strategies that regulate this
process. Unbalanced expert utilization is a common issue in MoE-based architectures, especially
under top-k routing, where certain experts are disproportionately activated. To address this, we
propose two complementary regularization strategies—Balance Constraint and Orthogonality Con-
straint—to promote both fair and efficient expert utilization.

For Balanced Constrain, we focus on the routing experts and apply the balanced strategy (Li et al.,
2024) to encourage uniform token-to-expert assignment. Specifically, given a training batch with
T tokens and N experts, let Fi denote the fraction of tokens routed to expert i, and Pi the average
router probability assigned to expert i. The balanced constrain is computed as:

Laux = N ·
N∑
i=1

Fi · Pi. (8)

For Orthogonality Constrain, we argue that shared expert should learn complementary and diverse
representations, compared with routing experts. Therefore, we adopt an orthogonality regulariza-
tion, which penalizes similarity between down-projection matrices to enhance modular disentangle-
ment. Let Ai ∈ Rr×d denotes the down-projection matrix of the ith routing expert and Ashared that
of the shared expert. The orthogonality loss is defined as:

Lorth =

N∑
i=1

∥∥AiA
⊤
shared

∥∥
1
, (9)

where N is the number of routing experts and ∥ · ∥1 denotes the element-wise ℓ1 norm. A lower
Lorth indicates reduced directional overlap, enabling the shared expert to learn more task-agnostic
features while routing experts specialize in task-specific knowledge.

3.2.4 OPTIMIZATION

Based on the above, our overall objective is defined as a weighted sum of the primary task loss Ltask,
the balanced constraint Laux, and the orthogonality constraint Lorth, with hyperparameters λ and β:

Ltotal = Ltask + λ · Laux + β · Lorth. (10)

5
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4 EXPERIMENT

In this section, we evaluate MoSE across various scenarios and answer the following questions:

RQ1: Is MoSE effective in multi-task scenarios?
RQ2: Is MoSE capable of mitigating catastrophic forgetting?
RQ3: Do shared and routing experts perform as expected?

4.1 EXPERIMENTAL SETUP

Evaluation Benchmarks. To comprehensively evaluate MoSE, we design two scenarios: 1)
Multi-task learning and transfer: Models are fine-tuned and evaluated on the GLUE bench-
mark (Wang et al., 2018) and commonsense reasoning tasks. We further assess transferability by
testing commonsense-tuned models on unseen QA datasets, including CSQA (Talmor et al., 2019),
CSQA2 (Talmor et al., 2021), LogiQA (Liu et al., 2021), and QASC (Khot et al., 2020). 2) Con-
tinual learning: We simulate sequential task introduction after multi-task pretraining, measuring
catastrophic forgetting and forward transfer on QA (CSQA, CSQA2, LogiQA), SciTail (Khot et al.,
2018), and RACE (Lai et al., 2017).

Baselines. We select two sets of baselines: 1) PEFT baselines: including a) Full Fine-tuning (FT),
b) Houlsby Adapter, c) Vanilla LoRA, and d) Prompt Tuning. 2) Multi-task learning baselines: se-
lecting advanced multi-task frameworks, including MultiLoRA (Wang et al., 2023a), MixLoRA (Li
et al., 2024), HydraLoRA (Tian et al., 2024), and MTL-LoRA (Yang et al., 2025b).

Implementation. We use T5-Base, Qwen3-4B, and Qwen3-8B as backbones. T5-Base is trained
with a batch size of 64 and a learning rate of 3 × 10−4. Qwen uses a batch size of 8 with 4-step
gradient accumulation and a learning rate of 2×10−5. All models are optimized using AdamW with
a weight decay of 0.01, a cosine decay schedule, 1000-step warm-up, and 20,000 total steps.The
input sequence length is capped at 128 tokens. Training is performed on NVIDIA RTX 5880 Ada
Generation. For fair comparison, all models share a unified training pipeline and identical data
sampling strategies. Further training details are provided in appendix B.

