
Neural Synaptic Balance

Anonymous Author(s)
Affiliation
Address
email

Abstract

For a given additive cost function R (regularizer), a neuron is said to be in balance1

if the total cost of its input weights is equal to the total cost of its output weights.2

The basic example is provided by feedforward layered networks of ReLU units3

trained with L2 regularizers, which exhibit balance after proper training. We4

develop a general theory that extends this phenomenon in three broad directions5

in terms of: (1) activation functions; (2) regularizers, including all Lp (p > 0)6

regularizers; and (3) architectures (non-layered, recurrent, convolutional, mixed7

activations). Gradient descent on the error function alone does not converge in8

general to a balanced state where every neuron is in balance, even when starting9

from a balanced state. However, gradient descent on the regularized error function10

must converge to a balanced state, and thus network balance can be used to assess11

learning progress. The theory is based on two local neuronal operations: scaling12

which is commutative, and balancing which is not commutative. Finally, and most13

importantly, given any initial set of weights, when local balancing operations are14

applied to each neuron in a stochastic manner, global order always emerges through15

the convergence of the stochastic algorithm to the same unique set of balanced16

weights. The reason for this convergence is the existence of an underlying strictly17

convex optimization problem where the relevant variables are constrained to a18

linear, only architecture-dependent, manifold. The theory is corroborated through19

simulations carried out on benchmark data sets. Balancing operations are entirely20

local and thus physically plausible in biological and neuromorphic networks.21

1 Introduction22

When large neural networks are trained on complex tasks, they produce large arrays of synaptic23

weights that have no clear structure and are difficult to interpret. Thus finding any kind of structure in24

the weights of large neural networks is of great interest. Here we study a particular kind of structure25

we call neural synaptic balance and the conditions under which it emerges. Neural synaptic balance26

is different from the biological notion of balance between excitation and inhibition [Froemke, 2015,27

Field et al., 2020, Howes and Shatalina, 2022, Kim and Lee, 2022, Shirani and Choi, 2023]. We28

use this term to refer to any systematic relationship between the input and output synaptic weights29

of individual neurons or layers of neurons. Here we consider the case where the cost of the input30

weights is equal to the cost of the output weights, where the cost is defined by some regularizer. One31

of the most basic examples of such a relationship is when the sum of the squares of the input weights32

of a neuron is equal to the sum of the squares of its output weights.33

Basic Example: The basic example where this happens is with a neuron with a ReLU activation34

function inside a network trained to minimize an error function with L2 regularization. If we multiply35

the incoming weights of the neuron by some λ > 0 (including the bias) and divide the outgoing36

weights of the neuron by the same λ, it is easy to see that this scaling operation does not affect in any37

way the contribution of the neuron to the rest of the network. Thus, the component of the overall38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

error function that depends only on the input-output function of the network is unchanged. However,39

the value of the L2 regularizer changes with λ and we can ask what is the value of λ that minimizes40

the corresponding contribution given by:41

∑
i∈IN

(λwi)
2 +

∑
i∈OUT

(wi/λ)
2 = λ2A+

1

λ2
B (1.1)

where IN and OUT denote the set of incoming and outgoing weights respectively, A =
∑

i∈IN w2
i ,42

and B =
∑

i∈OUT w2
i . The product of the two terms on the right-hand side of Equation 1.1 is equal to43

AB and does not depend on λ. Thus, the minimum is achieved when these two terms are equal, which44

yields: (λ∗)4 = B/A for the optimal λ∗. The corresponding new set of weights, vi = λ∗wi for the45

input weights and vi = wi/λ
∗ for the outgoing weights, must be balanced:

∑
i∈IN v2i =

∑
i∈OUT v2i .46

This is because its optimal scaling factor can only be λ∗ = 1. Thus, we can define two operations47

that can be applied to the incoming and outgoing weights of a neuron: scaling and balancing. It48

is easy to check that scaling operations applied to any two neurons commute, whereas balancing49

operations do not commute if the two neurons are directly connected (Appendix). If a network of50

ReLU neurons is properly trained using a standard error function with an L2 regularizer, at the end of51

training one observes a remarkable phenomenon: for each ReLU neuron, the norm of the incoming52

synaptic weights is approximately equal to the norm of the outgoing synaptic weights, i.e. every53

neuron is balanced.54

There have been isolated previous studies of this kind of synaptic balance [Du et al., 2018, Stock55

et al., 2022] under special conditions. For instance, in Du et al. [2018], it is shown that if a deep56

network is initialized in a balanced state with respect to the sum of squares metric, and if training57

progresses with an infinitesimal learning rate, then balance is preserved throughout training. Here,58

we take a different approach aimed at uncovering the generality of neuronal balance phenomena,59

the learning conditions under which they occur, as well as new local balancing algorithms and their60

convergence properties. We study neural synaptic balance in its generality in terms of activation61

functions, regularizers, network architectures, and training stages. In particular, we systematically62

answer questions such as: Why does balance occur? Does it occur only with ReLU neurons? Does it63

occur only with L2 regularizers? Does it occur only in fully connected feedforward architectures?64

Does it occur only at the end of training? And what happens if we balance neurons at random in a65

large network?66

2 Generalization of the Activation Functions67

What enables scaling ReLU neurons without changing their input-output function is the homogeneous68

property of ReLU activation function. An activation function f is said to be homogeneous if for every69

λ > 0, f(λx) = λf(x). To fully characterize the class of homogeneous activation functions, we first70

define a new class of activation functions, corresponding to bilinear units (BiLU), consisting of two71

half-lines meeting at the origin.72

Definition 2.1. (BiLU) A neuronal activation function f : R → R is bilinear (BiLU) if and only if73

f(x) = ax when x < 0, and f(x) = bx when x ≥ 0, for some fixed parameters a and b in R.74

BiLU units include linear units (a = b), ReLU units (a = 0, b = 1), leaky ReLU (a = ϵ; b = 1) units,75

and symmetric linear units (a = −b), all of which can also be viewed as special cases of piece-wise76

linear units [Tavakoli et al., 2021], with a single hinge. One advantage of ReLU and more generally77

BiLU neurons, which is very important during backpropagation learning, is that their derivative is78

very simple and can only take one of two values (a or b). We have the following equivalence.79

Proposition 2.2. A neuronal activation function f : R → R is homogeneous if and only if it is a80

BiLU activation function.81

Proof. Every function in BiLU is clearly homogeneous. Conversely, any homogeneous function f82

must satisfy: (1) f(0x) = 0f(x) = f(0) = 0; (2)f(x) = f(1x) = f(1)x for any positive x; and (3)83

f(x) = f(−u) = f(−1)u = −f(−1)x for any negative x. Thus f is in BiLU with a = −f(−1)84

and b = f(1).85

In the Appendix, we provide a simple proof that networks of BiLU neurons, even with a single hidden86

layer, have universal approximation properties.87

2

While in the rest of this work we use BiLU neurons, it is possible to generalize the notions of scaling88

and balancing even further. To see this, suppose that there is a neuron with an activation function89

f : R → R, and functions g : (a, b) → R and h : (a, b) → R, such that: f(g(λ)x) = h(λ)f(x),90

for any λ ∈ (a, b). Then if we multiply the incoming weights by g(λ) and divide the outgoing91

weights by h(λ) ̸= 0 (generalized scaling), we see again that the influence of the neuron on the92

rest of the network is unchanged. And thus, again, we can try to find the value of λ that minimizes93

the regularization cost (generalized balancing). Here we provide an example of such an activation94

function, with g(λ) = λ and h(λ) = λc. Additional details are given in the Appendix.95

Proposition 2.3. The set of activation functions f satisfying f(λx) = λcf(x) for any x ∈ R and96

any λ > 0 consist of the functions of the form:97

f(x) =

{
Cxc if x ≥ 0

Dxc if x < 0.
(2.1)

where c ∈ R, C = f(1) ∈ R, and D = f(−1) ∈ R. We call these bi-power units (BiPU). If, in98

addition, we want f to be continuous at 0, we must have either c > 0, or c = 0 with C = D.99

Note that in the general case where c > 0, C and D do not need to be equal. In particular, one of100

them can be equal to zero, and the other one can be different from zero giving rise to rectified power101

units.102

3 Generalization of the Regularizers103

As we have seen, given a BiLU neuron, scaling its input and output weights by λ and 1/λ respectively104

does not alter its contribution to the rest of the network and thus we can adjust λ to reduce or even105

minimize the contribution of the corresponding weights to the regularizer. It is reasonable to assume106

that the regularizer has the general additive form: R(W) =
∑

w gw(w) where W denotes all the107

weights in the network. Without much loss of generality, we can assume that the gw are continuous,108

and lower-bounded by 0. To ensure the existence and uniqueness of a minimum during the balancing109

of any neuron, We will assume that each function gw depends only on the magnitude |w| of the110

corresponding weight, and that gw monotonically increases from 0 to +∞. Clearly, L2, L1 and111

more generally all Lp regularizers are special cases where, for p > 0, Lp regularization is defined112

by: R(W) =
∑

w |w|p. Differentiability conditions can be added to be able to derive closed form113

solutions for the balance (optimal scaling). This is satisfied by all forms of Lp regularization, for114

p > 0. We have the following theorem.115

Theorem 3.1. (Balance and Regularizer Minimization) Assume an additive regularizer with the116

properties described above, where in addition we assume that the functions gw are continuously117

differentiable, except perhaps at the origin. Then, for any neuron, there exists one optimal value λ∗118

that minimizes R(W). This value must be a solution of the consistency equation:119

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (3.1)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized balance120

equation:121

∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (3.2)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal122

value λ∗ is unique and equal to:123

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p

=
(||OUT (i)||p

||IN(i)||p

)1/2

(3.3)

After balancing, the decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:124

3

∆R =

((∑
w∈IN(i)

|w|p
)1/2 − (∑

w∈OUT (i)

|w|p
)1/2)2

(3.4)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:125 ∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (3.5)

Proof. The results are obtained by setting the derivative of the regularizer with respect to the scaling126

factor λ to 0. Note that the theorem applies to regularizers combining different Lp’s (e.g. of the form127

$alphaL2 + βL1). The details are given in the Appendix.128

4 Generalization of the Architectures129

It is straightforward to check that the scaling and balancing operations can be extended in the130

following cases (see Appendix for additional details):131

1. Mixed networks containing both BiLU and non-BiLU units. One can just restrict those132

operations to the BiLU neurons.133

2. Recurrent networks containing BiLU neurons, not just feedforward networks.134

3. Networks that are not layered, or not fully connected.135

4. In addition, scaling and balancing operations can be applied layer-wise to an entire layer of136

BiLU neurons in a tied manner, by using the same scaling factor λ with a single optimal137

value λ∗ for all the neurons in the layer. In particular, this allows the application of scaling138

and balancing to convolutional layers of BiLU neurons.139

5 Balancing Algorithms140

Gradient Descent: When a network of BiLU neurons is trained by gradient descent to minimize141

an error function E(W), such as the negative log-likelihood of the data, there is no reason for the142

final weights to be balanced. However, when a network is properly trained to minimize a regularized143

error function E = E(W) +R(W), the final weights ought to be balanced. The reason is that if a144

neuron is not in a balanced state at the end of training, then we can further reduce its contribution to145

R smoothly by balancing it. This implies that the gradient of E(W) is not equal to zero at the end of146

training, and thus training has not properly converged. The converse is that the degree of balance can147

be used as a proxy for assessing whether learning has converged or not.148

Stochastic Balancing: More interestingly, we now investigate what happens if we fix the weights W149

of a network and iteratively balance its BiLU neurons.150

Theorem 5.1. (Convergence of Stochastic Balancing) Consider a network of BiLU neurons with151

an error function E(W) = E(W) + R(W) where R is any Lp (p > 0) regularizer. Let W denote152

the initial weights. When the neuronal stochastic balancing algorithm is applied throughout the153

network so that every neuron is visited from time to time, then E(W) remains unchanged but R(W)154

must converge to some finite value that is less or equal to the initial value, strictly less if the initial155

weights are not balanced. In addition, for every neuron i, λ∗
i (t) → 1 and the weights themselves must156

converge to a limit W ∗ which is globally balanced, with E(W) = E(W ∗) and R(W) ≥ R(W ∗),157

and with equality if only if W is already balanced. Finally, W ∗ is unique as it corresponds to the158

solution of a strictly convex optimization problem with special linear constraints that depend only on159

the network architecture (and not on W). Stochastic balancing projects to stochastic trajectories in160

the linear manifold that run from the origin to the unique optimal configuration.161

Proof. Each individual balancing operation leaves E(W) unchanged because the BiLU neurons are162

homogeneous. Furthermore, each balancing operation reduces the regularization error R(W), or163

leaves it unchanged. Since the regularizer is lower-bounded by zero, the value of the regularizer must164

approach a limit as the stochastic updates are being applied. However, this alone does not imply165

4

Figure 1: Two hidden units (1 and 7) connected by two different directed paths 1-2-3-4-7 and 1-5-6-7 in a
BiLU network. Each unit i has a scaling factor Λi, and each directed edge from unit j to unit i has a scaling
factor Mij = Λi/Λj . The products of the Mij’s along each path is equal to: Λ2

Λ1

Λ3
Λ2

Λ4
Λ3

Λ7
Λ4

= Λ5
Λ1

Λ6
Λ5

Λ7
Λ6

= Λ7
Λ1

.
Therefore the variables Lij = logMij must satisfy the linear equation: L21 + L32 + L43 + L74 = L51 +
L65 + L76 =log Λ7 − log Λ1.

