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ABSTRACT

Machine learning models deployed in sensitive areas such as healthcare must
be interpretable to ensure accountability and fairness. Rule lists (if Age <
35 ∧ Priors > 0 then Recidivism = True, else if Next Condition . . . )
offer full transparency, making them well-suited for high-stakes decisions. How-
ever, learning such rule lists presents significant challenges. Existing methods
based on combinatorial optimization require feature pre-discretization and impose
restrictions on rule size. Neuro-symbolic methods use more scalable continuous
optimization yet place similar pre-discretization constraints and suffer from unsta-
ble optimization. To address the existing limitations, we introduce NYRULES, an
end-to-end trainable model that unifies discretization, rule learning, and rule order
into a single differentiable framework. We formulate a continuous relaxation of
the rule list learning problem that converges to a strict rule list through tempera-
ture annealing. NYRULES learns both the discretizations of individual features,
as well as their combination into conjunctive rules without any pre-processing or
restrictions. Extensive experiments demonstrate that NYRULES consistently out-
performs both combinatorial and neuro-symbolic methods, effectively learning
simple and complex rules, as well as their order, across a wide range of datasets.

1 INTRODUCTION

Machine learning models are increasingly used in high-stakes applications such as healthcare (Deo,
2015), credit risk evaluation (Bhatore et al., 2020), and criminal justice (Lakkaraju & Rudin, 2017),
where it is vital that each decision is fair and reasonable. Proxy measures such as Shapley values can
give the illusion of interpretability, but are highly problematic as they can not faithfully represent a
non-additive models decision process (Gosiewska & Biecek, 2019). Instead, Rudin (2019) argues
that it is crucial to use inherently interpretable models, to create systems with human supervision in
the loop (Kleinberg et al., 2018).

For particularly sensitive domains such as stroke prediction or recidivism, so called Rule Lists are
a popular choice (Letham et al., 2015) due to their fully transparent decision making. A rule list
predicts based on nested ”if-then-else” statements and naturally aligns with the human-decision
making process. Each rule is active if its conditions are met, e.g. “if Thalassemia = normal ∧
Resting bps < 151”, and carries a respective prediction, i.e. “then P (Disease) = 10%”. A rule list
goes through a set of rules in a fixed order, and makes its prediction using the first applicable rule.
We show an example rule list for the Heart disease (Detrano et al., 1989) learned with our method
in Figure 1, which is highly accurate and easy to understand.

Inferring rule lists from data is a challenging combinatorial optimization problem, as there are super
exponentially many options in the number of features. Existing approaches use greedy heuristics
(Proenca & van Leeuwen, 2020), sample based on fixed priors (Yang et al., 2017) and even attempt
to find globally optimal solutions (Angelino et al., 2018) using branch-bound. However, they all
depend on the pre-discretization of continuous features, which in practice deteriorates their perfor-
mance. That is, features such as “Resting bps” are typically discretized using 2− 5 fixed thresholds.
Increasing the granularity of pre-processing leads to a combinatorial explosion of the search space,
which creates issues in scalability for exact methods and in accuracy for heuristics.

Recently, following the paradigm of neuro-symbolic learning, methods based on continuous opti-
mization were proposed to solve rule learning problems with gradient descent (Wang et al., 2021;
Qiao et al., 2021). Nevertheless, neural methods too require to pre-discretize of the features. Most
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if Chest pain = asymptomatic ∧ Exercise chest pain = 0 ∧ 0.88 < ST depression < 5.24
then P(Disease) = 94%

else if Chest pain = asymptomatic ∧ 45.50 < age < 66.42 ∧ Sex = female
then P(Disease) = 87%

else if Resting bps < 151 ∧ Ex. chest pain = 0 ∧ ST depr. < 2.65 ∧ Thalassemia = normal
then P(Disease) = 10%

else if Chest pain = not ( atypical ∨ asymptomatic) ∧ Resting bps < 176 ∧ Max HR > 137
then P(Disease) = 15%

else if Chest pain = asymptomatic ∧ 1.46 < ST depression < 5.00
then P(Disease) = 58%

else P(Disease) = 52%

Figure 1: Rule list learned with NYRULES on the Heart Disease dataset. NYRULES jointly optimizes
thresholds, rule aggregation and ordering into a rule list.

related is the work by Dierckx et al. (2023), who extend neuro-symbolic learning to rule lists by
a fixed ordering layer such that the neural network resembles a proper rule list. However, their
inability to adapt rule order or thresholds results in unstable training and often subpar accuracy.

To overcome all limitations of prior works, we propose NYRULES, a novel method for learning
rule lists differentiably and end-to-end. That is, we unify the learning of predicates, their assembly
into rules, and the final order of the rule list into a single architecture. Instead of relying on pre-
discretized features, NYRULES learns the discretization of the features as well as which features to
aggregate to conjunctive rules. We employ soft approximations of threshold functions (predicates)
and combine them using a novel differentiable logical conjunction, which alleviates vanishing gra-
dients issues of previous work. Finally, we introduce a learnable rule priority that is grounded into a
strict ordering at the end of training. Altogether, this gives us a holistic differentiable relaxation of
rule lists, which can be learned end-to-end. Empirically, we show that NYRULES outperforms the
state-of-the-art on a plethora of datasets, especially where exact thresholding is required.