4.2 MULTI-TASK LEARNING AND TRANSFERRING

Table 1 summarizes results on the GLUE benchmark, covering tasks of varying sizes. We can
observe that MoSE achieves the highest average performance and excels on low-resource tasks such
as RTE (80.9%), QQP (90.2%), and CoLA (65.6%). This result demonstrates MoSE’s superior
ability to retain task-specific knowledge, leading to stronger fine-tuning performance. Compared
to strong multi-task baselines (e.g., MultiLoRA and MixLoRA), MoSE consistently delivers gains
across tasks, highlighting its robustness in multi-task settings.

Table 1: GLUE results with T5-base. We report Accuracy (SST-2, MNLI, QNLI, QQP, RTE,
MRPC), MCC (CoLA), and Pearson correlation (STS-B). Scores are percentages rounded to one
decimal, with best results in bold.

Method RTE MNLI MRPC SST2 QQP QNLI CoLA STSB AVG.
Adapter 75.1 85.0 88.2 93.7 90.3 92.8 59.7 91.2 84.5
PromptTuning 65.0 85.4 87.2 92.1 88.8 88.8 38.6 89.0 79.4
LoRAr=8 75.5 86.2 88.4 93.6 89.8 93.3 64.1 92.2 85.4
LoRAr=16 79.8 86.0 87.7 94.0 89.8 93.0 61.1 91.8 85.4
Finetuning 75.5 85.8 89.0 94.3 89.8 92.4 60.7 91.7 84.9

HydraLoRA 79.4 86.0 87.0 94.2 90.0 93.1 62.2 91.7 85.6
MTL-LoRA 75.8 86.4 88.2 93.6 90.2 93.4 64.1 92.5 85.5
MixLoRA 76.9 86.1 87.9 93.7 90.0 92.9 65.6 92.3 85.7
MultiLoRA 76.5 86.1 88.4 93.9 89.8 93.1 65.6 92.8 85.8

MoSE 80.9 86.2 88.7 93.5 90.2 93.2 65.6 92.2 86.3

For commonsense reasoning, Table 2 shows that MoSE consistently outperforms all baselines across
different backbones. Notably, it achieves substantial gains on harder tasks like HellaSwag, SIQA,
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and OBQA—for example, a 6.8% improvement on HellaSwag over LoRA. These tasks demand
nuanced reasoning and deeper context understanding, where MoSE’s structured use of shared and
routing experts enables effective knowledge sharing and task-specific adaptation, leading to superior
multi-task performance.

Table 2: Results across commonsense reasoning datasets under different model backbones. All
values are accuracy scores (%). The best results are in bold.

Method BoolQ PIQA SIQA HellaS. WinoG. ARC-E ARC-C OBQA AVG.

Qwen3-4B

LoRA 83.9 80.3 73.0 80.6 72.3 92.6 84.6 84.8 81.5
MultiLoRA 77.4 80.6 71.0 80.0 69.5 94.1 87.0 83.3 80.4
MixLoRA 82.4 81.5 74.2 81.5 69.4 94.4 86.6 85.2 81.9
HydraLoRA 82.5 80.2 73.4 83.7 69.7 93.6 86.8 85.8 82.0
MTL-LoRA 85.4 84.3 76.4 83.5 74.4 94.5 87.3 86.3 84.0
MoSE 86.1 84.9 76.1 85.3 77.7 94.7 86.5 86.7 84.8

Qwen3-8B

LoRA 82.8 85.6 75.2 81.7 78.3 96.3 89.9 88.0 84.7
MultiLoRA 81.5 84.6 74.8 82.6 73.7 96.2 90.7 87.3 83.9
MixLoRA 83.8 85.4 75.7 87.2 77.1 96.3 90.6 89.2 85.7
HydraLoRA 84.3 87.4 75.9 86.1 78.9 95.8 89.9 88.2 85.8
MTL-LoRA 83.2 85.4 77.5 84.7 74.7 96.4 90.4 87.6 85.0
MoSE 87.2 88.2 79.9 88.5 81.1 95.8 90.7 89.4 87.6

Moreover, we evaluate transferability of models to assess how well it captures commonsense rea-
soning knowledge. As shown in Table3, MoSE achieves an average 69.9% accuracy across four
reasoning tasks in a zero-shot manner, demonstrating strong generalization. Notably, it outperforms
MixLoRA by 6.4% on LogiQA. In contrast, existing multi-task baselines exhibit large performance
variance—for example, HydraLoRA performs well on CSQA but poorly on CSQA2 and QASC,
likely due to overfitting to source tasks.