that the weights are converging and whether the limit is unique or not. To address these issues, for166

simplicity, we use a continuous time notation. After a certain time t each neuron has been balanced a167

certain number of times. While the balancing operations are not commutative as balancing operations,168

they are commutative as scaling operations. Thus we can reorder the scaling operations and group169

them neuron by neuron so that, for instance, neuron i has been scaled by the sequence of scaling170

operations of the form:171

Sλ∗
1
(i)Sλ∗

2
(i) . . . Sλ∗

nit
(i) = SΛi(t)(i) (5.1)

where nit corresponds to the count of the last update of neuron i prior to time t, and:172

Λi(t) =
∏

1≤n≤nit

λ∗
n(i) (5.2)

For the input and output units, we can consider that their balancing coefficients λ∗ are always equal173

to 1 (at all times) and therefore Λi(t) = 1 for any visible unit i. At time t the weight connecting unit174

j to unit i is given by: wij(t) = wij(0)Λi(t)/Λj(t), where wij(0) corresponds to the initial value.175

In the Appendix, we show upfront that for all BiLU units i, Λi(t) converges to some limit Λi > 0,176

and thus the weights converge too. Here, we first suppose that the coefficients Λi(t) converge to177

some limit Λi, and recover the convergence at the end from understanding the overall proof. As a178

result, for any Lp regularizer, the coefficients Λi corresponding to a globally balanced state must be179

solutions of the following optimization problem:180

min
Λ

R(Λ) =
∑
ij

|Λi

Λj
wij |p (5.3)

under the simple constraints: Λi > 0 for all the BiLU hidden units, and Λi = 1 for all the visible (input181

and output) units. In this form, the problem is not convex. Introducing new variables Mj = 1/Λj182

is not sufficient to render the problem convex. Using variables Mij = Λi/Λj is better, but still183

problematic for 0 < p ≤ 1. However, let us instead introduce the new variables Lij = log(Λi/Λj).184

These are well defined since we know that Λi/Λj > 0. The objective now becomes:185

minR(L) =
∑
ij

|eLijwij |p =
∑
ij

epLij |wij |p (5.4)

This objective is strictly convex in the variables Lij , as a sum of strictly convex functions (exponen-186

tials). However, to show that it is a convex optimization problem we need to study the constraints187

on the variables Lij . In particular, from the set of Λi’s it is easy to construct a unique set of Lij .188

However what about the converse?189

Definition 5.2. A set of real numbers Lij , one per connection of a given neural architecture, is190

self-consistent if and only if there is a unique corresponding set of numbers Λi > 0 (one per unit)191

such that: Λi = 1 for all visible units and Lij = logΛi/Λj for every directed connection from a unit192

j to a unit i.193

5

C

B

A

Figure 2: The problem of minimizing the strictly con-
vex regularizer R(Lij) =

∑
ij e

pLij |wij |p (p > 0), over
the linear (hence convex) manifold of self-consistent con-
figurations defined by the linear constraints of the form∑

π Lij = 0, where π runs over input-output paths. The
regularizer function depends on the weights. The linear
manifold depends only on the architecture, i.e., the graph
of connections. This is a strictly convex optimization prob-
lem with a unique solution associated with the point A. At
A the corresponding weights must be balanced, or else a
self-consistent configuration of lower cost could be found
by balancing any non-balanced neuron. Finally, any other
self-consistent configuration B cannot correspond to a bal-
anced state of the network, since there must exist balancing
moves that further reduce the regularizer cost (see main
text). Stochastic balancing produces random paths from the
origin, where Lij= logMij = 0, to the unique optimum
point A.

Remark 5.3. This definition depends on the graph of connections, but not on the original values of194

the synaptic weights. Every balanced state is associated with a self-consistent set of Lij , but not195

every self-consistent set of Lij is associated with a balanced state.196

Proposition 5.4. A set Lij associated with a neural architecture is self-consistent if and only if197 ∑
π Lij = 0 where π is any directed path connecting an input unit to an output unit or any directed198

cycle (for recurrent networks).199

Proof. If we look at any directed path π from unit i to unit j, it is easy to see that we must have:200

∑
π

Lkl = logΛi − log Λj (5.5)

This is illustrated in Figure 1. Thus along any directed path that connects any input unit to any output201

unit, we must have
∑

π Lij = 0. In addition, for recurrent neural networks, if π is a directed cycle202

we must also have:
∑

π Lij = 0. Thus in short we only need to add linear constraints of the form:203 ∑
π Lij = 0. Any unit is situated on a path from an input unit to an output unit. Along that path, it is204

easy to assign a value Λi to each unit by simple propagation starting from the input unit which has a205

multiplier equal to 1. When the propagation terminates in the output unit, it terminates consistently206

because the output unit has a multiplier equal to 1 and, by assumption, the sum of the multipliers207

along the path must be zero. So we can derive scaling values Λi from the variables Lij . Finally, it is208

easy to show that there are no clashes, i.e. that it is not possible for two different propagation paths to209

assign different multiplier values to the same unit i (see Appendix).210

Remark 5.5. Thus the constraints associated with being a self-consistent configuration of Lij’ s are211

all linear. This linear manifold of constraints depends only on the architecture, i.e., the graph of212

connections. The strictly convex function R(Lij) depends on the actual weights W . Different sets of213

weights W produce different convex functions over the same linear manifold.214

Remark 5.6. One could coalesce all the input units and all output units into a single unit, in which215

case a path from an input unit to and output unit becomes also a directed cycle. In this representation,216

the constraints are that the sum of the Lij must be zero along any directed cycle. In general, it is not217

necessary to write a constraint for every path from input units to output units. It is sufficient to select218

a representative set of paths such that every unit appears in at least one path.219

We can now complete the proof of Theorem 5.1. Given a neural network of BiLUs with a set220

of weights W , we can consider the problem of minimizing the regularizer R(Lij) over the self-221

admissible configuration Lij . For any p > 0, the Lp regularizer is strictly convex and the space of222

self-admissible configurations is linear and hence convex. Thus this is a strictly convex optimization223

6

A

B

C

D

F

E

Figure 3: SGD applied to E alone,
in general, does not converge to
a balanced state, but SGD ap-
plied to E +R converges to a bal-
anced state. (A-C) Simulations use
a deep fully connected autoencoder
trained on the MNIST dataset. (D-
F) Simulations use a deep locally
connected network trained on the
CFAR10 dataset. (A,D) Regulariza-
tion leads to neural balance. (B,E)
The training loss decreases and con-
verges during training (these panels
are not meant for assessing the qual-
ity of learning when using a regu-
larizer). (C,F) Using weight reg-
ularization decreases the norm of
weights. (A-F) Shaded areas corre-
spond to one s.t.d around the mean
(in some cases the s.t.d. is small and
the shaded area is not visible).

problem that has a unique solution (Figure 2). Note that the minimization is carried over self-224

consistent configurations, which in general are not associated with balanced states. However, the225

configuration of the weights associated with the optimum set of Lij (point A in Figure 2) must be226

balanced. To see this, imagine that one of the BiLU units–unit i in the network is not balanced. Then227

we can balance it using a multiplier λ∗
i and replace Λi by Λ′

i = Λiλ
∗. It is easy to check that the new228

configuration including Λ′
i is self-consistent. Thus, by balancing unit i, we are able to reach a new229

self-consistent configuration with a lower value of R which contradicts the fact that we are at the230

global minimum of the strictly convex optimization problem.231

We know that the stochastic balancing algorithm always converges to a balanced state. We need to232

show that it cannot converge to any other balanced state, and in fact that the global optimum is the233

only balanced state. By contradiction, suppose it converges to a different balanced state associated234

with the coordinates (LB
ij) (point B in Figure 2). Because of the self-consistency, this point is also235

associated with a unique set of (ΛB
i) coordinates. The cost function is continuous and differentiable236

in both the Lij’s and the Λi’s coordinates. If we look at the negative gradient of the regularizer, it237

is non-zero and therefore it must have at least one non-zero component ∂R/∂Λi along one of the238

Λi coordinates. This implies that by scaling the corresponding unit i in the network, the regularizer239

can be further reduced, and by balancing unit i the balancing algorithm will reach a new point (C in240

Figure 2) with lower regularizer cost. This contradicts the assumption that B was associated with a241

balanced stated. Thus, given an initial set of weights W , the stochastic balancing algorithm must242

always converge to the same and unique optimal balanced state W ∗ associated with the self-consistent243

point A. A particular stochastic schedule corresponds to a random path within the linear manifold244

from the origin (at time zero, all the multipliers are equal to 1, and therefore Mij = 1 and Lij = 0245

for any i and any j) to the unique optimum point A.246

247

Remark 5.7. From the proof, it is clear that the same result holds also for any deterministic balancing248

schedule, as well as for tied and non-tied subset balancing, e.g., for layer-wise balancing and tied249

layer-wise balancing. In the Appendix, we provide an analytical solution for the case of tied layer-wise250

balancing in a layered feed-forward network.251

Remark 5.8. From the proof, it is also clear that the same convergence to the unique global optimum252

is observed if each neuron, when stochastically visited, is favorably scaled rather than balanced, i.e.,253

it is scaled with a factor that reduces R but not necessarily minimizes R. Stochastic balancing can254

also be viewed as a form of EM algorithm where the E and M steps can be taken fully or partially.255

7

A

B

D

C

E

F

Figure 4: Even if the starting state
is balanced, SGD does not pre-
serve the balance unless the learn-
ing rate is infinitely small. (A-C)
Simulations use a deep fully con-
nected autoencoder trained on the
MNIST dataset. (D-F) Simulations
use a deep locally connected net-
work trained on the CFAR10 dataset.
(A-F) The initial weights are bal-
anced using the stochastic balanc-
ing algorithm. Then the network is
trained by SGD. (A,D) When the
learning rate (lr) is relatively large,
without regularization, the initial
balance of the network is rapidly dis-
rupted. (B,E) The training loss de-
creases and converges during train-
ing (these panels are not meant for
assessing the quality of learning
when using a regularizer). (C,F) Us-
ing weight regularization decreases
the norm of the weights. (A-F)
Shaded areas correspond to one s.t.d
around the mean (in some cases the
s.t.d. is small and the shaded area is
not visible).

6 Simulations256

To further corroborate the results, we ran multiple experiments. Here we report the results from two257

series of experiments. The first one is conducted using a six-layer, fully connected, autoencoder258

trained on MNIST [Deng, 2012] for a reconstruction task with ReLU activation functions in all layers259

and the sum of squares errors loss function. The number of neurons in consecutive layers, from260

input to output, is 784, 200, 100, 50, 100, 200, 784. Stochastic gradient descent (SGD) learning by261

backpropagation is used for learning with a batch size of 200.262

The second one is conducted using three locally connected layers followed by three fully connected263

layers trained on CFAR10 [Krizhevsky and Hinton, 2009] for a classification task with leaky ReLU264

activation functions in the hidden layers, a softmax output layer, and the cross entropy loss function.265

The number of neurons in consecutive layers, from input to output, is 3072, 5000, 2592, 1296, 300,266

100, 10. Stochastic gradient descent (SGD) learning by backpropagation is used for learning with a267

batch size of 5.268

In all the simulation figures (Figures 3, 4, and 5) the left column presents results obtained from the269

first experiment, while the right column presents results obtained from the second experiment. While270

we used both L1 and L2 regularizers in the experiments, in the figures we report the results obtained271

with the L2 regularizer, which is the most widely used regularizer. In Figures 3 and 4, training is272

done using batch gradient descent on the MNIST and CIFAR data. The balance deficit for a single273

neuron i is defined as:
(∑

w∈IN(i) w
2 −

∑
w∈OUT (i) w

2
)2

, and the overall balance deficit is defined274

as the sum of these single-neuron balance deficits across all the hidden neurons in the network. The275

overall deficit is zero if and only if each neuron is in balance. In all the figures, ||W ||F denotes the276

Frobenius norm of the weights.277

Figure 3 shows that learning by gradient descent with a L2 regularizer results in a balanced state.278

Figure 4 shows that even when the network is initialized in a balanced state, without the regularizer279

the network can become unbalanced if the fixed learning rate is not very small. Figure 5 shows that280

the local stochastic balancing algorithm, by which neurons are randomly balanced in an asynchronous281

fashion, always converges to the same (unique) global balanced state.282

8

A C

B D

Figure 5: Stochastic balancing converges to
a unique global balanced state (A-B) Sim-
ulations use a deep fully connected autoen-
coder trained on the MNIST dataset. (C-D)
Simulations use a deep locally connected net-
work trained on the CFAR10 dataset. (A,C)
The weights of the network are initialized
randomly and saved. The stochastic balanc-
ing algorithm is applied and the resulting
balanced weights are denoted by Wbalanced.
The stochastic balancing algorithm is ap-
plied 1,000 different times. In all repeti-
tions, the weights converge to the same value
Wbalanced. (B,D) Stochastic balancing de-
creases the norm of the weights. (A-D)
Shaded areas correspond to one standard de-
viation around the mean.

