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Abstract

In this work, we propose Bijective-Contrastive Estimation (BCE), a classification-based
learning criterion for energy-based models. We generate a collection of contrasting distri-
butions using bijections, and solve all the classification problems between the original data
distribution and the distributions induced by the bijections using a classifier parameterized
by an energy model. We show that if the classification objective is minimized, the energy
function will uniquely recover the data density up to a normalizing constant. This has
the benefit of not having to explicitly specify a contrasting distribution, like noise con-
trastive estimation. Experimentally, we demonstrate that the proposed method works well
on 2D synthetic datasets. We discuss the difficulty in high dimensional cases, and propose
potential directions to explore for future work.

1. Introduction

Training energy-based models (EBM) via maximum likelihood estimation (MLE) is difficult.
This is because likelihood evaluation under the density of the EBM requires computing the
log-partition function, which involves an intractable integral. For gradient-based optimiza-
tion, one often needs to resort to Markov chain Monte Carlo (MCMC) methods in order
to approximately sample from the energy model to estimate the gradients (Hinton, 2002).
However, MCMC methods are notoriously computationally expensive and hard to tune,
which prevents EBMs from being widely adopted among the practitioners. This compu-
tational bottleneck has therefore motivated the design of alternative training objectives of
EBMs, such as score matching (SM, Hyvärinen (2005)), denoising score matching (DSM,
Vincent (2011)), noise-contrastive estimation (NCE, Gutmann and Hyvärinen (2010)), and
Stein discrepancy minimization (Liu et al., 2016; Grathwohl et al., 2020).

In our attempt to devise a new training criterion for EBMs, we draw inspiration from the
recent development of flow-based methods. Notably, Dinh et al. (2019); Nielsen et al. (2020)
demonstrate that the inverse model of a surjection map recovers the internal structure of
the data distribution to a certain degree. In order to reconstruct the data distribution with
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Figure 1: Examples of binary classification problems generated by bijections. Left: while
two data densities are different (black solid lines in top and bottom-left), we have
very similar Bayes optimal classifiers to differentiate p(x) and p(x− ε). Right: a
collection of optimal classifiers is fully governed by corresponding pdfs.

a higher precision, a chain of bijection and surjection maps needs to be composed, resulting
in solving multiple classification problems in sequel.

Motivated by this, we propose to use bijections to generate a collection of classification
problems and solve them by parameterizing the classifiers using a shared energy function.
We refer to the corresponding parameter estimation principle as Bijective-Contrastive Es-
timation (BCE). As the EBM is trained to contrast the distributions induced by these
bijections, it will learn to recover the ratio of the corresponding density functions. By
jointly solving a sufficiently large collection of classification problems with shared parame-
ters, the EBM is guaranteed to recover the data distribution’s density up to a normalizing
constant.

2. Bijective-Contrastive Estimation (BCE)

2.1. Generate Contrasting Distributions via Bijections

In this section, we first show how to generate a binary classification problem using a bijection
and demonstrate how to solve the classification problem with an energy model. We then
conjecture that while using the energy model to solve a single classification problem will
not be enough to recover the data density, we can do so by jointly solving sufficiently many
classification problems.

Let x be a random variable following the density p(x), and define x′ = x+ ε, where ε is
a constant. Then the density of x′ is equal to p(x′ − ε); see Figure 1. We consider a binary
classification problem between these two distributions, which admits an optimal solution
π∗(x) = p(x)

p(x)+p(x−ε) (i.e. the blue curve). This implies we can plug in a parametric density,

or an unnormalized density using an energy model in place of p(x) as well as p(x− ε), and
hope to recover p(x) by training the classifier. Nevertheless, we can’t recover p(x) solely
from π∗. This is because different density functions p(x) can possibly generate very similar
optimal solution. For example, the left hand side of Figure 1 shows two possible p(x)’s that
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result in almost indistinguishable π∗’s for the same ε. While the optimal classifier generated
by a single bijection may not be distinguishable for different density functions, we conjecture
that the family of optimal classifiers generated by a sufficiently large collection of bijections
will be uniquely dependent on the density function. Consider the same classification task
above, but now with multiple ε’s. In Figure 1 (right), we plot all the p(x− ε)’s (as well as
the respective optimal classifiers π∗) corresponding to different values of ε; the transparency
of the curves reflects the magnitude of the ε value. Unlike the single classification case, we
can now easily tell the two families of π∗’s apart.