In summary, by combining a dedicated shared expert, stabilized by sparse updates with flexible
routing experts, MoSE builds a robust general foundation that excels at both broad linguistic tasks
and deep, nuanced reasoning. The effectiveness and scalability of MoSE are further confirmed by
its consistent gains across multiple model sizes.

Table 3: Performance on additional reasoning benchmarks after fine-tuning on commonsense tasks
using Qwen3-4B. All values are accuracy scores (%).

Method CSQA CSQA2 QASC LogiQA AVG.
LoRA 45.9 23.6 35.1 6.6 27.8
MultiLoRA 70.8 60.8 94.8 42.1 67.1
MixLoRA 73.8 62.2 95.3 43.6 68.0
HydraLoRA 66.3 37.2 35.9 34.7 43.5

MoSE 76.1 61.4 95.9 46.4 69.9
Compared to LoRA +30.2 +37.8 +60.8 +39.8 +42.1

4.3 CONTINUING LEARNING AND FORGETTING RESISTANCE

As discussed in Section 1, MoE experts should capture both shared and task-specific knowledge
to enhance multi-task generalization. To validate this, we thoroughly evaluate MoSE’s continual
learning and forgetting resistance.

We first simulate a continual multi-task setting where models are first fine-tuned on commonsense
reasoning tasks, then adapted to QA (CSQA, CSQA2, LogiQA), inference (SciTail), and read-
ing comprehension (RACE). As shown in Table 4, MoSE achieves the lowest forgetting score,
demonstrating strong knowledge retention. Remarkably,during continual fine-tuning on QA tasks,
MixLoRA forgets 34.2% on the initial reasoning tasks, while MoSE drops only 5.3%, highlighting
its resilience to forgetting.
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Table 4: Continual learning results. Models are first fine-tuned on commonsense reasoning, then
sequentially adapted to new tasks. We report initial accuracy (Init), final accuracy after adaptation
(Final), forgetting score (Forget = Final - Init), and target task accuracy (Target).

Backbone Method Init QAs SciTail RACE
Final Forget Target Final Forget Target Final Forget Target

MultiLoRA 80.4 65.9 −14.5 58.6 75.7 −4.7 91.5 73.4 −7.0 85.9
Qwen3-4B MixLoRA 82.2 48.0 −34.2 62.3 78.8 −3.4 96.4 47.2 −35.0 86.1

MoSE 84.8 79.5 −7.0 63.7 83.6 −1.2 95.1 83.5 −1.3 86.3

MultiLoRA 83.9 79.1 −4.8 60.1 82.1 −1.8 88.9 81.3 −2.6 90.3
Qwen3-8B MixLoRA 85.7 78.2 −7.5 64.7 85.2 −0.5 94.8 84.0 −1.7 91.0

MoSE 87.6 84.5 −3.1 67.2 87.3 −0.3 95.2 87.0 −0.6 91.1

We further assess continual learning under a sequential task setting (Reasoning → QA → RACE
→ SciTail), with results summarized in Table 5. MoSE consistently achieves the strongest perfor-
mance, surpassing MultiLoRA and MixLoRA by 5.1% and 28.7% on the initial reasoning tasks,
respectively. In contrast, MixLoRA suffers from pronounced forgetting, with a 57.1% accuracy
drop on reasoning datasets, highlighting its instability. Overall, these results indicate that MoSE bet-
ter preserves common knowledge while adapting to new tasks, aligning with our central goal of
enabling effective knowledge sharing and task-specific retention in multi-task fine-tuning.

Table 5: Sequential continual learning performance on Qwen3-8B, reported as accuracy (%).