2 PRELIMINARIES

We consider a dataset of n pairs {(x, y)}ni=1 consisting of the descriptive feature vector x ∈ X with
d real-valued features xi ∈ R, and the discrete-valued target label y ∈ Y . We assume each sample
(x, y) to be a realization of a pair of random variables (X,Y ) ∼ PX,Y , drawn iid.

2.1 RULES

We consider predictive rules r : X → Y for supervised classification, which map input samples to
predictions. A rule is comprised of an antecedent a : X → {0, 1}, which determines whether the
rule is applicable to a sample x or not. Should the antecedent’s condition be met, the consequent
c ∈ Y governs the models prediction. A predictive rule is defined as

r(x) =

{
c if a(x) = 1

c̄ else

If the antecedent is not met, an alternate prediction c̄ ∈ Y is made. In rule lists, which are introduced
shortly, the else case is covered by yet another rule.

The antecedent of a rule must be interpretable. In particular, we examine rules given in form of a
logical conjunction of predicates π, e.g. the rule “if Thalassemia = normal ∧ Resting bps < 151”
from the introduction. Each predicate πi represents the presence/absence of a certain characteristic
in an individual x, e.g “Resting bps < 151”. For tabular data, where X = Rd, clear and meaningful
semantic concepts are usually defined as parameterized thresholding functions on individual feature
variable Xi, i.e.

π (xi;α, β) = 1 [α ≤ xi ≤ β] .
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Figure 2: NYRULES architecture. The input x ∈ Rd is discretized into soft predicates π̂ using
learnable threshold αj , βj ∈ Rd and then combined into k rules âj(x). The rules are sorted by their
priority pj , where using the Gumbel-Softmax function, we approximate the indicator function Ij of
the active rule with highest priority Îj(x). The final prediction is computed by taking the weighted
sum of the consequents cj and indicator Ij .

As we are considering only rules based on logical conjunctions, the conjunction of multiple predi-
cates on the same feature can always be represented by a single set of thresholds. If no condition is
placed on a feature xi, then the corresponding thresholds are given by −∞ and ∞ resp. This allows
us to define the class of antecedent a rule functions as a logical conjunction of predicates as per

a(x; θ) =
d∧

i=1

π (xi;αi, βi) ,

parameterized by θ ∈ R2∗d. Hence, rule-based methods aggregate multiple rules into a performant
classifier that is easily human interpretable.

Rule lists (Cohen, 1995) model nested if-then-else classifiers. To make a prediction, we traverse the
set of rules in a fixed order and use the consequent of the first rule, whose antecedent applies. Given
a set of k rules (aj , cj), each rule is assigned its unique priority pj ∈ N. To classify a sample x with
a rule list rl : X → Y , that rule rj with the highest priority is used whose antecedent holds, i.e.

rl(x; Θ,p) = cj

such that aj(x; θj) = 1 ∧ (∀i ̸= j : ai(x) = 0 ∨ pj > pi) . (1)

Informally, a rule list is as a nested if-then-else structure, as commonly used in programming. The
else case is realized through an always-on rule with the lowest priority.

3 DIFFERENTIABLE RULE LISTS

In this section we introduce Neuro-Symbolic Rule Lists, or short NYRULES. We show the archi-
tecture of NYRULES in Figure 2. The first step is to transform the continuous input features into
binary predicates such as “18 <Age< 30” to use as a basic building blocks for rule construction. In
contrast to all existing methods, NYRULES avoids the need for pre-discretization and instead learns
a task specific thresholding of the features.

Next, we combine the learned predicates into rules âj(x), where â is a differentiable function that
behaves like a logical conjunction for binary predicates, but is also able to handle soft predicates
π̂ ∈ [0, 1]. In particular, our formulation encourages interpretable, succinct rules using weights wj

and alleviates the problem of vanishing gradients compared to previous formulations.

Finally, we aggregate a set of k rules into a rule list rule list as introduced in Eq. (1). Ij(x) indicates
if rule j is to be used for the prediction, i.e. whether it is active (â(x) = 1) and has the highest
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Figure 3: The soft predicate with different temperatures (a) approaches the true thresholding with
decreasing temperature (b). Multiple soft predicates are combined into a conjunctive rule (c).

priority pj . We use the Gumbel-Softmax function Jang et al. (2017a) to approximate this indicator
and formulate a differentiable relaxation for the entire rule list that allows us to jointly optimize a
rule list from discretization parameters to rule order. All our approximations converge towards strict
logical operators at the end of training, i.e. NYRULES converges to a crisp rule list.

3.1 CONJUNCTIVE RULES

We begin with the antecedent a of a rule that makes up the “if . . . ” condition of a rule.

Thresholding Layer. As the building blocks of every rule we consider thresholding functions
π(xi;α, β) = 1 [α ≤ xi ≤ β] on individual features xi as predicates π. It is common practice to
employ equal-width/-frequency binning for continuous features Xi and thus obtain a fixed number
of predicates. The potential solution may become more accurate by increasing the number of bins,
but also comes at a much higher optimization difficulty.