7 Conclusion283

While the theory of neural synaptic balance is a mathematical theory that stands on its own, it is284

worth considering some of its possible consequences and applications, at the theoretical, algorithmic,285

biological, and neuromorphic hardware levels. At the theory level, for instance, it suggests extending286

theorems obtained with ReLU neurons to BiLU neurons, using balance ideas to study learning in287

linear regularized networks, and using the manifolds of equivalent weights to study issues of over-288

parameterization (e.g. the data needs only to specify the balanced state, not the entire equivalence289

class). At the algorithmic level, balancing algorithms could be used for instance to balance networks290

at any stage of learning, including at the beginning, and as an alternative way to regularize networks.291

Finally, because scaling and balancing are local operations, they are potentially of interest in physical,292

as opposed to digitally-simulated, neural networks. In particular, it would be interesting to know if293

some notion of balance applies to biological neurons. Unfortunately, current recording technologies294

do not allow the measurement of all incoming and outgoing synapses of a neuron. Perhaps some295

approximation could be obtained statistically and at the population level, or perhaps approximate296

measurements could be carried in very simple networks (e.g. C. elegans)or using neurons in culture.297

Finally, in neuromorphic hardware, the balance could be relevant for training spiking neural networks298

with low energy consumption [Sorbaro et al., 2020, Rueckauer et al., 2017]). In particular, ReLU299

scaling can influence the number of spikes generated in each layer and the average energy consumption300

at each layer. Similarly, in memristor networks [Ivanov et al., 2022, Liang and Wong, 2000]), L2301

minimization is directly connected to power consumption. Moreover, the issue of the limited302

conductivity range of memristors is mentioned in Ivanov et al. [2022] and in Ji et al. [2016] Therefore,303

a local algorithm to reduce the norm of the weights could help mitigate this issue as well.304

The theory of neural synaptic balance explains some basic findings regarding L2 balance in feedfor-305

ward networks of ReLU neurons and extends them in several directions. The first direction is the306

extension to BiLU and other activation functions (BiPU). The second direction is the extension to307

more general regularizers, including all Lp (p > 0) regularizers. The third direction is the extension to308

non-layered architectures, recurrent architectures, convolutional architectures, as well as architectures309

with mixed activation functions. The theory is based on two local neuronal operations: scaling310

which is commutative, and balancing which is not commutative. Finally, and most importantly, given311

any initial set of weights, when local balancing operations are applied in a stochastic or determin-312

istic manner, global order always emerges through the convergence of the balancing algorithm to313

the same unique set of balanced weights. The reason for this convergence is the existence of an314

underlying convex optimization problem where the relevant variables are constrained to a linear,315

only architecture-dependent, manifold. Scaling and balancing operations are local and thus may316

have applications in physical, non-digitally simulated, neural networks where the emergence of317

global order from local operations may lead to better operating characteristics and lower energy318

consumption.319

9

References320

P. Baldi. Deep Learning in Science. Cambridge University Press, Cambridge, UK, 2021.321

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal322

Processing Magazine, 29(6):141–142, 2012.323

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous324

models: Layers are automatically balanced. Advances in Neural Information Processing Systems,325

31, 2018.326

Rachel E Field, James A D’amour, Robin Tremblay, Christoph Miehl, Bernardo Rudy, Julijana327

Gjorgjieva, and Robert C Froemke. Heterosynaptic plasticity determines the set point for cortical328

excitatory-inhibitory balance. Neuron, 106(5):842–854, 2020.329

Robert C Froemke. Plasticity of cortical excitatory-inhibitory balance. Annual review of neuroscience,330

38:195–219, 2015.331

Oliver D Howes and Ekaterina Shatalina. Integrating the neurodevelopmental and dopamine hypothe-332

ses of schizophrenia and the role of cortical excitation-inhibition balance. Biological psychiatry,333

2022.334

Dmitry Ivanov, Aleksandr Chezhegov, Mikhail Kiselev, Andrey Grunin, and Denis Larionov. Neuro-335

morphic artificial intelligence systems. Frontiers in Neuroscience, 16:1513, 2022.336

Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng Qu, Yuan Xie, and WenGuang337

Chen. Neutrams: Neural network transformation and co-design under neuromorphic hardware338

constraints. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture339

(MICRO), pages 1–13. IEEE, 2016.340

Dongshin Kim and Jang-Sik Lee. Neurotransmitter-induced excitatory and inhibitory functions in341

artificial synapses. Advanced Functional Materials, 32(21):2200497, 2022.342

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.343

Faming Liang and Wing Hung Wong. Evolutionary monte carlo: Applications to cp model sampling344

and change point problem. STATISTICA SINICA, 10:317–342, 2000.345

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Data-dependent path346

normalization in neural networks. arXiv preprint arXiv:1511.06747, 2015.347

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-348

sion of continuous-valued deep networks to efficient event-driven networks for image classification.349

Frontiers in neuroscience, 11:294078, 2017.350

Farshad Shirani and Hannah Choi. On the physiological and structural contributors to the dynamic351

balance of excitation and inhibition in local cortical networks. bioRxiv, pages 2023–01, 2023.352

Martino Sorbaro, Qian Liu, Massimo Bortone, and Sadique Sheik. Optimizing the energy consump-353

tion of spiking neural networks for neuromorphic applications. Frontiers in neuroscience, 14:662,354

2020.355

Christopher H Stock, Sarah E Harvey, Samuel A Ocko, and Surya Ganguli. Synaptic balancing: A356

biologically plausible local learning rule that provably increases neural network noise robustness357

without sacrificing task performance. PLOS Computational Biology, 18(9):e1010418, 2022.358

A. Tavakoli, F. Agostinelli, and P. Baldi. SPLASH: Learnable activation functions for improving359

accuracy and adversarial robustness. Neural Networks, 140:1–12, 2021. Also: arXiv:2006.08947.360

10

Appendix361

A Homogeneous and BiLU Activation Functions362

In this section, we generalize the basic example of the introduction from the standpoint of the363

activation functions. In particular, we consider homogeneous activation functions (defined below).364

The importance of homogeneity has been previously identified in somewhat different contexts365

Neyshabur et al. [2015]. Intuitively, homogeneity is a form of linearity with respect to weight scaling366

and thus it is useful to motivate the concept of homogeneous activation functions by looking at other367

notions of linearity for activation functions. This will also be useful for Section E where even more368

general classes of activation functions are considered.369

A.1 Additive Activation Functions370

Definition A.1. A neuronal activation function f : R → R is additively linear if and only if371

f(x+ y) = f(x) = (f(y) for any real numbers x and y.372

Proposition A.2. The class of additively linear activation functions is exactly equal to the class of373

linear activation functions, i.e., activation functions of the form f(x) = ax.374

Proof. Obviously linear activation functions are additively linear. Conversely, if f is additively linear,375

the following three properties are true:376

(1) One must have: f(nx) = nf(x) and f(x/n) = f(x)/n for any x ∈ R and any n ∈ N. As a377

result, f(n/m) = nf(1)/m for any integers n and m (m ̸= 0).378

(2) Furthermore, f(0 + 0) = f(0) + f(0) which implies: f(0) = 0.379

(3) And thus f(x− x) = f(x) + f(−x) = 0, which in turn implies that f(−x) = −f(x).380

From these properties, it is easy to see that f must be continuous, with f(x) = xf(1), and thus f381

must be linear.382

A.2 Multiplicative Activation Functions383

Definition A.3. A neuronal activation function f : R → R is multiplicative if and only if f(xy) =384

f(x)(f(y) for any real numbers x and y.385

Proposition A.4. The class of continuous multiplicative activation functions is exactly equal to the386

class of functions comprising the functions: f(x) = 0 for every x, f(x) = 1 for every x, and all the387

even and odd functions satisfying f(x) = xc for x ≥ 0, where c is any constant in R.388

Proof. It is easy to check the functions described in the proposition are multiplicative. Conversely,389

assume f is multiplicative. For both x = 0 and x = 1, we must have f(x) = f(xx) = f(x)f(x) and390

thus f(0) is either 0 or 1, and similarly for f(1). If f(1) = 0, then for any x we must have f(x) = 0391

because: f(x) = f(1x) = f(1)f(x) = 0. Likewise, if f(0) = 1, then for any x we must have392

f(x) = 1 because: 1 = f(0) = f(0x) = f(0)f(x) = f(x). Thus, in the rest of the proof, we can393

assume that f(0) = 0 and f(1) = 1. By induction, it is easy to see that for any x ≥ 0 we must have:394

f(xn) = f(x)n and f(x1/n) = (f(x))1/n for any integer (positive or negative). As a result, for any395

x ∈ R and any integers n and m we must have: f(xn/m) = f(x)n/m. By continuity this implies396

that for any x ≥ 0 and any r ∈ R, we must have: f(xr) = f(x)r. Now there is some constant c such397

that: f(e) = ec. And thus, for any x > 0, f(x) = f(elog x) = [f(e)]log x = ec log x = xc. To address398

negative values of x, note that we must have f [(−1)(−1 = f(1) = 1f(−1)2. Thus, f(−1) is either399

equal to 1 or to -1. Since for any x > 0 we have f(−x) = f(−1)f(x), we see that if f(−1) = 1400

the function must be even (f(−x) = f(x) = xc), and if f(−1) = −1 the function must be odd401

(f(−x) = −f(x)).402

We will return to multiplicative activation function in a later section.403

11

A.3 Linearly Scalable Activation Functions404

Definition A.5. A neuronal activation function f : R → R is linearly scalable if and only if405

f(λx) = λf(x) for every λ ∈ R.406

Proposition A.6. The class of linearly scalable activation functions is exactly equal to the class of407

linear activation functions, i.e., activation functions of the form f(x) = ax.408

Proof. Obviously, linear activation functions are linearly scalable. For the converse, if f is linearly409

multiplicative we must have f(λx) = λf(x) = xf(λ) for any x and any λ. By taking λ = 1, we get410

f(x) = f(1)x and thus f is linear.411

Thus the concepts of linearly additive or linearly scalable activation function are of limited interest412

since both of them are equivalent to the concept of linear activation function. A more interesting413

class is obtained if we consider linearly scalable activation functions, where the scaling factor λ is414

constrained to be positive (λ > 0), also called homogeneous functions.415

A.4 Homogeneous Activation Functions416

Definition A.7. (Homogeneous) A neuronal activation function f : R → R is homogeneous if and417

only if: f(λx) = λf(x) for every λ ∈ R with λ > 0.418

Remark A.8. Note that if f is homogeneous, f(λ0) = λf(0) = f(0) for any λ > 0 and thus419

f(0) = 0. Thus it makes no difference in the definition of homogeneous if we set λ ≥ 0 instead of420

λ > 0).421

Remark A.9. Clearly, linear activation functions are homogeneous. However, there exists also422

homogeneous functions that are non-linear, such as ReLU or leaky ReLU activation functions.423

We now provide a full characterization of the class of homogeneous activation functions.424

A.5 BiLU Activation Functions425

We first define a new class of activation functions, corresponding to bilinear units (BiLU), consisting426

of two half-lines meeting at the origin. This class contains all the linear functions, as well as the427

ReLU and leaky ReLU functions, and many other functions.428

Definition A.10. (BiLU) A neuronal activation function f : R → R is bilinear (BiLU) if and only if429

f(x) = ax when x < 0, and f(x) = bx when x ≥ 0, for some fixed parameters a and b in R.430

These include linear units (a = b), ReLU units (a = 0, b = 1), leaky ReLU (a = ϵ; b = 1) units,431

and symmetric linear units (a = −b), all of which can also be viewed as special cases of piece-wise432

linear units Tavakoli et al. [2021], with a single hinge. One advantage of ReLU and more generally433

BiLU neurons, which is very important during backpropagation learning, is that their derivative is434

very simple and can only take one of two values (a or b).435

Proposition A.11. A neuronal activation function f : R → R is homogeneous if and only if it is a436

BiLU activation function.437

Proof. Every function in BiLU is clearly homogeneous. Conversely, any homogeneous function f438

must satisfy: (1) f(0x) = 0f(x) = f(0) = 0; (2)f(x) = f(1x) = f(1)x for any positive x; and (3)439

f(x) = f(−u) = f(−1)u = −f(−1)x for any negative x. Thus f is in BiLU with a = −f(−1)440

and b = f(1).441

In Appendix A, we provide a simple proof that networks of BiLU neurons, even with a single442

hidden layer, have universal approximation properties. In the next two sections, we introduce two443

fundamental neuronal operations, scaling and balancing, that can be applied to the incoming and444

outgoing synaptic weights of neurons with BiLU activation functions.445

12

B Scaling446

Definition B.1. (Scaling) For any BiLU neuron i in network and any λ > 0, we let Sλ(i) denote the447

synaptic scaling operation by which the incoming connection weights of neuron i are multiplied by λ448

and the outgoing connection weights of neuron i are divided by λ.449

Note that because of the homogeneous property, the scaling operation does not change how neuron i450

affects the rest of the network. In particular, the input-output function of the overall network remains451

unchanged after scaling neuron i bt any λ > 0. Note also that scaling always preserves the sign of452

the synaptic weights to which it is applied, and the scaling operation can never convert a non-zero453

synaptic weight into a zero synaptic weight, or vice versa.454

As usual, the bias is treated here as an additional synaptic weight emanating from a unit clamped to455

the value one. Thus scaling is applied to the bias.456

Proposition B.2. (Commutativity of Scaling) Scaling operations applied to any pair of BiLU neurons457

i and j in a neural network commute: Sλ(i)Sµ(j) = Sµ(j)Sλ(i), in the sense that the resulting458

network weights are the same, regardless of the order in which the scaling operations are applied.459