This reveals that with an increasing number of ε’s, there will be less available densities
that match all of the optimal classifiers of the generated problems. With a sufficiently large
number of classification problems, we hope to rule out all but one density function – the
true density of the data distribution. This would imply that we can learn the data density
by parameterizing the classifiers as a function of the energy and the bijections, and jointly
solving the classification problems. In the next section, we formalize and generalize these
examples, and propose a new classification-based learning principle for EBMs.

2.2. Bijective-Contrastive Estimation

Let x ∈ Rd ∼ pdata(x) be a random variable representing the data, and t : Rd → Rd be a
bijection. The probability density of xt := t(x) can be conveniently expressed as p(xt) =
pdata(t

−1(xt))|Jt−1(xt)| by the change-of-variable formula, where Jf (x) denotes the Jacobian
matrix of f wrt x. Similarly to the examples in the previous section, let us first consider a
classification problem to differentiate between x and xt for fixed t when an observation is
drawn from pdata(x) or p(xt) with equal probability. Let π(x) be a probabilistic classifier
π : Rd → [0, 1], solving the following objective:

L(π; t) := −E
x

[log π(x)]− E
xt

[log(1− π(xt))] = −E
x

[log π(x) + log(1− π(t(x)))] . (1)

The objective has a functional minimizer

π∗(x) =
pdata(x)

pdata(x) + pdata(t−1(x))|Jt−1(x)|
.

That is, L(π∗; t) ≤ L(π; t) for any π. Let p(x; f) = e−f(x)/Z(f), where f is the energy
model and Z(f) is the normalizing constant. We can parameterize the classifier as

π(x; f) :=
p(x; f)

p(x; f) + p(t−1(x); f)|Jt−1(x)|
=

e−f(x)

e−f(x) + e−f(t−1(x))|Jt−1(x)|
. (2)

Plugging π(x; f) into Equation (1), we can rewrite L as a loss functional of f

L(f ; t) = −E
x

[
log

e−f(x)

e−f(x) + e−f(t−1(x))|Jt−1(x)|
+ log

e−f(x)

e−f(t(x))|Jt(x)|+ e−f(x)

]
. (3)

As discussed in the previous section, we conjecture that f∗ satisfying e−f
∗(x) ∝ pdata(x)

will be the only minimizer of L(f ; t) for a sufficiently large collection of t. Motivated from
this, we propose to minimize an expected loss over a distribution of bijections:

LBCE-b(f) = −E
t

[L(f ; t)] . (4)
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We refer to learning energy functions by minimizing Equation (4) (expectation taken over
pdata or an empirical distribution) as Bijective-Contrastive Estimation (BCE). We
call the binary classification form of Equation (4) binary BCE objective. Let p(t)1 denote
the density of the bijection t. The following theorem provides a positive answer to our
conjecture: under some mild assumption on p(t) and the form of t, the minimizer f∗ of the
BCE loss is unique up to a normalizing constant and e−f

∗(x) is proportional to the data
density.

Theorem 1 (Uniqueness of BCE-based estimator) Let F be the set of measurable
functions. For any x ∈ supp(pdata(x)), define gx(t) = t−1(x). If for any x ∈ supp(pdata(x))
and for any p(t)-almost sure set M , gx(M)c has Lebesgue measure zero, then

pdata(x) ∝ e−f∗(x) almost everywhere ⇐⇒ LBCE-b(f∗) ≤ LBCE-b(f) ∀f ∈ F . (5)

Corollary 2 (Additive BCE) If t(x) := x + ε where ε ∈ Rd is a random variable with
a density function p(ε) that is non-zero everywhere, then the minimizer f∗ of the BCE
objective in Equation (4) satisfies pdata(x) ∝ e−f∗(x) almost everywhere.

The proofs are deferred to Appendix A. Theorem 1 shows that BCE is powerful enough to
recover pdata, up to a normalizing constant. Moreover, according to Corollary 2, this holds
true for very simple classes of bijections and distributions; for example, additive noise with
a standard normal distribution.