Neural rule learning methods also require to pre-discretize continuous features. since the threshold-
ing function is not continuous at the bounds α and β, and has gradient of 0 elsewhere. To address
these issues, we use the soft binning function as introduced by Yang et al. (2018) as

π̂(xi;α, β, tπ) =
e

1
tπ

(2xi−αi)

e
1
tπ

xi + e
1
tπ

(2xi−αi) + e
1
tπ

(3xi−αi−βi)
.

The resulting function approximates a thresholding function, where the softness of said function is
controlled by a temperature parameter tπ . We show π̂ using different temperatures tπ in Figure 3a.
Just as the Figure suggests, in the limit tπ → 0 the soft predicate converges to the true thresholding
function π(xi;α, β) (shown in Appendix A.1), i.e. limtπ→0 π̂(xi;α, β, tπ) = π(xi;α, β) . There-
fore, we use temperature annealing to increase crispness of the predicates α and β as the training
progresses. We begin start with a higher temperature tπ , which results in smoother predicates π̂ and
avoids exploding/vanishing gradients with respect to α, β. That means that initially, our predicates
are not strictly binary but soft instead, i.e. π̂(xi) ∈ [0, 1].

In the end, we seek to obtain strict logical rules for use in a rule list. Hence, we continuously
decrease the temperature tπ so that in the end ∀xi : π̂(xi) ≈ 1∨ π̂(xi) ≈ 0, except at the boundaries
itself, where if xi = α∨xi = β : π̂(xi) =

1
2 . We show the softness of rules based on soft predicates

in Figure 3a. When the temperature is annealed close to zero, the predicates become increasingly
binary and the difference to the true thresholding function vanishes.

Logical conjunction. To learn rule antecedents, we need to flexibly combine the trainable predi-
cates π̂(xi) into a logical conjunction. To this end, we introduce a differentiable logical conjunction
function â specifically designed for soft predicates. We omit from the notation α, β and tπ for
brevity. We require the logical conjunction to satisfy three conditions:

â(π) =


1, if ∀π(xi) = 1

0, if ∃π(xi) = 0

∈ [0, 1] else.
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We base our approach on the reciprocal of the predicate π̂(x)−1, aggregated by the weighted har-
monic mean proposed by Xu et al. (2024), which is given by

â(x) =
∑d

i=1 wi∑d
i=1 wiπ̂(xi)−1

.

This function fulfills all the outlined criteria: if ∀π̂(xi) = 1, the function evaluates to 1, while if
∃π̂(xi) = 0 → â(x) = 0. Additionally, by setting the corresponding weight of a predicate wi to
0, the network can disable predicates and thus obtain more succinct rules. Its main drawback is the
issue of vanishing gradients in the case of π̂(xi) = 0.

The partial derivatives of the rule function â with respect to its parameters are given by

∂â(x)
∂π̂(xj)

=
wj

(∑d
i=1 wi

)
π̂(xj)2

(∑d
i=1 wiπ̂(xi)−1

)2 ,
∂â(x)
∂wj

=

∑d
i=1 wi(π̂(xi)

−1 − π̂(xj)
−1)

(
∑d

i=1 wiπ̂(xi)−1)2
.

Consider the case where there is a predicate π̂(xl) = 0 with wl > 0. Then the partial deriva-
tive of all other predicates π̂(xj) is zero, as the reciprocal π̂(xl)

−1 is in the denominator and
limxl→0 π̂(xl)

−1 = ∞. Similar, with respect to the weights wi, the derivative is zero, as the squared
reciprocal in the denominator dominates the term. This is a significant issue, as with increasingly
crisp predicates π̂(xi) → 0, the gradient vanishes if the rule has an inactive predicate.

We solve this issue by relaxing the requirements of the soft conjunction. That is, we allow a slack
of ϵ when ∃π̂(xi) = 0. Hence, we do not require the conjunction to take a value of zero but only
â(x) ≤ ϵ instead. To this end, we modify the reciprocal and resulting logical conjunction using a
weight dependent constant η as

η =
ϵ∑d

i=1 wi

, â(x) =
∑d

i=1 wi∑d
i=1 wi

1+η
π̂(xi)+η

.

With this relaxed formulation, we now obtain gradients that do not vanish once a predicate is in-
active. We show in Appendix A.3 that in the limit for all inactive predicates ∀i : π̂(xi) = 0 the
partial derivatives with respect to the predicates ∂â(x)

∂π̂(xj)
≈ wj∑d

i=1 wi
are still non-zero, whereas the

∂â(x)
∂wj

> 0 if there is at least one active predicate π̂(xi) > 0 with wi > 0. That is, the gradient
does not vanish anymore if a rule contains an inactive predicate. Intuitively, the weight-dependent
constant η automatically adjusts the amount of slack such that when the rule is mostly inactive, i.e.
most wi are small, the slack is increased and the gradient flow in this rule increases. While if a rule
is mostly active, the slack is decreased and the gradient is not influenced by η. We perform an ab-
lation in Section 5.2, where we observe that using the relaxed conjunction instead of its unbounded
counterpart â(x) ≤ ϵ improves the average F1 score by 1.7x and in some cases even by 4x.