Furthermore, for any BiLU neuron i: Sλ(i)Sµ(i) = Sµ(i)Sλ(i) = Sλµ(i).460

This is obvious. As a result, any set I of BiLU neurons in a network can be scaled simultaneously or461

in any sequential order while leading to the same final configuration of synaptic weights. If we denote462

by 1, 2, . . . , n the neurons in I , we can for instance write:
∏

i∈I Sλi(i) =
∏

σ(i)∈I Sλσ(i)
(σ(i)) for463

any permutation σ of the neurons. Likewise, we can collapse operations applied to the same neuron.464

For instance, we can write: S5(1)S2(2)S3(1)S4(2) = S15(1)S8(2) = S8(2)S15(1)465

Definition B.3. (Coordinated Scaling) For any set I of BiLU neurons in a network and any λ > 0,466

we let Sλ(I) denote the synaptic scaling operation by which all the neurons in I are scaled by the467

same λ.468

C Balancing469

Definition C.1. (Balancing) Given a BiLU neuron in a network, the balancing operation B(i) is470

a particular scaling operation B(i) = Sλ∗(i), where the scaling factor λ∗ is chosen to optimize a471

particular cost function, or regularizer, associated with the incoming and outgoing weights of neuron472

i.473

For now, we can imagine that this cost function is the usual L2 (least squares) regularizer, but in474

the next section, we will consider more general classes of regularizers and study the corresponding475

optimization process. For the L2 regularizer, as shown in the next section, this optimization process476

results in a unique value of λ∗ such that sum of the squares of the incoming weights is equal to477

the sum of the squares of the outgoing weights, hence the term “balance”. Note that obviously478

B(B(i)) = B(i) and that, as a special case of scaling operation, the balancing operation does not479

change how neuron i contributes to the rest of the network, and thus it leaves the overall input-output480

function of the network unchanged.481

Unlike scaling operations, balancing operations in general do not commute as balancing operations482

(they still commute as scaling operations). Thus, in general, B(i)B(j) ̸= B(j)B(i). This is because483

if neuron i is connected to neuron j, balancing i will change the connection between i and j, and, in484

turn, this will change the value of the optimal scaling constant for neuron j and vice versa. However,485

if there are no non-zero connections between neuron i and neuron j then the balancing operations486

commute since each balancing operation will modify a different, non-overlapping, set of weights.487

Definition C.2. (Disjoint neurons) Two neurons i and j in a neural network are said to be disjoint if488

there are no non-zero connections between i and j.489

Thus in this case B(i)B(j) = Sλ∗(i)Sµ∗(j) = Sµ∗(j)Sλ∗(i) = B(j)B(i). This can be extended to490

disjoint sets of neurons.491

Definition C.3. (Disjoint Set of Neurons) A set I of neurons is said to be disjoint if for any pair i and492

j of neurons in I there are no non-zero connections between i and j.493

For example, in a layered feedforward network, all the neurons in a layer form a disjoint set, as long494

as there are no intra-layer connections or, more precisely, no non-zero intra-layer connections. All495

13

the neurons in a disjoint set can be balanced in any order resulting in the same final set of synaptic496

weights. Thus we have:497

Proposition C.4. If we index by 1, 2, . . . , n the neurons in a disjoint set I of BiLU neurons in a498

network, we have:
∏

i∈I B(i) =
∏

i∈I Sλ∗
i
(i) =

∏
σ(i)∈I Sλ∗

σ(i)
(σ(i)) =

∏
σ(i)∈I B(σ(i)) for any499

permutation σ of the neurons.500

Finally, we can define the coordinated balancing of any set I of BiLU neurons (disjoint or not501

disjoint).502

Definition C.5. (Coordinated Balancing) Given any set I of BiLU neurons (disjoint or not disjoint)503

in a network, the coordinated balancing of these neurons, written as Bλ∗(I), corresponds to the504

coordinated scaling all the neurons in I by the same factor λ∗, Where λ∗ minimizes the cost functions505

of all the weights, incoming and outgoing, associated with all the neurons in I .506

Remark C.6. While balancing corresponds to a full optimization of the scaling operation, it is also507

possible to carry a partial optimization of the scaling operation by choosing a scaling factor that508

reduces the corresponding contribution to the regularizer without minimizing it.509

D General Framework and Single Neuron Balance510

In this section, we generalize the kinds of regularizer to which the notion of neuronal synaptic balance511

can be applied, beyond the usual L2 regularizer and derive the corresponding balance equations.512

Thus we consider a network (feedforward or recurrent) where the hidden units are BiLU units.513

The visible units can be partitioned into input units and output units. For any hidden unit i, if we514

multiply all its incoming weights IN(i) by some λ > 0 and all its outgoing weights OUT (i) by515

1/λ the overall function computed by the network remains unchanged due to the BiLU homogeneity516

property. In particular, if there is an error function that depends uniquely on the input-output function517

being computed, this error remains unchanged by the introduction of the multiplier λ. However, if518

there is also a regularizer R for the weights, its value is affected by λ and one can ask what is the519

optimal value of λ with respect to the regularizer, and what are the properties of the resulting weights.520

This approach can be applied to any regularizer. For most practical purposes, we can assume that521

the regularizer is continuous in the weights (hence in λ) and lower-bounded. Without any loss of522

generality, we can assume that it is lower-bounded by zero. If we want the minimum value to be523

achieved by some λ > 0, we need to add some mild condition that prevents the minimal value from524

being approached as λ → 0), or as λ → +∞. For instance, it is enough if there is an interval [a, b]525

with 0 < a < b where R achieves a minimal value Rmin and R ≥ Rmin in the intervals (0, a] and526

[b,+∞). Additional (mild) conditions must be imposed if one wants the optimal value of λ to be527

unique, or computable in closed form (see Theorems below). Finally, we want to be able to apply the528

balancing approach529

Thus, we consider overall regularized error functions, where the regularizer is very general, as long530

as it has an additive form with respect to the individual weights:531

E(W) = E(W) +R(W) with R(W) =
∑
w

gw(w) (D.1)

where W denotes all the weights in the network and E(W) is typically the negative log-likelihood532

(LMS error in regression tasks, or cross-entropy error in classification tasks). We assume that the gw533

are continuous, and lower-bounded by 0. To ensure the existence and uniqueness of minimum during534

the balancing of any neuron, We will assume that each function gw depends only on the magnitude535

|w| of the corresponding weight, and that gw is monotonically increasing from 0 to +∞ (gw(0) = 0536

and limx→+∞ gw(x) = +∞). Clearly, L2, L1 and more generally all Lp regularizers are special537

cases where, for p > 0, Lp regularization is defined by: R(W) =
∑

w |w|p.538

When indicated, we may require also that the functions gw be continuously differentiable, except539

perhaps at the origin in order to be able to differentiate the regularizer with respect to the λ’s and540

derive closed form conditions for the corresponding optima. This is satisfied by all forms of Lp541

regularization, for p > 0.542

Remark D.1. Often one introduces scalar multiplicative hyperparameters to balance the effect of E543

and R, for instance in the form: E = E + βR. These cases are included in the framework above:544

multipliers like β can easily be absorbed into the functions gw above.545

14

Theorem D.2. (General Balance Equation). Consider a neural network with BiLU activation546

functions in all the hidden units and overall error function of the form:547

E = E(W) +R(W) with R(W) =
∑
w

gw(w) (D.2)

where each function gw(w) is continuous, depends on the magnitude |w| alone, and grows monotoni-548

cally from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any hidden unit i in549

the network and any λ > 0 we can multiply the incoming weights of i by λ and the outgoing weights550

of i by 1/λ without changing the overall error E. Furthermore, there exists a unique value λ∗ where551

the corresponding weights v (v = λ∗w for incoming weights, v = w/λ∗ for the outgoing weights)552

achieve the balance equation:553

∑
v∈IN(i)

gw(v) =
∑

w∈OUT (i)

gw(v) (D.3)

Proof. Under the assumptions of the theorem, E is unchanged under the rescaling of the incoming and554

outgoing weights of unit i due to the homogeneity property of BiLUs. Without any loss of generality,555

let us assume that at the beginning:
∑

w∈IN(i) gw(w) <
∑

w∈OUT (i) gw(w). As we increase λ from556

1 to +∞, by the assumptions on the functions gw, the term
∑

w∈IN(i) gw(λw) increases continuously557

from its initial value to +∞, whereas the term
∑

w∈OUT (i) gw)w/λ) decreases continuously from558

its initial value to 0. Thus, there is a unique value λ∗ where the balance is realized. If at the beginning559 ∑
w∈IN(i) gw(w) >

∑
w∈OUT (i) gw(w), then the same argument is applied by decreasing λ from 1560

to 0.561

Remark D.3. For simplicity, here and in other sections, we state the results in terms of a network of562

BiLU units. However, the same principles can be applied to networks where only a subset of neurons563

are in the BiLU class, simply by applying scaling and balancing operations to only those neurons.564

Furthermore, not all BiLU neurons need to have the same BiLU activation function. For instance, the565

results still hold for a mixed network containing both ReLU and linear units.566

Remark D.4. In the setting of Theorem D.2, the balance equations do not necessarily minimize the567

corresponding regularization term. This is addressed in the next theorem.568

Remark D.5. Finally, zero weights (w = 0) can be ignored entirely as they play no role in scaling or569

balancing. Furthermore, if all the incoming or outgoing weights of a hidden unit were to be zero, it570

could be removed entirely from the network571

Theorem D.6. (Balance and Regularizer Minimization) We now consider the same setting as in572

Theorem D.2, but in addition, we assume that the functions gw are continuously differentiable, except573

perhaps at the origin. Then, for any neuron, there exists at least one optimal value λ∗ that minimizes574

R(W). This value must be a solution of the consistency equation:575

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (D.4)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized balance576

equation:577

∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (D.5)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal578

value λ∗ is unique and equal to:579

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p

=
(||OUT (i)||p

||IN(i)||p

)1/2

(D.6)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:580

15

∆R =

((∑
w∈IN(i)

|w|p
)1/2 − (∑

w∈OUT (i)

|w|p
)1/2)2

(D.7)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:581 ∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (D.8)

Proof. Due to the additivity of the regularizer, the only component of the regularizer that depends on582

λ has the form:583

R(λ) =
∑

w∈IN(i)

gw(λw) +
∑

w∈OUT (i)

gw(w/λ) (D.9)

Because of the properties of the functions gw, Rλ is continuously differentiable and strictly bounded584

below by 0. So it must have a minimum, as a function of λ where its derivative is zero. Its derivative585

with respect to λ has the form:586

R′(λ) =
∑

w∈IN(i)

wg′w(λw) +
∑

w∈OUT (i)

(−w/λ2)g′w(w/λ) (D.10)

Setting the derivative to zero, gives:587

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (D.11)

Assuming that the left-hand side is non-zero, which is generally the case, the optimal value for λ588

must satisfy:589

λ =
(∑

w∈OUT (i) wg
′
w(w/λ)∑

w∈IN(i) wg
′
w(λw)

)1/2

(D.12)

If the regularizing function is the same for all the incoming and outgoing weights (gw = g), then the590

optimal value λ must satisfy:591

λ =
(∑

w∈OUT (i) wg
′(w/λ)∑

w∈IN(i) wg
′(λw)

)1/2

(D.13)

In particular, if g(w) = |w|p then g(w) is differentiable except possibly at 0 and g′(w) =592

s(w)p|w|p−1, where s(w) denotes the sign of the weight w. Substituting in Equation D.13, the593

optimal rescaling λ must satisfy:594

λ∗ =
(∑

w∈OUT (i) ws(w)|w|p−1∑
w∈IN(i) w|ws(w)|p−1

)1/2p

=
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p

=
(||OUT (i)||p

||IN(i)||p

)1/2

(D.14)
At the optimum, no further balancing is possible, and thus λ∗ = 1. Equation D.11 yields immediately595

the generalized balance equation to be satisfied at the optimum:596 ∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (D.15)

In the case of LP regularization, it is easy to check by applying Equation D.15, or by direct calculation597

that:598 ∑
w∈IN(i)

|λ∗w|p =
∑

w∈OUT (i)

|w/λ∗|p (D.16)

16

which is the generalized balance equation. Thus after balancing neuron, the weights of neuron i599

satisfy the Lp balance (Equation D.8). The change in the value of the regularizer is given by:600

∆R =
∑

w∈IN(i)

|w|p +
∑

w∈OUT (i)

|w|p −
∑

w∈IN(i)

|λ∗w|p −
∑

w∈OUT (i)

|w/λ∗|p (D.17)

By substituting λ∗ by its explicit value given by Equation D.14 and collecting terms gives Equation601

D.7.602

Remark D.7. The monotonicity of the functions gw is not needed to prove the first part of Theorem603

D.6. It is only needed to prove the uniqueness of λ∗ in the Lp cases.604

Remark D.8. Note that the same approach applies to the case where there are multiple additive605

regularizers. For instance with both L2 and L1 regularization, in this case the function f has the form:606

gw(w) = αw2 + β|w|. Generalized balance still applies. It also applies to the case where different607

regularizers are applied in different disconnected portions of the network.608

Remark D.9. The balancing of a single BiLU neuron has little to do with the number of connections.609

It applies equally to fully connected neurons, or to sparsely connected neurons.610

E Scaling and Balancing Beyond BiLU Activation Functions611

So far we have generalized ReLU activation functions to BiLU activation functions in the context of612

scaling and balancing operations with positive scaling factors. While in the following sections we613

will continue to work with BiLU activation functions, in this section we show that the scaling and614

balancing operations can be extended even further to other activation functions. The section can be615

skipped if one prefers to progress towards the main results on stochastic balancing.616