2.3. Variants of objective functions

For additive bijections, we observe that t and t−1 have the same density if p(ε) is standard
normal. In this paper, if the distribution of bijections satisfies p(t) = p(t−1), we infor-
mally refer to this property as inverse-symmetry. Inverse-symmetry allows us to simplify
Equation (4) to (neglecting a multiplier of 2)

LBCE-b(f) = − E
x,t

[
log

e−f(x)

e−f(x) + e−f(t(x))|Jt(x)|

]
. (6)

In addition to additions, random permutations and matrix-vector product of data with
orthogonal matrices are also simple bijections that are inverse-symmetric.

Inverse-symmetry also largely simplifies the computation of the multiclass classification
loss, which would normally have quadratically many terms, to be

LBCE-m(f) = − E
x,t1,...,tn

[
log

e−f(x)

e−f(x) +
∑n

i=1 e
−f(ti(x))|Jti(x)|

]
, (7)

where t1, . . . , tn ∼ p(t) (neglecting a multiplier of n). We find that training with multiclass
BCE tends to be more stable as it has smaller gradient variance.

1. In this article, we assume that the bijections have real-valued representations. For convenience, we abuse
notations and refer to p(t) as a density function on the real-valued representations of t’s. When we write
y = t(x), we refer to the functional form of t that maps x to y.
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Figure 2: Density estimation on 2D synthetic datasets. First row: 2D histogram of synthetic
datasets. Second row: unnormalized density functions learned by BCE.

2.4. Relation to noise contrastive estimation

The most closely related work to ours is noise-contrastive estimation (NCE, Gutmann and
Hyvärinen (2010)), which uses a tractable noise distribution q(x) and learns the energy
function via the following objective,

LNCE(f) = − E
x∼pdata

[
log

e−f(x)

e−f(x) + q(x)

]
− E
x∼q

[
log

q(x)

e−f(x) + q(x)

]
.

If q(x) is defined to be nonzero wherever pdata(x) is nonzero, then e−f
∗(x) = pdata(x) if f∗

minimizes the NCE objective2. While NCE contrasts against a pre-defined noise distribution
q, BCE uses bijections to generate many contrasting distributions implicitly.

3. Experiment on 2D synthetic datasets

In order to demonstrate that by minimizing the BCE loss, we can learn the correct data
density, we run density estimation experiments on six 2D synthetic datasets. We use binary
BCE loss as in Equation (6), additive bijections for the perturbation, and standard normal
distribution for the additive bijections. We use a ReLU network with three 1,000-unit
hidden layers, and train it using the Adam optimizer (Kingma and Ba, 2015) with β1 =
0.9, β2 = 0.999. We run 50K iterations. Mini-batch size and learning rate are set to 256 and
0.0001, respectively. The results are presented in Figure 2. We see that the energy-based
model trained by BCE successfully learns the densities of a variety of 2D synthetic datasets.

4. Difficulties in modeling high-dimensional data

In preliminary experiments, we observe that the proposed method did not work well on high
dimensional data. On the MNIST dataset, we train the EBM via BCE and evaluate the
quality of samples generated by running Langevin dynamics (Grenander and Miller, 1994),
but the generated samples all fail to resemble the true data samples. We conjecture that
this is a result of using the cross entropy loss, which causes two types of vanishing gradients

2. In NCE, the normalizing constant is commonly absorbed in f(x) as a parameter.
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problems: the loss does not provide meaningful learning signals when t(x) is either too
far from or too close to the data manifold. The first case occurs when we use a simple
family of bijections for BCE. For instance, adding an unstructured noise can easily push
a highly structured data point off the data manifolds. Hence the classifiers can achieve
near-perfect accuracy while the learned unnormalized density is nowhere near the true one.
The gradients wrt the energy can also vanish when p(t(x)) is too close to the data density,
e.g. when t is near identity.

Similarly to BCE, the first type of vanishing gradient problem also prevents NCE from
scaling up, occurring when q(x) is too far from pdata(x). Recently, Rhodes et al. (2020) tackle
this problem by generating a sequence of NCE problems, each of which contrasts two con-
secutive intermediate distributions interpolated between the data and a noise distribution.
When the two distributions are close enough, one can potentially mitigate the vanishing
gradient problem. In addition, generative adversarial networks (GANs, Goodfellow et al.
(2014)) also suffer from similar vanishing gradient problems, which can be addressed by
regularizing the discriminator (Arjovsky et al., 2017; Roth et al., 2017). These techniques
can potentially be applied to BCE for modelling high-dimensional data.