Method Reason QAs RACE Scitail Avg.
MultiLoRA 80.7 60.2 90.0 92.9 81.0
MixLoRA 57.1 64.8 90.1 95.7 76.9
MoSE 85.8 65.6 91.0 94.8 84.3

4.4 CAPABILITY OF SHARED AND ROUTING EXPERTS

For a detailed analysis about our expert design and updating strategies, we conduct following exper-
iments to give a detailed analyzing of our proposed MoSE:

Effectiveness of Shared Experts. We first visualize the update frequency of shared experts dur-
ing training in Figure 3(a), where brighter stripes indicate structured updates. This shows that our
sparse update strategy selectively optimizes truly valuable shared parameters rather than relying on
randomness. Furthermore, we evaluate different sparse update ratios in Figure 3(b), finding that
updating only 5% of parameters yields the best performance. This highlights the effectiveness of
sparse updates in capturing common knowledge while mitigating forgetting.
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(b) Update frequency heatmap of shared expert.

Figure 3: Analysis of GSU(Gradient-based Sparse Update).

Effectiveness of Routing Experts. For routing experts, we aim for clear specialization across tasks,
encouraging each expert to capture task-specific information. Thus, we visualize the task embedding
and routing expert activation on Figure 4. As shown in Figure 4(a), embeddings from the same task
form tight, well-separated clusters, suggesting that the router input effectively encodes task identity.
In Figure 4(b), we observe that each task activates a distinct subset of experts, with similar tasks
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(e.g., ARC-E and ARC-C) often selecting overlapping experts (e.g., experts 5, 6, and 8), reflecting
shared characteristics. These patterns demonstrate that our routing strategy successfully captures
both task-specific and shared structures.
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(a) Task embedding visualization.
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(b) Token-level expert routing distribution.

Figure 4: Task-level diversity and expert routing.
Ablation Study. The above experiments demonstrate the superiority of MoSE. We further in-
vestigate the contribution of each component through an ablation study (Table 6). Remov-
ing gradient-based sparse updates (w/o GSU) causes the largest drop—especially on reasoning
tasks—highlighting their role in preserving prior knowledge and mitigating interference. The shared
expert (w/o Shared) and Top-k selection (vs. w/random) also prove essential. Meanwhile, FiLM re-
moval yields moderate declines, reflecting its task-aware modulation, and omitting the orthogonality
constraint reduces accuracy, underscoring its benefit in disentangling shared and task-specific fea-
tures. Together, these results confirm that all components are integral to MoSE’s performance.

Table 6: Ablation study on different compo-
nents of MoSE across two settings: T5-base on
GLUE and Qwen3-4B on reasoning datasets.

Method T5-GLUE Qwen3-Reason
MoSE 86.3 84.8
w/o FiLM 85.7 84.4
w/o Orth 85.7 84.5
w/o GSU 85.9 84.1
w/o Shared 85.7 84.2
w/ Random 85.9 84.0

Table 7: Comparison of expert rank, number
of experts, and trainable parameter ratio (TP%)
across methods on Qwen.

Method Rank Experts TP (%)
LoRA 64 1 2.70
MultiLoRA 24 3 4.00
MixLoRA 8 8 2.62
HydraLoRA 24 3 2.82
MTL-LoRA 24 3 2.76
MoSE 8 9 2.94

Analysis of Parameters.Table 7 shows that MoSE maintains a comparable parameter budget and
a low trainable parameter ratio, while still outperforming baselines. This highlights its ability to
achieve stronger task adaptation without introducing significant parameter overhead.An additional
analysis of training parameters is presented in Appendix D.4.

5 CONCLUSION

To tackle the cataclysmic forgetting problem during multi-task fine-tuning, we proposed a novel
MoSE, a MoE-based PEFT framework that explicitly separates the learning process of shared and
task-specific knowledge. Specifically, we first divided experts into shared experts and routing ex-
perts. Then, for routing experts, we employed FiLM-based task-aware modulation to train router
to select the appropriate routing experts for task-specific knowledge learning, which were updated
with entire expert module. For shared experts, we developed a Top-k-selection strategy to selec-
tively update part of parameters in shared experts, which is helpful for memorizing as much com-
mon knowledge as possible. Meanwhile, a balanced data sampling and expert loading method was
proposed to stabilize the tuning proces. Extensive evaluations on multi-task, transfer, and continual
learning benchmarks demonstrated that MoSE consistently outperforms advanced PEFT and multi-
task adaptation methods, underscoring its potential as a scalable and robust solution for dynamic,
heterogeneous task environments. In the future, we plan to extend the applications of MoSE, and
consider more efficient tuning strategies for larger models.
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6 STATEMENT