Given a neuron with activation function f(x), during scaling instead of multiplying and dividing by617

λ > 0, we could multiply the incoming weights by a function g(λ) and divide the outgoing weights618

by a function h(λ), as long as the activation function f satisfies:619

f(g(λ)x) = h(λ)f(x) (E.1)

for every x ∈ R to ensure that the contribution of the neuron to the rest of the network remains620

unchanged. Note that if the activation function f satisfies Equation E.1, so does the activation621

function −f . In Equation E.1, λ does not have to be positive–we will simply assume that λ belongs622

to some open (potentially infinite) interval (a, b). Furthermore, the functions g and h cannot be zero623

for λ ∈ (a, b) since they are used for scaling. It is reasonable to assume that the functions g and h are624

continuous, and thus they must have a constant sign as λ varies over (a, b).625

Now, taking x = 0 gives f(0) = h(λ)f(0) for every λ ∈ (a, b), and thus either f(0) = 0 or h(λ) = 1626

for every λ ∈ (a, b). The latter is not interesting and thus we can assume that the activation function627

f satisfies f(0) = 0. Taking x = 1 gives f(g(λ)) = h(λ)f(1) for every λ in (a, b). For simplicity,628

let us assume that f(x) = 1. Then, we have: f(g(λ)) = h(λ) for every λ. Substituting in Equation629

E.1 yields:630

f(g(λ)x) = f(g(λ))f(x) (E.2)

for every x ∈ R and every λ ∈ (a, b). This relation is essentially the same as the relation that defines631

multiplicative activation functions over the corresponding domain (see Proposition A.4), and thus632

we can identify a key family of solutions using power functions. Note that we can define a new633

parameter µ = g(λ), where µ ranges also over some positive or negative interval I over which:634

f(µx) = f(µ)f(x).635

E.1 Bi-Power Units (BiPU)636

Let us assume that λ > 0, g(λ) = λ and h(λ) = λc for some c ∈ R. Then the activation function637

must satisfy the equation:638

f(λx) = λcf(x) (E.3)

17

for any x ∈ R and any λ > 0. Note that if f(x) = xc we get a multiplicative activation function.639

More generally, these functions are characterized by the following proposition.640

Proposition E.1. The set of activation functions f satisfying f(λx) = λcf(x) for any x ∈ R and641

any λ > 0 consist of the functions of the form:642

f(x) =

{
Cxc if x ≥ 0

Dxc if x < 0.
(E.4)

where c ∈ R, C = f(1) ∈ R, and D = f(−1) ∈ R. We call these bi-power units (BiPU). If, in643

addition, we want f to be continuous at 0, we must have either c > 0, or c = 0 with C = D.644

Given the general shape, these activations functions can be called BiPU (Bi-Power-Units). Note that645

in the general case where c > 0, C and D do not need to be equal. In particular, one of them can646

be equal to zero, and the other one can be different from zero giving rise to “rectified power units”647

(Figure 6).648

Linear Leaky ReLU BiPU (D=0,C=1,c=2) BiPU (D=1,C=1,c=2)

Figure 6

Proof. By taking x = 1, we get f(λ) = f(1)λc for any λ > 0. Let f(1) = C. Then we see649

that for any x > 0 we must have: f(x) = Cxc. In addition, for every λ > 0 we must have:650

f(λ0) = f(0) = λcf(0). So if c = 0, then f(x) = C = f(1) for x ≥ 0. If c ̸= 0, then f(0) = 0. In651

this case, if we want the activation function to be continuous, then we see that we must have c ≥ 0. So652

in summary for x > 0 we must have f(x) = f(1)xc = Cxc. For the function to be right continuous653

at 0, we must have either f(0) = f(1) = C with c = 0 or f(0) = 0 with c > 0. We can now look654

at negative values of x. By the same reasoning, we have f(λ(−1)) = f(−λ) = λcf(−1) for any655

λ > 0. Thus for any x < 0 we must have: f(x) = f(−1)|x|c = D|x|c where D = f(−1). Thus, if656

f is continuous, there are two possibilities. If c = 0, then we must have C = f(1) = D(f − 1)− and657

thus f(x) = C everywhere. If c ̸= 0, then continuity requires that c > 0. In this case f(x) = Cxc658

for x ≥ 0 with C = f(1), and f(x) = Dxc for x < 0 with f(−1) = D. In all cases, it is easy to659

check directly that the resulting functions satisfy the functional equation given by Equation E.3.660

E.2 Scaling BiPU Neurons661

A BiPU neuron can be scaled by multiplying its incoming weight by λ > 0 and dividing its outgoing662

weights by 1/λc. This will not change the role of the corresponding unit in the network, and thus it663

will not change the input-output function of the network.664

E.3 Balancing BiPU Neurons665

As in the case of BiLU neurons, we balance a multiplicative neuron by asking what is the optimal666

scaling factor λ that optimizes a particular regularizer. For simplicity, here we assume that the667

regularizer is in the Lp class. Then we are interested in the value of λ > 0 that minimizes the668

function:669

λp
∑

w∈IN

|w|p + 1

λpc

∑
w∈OUT

|w|p (E.5)

A simple calculation shows that the optimal value of λ is given by:670

18

λ∗ =
(c∑OUT |w|p∑

IN |w|p
)1/p(c+1)

(E.6)

Thus after balancing the weights, the neuron must satisfy the balance equation:671

c
∑
OUT

|w|p =
∑
IN

|w|p (E.7)

in the new weights w.672

So far, we have focused on balancing individual neurons. In the next two sections, we look at673

balancing across all the units of a network. We first look at what happens to network balance when a674

network is trained by gradient descent and then at what happens to network balance when individual675

neurons are balanced iteratively in a regular or stochastic manner.676

F Network Balance: Gradient Descent677

A natural question is whether gradient descent (or stochastic gradient descent) applied to a network of678

BiLU neurons, with or without a regularizer, converges to a balanced state of the network, where all679

the BiLU neurons are balanced. So we first consider the case where there is no regularizer (E = E).680

The results in Du et al. [2018] may suggest that gradient descent may converge to a balanced state. In681

particular, they write that for any neuron i:682

d

dt

(∑
w∈IN(i)

w2 −
∑

w∈OUT (i)

w2
)
= 0 (F.1)

Thus the gradient flow exactly preserves the difference between the L2 cost of the incoming and683

outgoing weights or, in other words, the derivative of the L2 balance deficit is zero. Thus if one were684

to start from a balanced state and use an infinitesimally small learning rate one ought to stay in a685

balanced state at all times.686

However, it must be noted that this result was derived for the L2 metric only, and thus would not687

cover other Lp forms of balance. Furthermore, it requires an infinitesimally small learning rate. In688

practice, when any standard learning rate is applied, we find that gradient descent does not converge689

to a balanced state (Figure 1). However, things are different when a regularizer term is included in690

the error functions as described in the following theorem.691

Theorem F.1. Gradient descent in a network of BiLU units with error function E = E +R where R692

has the properties described in Theorem D.6 (including all Lp) must converge to a balanced state,693

where every BiLU neuron is balanced.694

Proof. By contradiction, suppose that gradient descent converges to a state that is unbalanced and695

where the gradient with respect to all the weights is zero. Then there is at least one unbalanced neuron696

in the network. We can then multiply the incoming weights of such a neuron by λ and the outgoing697

weights by 1/λ as in the previous section without changing the value of E. Since the neuron is not in698

balance, we can move λ infinitesimally so as to reduce R, and hence E . But this contradicts the fact699

that the gradient is zero.700

Remark F.2. In practice, in the case of stochastic gradient descent applied to E +R, at the end of701

learning the algorithm may hover around a balanced state. If the state reached by the stochastic702

gradient descent procedure is not approximately balanced, then learning ought to continue. In other703

words, the degree of balance could be used to monitor whether learning has converged or not. Balance704

is a necessary, but not sufficient, condition for being at the optimum.705

Remark F.3. If early stopping is being used to control overfitting, there is no reason for the stopping706

state to be balanced. However, the balancing algorithms described in the next section could be used707

to balance this state.708

19

G Network Balance: Stochastic or Deterministic Balancing Algorithms709

In this section, we look at balancing algorithms where, starting from an initial weight configuration710

W , the BiLU neurons of a network are balanced iteratively according to some deterministic or711

stochastic schedule that periodically visits all the neurons. We can also include algorithms where712

neurons are partitioned into groups (e.g. neuronal layers) and neurons in each group are balanced713

together.714

G.1 Basic Stochastic Balancing715

The most interesting algorithm is when the BiLU neurons of a network are iteratively balanced716

in a purely stochastic manner. This algorithm is particularly attractive from the standpoint of717

physically implemented neural networks because the balancing algorithm is local and the updates718

occur randomly without the need for any kind of central coordination. As we shall see in the following719

section, the random local operations remarkably lead to a unique form of global order. The proof720

for the stochastic case extends immediately to the deterministic case, where the BiLU neurons are721

updated in a deterministic fashion, for instance by repeatedly cycling through them according to722

some fixed order.723

G.2 Subset Balancing (Independent or Tied)724

It is also possible to partition the BiLU neurons into non-overlapping subsets of neurons, and then725

balance each subset, especially when the neurons in each subset are disjoint of each other. In this726

case, one can balance all the neurons in a given subset, and repeat this subset-balancing operation727

subset-by-subset, again in a deterministic or stochastic manner. Because the BiLU neurons in each728

subset are disjoint, it does not matter whether the neurons in a given subset are updated synchronously729

or sequentially (and in which order). Since the neurons are balanced independently of each other,730

this can be called independent subset balancing. For example, in a layered feedforward network with731

no lateral connections, each layer corresponds to a subset of disjoint neurons. The incoming and732

outgoing connections of each neuron are distinct from the incoming and outgoing connections of733

any other neuron in the layer, and thus the balancing operation of any neuron in the layer does not734

interfere with the balancing operation of any other neuron in the same layer. So this corresponds to735

independent layer balancing,736

As a side note, balancing a layer h, may disrupt the balance of layer h + 1. However, balancing737

layers h and h+2 (or any other layer further apart) can be done without interference of the balancing738

processes. This suggests also an alternating balancing scheme, where one alternatively balances all739

the odd-numbered layers, and all the evenly-numbered layers.740

Yet another variation is when the neurons in a disjoint subset are tied to each other in the sense that741

they must all share the same scaling factor λ. In this case, balancing the subset requires finding the742

optimal λ for the entire subset, as opposed to finding the optimal λ for each neuron in the subset.743

Since the neurons are balanced in a coordinated or tied fashion, this can be called coordinated or tied744

subset balancing. For example, tied layer balancing must use the same λ for all the neurons in a given745

layer. It is easy to see that this approach leads to layer synaptic balance which has the form (for an746

Lp regularizer):747

∑
i

∑
w∈IN(i)

|w|p =
∑
i

∑
w∈OUT (i)

|w|p (G.1)

where i runs over all the neurons in the layer. This does not necessarily imply that each neuron748

in the layer is individually balanced. Thus neuronal balance for every neuron in a layer implies749

layer balance, but the converse is not true. Independent layer balancing will lead to layer balance.750

Coordinated layer balancing will lead to layer balance, but not necessarily to neuronal balance of751

each neuron in the layer. Layer-wise balancing, independent or tied, can be applied to all the layers752

and in a deterministic (e.g. sequential) or stochastic manner. Again the proof given in the next section753

for the basic stochastic algorithm can easily be applied to these cases (see also Appendix B).754

20

G.3 Remarks about Weight Sharing and Convolutional Neural Networks755

Suppose that two connections share the same weight so that we must have: wij = wkl at all times.756

In general, when the balancing algorithm is applied to neuron i or j, the weight wij will change757

and the same change must be applied to wkl. The latter may disrupt the balance of neuron k or l.758

Furthermore, this may not lead to a decrease in the overall value of the regularizer R.759

The case of convolutional networks is somewhat special, since all the incoming weights of the760

neurons sharing the same convolutional kernel are shared. However, in general, the outgoing weights761

are not shared. Furthermore, certain operations like max-pooling are not homogeneous. So if one762

trains a CNN with E alone, or even with E+R, one should not expect any kind of balance to emerge763

in the convolution units. However, all the other BiLU units in the network should become balanced764

by the same argument used for gradient descent above. The balancing algorithm applied to individual765

neurons, or the independent layer balancing algorithm, will not balance individual neurons sharing766

the same convolution kernel. The only balancing algorithm that could lead to some convolution layer767

balance, but not to individual neuronal balance, is the coordinated layer balancing, where the same λ768

is used for all the neurons in the same convolution layer, provided that their activation functions are769

BiLU functions.770

We can now study the convergence properties of balancing algorithms.771

H Convergence of Balancing Algorithms772

We now consider the basic stochastic balancing algorithm, where BiLU neurons are iteratively and773

stochastically balanced. It is essential to note that balancing a neuron j may break the balance of774

another neuron i to which j is connected. Thus convergence of iterated balancing is not obvious.775

There are three key questions to be addressed for the basic stochastic algorithm, as well as all the776

other balancing variations. First, does the value of the regularizer converge to a finite value? Second,777

do the weights themselves converge to fixed finite values representing a balanced state for the entire778

network? And third, if the weights converge, do they always converge to the same values, irrespective779

of the order in which the units are being balanced? In other words, given an initial state W for the780

network, is there a unique corresponding balanced state, with the same input-output functionalities?781