Differentiable Rule. With the predicates and the logical conjunction in place, the rule antecedent

lim
tπ→0

â(x) =
{
1 if ∀i : wi = 0 ∨ π̂(xi) = 1

0 else

can be flexibly learned. As the rule consequent, which is the “then . . . ” part of a rule, we use a logit
vector c ∈ Rl in the classification setting with l classes. A singular rule is then defined as

if â(x) = 1 then arg max
m∈{1,...,l}

cm , else . . . .

The “else” case in a rule list is handled by a subsequent rule, the mechanism of which we will discuss
in the following section.

3.2 SOFT RULE LISTS

A rule list consists of a set of k rule tuples {(aj , cj , pj)}kj=1, made up of an antecedent aj : X →
{0, 1}, a consequent cj ∈ Rl and a unique priority pj ∈ R+. A sample is classified using the
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prediction of the rule with highest priority and active antecedent as per Eq. (1). To allow for contin-
uous optimization, we reformulate the rl(x) as a linear combination of consequents cj . That is, we
combine the antecedent aj and priority pj into the active priority apj as

apj (x) = aj(x) · pj .

The arg max indicator Ij(x) = 1[j = argmaxj∈{1,...,k} a
p
j (x)] of the active priority vector ap

indicates with which rule the prediction is to be made. Hence, we can re-write the rule list simply
as rl(x) =

∑k
j=1 Ij(x)cj .

Continuous Relaxation. To learn a rule list, we initially relax the constraint to
∑k

j=1 Îj(x) = 1

and hence allow multiple rules to contribute, weighted by their active priority apj . To this end, we
use the Gumbel-Softmax (Jang et al., 2017b), which is a variant of the reparameterization trick and
provides a differentiable approximation to the argmax function. Given the active priority ap and a
temperature trl, the Gumbel-Softmax is defined as

Îj(x; trl) = softmax
(

ap + g
trl

)
,

where g ∈ Rk is random noise sampled from the Gumbel distribution. The Gumbel-Softmax
approach interpolates between the strict one-hot encoding of a rule list and a linear combination
weighted by the rule priorities. In particular, in the limit trl → 0, the Gumbel-Softmax converges to
the arg max function. Thus, the soft rule list is given by

r̂l(x) =
k∑

j=1

cj · Îj(x) .

0.5 0.4 0.3 0.2 0.1

0

0.5

1

Rulelist temperature trl

Î
m

a
x
(x
)

Figure 4: Weight of highest priority rule Îmax(x)
during training with decreasing temperature trl.
The grey corresponds to the variance.

We plot the impact of the relaxation with re-
gard to different temperatures tπ in Figure 4.
We start training with a positive temperature
trl = 0.5, where the rule with highest ac-
tive priority has on average 0.75 of the weight,
whilst the other rules contribute the remaining
0.25. We continuously decrease the tempera-
ture trl towards zero, so that in the end the in-
dicator Îj of the actual rule dominates with a
weight of 0.99. With an appropriate annealing
schedule NYRULES starts training using a re-
laxed rule list, which it can optimize, and con-
tinuously moves towards a strict rule list. After
training, we convert the soft rule list into a crisp rule list. We construct each rule r(x) as a con-
junction of all predicates with ai > 0 and use as lower/upper bound the parameters αi and βi. We
then order the rules based on their priority pj and construct a strict rule list rl(x). To learn the
antecedents, we parameterize cj = softmax(ĉj), where ĉj ∈ Rl is a learnable vector i.e. the logits.

3.3 ENTIRE ARCHITECTURE

Our model takes as input any real-valued feature vector x ∈ Rd, where we first one-hot encode the
categorical features into binary features. For any instantiation of our model, the number of rules k
and the number of classes l is fixed beforehand. We show the resulting architecture in Figure 2.

First, NYRULES discretizes the input features into j ∈ {1, . . . , k} sets of d predicates such as
“18 <Age < 30” or “Diabetes = True”. Each set of predicates is then composed into the an-
tecedent of rule j, using the respective weights wj ∈ Rd. The activation vector â ∈ [0, 1]k represents
the activation of rules such as “if Age < 30 ∧ Diabetes = True”.

Next, NYRULES computes the active priority apj = r ◦ p and passes it through the Gumbel-Softmax
function to obtain the approximate arg max of the rule list Î. The prediction rl(x) is computed by
taking the weighted sum of consequents rl(x) =

∑k
j=1 Îj · cj .
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3.4 OBJECTIVE

Lastly, we turn to the learning setup. We train NYRULES in a standard supervised learning setting
given an arbitrary loss function ℓ and a sample of the data distribution PX,Y . In the following, we
use the cross-entropy loss for binary classification tasks, i.e. ℓ(rl(x; Θ), y) = −y log(rl(x; Θ)) −
(1− y) log(1− rl(x; Θ)), though in principle any differentiable loss function ℓ can be used.