6.1 ETHIC STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
involved in this study. All datasets used in our experiments (e.g., GLUE, CSQA, RACE, SciTail)
are publicly available and widely adopted in prior research, and were utilized in full compliance
with their respective licenses and usage guidelines. No personally identifiable or sensitive data were
used. We have taken care to avoid introducing bias or discriminatory outcomes in our methodology
and evaluation. We do not anticipate any ethical concerns or negative societal impacts arising from
this study. We are committed to ensuring transparency, fairness, and integrity throughout the entire
research process.

6.2 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we clearly document the experimental configurations across both the main
text and the appendix. In Section 4.1, we provide the primary setup, including evaluation bench-
marks, selected baselines, backbone models, and training pipelines. Key hyperparameters such as
batch sizes, learning rates, optimizer settings, warm-up steps, and total training steps are also re-
ported to enable faithful replication.

Further details are provided in the appendix. Appendix A describes the datasets used in multi-
task learning, transfer, and continual learning, along with their splits and evaluation protocols. All
datasets used are publicly available. Appendix B expands on model-specific configurations, includ-
ing MoSE architecture choices, LoRA rank adjustments, and continual learning schedules. Ap-
pendix C details the balanced data sampling strategy, designed to account for variations in dataset
sizes and ensure fair training across tasks. Together, these sections provide comprehensive coverage
of all implementation and experimental details.

In addition, we provide our code at the following link1 and also include it in the supplementary
materials, which will facilitate independent verification and further research.

1https://anonymous.4open.science/r/MoSE-F2BD/README.md
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A DATASETS

A.1 MTL BENCHMARK

GLUE Benchmark. We utilize the GLUE benchmark (Wang et al., 2018) to evaluate the general-
ization capability of our model across a diverse set of natural language understanding tasks. GLUE
covers a broad spectrum of tasks, including paraphrase detection (MRPC, QQP), sentiment classi-
fication (SST-2), natural language inference (MNLI, RTE, QNLI), linguistic acceptability (CoLA),
and semantic textual similarity (STS-B). Following prior work (Wang et al., 2023b), for tasks with
fewer than 10,000 training examples (i.e., MRPC, STS-B, and CoLA), we evenly split the original
validation set into new validation and test sets to enable consistent evaluation.

Commonsense Reasoning. For commonsense reasoning tasks, following prior work (Liu et al.,
2024d; Yang et al., 2025b; Li et al., 2024), we adopt a benchmark suite consisting of eight widely-
used datasets: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-Easy, ARC-Challenge, and
OpenBookQA. These tasks span multiple reasoning paradigms, including question answering based
on implicit facts (BoolQ), physical commonsense (PIQA), social scenarios (SIQA), script and event
plausibility (HellaSwag), coreference-based reasoning (WinoGrande), elementary and challenging
science exams (ARC-E and ARC-C), and open-domain factual reasoning (OBQA). Together, they
provide a comprehensive evaluation of a model’s capability to reason under various commonsense
contexts. For GLUE benchmark and commonsense reasoning tasks, we selected the checkpoint with
the highest average performance on validation set.

A.2 TRANSFERRING AND CONTINUAL LEARNING

Transferring. For transferability evaluation, we introduce four commonsense question an-
swering benchmarks: CommonsenseQA (CSQA) (Talmor et al., 2019), CommonsenseQA 2.0
(CSQA2) (Talmor et al., 2021), LogiQA(Liu et al., 2021), and QASC(Khot et al., 2020). While
all four tasks fall under the umbrella of commonsense QA, they differ from the previously used
reasoning benchmarks in both domain and task formulation. Specifically, CSQA and CSQA2 em-
phasize multi-hop reasoning over structured knowledge; LogiQA focuses on logical consistency
within reading comprehension passages; and QASC requires compositional reasoning by combin-
ing facts across multiple sentences. This domain shift presents a more rigorous test of the model’s
zero-shot generalization and transfer capabilities.