5. Conclusion

In this paper, we propose a new classification-based EBM training method, called Bijective-
Contrastive Estimation (BCE). We prove that the data density (up to a normalizing con-
stant) is the only minimizer of the BCE loss. In the experiment, we show that the energy
trained with BCE accurately models the 2D synthetic data distributions. We discuss the
difficulty of BCE in modeling high-dimensional data due to vanishing gradients, and suggest
future directions for addressing this issue.
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Appendix A. Proofs

Proof of Theorem 1

Step 1 In order to prove Theorem 1, we first introduce another optimization problem
equivalent to minimizing LBCE-b(f) in Equation (4). Consider the following data generation
process.

x =

{
x̃, if y = 1,

t(x̃), otherwise.
,

where x̃ ∼ pdata(x̃), t ∼ p(t), and y ∼ Bernoulli
(
1
2

)
. Then the likelihood of x given y

and t is p(x|y = 1, t) = pdata(x) or p(x|y = 0, t) = pdata(t
−1(x))|Jt−1(x)| by the change of

variable. Similarly, we define the “model” likelihood functions

q(x|y = 1, t; f) :=
e−f(x)

Z(f)
and q(x|y = 0, t; f) :=

e−f(t
−1(x))|Jt−1(x)|
Z(f)

. (8)

Then, the minimization of the BCE objective in Equation (4) is equivalent to minimizing
the expected KL-divergence between the true posterior p(y|x, t) and the model posterior
q(y|x, t):

arg min
f

LBCE-b(f) = arg min
f

E
x,t

[DKL (p(y|x, t)‖q(y|x, t; f))] , (9)

where

p(y|x, t) =
p(x|y, t)

pdata(x) + pdata(t−1(x))|Jt−1(x)|

and q(y|x, t; f) =
q(x|y, t; f)

e−f(x)

Z(f)︸ ︷︷ ︸
= q(x|y=1,t;f)

+
e−f(t

−1(x))|Jt−1(x)|
Z(f)︸ ︷︷ ︸

= q(x|y=0,t;f)

.

The equality holds since LBCE-b(f) is the cross entropy term in the expected KL and the
entropy term of p(y|x, t) does not depend on f .

Step 2 Due to Equation (9), proving Theorem 1 is equivalent to showing that if gx maps
any p(t)-almost sure set to a Lebesgue-almost everywhere set, then

pdata(x) ∝ e−f∗(x) almost everywhere ⇐⇒ E
x,t

[DKL (p(y|x, t)‖q(y|x, t; f∗))] = 0. (10)

Proving from the LHS to the RHS is straightforward. Hence, we only show the other
direction. Assume the RHS is true, since the integrand is non-negative, for almost every x,
we have

E
t∼p(t|x)

[DKL (p(y|x, t)‖q(y|x, t; f))] = 0
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which then implies for almost all t (depending on x), the KL divergence is 0. KL divergence
is 0 if and only if the distributions are identical, which means p(y|x, t) = q(y|x, t; f).

That is, turning to the case where y = 1, we have that for almost every x (wrt the
marginal probability p(x) =

∫
p(x, t)dt),

pdata(x)

pdata(x) + pdata(t−1(x))|Jt−1(x)|
=

e−f(x)

e−f(x) + e−f(t−1(x))|Jt−1(x)|
. (11)

for almost all t (wrt the conditional probability p(t|x)). We can pick x so that pdata(x) > 0,
which will then imply

pdata(t
−1(x))

pdata(x)
=
e−f(t

−1(x))

e−f(x)
. (12)

Since this holds true for p(t|x)-almost all t, pdata(t
−1(x)) ∝ e−f(t−1(x)) almost surely. Finally,

since p(t|x) has the same support as p(t), a p(t|x)-almost sure set is a p(t)-almost sure set.
Then by the assumption on gx, we have pdata(x) ∝ e−f(x) almost everywhere on Rd.

�

Proof of Corollary 2 For any fixed x ∈ supp(pdata(x)), we define gx(ε) = x−ε. Since p(ε)
is non-zero everywhere, Lebesgue measure λ is absolutely continuous wrt the probability
measure ν corresponding to the density function p(ε). As Lebesgue measure is translation
invariant and gx is invertible, for any ν-almost sure set M , ν(M c) = 0 ⇒ λ(M c) = 0 ⇒
λ(gx(M)c) = 0. Then the rest follows by an application of Theorem 1. �
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