H.1 Notation and Key Questions782

For simplicity, we use a continuous time notation. After a certain time t each neuron has been783

balanced a certain number of times. While the balancing operations are not commutative as balancing784

operations, they are commutative as scaling operations. Thus we can reorder the scaling operations785

and group them neuron by neuron so that, for instance, neuron i has been scaled by the sequence of786

scaling operations:787

Sλ∗
1
(i)Sλ∗

2
(i) . . . Sλ∗

nit
(i) = SΛi(t)(i) (H.1)

where nit corresponds to the count of the last update of neuron i prior to time t, and:788

Λi(t) =
∏

1≤n≤nit

λ∗
n(i) (H.2)

For the input and output units, we can consider that their balancing coefficients λ∗ are always equal789

to 1 (at all times) and therefore Λi(t) = 1 for any visible unit i.790

Thus, we first want to know if R converges. Second, we want to know if the weights converge. This791

question can be split into two sub-questions: (1) Do the balancing factors λ∗
n(i) converge to a limit as792

time goes to infinity? Even if the λ∗
n(i)’s converge to a limit, this does not imply that the weights of793

the network converge to a limit. After a time t, the weight wij(t) between neuron j and neuron i has794

the value wijΛi(t)/Λj(t), where wij = wij(0) is the value of the weight at the start of the stochastic795

balancing algorithm. Thus: (2) Do the quantities Λi(t) converge to finite values, different from 0?796

And third, if the weights converge to finite values different from 0, are these values unique or not, i.e.797

do they depend on the details of the stochastic updates or not? These questions are answered by the798

following main theorem..799

21

H.2 Convergence of the Basic Stochastic Balancing Algorithm to a Unique Optimum800

Theorem H.1. (Convergence of Stochastic Balancing) Consider a network of BiLU neurons with an801

error function E(W) = E(W)+R(W) where R satisfies the conditions of Theorem D.2 including all802

Lp (p > 0). Let W denote the initial weights. When the neuronal stochastic balancing algorithm is803

applied throughout the network so that every neuron is visited from time to time, then E(W) remains804

unchanged but R(W) must converge to some finite value that is less or equal to the initial value,805

strictly less if the initial weights are not balanced. In addition, for every neuron i, λ∗
i (t) → 1 and806

Λi(t) → Λi as t → ∞, where Λi is finite and Λi > 0 for every i. As a result, the weights themselves807

must converge to a limit W ′ which is globally balanced, with E(W) = E(W ′) and R(W) ≥ R(W ′),808

and with equality if only if W is already balanced. Finally, W ′ is unique as it corresponds to the809

solution of a strictly convex optimization problem in the variables Lij = log(Λi/Λj) with linear810

constraints of the form
∑

π Lij = 0 along any path π joining an input unit to an output unit and along811

any directed cycle (for recurrent networks). Stochastic balancing projects to stochastic trajectories in812

the linear manifold that run from the origin to the unique optimal configuration.813

Proof. Each individual balancing operation leaves E(W) unchanged because the BiLU neurons are814

homogeneous. Furthermore, each balancing operation reduces the regularization error R(W), or815

leaves it unchanged. Since the regularizer is lower-bounded by zero, the value of the regularizer must816

approach a limit as the stochastic updates are being applied.817

For the second question, when neuron i is balanced at some step, we know that the regularizer R818

decreases by:819

∆R =

((∑
w∈IN(i)

|w|p
)1/2 − (∑

w∈OUT (i)

|w|p
)1/2)2

(H.3)

If the convergence were to occur in a finite number of steps, then the coefficients λ∗
i (t) must become820

equal and constant to 1 and the result is obvious. So we can focus on the case where the convergence821

does not occur in a finite number of steps (indeed this is the main scenario, as we shall see at the end822

of the proof). Since ∆R → 0, we must have:823 ∑
w∈IN(i)

|w|p →
∑

w∈OUT (i)

|w|p (H.4)

But from the expression for λ∗ (Equation D.14), this implies that for every i, λ∗
n(i) → 1 as time824

increases (n → ∞). This alone is not sufficient to prove that Λi(t) converges for every i as t → ∞.825

However, it is easy to see that Λi(t) cannot contain a sub-sequence that approaches 0 or ∞ (Figure 7).826

Furthermore, not only ∆R converges to 0, but the series
∑

∆R is convergent. This shows that, for827

every i, ∆i(t) must converge to a finite, non-zero value ∆i. Therefore all the weights must converge828

to fixed values given by wij(0)Λi/Λj .829

Finally, we prove that given an initial set of weights W , the final balanced state is unique and830

independent of the order of the balancing operations. The coefficients Λi corresponding to a globally831

balanced state must be solutions of the following optimization problem:832

min
Λ

R(Λ) =
∑
ij

|Λi

Λj
wij |p (H.5)

under the simple constraints: Λi > 0 for all the BiLU hidden units, and Λi = 1 for all the visible (input833

and output) units. In this form, the problem is not convex. Introducing new variables Mj = 1/Λj834

is not sufficient to render the problem convex. Using variables Mij = Λi/Λj is better, but still835

problematic for 0 < p ≤ 1. However, let us instead introduce the new variables Lij = log(Λi/Λj).836

These are well defined since we know that Λi/Λj > 0. The objective now becomes:837

minR(L) =
∑
ij

|eLijwij |p =
∑
ij

epLij |wij |p (H.6)

This objective is strictly convex in the variables Lij , as a sum of strictly convex functions (exponen-838

tials). However, to show that it is a convex optimization problem we need to study the constraints on839

22

1(t)=1 2(t) 3(t) 4(t) 5(t)=1

2(t)/ 1(t) 3(t)/ 2(t) 4(t)/ 3(t) 5(t)/ 4(t)

Input Unit Output Unit

Figure 7: A path with three hidden BiLU units connecting one input unit to one output unit. During the
application of the stochastic balancing algorithm, at time t each unit i has a cumulative scaling factor Λi(t),
and each directed edge from unit j to unit i has a scaling factor Mij(t) = Λi(t)/Λj(t). The λi(t) must
remain within a finite closed interval away from 0 and infinity. To see this, imagine for instance that there
is a subsequence of Λ3(t) that approaches 0. Then there must be a corresponding subsequence of Λ4(t) that
approaches 0, or else the contribution of the weight w43Λ4(t)/Λ3(t) to the regularizer would go to infinity. But
then, as we reach the output layer, the contribution of the last weight w54Λ5(t)/Λ4(t) to the regularizer goes to
infinity because Λ5(t) is fixed to 1 and cannot compensate for the small values of Λ4(t). And similarly, if there
is a subsequence of Λ3(t) going to infinity, we obtain a contradiction by propagating its effect towards the input
layer.

Λ1 Λ2
Λ3 Λ4 Λ5Λ2/Λ1

Λ3/Λ2 Λ4/Λ3
Λ5/Λ4

Input Unit Output Unit

Figure 8: A path with five units. After the stochastic balancing algorithm has converged, each unit i has a scaling
factor Λi, and each directed edge from unit j to unit i has a scaling factor Mij = Λi/Λj . The products of the
Mij’s along the path is given by: Λ2

Λ1

Λ3
Λ2

Λ4
Λ3

Λ5
Λ4

= Λ5
Λ1

. Accordingly, if we sum the variables Lij = logMij

along the directed path, we get L21+L32+L43+L54 = log Λ5− log Λ1. In particular, if unit 1 is an input unit
and unit 5 is an output unit, we must have Λ1 = Λ5 = 1 and thus: L21+L32+L43+L54 = 0. Likewise, in the
case of a directed cycle where unit 1 and unit 5 are the same, we must have: L21 +L32 +L43 +L54 +L15 = 0.

the variables Lij . From the set of Λi’s it is easy to construct a unique set of Lij . However what about840

the converse?841

Definition H.2. A set of real numbers Lij , one per connection of a given neural architecture, is842

self-consistent if and only if there is a unique corresponding set of numbers Λi > 0 (one per unit)843

such that: Λi = 1 for all visible units and Lij = logΛi/Λj for every directed connection from a unit844

j to a unit i.845

Remark H.3. This definition depends on the graph of connections, but not on the original values of846

the synaptic weights. Every balanced state is associated with a self-consistent set of Lij , but not847

every self-consistent set of Lij is associated with a balanced state.848

Proposition H.4. A set Lij associated with a neural architecture is self-consistent if and only if849 ∑
π Lij = 0 where π is any directed path connecting an input unit to an output unit or any directed850

cycle (for recurrent networks).851

Remark H.5. Thus the constraints associated with being a self-consistent configuration of Lij’ s852

are all linear. This linear manifold of constraints depends only on the architecture, i.e., the graph of853

connections. The strictly convex function R(Lij) depends on the actual weights W . Different sets of854

weights W produce different convex functions over the same linear manifold.855

23

’
i

i

Figure 9: Consider two paths α + β and γ + δ from the input layer to the output layer going through the
same unit i. Let us assume that the first path assigns a multiplier Λi to unit i and the second path assigns a
multiplier Λ′

i to the same unit. By assumption we must have:
∑

α Lij +
∑

β Lij = 0 for the first path, and∑
γ Lij +

∑
δ Lij = 0. But α + δ and γ + β are also paths from the input layer to the output layer and

therefore:
∑

α Lij +
∑

δ Lij = 0 and
∑

γ Lij +
∑

β Lij = 0. As a result,
∑

α Lij = log Λi =
∑

γ Lij = Λ′
i.

Therefore the assignment of the multiplier Λi must be consistent across different paths going through unit i.

Remark H.6. Note that one could coalesce all the input units and all output units into a single unit,856

in which case a path from an input unit to and output unit becomes also a directed cycle. In this857

representation, the constraints are that the sum of the Lij must be zero along any directed cycle. In858

general, it is not necessary to write a constraint for every path from input units to output units. It is859

sufficient to select a representative set of paths such that every unit appears in at least one path.860

Proof. If we look at any directed path π from unit i to unit j, it is easy to see that we must have:861

∑
π

Lkl = logΛi − log Λj (H.7)

This is illustrated in Figures 8 and 1. Thus along any directed path that connects any input unit to any862

output unit, we must have
∑

π Lij = 0. In addition, for recurrent neural networks, if π is a directed863

cycle we must also have:
∑

π Lij = 0. Thus in short we only need to add linear constraints of the864

form:
∑

π Lij = 0. Any unit is situated on a path from an input unit to an output unit. Along that865

path, it is easy to assign a value Λi to each unit by simple propagation starting from the input unit866

which has a multiplier equal to 1. When the propagation terminates in the output unit, it terminates867

consistently because the output unit has a multiplier equal to 1 and, by assumption, the sum of the868

multipliers along the path must be zero. So we can derive scaling values Λi from the variables869

Lij . Finally, we need to show that there are no clashes, i.e. that it is not possible for two different870

propagation paths to assign different multiplier values to the same unit i. The reason for this is871

illustrated in Figure 9.872

We can now complete the proof Theorem H.1. Given a neural network of BiLUs with a set of weights873

W , we can consider the problem of minimizing the regularizer R(Lij over the self-admissible874

configuration Lij . For any P > 0, the Lp regularizer is strictly convex and the space of self-875

admissible configurations is linear and hence convex. Thus this is a strictly convex optimization876

problem that has a unique solution (Figure 2). Note that the minimization is carried over self-877

consistent configurations, which in general are not associated with balanced states. However, the878

configuration of the weights associated with the optimum set of Lij (point A in Figure 2) must be879

balanced. To see this, imagine that one of the BiLU units–unit i in the network is not balanced. Then880

we can balance it using a multiplier λ∗
i and replace Λi by Λ′

i = Λiλ
∗. It is easy to check that the new881

configuration including Λ′
i is self-consistent. Thus, by balancing unit i, we are able to reach a new882

self-consistent configuration with a lower value of R which contradicts the fact that we are at the883

global minimum of the strictly convex optimization problem.884

24

We know that the stochastic balancing algorithm always converges to a balanced state. We need to885

show that it cannot converge to any other balanced state, and in fact that the global optimum is the886

only balanced state. By contradiction, suppose it converges to a different balanced state associated887

with the coordinates (LB
ij) (point B in Figure 2). Because of the self-consistency, this point is also888

associated with a unique set of (ΛB
i) coordinates. The cost function is continuous and differentiable889

in both the Lij’s and the Λi’s coordinates. If we look at the negative gradient of the regularizer, it890

is non-zero and therefore it must have at least one non-zero component ∂R/∂Λi along one of the891

Λi coordinates. This implies that by scaling the corresponding unit i in the network, the regularizer892

can be further reduced, and by balancing unit i the balancing algorithm will reach a new point (C in893

Figure 2) with lower regularizer cost. This contradicts the assumption that B was associated with a894

balanced stated. Thus, given an initial set of weights W , the stochastic balancing algorithm must895

always converge to the same and unique optimal balanced state W ∗ associated with the self-consistent896

point A. A particular stochastic schedule corresponds to a random path within the linear manifold897

from the origin (at time zero all the multipliers are equal to 1, and therefore Mij = 1 and Lij = 0)898

for any i and any j to the unique optimum point A.899

Remark H.7. It should be clear from the proof that the same result holds also for any deterministic900

balancing schedule, as well as for tied and non-tied subset balancing, e.g., for layer-wise balancing901

and tied layer-wise balancing. In the Appendix, we provide an analytical solution for the case of tied902

layer-wise balancing in a layered feed-forward network.903

Remark H.8. It should be clear from the proof that the same convergence to the unique global904

optimum is observed if each neuron, when stochastically visited, is favorably scaled rather than905

balanced, i.e., it is scaled with a factor that reduces R but not necessarily minimizes R. Stochastic906

balancing can also be viewed as a form of EM algorithm where the E and M steps can be taken fully907

or partially.908

I Universal Approximation Properties of BiLU Neurons909

Here we show that any continuous real-valued function defined over a compact set of the Euclidean910

space can be approximated to any degree of precision by a network of BiLU neurons with a single911

hidden layer. As in the case of the similar proof given in Baldi [2021] using linear threshold gates in912

the hidden layer, it is enough to prove the theorem for a continuous function f : 0, 1 → R.913