Minimum-Support Besides the chosen loss function, we propose a regularization term to ensure
that each rule represents a non-trivial amount of points. That is, akin to the minimum support
requirement in classical rule lists or decision trees, we penalize rules that are never used or used
too often. To this end, we add a regularization term based off the rule usage indicator Îj(xi). We
compute the coverage, i.e. the fraction of points where each individual rules is active, over the
training set {xi}ni=1 as cov j =

1
n

∑n
i=1 Îj(xi). The support regularizer is then given by

R(Θ) =
1

k

k∑
j=1

max (0, covmin − cov j)
2
+max (0, cov j − covmax)

2
,

where covmin and covmax are user-specified minimum and maximum supports. We weight the
regularization term using a hyperparameter λ. The overall objective given a training set {(xi, yi)}ni=1
is then to optimize the rule list parameters Θ = (β1, α1, . . . , βk, αk,w1, . . . ,wk,p) as

argmin
Θ

1

n

n∑
i=1

ℓ(rl(xi; Θ), yi) + λR(Θ) .

4 RELATED WORK

Rule lists were introduced in the early 90s (Cohen, 1995) and have since been used in various
applications, such as healthcare (Deo, 2015), criminal justice (Angelino et al., 2018), and credit risk
evaluation (Bhatore et al., 2020). Similarly, decision trees (Breiman, 2017), which can also be easily
transformed into rules by tracing the path from the root to the leaf, have also been widely used in
practice. The approaches use greedy combinatorial optimization to find the best rule set. Instead of
relying on the greedy growing of the model, Wang et al. (2017); Yang et al. (2017) propose Bayesian
rule lists, a probabilistic model, where the complexity of the model is controlled by a prior, which is
specified by the user. In practice, these priors result in short rule lists but can harm the performance if
misspecified. To automate the trade-off between complexity and accuracy, Proenca & van Leeuwen
(2020); Papagianni & van Leeuwen (2023) propose an MDL-based approach, which uses an MDL-
score for model selection. In practice, this results in more accurate and concise rule lists compared
to previous approaches. There are also approaches that attempt to find optimal rule lists (Angelino
et al., 2018; Aivodji et al., 2022). Due to the expensive combinatorial optimization, exact methods
are not applicable beyond trivially sized datasets and have to severely restrict the search space in
terms of rule size, feature quantization and number of rules.

Instead of using combinatorial optimization, neuro-symbolic approaches have been proposed to
learn rule classifiers. Qiao et al. (2021) proposes the first approach to learn rule sets in an end-to-
end scheme. They formulate a novel neural architecture that uses continuous relaxations of logical
operators. Here, techniques from the field of fuzzy logics are used to differentiably optimize logical
operations such as negation, disjunction and conjunction (van Krieken et al., 2022). After train-
ing, the rules are extracted from the network. This is extended by Wang et al. (2021) to a deeper
architecture that allows to learn more complicated rules; however, this often results in worse inter-
pretability. Walter et al. (2024) propose to learn rules for binary data that are not only predictive
but also descriptive, which improves explainability but reduces accuracy. Kusters et al. (2022) intro-
duce a differentiable approach to dynamically learn rule predicates, but focuses on linear decision
boundaries which can not be translated into interpretable single feature thresholds. Dierckx et al.
(2023) extend the approach of Qiao et al. (2021) by introducing a hierarchy among the rules, al-
lowing to learn rule lists. Although these methods resolve the scalability issue, they still rely on
pre-discretization of the features, similar to the combinatorial approaches. In contrast, NYRULES
learns discretizations on the fly while being highly scalable and accurate.
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NYRULES RLNET RRL DRNET GREEDY CLASSY CORELS SBRL RIPPER XGBOOST