Continual Learning. In the continual learning setting, we introduce three sequentially learned task
groups to evaluate forgetting resistance and adaptability. The first group comprises CSQA, CSQA2,
and LogiQA, representing commonsense question answering. The second task is SciTail (Khot et al.,
2018), a natural language inference (NLI) benchmark. The final task is RACE (Lai et al., 2017), a
reading comprehension dataset. This diverse sequence simulates realistic task shifts and challenges
the model’s ability to retain prior knowledge while acquiring new information.

B IMPLEMENTATION

B.1 GENERAL SETTINGS

We use T5-Base, Qwen3-4B, and Qwen3-8B as backbone models. T5-Base is trained with a batch
size of 64 and a learning rate of 3 × 10−4, while Qwen models adopt a batch size of 8 with 4-step
gradient accumulation and a learning rate of 2 × 10−5. All models are optimized with AdamW
using a weight decay of 0.01, a cosine learning rate schedule, 1,000 warm-up steps, and 20,000 total
training steps. The maximum input sequence length is set to 128 tokens. Training is performed on
NVIDIA RTX 5880 Ada Generation GPUs. To reduce memory and computation overhead, we apply
uniform 4-bit NF4 quantization with double quantization and employ FP16 precision for training.

B.2 DETAILED SETTINGS

MoSE Configuration. Our MoSE architecture comprises one shared expert and eight routing
experts, each with rank 8 and scaling factor 16. For each input, the router selects the top-2 routing
experts along with the shared expert. Task embeddings are obtained by averaging the T5 encoder
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representations of 20 randomly sampled training examples, yielding a 768-dimensional vector. The
FiLM modulation layer uses a compression rank of 32 to limit parameter overhead. For sparse
updates, we select the top 5% most important parameters . We set the EMA momentum coefficient
to 0.9, apply a balanced load constraint with weight 0.002, and an orthogonality loss with weight
0.01. The MoSE module is applied only to feed-forward network (FFN) layers, while attention
layers use standard single-rank LoRA adapters.

Baselines Configuration. All baseline models are implemented under the same training and data
pipeline to ensure fair comparison. To maintain comparable parameter budgets, we adjust the LoRA
rank for each method. For instance, in MultiLoRA we employ three experts with rank 24 to match
the total parameter count of our approach. The number of experts and their corresponding ranks for
all methods are reported in Table 7.

B.3 CONTINUAL LEARNING SETTINGS

During continual learning, we use a small learning rate of 5 × 10−6 to help the model acquire new
knowledge without forgetting prior information. Fine-tuning is performed for 6000 steps on QA
tasks (CSQA, CSQA2, LogiQA) and 2000 steps on SciTail and RACE. Evaluation is conducted at
the final training step. For RACE, we increase the maximum input length to 256 tokens to handle
longer passages.

C BALANCED DATA SAMPLING

In multi-task settings, task datasets often differ significantly in size. Uniform sampling thus risks
overfitting large tasks while undertraining smaller ones, impairing generalization. To address this,
we adopt a weighted sampling strategy that adjusts task frequencies without explicit resampling.

Specifically, given T task datasets {D1,D2, . . . ,DT } with sizes {n1, n2, . . . , nT }, we compute
task-level sampling probabilities using a softmax over dataset sizes:

pi =
exp(ni)∑

j = 1T exp(nj)
. (11)

Then, we assign all samples from task Di an equal per-sample weight for uniform treatment:

wij =
pi
ni

, j = 1, . . . , ni. (12)

This strategy mitigates inter-task imbalance while ensuring intra-task fairness. Since sampling is
global, each batch naturally contains a mix of tasks, facilitating balanced supervision and knowledge
sharing. The sampling probabilities for different datasets are illustrated in Figure 5. They remain
approximately balanced across sub-tasks, preventing excessive bias toward or neglect of any single
task. While this scheme may not constitute the optimal sampling strategy, it is uniformly applied to
all methods to ensure comparability and fairness.
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(b) GLUE tasks