Theorem I.1. (Universal Approximation Properties of BiLU Neurons) Let f be any continuous914

function from [0, 1] to R and ϵ > 0. Let gλ be the ReLU activation function with slope λ ∈ Rs. Then915

there exists a feedforward network with a single hidden layer of neurons with ReLU activations of the916

form gλ and a single output linear neuron, i.e., with BiLU activation equal to the identity function,917

capable of approximating f everywhere within ϵ (sup norm).918

Proof. To be clear, gλ(x) = 0 for x < 0 and gλ(x) = λx for 0 ≤ x. Since f is continuous over a919

compact set, it is uniformly continuous. Thus there exists α > 0 such that for any x1 and x2 in the920

[0, 1] interval:921

|x2 − x1| < α =⇒ |f(x2)− f(x1)| < ϵ (I.1)

Let N be an integer such that 1 < Nα, and let us slice the interval [0, 1] into N consecutive slices922

of width h = 1/N , so that within each slice the function f cannot jump by more than ϵ. Let us923

connect the input unit to all the hidden units with a weight equal to 1. Let us have N hidden units924

numbered 1, . . . , N with biases equal to 0, 1/N, 2/N,, N1/N respectively and activation function925

of the form gλk
. It is essential that different units be allowed to have different slopes λk. The input926

unit is connected to all the hidden units and all the weights on these connections are equal to 1. Thus927

when x is in the k-th slice, (k − 1)/N ≤ x < k/N , all the units from k + 1 to N have an output928

equal to 0, and all the units from 1 to k have an output determined by the corresponding slopes. All929

the hidden units are connected to the output unit with weights β1, . . . , βN , and β0 is the bias of the930

output unit. We want the output unit to be linear. In order for the ϵ approximation to be satisfied,931

it is sufficient if in the (k − 1)/N ≤ x < k/N interval, the output is equal to the line joining the932

point f((k − 1)/N) to the point f(k/N). In other words, if x ∈ [(k − 1)/N, k/N), then we want933

the output of the network to be:934

25

β0 +

k∑
i=1

βiλi(x− (i− 1)h) = f(
k − 1

N
) +

f(k
N)− f(k−1

N)

h
(x− (k − 1)h) (I.2)

By equating the y-intercept and slope of the lines on the left-hand side and the righ- hand side of935

Equation I.2, we can solve for the weights β’s and the slopes λ’s.936

As in the case of the similar proof using linear threshold functions in the hidden layer (see Baldi937

[2021],) this proof can easily be adapted to continuous functions defined over a compact set of Rn,938

even with a finite number of finite discontinuities, and into Rm.939

J Analytical Solution for the Unique Global Balanced State940

Here we directly prove the convergence of stochastic balancing to a unique final balanced state, and941

derive the equations for the balanced state, in the special case of tied layer balancing (as opposed to942

single neuron balancing). The Proof and the resulting equations are also valid for stochastic balancing943

(one neuron at a time) in a layered architecture comprising a single neuron per layer. Let us call tied944

layer scaling the operation by which all the incoming weights to a given layer of BiLU neurons are945

multiplied by λ > 0 and all the outgoing weights of the layer are multiplied by 1/λ, again leaving the946

training error unchanged. Let us call layer balancing the particular scaling operation corresponding947

to the value of λ that minimizes the contribution of the layer to the L2 (or any other Lp) regularizer948

value. This optimal value of λ∗ results in layer-wise balance equations: the sum of the squares of all949

the incoming weights of the layer must be equal to the sum of the squares of all the outgoing weights950

of the layer in the L2 case, and similarly in all LP cases.951

Theorem J.1. Assume that tied layer balancing is applied iteratively and stochastically to the layers952

of a layered feedforward network of BiLU neurons. As long as all the layers are visited periodically,953

this procedure will always converge to the same unique set of weights, which will satisfy the layer-954

balance equations at all layers, irrespective of the details of the schedule. Furthermore, the balance955

state can be solved analytically.956

Proof. Every time a layer balancing operation is applied, the training error remains the same, and the957

L2 (or any other Lp) regularization error decreases or stays the same. Since the regularization error958

is always positive, it must converge to a certain value. Using the same arguments as in the proof of959

Theorem H.1, the weights must also converge to a stable configuration, and since the configuration960

is stable all its layers must satisfy the layer-wise balance equation. The key remaining question is961

why is this configuration unique and can we solve it analytically? Let A1, A2, . . . AN denote the962

matrices of connections between the layers of the network. Let Λ1,Λ2, . . . ,ΛN−1 be N − 1 strictly963

positive multipliers, representing the limits of the products of the corresponding λ∗
i associated with964

each balancing step at layer i, as in the proof of Theorem H.1. In this notation, layer 0 is the input965

layer and layer N is the output layer (with Λ0 = 1 and ΛN = 1).966

After converging, each matrix Ai becomes the matrix Λi/Λi−1Ai = MiAi for i = 1 . . . N , with967

Mi = λi/Λi−1. The multipliers Mi must minimize the regularizer while satisfying M1 . . .MN = 1968

to ensure that the training error remains unchanged. In other words, to find the values of the Mi’s we969

must minimize the Lagrangian:970

L(M1, . . . ,MN) =

N∑
i=1

||MiAi||2 + µ(1−
N∏
i=1

Mi) (J.1)

written for the L2 case in terms of the Frobenius norm, but the analysis is similar in the general Lp971

case. From this, we get the critical equations:972

∂L
∂Mi

= 2Mi||Ai||2 − µM1 . . .Mi−1Mi+1 . . .MN = 0 for i = 1, . . . , N and

N∏
i=1

Mi = 1

(J.2)
As a resut, for every i:973

26

2Mi||Ai||2 −
µ

Mi
= 0 or µ = 2M2

i ||Ai||2 (J.3)

Thus each Mi > 0 can be expressed in a unique way as a function of the Lagrangian multiplier µ as:974

Mi = (µ/2||Ai||2)1/2. By writing again that the product of the Miis equal to 1, we finally get:975

µN = 2N
N∏
i=1

||Ai||2 or µ = 2

N∏
i=1

||Ai||2/N (J.4)

Thus we can solve for Mi:976

Mi =
µ

2||Ai||2
=

∏N
i=1 ||Ai||2/N

||Ai||2
for i = 1, . . . , N (J.5)

Thus, in short, we obtain a unique closed-form expression for each Mi. From there, we infer the977

unique and final state of the weights, where A∗
i = MiAi = ΛiAl/Λl−1. Note that each Mi depends978

on all the other Mj’s, again showcasing how the local balancing algorithm leads to a unique global979

solution.980

K Computer Resources981

The simulations we have described do not require major computing resources. They were all982

performed using Google Colab and the NVIDIA TESLA T4 GPU that it provides.983

L Code Availability984

The code for reproducing the simulation results is available under the Apache 2.0 license at:985

https://anonymous.4open.science/r/a-theory-of-neural-synaptic-balance-00C1986

27

References987

P. Baldi. Deep Learning in Science. Cambridge University Press, Cambridge, UK, 2021.988

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal989

Processing Magazine, 29(6):141–142, 2012.990

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous991

models: Layers are automatically balanced. Advances in Neural Information Processing Systems,992

31, 2018.993

Rachel E Field, James A D’amour, Robin Tremblay, Christoph Miehl, Bernardo Rudy, Julijana994

Gjorgjieva, and Robert C Froemke. Heterosynaptic plasticity determines the set point for cortical995

excitatory-inhibitory balance. Neuron, 106(5):842–854, 2020.996

Robert C Froemke. Plasticity of cortical excitatory-inhibitory balance. Annual review of neuroscience,997

38:195–219, 2015.998

Oliver D Howes and Ekaterina Shatalina. Integrating the neurodevelopmental and dopamine hypothe-999

ses of schizophrenia and the role of cortical excitation-inhibition balance. Biological psychiatry,1000

2022.1001

Dmitry Ivanov, Aleksandr Chezhegov, Mikhail Kiselev, Andrey Grunin, and Denis Larionov. Neuro-1002

morphic artificial intelligence systems. Frontiers in Neuroscience, 16:1513, 2022.1003

Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng Qu, Yuan Xie, and WenGuang1004

Chen. Neutrams: Neural network transformation and co-design under neuromorphic hardware1005

constraints. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture1006

(MICRO), pages 1–13. IEEE, 2016.1007

Dongshin Kim and Jang-Sik Lee. Neurotransmitter-induced excitatory and inhibitory functions in1008

artificial synapses. Advanced Functional Materials, 32(21):2200497, 2022.1009

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.1010

Faming Liang and Wing Hung Wong. Evolutionary monte carlo: Applications to cp model sampling1011

and change point problem. STATISTICA SINICA, 10:317–342, 2000.1012

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Data-dependent path1013

normalization in neural networks. arXiv preprint arXiv:1511.06747, 2015.1014

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-1015

sion of continuous-valued deep networks to efficient event-driven networks for image classification.1016

Frontiers in neuroscience, 11:294078, 2017.1017

Farshad Shirani and Hannah Choi. On the physiological and structural contributors to the dynamic1018

balance of excitation and inhibition in local cortical networks. bioRxiv, pages 2023–01, 2023.1019

Martino Sorbaro, Qian Liu, Massimo Bortone, and Sadique Sheik. Optimizing the energy consump-1020

tion of spiking neural networks for neuromorphic applications. Frontiers in neuroscience, 14:662,1021

2020.1022

Christopher H Stock, Sarah E Harvey, Samuel A Ocko, and Surya Ganguli. Synaptic balancing: A1023

biologically plausible local learning rule that provably increases neural network noise robustness1024

without sacrificing task performance. PLOS Computational Biology, 18(9):e1010418, 2022.1025

A. Tavakoli, F. Agostinelli, and P. Baldi. SPLASH: Learnable activation functions for improving1026

accuracy and adversarial robustness. Neural Networks, 140:1–12, 2021. Also: arXiv:2006.08947.1027

28

NeurIPS Paper Checklist1028

1. Claims1029

Question: Do the main claims made in the abstract and introduction accurately reflect the1030

paper’s contributions and scope?1031

Answer: [Yes]1032

Justification: We have included all the main points of the paper in the abstract.1033

Guidelines:1034

• The answer NA means that the abstract and introduction do not include the claims1035

made in the paper.1036

• The abstract and/or introduction should clearly state the claims made, including the1037

contributions made in the paper and important assumptions and limitations. A No or1038

NA answer to this question will not be perceived well by the reviewers.1039

• The claims made should match theoretical and experimental results, and reflect how1040

much the results can be expected to generalize to other settings.1041

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1042

are not attained by the paper.1043

2. Limitations1044

Question: Does the paper discuss the limitations of the work performed by the authors?1045

Answer: [Yes]1046

Justification: The majority of our results are theorems backed up by mathematical proofs.1047

We discuss at lenght that balancing improves the value of the regularizer only (it leaves the1048

valuue of the data-dependent component of the error unchanged). We also mention that1049

while it would be interesting to study any kind of balance in biological neural networks,1050

current technnological limirations do not allow recording all the incoming and outgoing1051

synaptic strengths of a neuron.1052

Guidelines:1053

• The answer NA means that the paper has no limitation while the answer No means that1054

the paper has limitations, but those are not discussed in the paper.1055

• The authors are encouraged to create a separate "Limitations" section in their paper.1056

• The paper should point out any strong assumptions and how robust the results are to1057

violations of these assumptions (e.g., independence assumptions, noiseless settings,1058

model well-specification, asymptotic approximations only holding locally). The authors1059

should reflect on how these assumptions might be violated in practice and what the1060

implications would be.1061

• The authors should reflect on the scope of the claims made, e.g., if the approach was1062

only tested on a few datasets or with a few runs. In general, empirical results often1063

depend on implicit assumptions, which should be articulated.1064

• The authors should reflect on the factors that influence the performance of the approach.1065

For example, a facial recognition algorithm may perform poorly when image resolution1066

is low or images are taken in low lighting. Or a speech-to-text system might not be1067

used reliably to provide closed captions for online lectures because it fails to handle1068

technical jargon.1069

• The authors should discuss the computational efficiency of the proposed algorithms1070

and how they scale with dataset size.1071

• If applicable, the authors should discuss possible limitations of their approach to1072

address problems of privacy and fairness.1073

• While the authors might fear that complete honesty about limitations might be used by1074

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1075

limitations that aren’t acknowledged in the paper. The authors should use their best1076

judgment and recognize that individual actions in favor of transparency play an impor-1077

tant role in developing norms that preserve the integrity of the community. Reviewers1078

will be specifically instructed to not penalize honesty concerning limitations.1079