Adult 0.80± 0.01 0.76± 0.01 0.77± 0.03 0.78± 0.01 0.75± 0.0 0.81 ± 0.0 0.80± 0.0 0.67± 0.02 0.80± 0.0 0.79± 0.01
Android Malware 0.92± 0.0 0.95 ± 0.01 0.92± 0.03 0.95 ± 0.01 0.86± 0.0 0.94± 0.0 0.33± 0.01 n/a 0.86± 0.03 0.96± 0.0
COMPAS 0.66± 0.01 0.65± 0.02 0.59± 0.02 0.61± 0.02 0.66± 0.02 0.67 ± 0.02 0.65± 0.01 0.32± 0.01 0.65± 0.01 0.68± 0.01
Covid ICU 0.62± 0.03 0.60± 0.05 0.63± 0.03 0.48± 0.07 0.63± 0.02 0.60± 0.06 0.61± 0.03 0.38± 0.03 0.64 ± 0.02 0.64 ± 0.02
Credit Card 0.79 ± 0.01 0.77± 0.02 0.75± 0.05 0.75± 0.02 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.0 0.54± 0.03 0.76± 0.05 0.68± 0.0
German Credit 0.72 ± 0.03 0.71± 0.04 0.71± 0.03 0.15± 0.02 0.67± 0.04 0.67± 0.06 0.61± 0.04 0.58± 0.03 0.71± 0.04 0.68± 0.02
Credit Screening 0.86 ± 0.02 0.84± 0.02 0.82± 0.03 0.43± 0.04 0.86 ± 0.02 0.85± 0.02 0.74± 0.04 0.86 ± 0.02 0.86 ± 0.02 0.84± 0.02
Diabetes 0.73± 0.02 0.70± 0.03 0.73± 0.07 0.44± 0.14 0.71± 0.04 0.70± 0.04 0.70± 0.03 0.52± 0.13 0.74 ± 0.07 0.71± 0.03
Electricity 0.75 ± 0.0 0.69± 0.03 0.63± 0.09 0.61± 0.01 0.75 ± 0.0 0.59± 0.01 0.70± 0.01 0.47± 0.03 0.75 ± 0.01 0.83± 0.0
FICO 0.70 ± 0.01 0.67± 0.02 0.64± 0.03 0.63± 0.03 0.69± 0.01 0.67± 0.02 0.63± 0.02 0.36± 0.01 0.70 ± 0.01 0.71± 0.01
Heart Disease 0.78± 0.04 0.74± 0.02 0.72± 0.04 0.51± 0.1 0.71± 0.05 0.77± 0.09 0.68± 0.05 0.56± 0.21 0.80 ± 0.05 0.78± 0.09
Hepatitis 0.79± 0.06 0.77± 0.07 0.78± 0.08 0.18± 0.04 0.73± 0.08 0.74± 0.07 0.82 ± 0.04 0.70± 0.07 0.75± 0.09 0.70± 0.07
Juvenile 0.88± 0.02 0.87± 0.01 0.88± 0.01 0.89 ± 0.01 0.83± 0.04 0.88± 0.01 0.80± 0.02 n/a 0.03± 0.01 0.74± 0.03
Magic 0.79 ± 0.01 0.77± 0.01 0.72± 0.03 0.77± 0.03 0.75± 0.01 0.74± 0.01 0.72± 0.01 0.55± 0.06 0.77± 0.0 0.85± 0.0
Phishing 0.91± 0.01 0.93± 0.0 0.83± 0.06 0.94 ± 0.0 0.89± 0.0 0.92± 0.01 0.27± 0.01 0.87± 0.02 0.89± 0.0 0.95± 0.0
Phoneme 0.79 ± 0.02 0.71± 0.01 0.72± 0.03 0.69± 0.02 0.76± 0.01 0.79 ± 0.02 0.74± 0.01 0.71± 0.04 0.77± 0.01 0.85± 0.01
QSAR 0.81± 0.03 0.83 ± 0.02 0.80± 0.01 0.52± 0.02 0.74± 0.03 0.82± 0.03 0.72± 0.01 0.72± 0.02 0.79± 0.03 0.84± 0.02
Ring 0.92 ± 0.02 0.81± 0.01 0.83± 0.04 0.33± 0.02 0.56± 0.02 0.65± 0.03 0.63± 0.02 0.68± 0.02 0.74± 0.04 0.94± 0.0
Titanic 0.77± 0.02 0.74± 0.03 0.69± 0.06 0.45± 0.09 0.78 ± 0.02 0.77± 0.02 0.66± 0.04 0.16± 0.02 0.75± 0.03 0.76± 0.03
Tokyo 0.91± 0.03 0.91± 0.02 0.91± 0.01 0.25± 0.09 0.88± 0.01 0.92 ± 0.02 0.87± 0.03 0.92 ± 0.01 0.92 ± 0.03 0.92 ± 0.02

Rank 2.60 4.50 5.20 6.85 4.72 4.00 5.92 7.56 3.50 n/a

Table 1: Comparison of different rule list methods on 20 real world datasets. Each rule list is set to
(maximum) length 10. We report the F1 score under 5-fold cross validation and provide XGBOOST
as a benchmark. NYRULES is consistently the best or close to the best performing method.

5 EXPERIMENTS

We compare NYRULES against optimal rule lists (CORELS, Angelino et al. 2018), scalable Bayesian
rule lists (SBRL, Yang et al. 2017), MDL-based rule lists (CLASSY, Proenca & van Leeuwen 2020),
greedily learned rule lists from decision trees (GREEDY), as well the neural rule lists (RLNET,
Dierckx et al. 2023). Additionally, we compare with two neuro-symbolic rule set methods, namely
RRL (Wang et al. 2021) and DRNET (Qiao et al. 2021), and provide a reference point for achievable
performance in form of XGBOOST. We provide the source code in the Supplementary Material.

5.1 REAL WORLD

We begin with a comprehensive comparison on 20 real world datasets from domains such as
medicine and finance for binary classification. The dataset characteristics and sources can be found
in the Appendix B. For all methods, we grid search the best hyperparameter set using 5 hold-out-
datasets and use that configuration for all datasets (see Appendix C). To simulate real world condi-
tions, in which interpretability is paramount, we limit each method to a budget of {10, 15, . . . , 30}
rules. We report the F1 score weighted by class frequency, averaged over 5-fold cross validation
for 10 rules and excluding XGBOOST for rank computation in Table 1, and show the trend for
increasing budget in Figure 5a. Experiments that timed out after 24 hours are indicated by n/a.