Figure 5: Sampling probabilities across different task groups.
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D SUPPLEMENTARY ANALYSIS OF MoSE

D.1 ANALYSIS OF ROUTING EXPERTS

Router Input Strategy Analysis. To examine the impact of routing inputs and modulation strate-
gies, we compare two alternatives: Task-level Routing and Token-level Routing, each evaluated with
and without Feature-wise Linear Modulation (FiLM). As shown in Table 8, Token-level Routing
with FiLM yields the best performance (86.3), suggesting that conditioning the router on richer con-
textual signals is particularly beneficial when combined with modulation. In contrast, for Task-level
Routing, applying FiLM slightly reduces performance (85.7 vs. 85.8), indicating that task embed-
dings may already encode sufficient task-specific information and that additional modulation could
introduce noise. Overall, these results underscore the importance of input representation choices
and reveal the nuanced role of FiLM in designing effective routing strategies for MoE architectures.

Table 8: Comparison of Task-level and Token-level Routing strategies on T5-Base with the GLUE
benchmark, under both FiLM and non-FiLM settings.

Routing Strategy With FiLM Without FiLM
Task-level Routing 85.7 85.8
Token-level Routing 86.3 85.7

Expert Load Balancing. To mitigate expert under-utilization, we apply a load-balancing constraint
with a small weight(λ = 0.002) during training. As shown in Figure 6a, the cumulative number
of activated tokens per expert demonstrates a relatively balanced distribution. Despite minor varia-
tions, the load is relatively balanced across experts, with no signs of collapse or severe skew. This
mild imbalance reflects our router’s specialization capability, allowing different experts to focus on
diverse input patterns without compromising overall utilization.

Task Embedding Visualization. We also visualize the task embeddings of reasoning datasets to
examine whether our model captures meaningful task-level distinctions. As illustrated in the middle
plot of Figure 6b, embeddings from the same task are tightly clustered, while those from different
tasks are well-separated. Interestingly, semantically similar tasks—such as ARC-C and ARC-E, or
PIQA and SIQA—appear close to each other in the embedding space. This suggests that our task
encoder not only preserves task-specific distinctions but also reveals latent task-level relationships.
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(a) Expert token count.
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(b) Task embedding visualization.

Figure 6: Visual analysis of MoSE’s internal behavior: (a) shows load balance across experts, and
(b) displays the separability of task embeddings.

D.2 ANALYSIS OF SHARED EXPERT

Analysis of Orthogonality Loss Weight. To better understand the impact of orthogonality constrain
on model performance, we conduct ablation experiments with different regularization weights. As
shown in Figure 7a, small regularization weights (e.g., 0.001 and 0.005) bring noticeable improve-
ments over the baseline without orthogonal loss, with the best performance achieved at β = 0.01.
However, excessively large weights (e.g., 0.05 and 0.1) lead to performance degradation. These re-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

sults suggest that a moderate orthogonal constraint encourages diverse expert representations, while
overly strong regularization hinders optimization and hurts generalization.

Shared Expert Weight Analysis.In addition, we sampled the activation weights of the shared ex-
pert, as shown in Figure 7b. The results indicate that the shared expert generally exhibits relatively
small weights, suggesting that it does not dominate the representation learning. Instead, it plays
more of a complementary role, serving as a balancing component to facilitate knowledge sharing
across tasks.
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Figure 7: Visual analysis of MoSE: (a) sensitivity to orthogonality loss weight, and (b) distribution
of shared expert weights.

D.3 CONTINUAL LEARNING PERFORMANCE

Figure 8 illustrates the accuracy dynamics of both QA and reasoning tasks during continual fine-
tuning on QA tasks. MoSE begins with stronger QA performance and continues to improve steadily,
while its accuracy on previously learned reasoning tasks shows an initial drop followed by rapid
recovery, indicating robust knowledge retention. In contrast, MultiLoRA and MixLoRA suffer from
severe forgetting, with reasoning performance steadily declining. This highlights the effectiveness
of MoSE’s expert design and update strategy in balancing adaptation and stability.
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Figure 8: Accuracy trajectories during continual fine-tuning on QA tasks, starting from a model first
supervised fine-tuned on commonsense reasoning datasets. The backbone is Qwen3-4B.