3. Theory Assumptions and Proofs1080

29

Question: For each theoretical result, does the paper provide the full set of assumptions and1081

a complete (and correct) proof?1082

Answer: [Yes]1083

Justification: All the theorems and propositions have clear assumptions and all the proofs1084

are complete and have been checked carefully multiple times. Details of some of the proofs1085

are provided in the Appendix.1086

Guidelines:1087

• The answer NA means that the paper does not include theoretical results.1088

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1089

referenced.1090

• All assumptions should be clearly stated or referenced in the statement of any theorems.1091

• The proofs can either appear in the main paper or the supplemental material, but if1092

they appear in the supplemental material, the authors are encouraged to provide a short1093

proof sketch to provide intuition.1094

• Inversely, any informal proof provided in the core of the paper should be complemented1095

by formal proofs provided in appendix or supplemental material.1096

• Theorems and Lemmas that the proof relies upon should be properly referenced.1097

4. Experimental Result Reproducibility1098

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1099

perimental results of the paper to the extent that it affects the main claims and/or conclusions1100

of the paper (regardless of whether the code and data are provided or not)?1101

Answer: [Yes]1102

Justification: We have provided all the explanations necessary for reproducing the exper-1103

imental results in the technical appendix and also provided the code for reproducing our1104

experimental results.1105

Guidelines:1106

• The answer NA means that the paper does not include experiments.1107

• If the paper includes experiments, a No answer to this question will not be perceived1108

well by the reviewers: Making the paper reproducible is important, regardless of1109

whether the code and data are provided or not.1110

• If the contribution is a dataset and/or model, the authors should describe the steps taken1111

to make their results reproducible or verifiable.1112

• Depending on the contribution, reproducibility can be accomplished in various ways.1113

For example, if the contribution is a novel architecture, describing the architecture fully1114

might suffice, or if the contribution is a specific model and empirical evaluation, it may1115

be necessary to either make it possible for others to replicate the model with the same1116

dataset, or provide access to the model. In general. releasing code and data is often1117

one good way to accomplish this, but reproducibility can also be provided via detailed1118

instructions for how to replicate the results, access to a hosted model (e.g., in the case1119

of a large language model), releasing of a model checkpoint, or other means that are1120

appropriate to the research performed.1121

• While NeurIPS does not require releasing code, the conference does require all submis-1122

sions to provide some reasonable avenue for reproducibility, which may depend on the1123

nature of the contribution. For example1124

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1125

to reproduce that algorithm.1126

(b) If the contribution is primarily a new model architecture, the paper should describe1127

the architecture clearly and fully.1128

(c) If the contribution is a new model (e.g., a large language model), then there should1129

either be a way to access this model for reproducing the results or a way to reproduce1130

the model (e.g., with an open-source dataset or instructions for how to construct1131

the dataset).1132

30

(d) We recognize that reproducibility may be tricky in some cases, in which case1133

authors are welcome to describe the particular way they provide for reproducibility.1134

In the case of closed-source models, it may be that access to the model is limited in1135

some way (e.g., to registered users), but it should be possible for other researchers1136

to have some path to reproducing or verifying the results.1137

5. Open access to data and code1138

Question: Does the paper provide open access to the data and code, with sufficient instruc-1139

tions to faithfully reproduce the main experimental results, as described in supplemental1140

material?1141

Answer: [Yes]1142

Justification: We have provided an anonymous link to our code which is available in the1143

appendix and also uploaded our code as supplementary material.1144

Guidelines:1145

• The answer NA means that paper does not include experiments requiring code.1146

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1147

public/guides/CodeSubmissionPolicy) for more details.1148

• While we encourage the release of code and data, we understand that this might not be1149

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1150

including code, unless this is central to the contribution (e.g., for a new open-source1151

benchmark).1152

• The instructions should contain the exact command and environment needed to run to1153

reproduce the results. See the NeurIPS code and data submission guidelines (https:1154

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1155

• The authors should provide instructions on data access and preparation, including how1156

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1157

• The authors should provide scripts to reproduce all experimental results for the new1158

proposed method and baselines. If only a subset of experiments are reproducible, they1159

should state which ones are omitted from the script and why.1160

• At submission time, to preserve anonymity, the authors should release anonymized1161

versions (if applicable).1162

• Providing as much information as possible in supplemental material (appended to the1163

paper) is recommended, but including URLs to data and code is permitted.1164

6. Experimental Setting/Details1165

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1166

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1167

results?1168

Answer: [Yes]1169

Justification: We have provided the required details in the appendix.1170

Guidelines:1171

• The answer NA means that the paper does not include experiments.1172

• The experimental setting should be presented in the core of the paper to a level of detail1173

that is necessary to appreciate the results and make sense of them.1174

• The full details can be provided either with the code, in appendix, or as supplemental1175

material.1176

7. Experiment Statistical Significance1177

Question: Does the paper report error bars suitably and correctly defined or other appropriate1178

information about the statistical significance of the experiments?1179

Answer: [Yes]1180

Justification: Error bars are included in all images.1181

Guidelines:1182

• The answer NA means that the paper does not include experiments.1183

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1184

dence intervals, or statistical significance tests, at least for the experiments that support1185

the main claims of the paper.1186

• The factors of variability that the error bars are capturing should be clearly stated (for1187

example, train/test split, initialization, random drawing of some parameter, or overall1188

run with given experimental conditions).1189

• The method for calculating the error bars should be explained (closed form formula,1190

call to a library function, bootstrap, etc.)1191

• The assumptions made should be given (e.g., Normally distributed errors).1192

• It should be clear whether the error bar is the standard deviation or the standard error1193

of the mean.1194

• It is OK to report 1-sigma error bars, but one should state it. The authors should1195

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1196

of Normality of errors is not verified.1197

• For asymmetric distributions, the authors should be careful not to show in tables or1198

figures symmetric error bars that would yield results that are out of range (e.g. negative1199

error rates).1200

• If error bars are reported in tables or plots, The authors should explain in the text how1201

they were calculated and reference the corresponding figures or tables in the text.1202

8. Experiments Compute Resources1203

Question: For each experiment, does the paper provide sufficient information on the com-1204

puter resources (type of compute workers, memory, time of execution) needed to reproduce1205

the experiments?1206

Answer: [Yes]1207

Justification: We have provided this information in the computer resources section in the1208

appendix.1209

Guidelines:1210

• The answer NA means that the paper does not include experiments.1211

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1212

or cloud provider, including relevant memory and storage.1213

• The paper should provide the amount of compute required for each of the individual1214

experimental runs as well as estimate the total compute.1215

• The paper should disclose whether the full research project required more compute1216

than the experiments reported in the paper (e.g., preliminary or failed experiments that1217

didn’t make it into the paper).1218

9. Code Of Ethics1219

Question: Does the research conducted in the paper conform, in every respect, with the1220

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1221

Answer: [Yes]1222

Justification: The research conducted in our paper conforms, in every respect, with the1223

NeurIPS Code of Ethics.1224

Guidelines:1225

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1226

• If the authors answer No, they should explain the special circumstances that require a1227

deviation from the Code of Ethics.1228

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1229

eration due to laws or regulations in their jurisdiction).1230

10. Broader Impacts1231

Question: Does the paper discuss both potential positive societal impacts and negative1232

societal impacts of the work performed?1233

Answer: [NA]1234

Justification: Our paper has no conceivable direct societal impact.1235

32

https://neurips.cc/public/EthicsGuidelines

Guidelines:1236

• The answer NA means that there is no societal impact of the work performed.1237

• If the authors answer NA or No, they should explain why their work has no societal1238

impact or why the paper does not address societal impact.1239

• Examples of negative societal impacts include potential malicious or unintended uses1240

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1241

(e.g., deployment of technologies that could make decisions that unfairly impact specific1242

groups), privacy considerations, and security considerations.1243

• The conference expects that many papers will be foundational research and not tied1244

to particular applications, let alone deployments. However, if there is a direct path to1245

any negative applications, the authors should point it out. For example, it is legitimate1246

to point out that an improvement in the quality of generative models could be used to1247

generate deepfakes for disinformation. On the other hand, it is not needed to point out1248

that a generic algorithm for optimizing neural networks could enable people to train1249

models that generate Deepfakes faster.1250

• The authors should consider possible harms that could arise when the technology is1251

being used as intended and functioning correctly, harms that could arise when the1252

technology is being used as intended but gives incorrect results, and harms following1253

from (intentional or unintentional) misuse of the technology.1254

• If there are negative societal impacts, the authors could also discuss possible mitigation1255

strategies (e.g., gated release of models, providing defenses in addition to attacks,1256

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1257

feedback over time, improving the efficiency and accessibility of ML).1258

11. Safeguards1259

Question: Does the paper describe safeguards that have been put in place for responsible1260

release of data or models that have a high risk for misuse (e.g., pretrained language models,1261

image generators, or scraped datasets)?1262

Answer: [NA]1263

Justification: Our paper poses no such risks.1264

Guidelines:1265

• The answer NA means that the paper poses no such risks.1266

• Released models that have a high risk for misuse or dual-use should be released with1267

necessary safeguards to allow for controlled use of the model, for example by requiring1268

that users adhere to usage guidelines or restrictions to access the model or implementing1269

safety filters.1270

• Datasets that have been scraped from the Internet could pose safety risks. The authors1271

should describe how they avoided releasing unsafe images.1272

• We recognize that providing effective safeguards is challenging, and many papers do1273

not require this, but we encourage authors to take this into account and make a best1274

faith effort.1275

12. Licenses for existing assets1276

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1277

the paper, properly credited and are the license and terms of use explicitly mentioned and1278

properly respected?1279

Answer: [Yes]1280

Justification: The only assets that we have use are the MNIST and CIFAR-10 datasets and1281

we have cited these datasets in the paper properly.1282

Guidelines:1283

• The answer NA means that the paper does not use existing assets.1284

• The authors should cite the original paper that produced the code package or dataset.1285

• The authors should state which version of the asset is used and, if possible, include a1286

URL.1287

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1288

33

• For scraped data from a particular source (e.g., website), the copyright and terms of1289

service of that source should be provided.1290

• If assets are released, the license, copyright information, and terms of use in the1291

package should be provided. For popular datasets, paperswithcode.com/datasets1292

has curated licenses for some datasets. Their licensing guide can help determine the1293

license of a dataset.1294

• For existing datasets that are re-packaged, both the original license and the license of1295

the derived asset (if it has changed) should be provided.1296

• If this information is not available online, the authors are encouraged to reach out to1297

the asset’s creators.1298

13. New Assets1299

Question: Are new assets introduced in the paper well documented and is the documentation1300

provided alongside the assets?1301

Answer: [NA]1302

Justification: Our paper does not introduce new assets.1303

Guidelines:1304

• The answer NA means that the paper does not release new assets.1305

• Researchers should communicate the details of the dataset/code/model as part of their1306

submissions via structured templates. This includes details about training, license,1307

limitations, etc.1308

• The paper should discuss whether and how consent was obtained from people whose1309

asset is used.1310

• At submission time, remember to anonymize your assets (if applicable). You can either1311

create an anonymized URL or include an anonymized zip file.1312

14. Crowdsourcing and Research with Human Subjects1313

Question: For crowdsourcing experiments and research with human subjects, does the paper1314

include the full text of instructions given to participants and screenshots, if applicable, as1315

well as details about compensation (if any)?1316

Answer: [NA]1317

Justification: Our research does not involve human subjects or crowdsourcing.1318

Guidelines:1319

• The answer NA means that the paper does not involve crowdsourcing nor research with1320

human subjects.1321

• Including this information in the supplemental material is fine, but if the main contribu-1322

tion of the paper involves human subjects, then as much detail as possible should be1323

included in the main paper.1324

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1325

or other labor should be paid at least the minimum wage in the country of the data1326

collector.1327

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1328

Subjects1329

Question: Does the paper describe potential risks incurred by study participants, whether1330

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1331

approvals (or an equivalent approval/review based on the requirements of your country or1332

institution) were obtained?1333

Answer: [NA]1334

Justification: Our research does not involve any human subjects.1335

Guidelines:1336

• The answer NA means that the paper does not involve crowdsourcing nor research with1337

human subjects.1338

34

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)1339

may be required for any human subjects research. If you obtained IRB approval, you1340

should clearly state this in the paper.1341

• We recognize that the procedures for this may vary significantly between institutions1342

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1343

guidelines for their institution.1344

• For initial submissions, do not include any information that would break anonymity (if1345

applicable), such as the institution conducting the review.1346

35

	Introduction
	Generalization of the Activation Functions
	Generalization of the Regularizers
	Generalization of the Architectures
	Balancing Algorithms
	Simulations
	Conclusion
	Homogeneous and BiLU Activation Functions
	Additive Activation Functions
	Multiplicative Activation Functions
	Linearly Scalable Activation Functions
	Homogeneous Activation Functions
	 BiLU Activation Functions

	Scaling
	Balancing
	General Framework and Single Neuron Balance
	Scaling and Balancing Beyond BiLU Activation Functions
	Bi-Power Units (BiPU)
	Scaling BiPU Neurons
	Balancing BiPU Neurons

	Network Balance: Gradient Descent
	Network Balance: Stochastic or Deterministic Balancing Algorithms
	Basic Stochastic Balancing
	Subset Balancing (Independent or Tied)
	Remarks about Weight Sharing and Convolutional Neural Networks

	Convergence of Balancing Algorithms
	Notation and Key Questions
	Convergence of the Basic Stochastic Balancing Algorithm to a Unique Optimum

	Universal Approximation Properties of BiLU Neurons
	Analytical Solution for the Unique Global Balanced State
	Computer Resources
	Code Availability