Overall. Across all datasets, the neural RLNET and RRL and the heuristic CLASSY and GREEDY
are closely matched, achieving an average rank between 3.5− 4.5 out of 8 methods, while the exact
methods CORELS and SBRL performance is subpar. In contrast, NYRULES performance stands out,
achieving an average rank of 2.30. Across all datasets, NYRULES is either the best or close to the
best performing method, which shows the robustness of our method across different domains. The
accuracy score, provided in Appendix D, paints a similar picture with NYRULES ranking first.

Amongst all datasets, NYRULES performs particularly well on the Ring dataset, where it outper-
forms the next best method by 0.13 F1 points. Upon closer inspection, the Ring dataset uniqueness
lies in its exclusively continuous features, making it an ideal benchmark to evaluate the impact of
continuous feature handling. Here, the ability of NYRULES to learn exact thresholds becomes a
significant competitive edge. For applications in medicine, where continuous biomarkers such as
blood pressure or cholesterol levels are often key indicators, NYRULES could potentially improve
the accuracy of rule lists whilst maintaining full interpretability. Furthermore, in the Appendix E,
we closely investigate under which conditions methods benefit/struggle using synthetic data.

Rule List Length. We plot the average F1 score, normalized by the dataset maximum, under an
increasing number of rules in Figure 5a. NYRULES remains the best performing method for both
short and long rule lists, where for short rule lists GREEDY is closest but deteriorates with more
rules, whereas CLASSY is subpar for short rule lists but comes closer with more rules. We further
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Figure 5: NYRULES is accurate for both short and long rule lists (a). The lengths of the learned rules
follow a power law (b), and consist of mostly succinct and some detailed rules. Using the relaxed
conjunction â(x) ≤ ϵ is always better (blue area) and improves the F1 score on average by 0.3 (c).

analyze the length of individual rules learned by NYRULES, i.e. the number of predicates, in Figure
5b, as a proxy measure for the ease of comprehension of the rules learned by NYRULES. In general,
shorter rules are easier to understand, though this can comes at a decrease in trust/perceived utility
Fürnkranz et al. (2020). The analysis of the distribution of rule lengths across all datasets indicates
that they follow a power-law distribution, with a peak at 2 predicates. That is, most rules are simple
and some are more complex. Whilst the majority of rules stays below 10 predicates, NYRULES is
able to learn rules with up to 25 predicates, which is a testament to its flexibility. In the end, to
assess for a particular use case, whether a rule list learned by NyRules is more interpretable and
trustworthy than one learned by another method, a user study is required.

Multi-class Classification. We focus in this paper on differentiably learning the rules and their
order, and less so on the consequents. To allow extensive comparison against all methods, we focus
on binary classification. To run NYRULES on multi-class datasets, we simply need to expand the
dimension of the consequent vector to the number of classes, i.e. c ∈ Rl. We provide results for
multi-class classification in the Table 2. NYRULES remains the highest ranking method on average,
with a rank of 1.50, and shows that it is not only limited to binary classification.

Runtime. Lastly, we examine the scalability of NYRULES in contrast to other rule lists. We pro-
vide the average runtime of each method across all benchmarks in Figure 6. NYRULES on average
takes 75s per dataset. This is faster than DRNET, RLNET, and SBRL, but significantly slower than
the greedy approaches GREEDY, CLASSY and the neural RRL, which all take below 10s per dataset.
In general, NYRULES incurs a computational overhead compared to the greedy methods but com-
pensates for it in terms of classification accuracy. RRL optimizes only a rule set instead of a rule
list and avoids the more costly rule list optimization, which explains its faster runtime.

5.2 ABLATION STUDIES

Finally, we perform an ablation to assess the efficacy of the relaxed conjunction â(x) ≤ ϵ. To
this end, we re-run NYRULES on all datasets without this adjustment, i.e. with ϵ = 0, and plot
the difference to the original F1 score in Figure 5c. We observe that on most datasets the relaxed
conjunction outperforms the strict conjunction by a large margin, and on average by 0.3 F1 points.
The strict conjunction is not superior on any dataset to the relaxed conjunction. The extent of
improvement stresses the importance of non-vanishing gradients and highlights the contribution of
relaxing the logical conjunction by NYRULES.

We also perform ablation studies for the thresholding and rule ordering and provide the complete
results in the Appendix F. We find the F1 of NYRULES on average is degraded by 0.04 and 0.03
resp. for uniform and kmeans based thresholding. The difference is highly dataset and discretization
dependent. For example, the performance on Adult drops by 0.04 using uniform but by 0.14 for
kmeans thresholding. In general, while fixed binning can sometimes achieve reasonable results, it
requires users to tune the discretization manually. On the other hand, the learned discretization by
NyRules performs at least as well as the fixed binning and outperforms it on many datasets.

For the rule ordering, we find that the F1 of NYRULES is degraded by 0.04 on average, with the
largest drop on the Credit Card and Adult datasets. These datasets contain many samples
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Figure 6: Average runtime over all
benchmarked datasets.

NYRULES RLNET CLASSY GREEDY
Dataset

Car 0.83 0.84 0.83 0.05
ecoli 0.84 0.78 0.75 0.55
Iris 0.95 0.83 0.94 0.56
Yeast 0.54 0.41 0.52 0.21

Avg. Rank 1.50 2.25 2.25 4.00

Table 2: F1 scores for multi-class classification.
NYRULES is the best performing method on average.