At the same time, we present the performance evolution of different tasks during sequential learn-
ing, as shown in Figure 9. Each cell reports the accuracy of a specific task after training on suc-
cessive ones. Compared to MixLoRA and MultiLoRA, MoSE shows stronger resistance to forget-
ting and more stable performance preservation across tasks. In particular, even after the final task,
MoSE maintains high accuracy, underscoring its effectiveness in retaining knowledge in multi-task
continual learning scenarios.
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Figure 9: Continual learning performance across four task sequences: Reasoning (T1), QAs (T2),
RACE (T3), and SciTail (T4). The backbone is Qwen3-8B.

D.4 TRAINABLE PARAMETER ANALYSIS

We present a parameter breakdown of the MoSE framework on Qwen3-8B in Table 9. Compared
to prior MoELoRA-based architectures (Li et al., 2024; Gao et al., 2024), MoSE introduces two ad-
ditional components—the Shared Expert and the FiLM Adapter—which together account for only
0.31% of the total parameters. Despite this negligible increase, MoSE delivers strong multi-task per-
formance and demonstrates remarkable resistance to forgetting, highlighting the effectiveness of our
design in balancing parameter efficiency, task generalization, and long-term knowledge retention.

Table 9: Parameter breakdown of trainable components in MoSE based on Qwen3-8B. Trainable
Ratio and Total Ratio indicate the percentage of trainable and total model parameters, respectively.

Component Params Trainable Ratio Total Ratio
Single LoRA 7.67M 5.37 0.16
Routing Experts 113.25M 79.28 2.33
Shared Expert 14.16M 9.91 0.29
Router FC 6.64M 4.65 0.14
FiLM Adapter 1.13M 0.79 0.02

Total Trainable 142.84M 100.00 2.94

In addition, we present a comparison of parameter ratios and final performance across different
methods, as summarized in Table 10. MoSE achieves the highest GLUE performance (86.3) while
maintaining a comparable trainable parameter ratio (6.76%). Relative to other PEFT methods such
as LoRA (85.4, 2.83%) and MultiLoRA (85.8, 6.67%), MoSE provides consistent improvements
without introducing significant parameter overhead. These findings highlight that our proposed
architecture strikes a favorable balance between efficiency and effectiveness.

Table 10: Comparison of parameter efficiency (TP, ratio of trainable parameters to total parameters)
and average GLUE performance on T5-Base across different methods.

Method Adapters PT FT LoRA HydraLoRA MTL-LoRA MixLoRA MultiLoRA MoSE

TP (%) 5.99 0.01 100 2.83 5.74 5.66 5.80 6.67 6.76
Perform. 84.5 79.4 84.9 85.4 85.6 85.5 85.7 85.8 86.3

E LIMITATION

Despite strong empirical results, MoSE has several limitations. First, due to the device limitation,
our experiments are limited to models up to 8B parameters, leaving scalability to larger models (e.g.,
32B) unverified. Second, unlike standard LoRA, MoSE’s MoE-based design introduces additional
parameters that cannot be merged at inference, increasing storage and latency. Finally, while effec-
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tive on classification and reasoning tasks, its applicability to other domains such as code generation,
long-form text, and multimodal learning remains unexplored.

F THE USE OF LARGE LANGUAGE MODELS

In preparing this work, we made limited use of large language models (LLMs) as an assistive tool.
Specifically, LLMs were employed to:

• Text refinement: polishing grammar, enhancing readability, and improving academic style
to ensure clarity and conciseness, without altering the substantive content or conclusions.

• LaTeX support: assisted in generating and formatting LaTeX code—covering equations,
tables, and figure environments—to ensure consistency and improve typesetting quality.

• Minor editing support: providing suggestions for rephrasing section transitions, figure
captions, and table descriptions.

LLMs were not used for any core contributions of this work, including research ideation, experi-
mental design, algorithm development, or data analysis. All scientific content, methodology, and
results originate solely from the authors.
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