(n > 30.000) and likely allow learning of many specific rules with sufficient samples. Here, finding
a correct ordering of rules is crucial. Hence, we see that the learned rule ordering can improve the
performance of NYRULES on larger datasets. Overall, the ablation studies demonstrate the efficacy
of each component of NYRULES, which together allow it to outperform the competition.

6 CONCLUSION

We propose NYRULES, a differentiable relaxation of the rule list learning problem that converges
to a strict rule list through temperature annealing. NYRULES learns both the discretizations of indi-
vidual features, and how to compile these features into conjunctive rules without any pre-processing
or restrictions. We also learn the rule-order differentiably by introducing a priority score that deter-
mines the ordering. NYRULES is able to learn rules of any complexity using specifically optimized
predicates and order them in a way that maximizes the predictive performance of the model. As
a result, we obtain both highly interpretable, but also accurate rule lists that can assist decision
making in a wide range of applications. We demonstrated the effectiveness of NYRULES in exten-
sive real-world and synthetic experiments. We show that NYRULES consistently outperforms both
combinatorial and neuro-symbolic methods on a variety of datasets.

Limitations. Whilst NYRULES is a powerful tool for interpretable rule learning, it is not without
limitations. First and foremost, the rules that NYRULES learns do not allow to draw any causal
conclusions about the data generating process without any further assumptions. Thus, they should
only be used to assist in decision making and not as a substitute for domain knowledge. Compared to
CORELS, we can not give any optimality guarantees on the learned rule list within the search space,
but explore a much larger search space that leads to empirically better results. The number of rules
in a NYRULES rule list is fixed and must be set beforehand. In our evaluation, we use rule length
as a quantitative measure to compare the complexity of rule lists. This choice is supported by early
explainability research, which indicates that humans find shorter rules easier to comprehend than
longer ones (Huysmans et al., 2011). Nonetheless this proxy is not perfect and does not capture all
aspects of interpretability. Hence to undoubtedly determine, which methods is most explainable, a
user study would be necessary, which is left for future work. In addition, there are hyperparameters
and temperature schedules that need to be set. Whilst we have observed a degree of robustness
to these hyperparameters, they require tuning for optimal performance. Lastly, the current rule
language is limited to logical conjunctions of thresholded features. Adding disjunctions and more
complex logical predicates would be a natural extension of the current work and is something we
plan to explore in the future.

Future Work. In addition to the expansion of the rule language, there are several other directions
in which NYRULES could be extended. For example, the current rule list model is only designed
for binary classification tasks, hence to extend it to multi-class classification, is crucial for a wider
range of applications. In that context, we also plan to derive a non-conformity score from the rule list
model for conformal prediction. Extending NYRULES to regression tasks opens up a wide range of
new applications to benefit from interpretable rule lists. Another exciting direction of future work is
the adaption of NYRULES to structured data, such as images or graphs. With appropriate predicate
functions that extract meaningful concepts in those domains, rule list models could be used as more
interpretable and accountable deep learning models.
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A CONVERGENCE OF CONTINUOUS RELAXATIONS

We show that our continuous relaxations for predicate, logical conjunction and rule list converge to
their discrete counterparts.

A.1 PREDICATE.

The soft predicate for a single feature xi is defined as

π̂(xi;α, β, tπ) =
e

1
tπ

(2xi−αi)

e
1
tπ

xi + e
1
tπ

(2xi−αi) + e
1
tπ

(3xi−αi−βi)
.

We now show that the soft predicate converges to the hard predicate as tπ → 0, which is defined as

π(xi;α, β) =

{
1 if xi ∈ [αi, βi]

0 otherwise
.

Proof: Let us denote as the first logit a = xi, the second logit b = 2xi − αi and the third logit
c = 3xi − αi − βi.

e
1
tπ

b

e
1
tπ

a + e
1
tπ

b + e
1
tπ

c

=
1

(e
1
tπ

a + e
1
tπ

b + e
1
tπ

c) · e−
1
tπ

b

=
1

e
1
tπ

(a−b) + e
1
tπ

(b−b) + e
1
tπ

(c−b)

=
1

e
1
tπ

(a−b) + 1 + e
1
tπ

(c−b)
.

Consider the following four cases:

1. xi < αi: Then

b = 2xi − αi > 2xi − xi = xi = a ,

and as then xi < βi, i.e. it is less than the upper bound,

b = 2xi − αi > 3xi − αi − βi = c .

Thus a− b > 0 and c− b < 0, so that in the denominator it holds that in the limit

lim tπ → 0
1

e
1
tπ

(a−b) + 1 + e
1
tπ

(c−b)
=

1

e∞ + 1 + e−∞ = 0 .

2. αi < xi < βi: Then

b = 2xi − αi > 2xi − xi > xi > a ,

and as then xi ≥ αi, i.e. it is greater than the lower bound,

c = 3xi − αi − βi < 3xi − αi − xi < 2xi − αi = b .

Thus a− b ≤ 0 and c− b ≤ 0, so that in the denominator it holds that in the limit

lim tπ → 0
1

e
1
tπ

(a−b) + 1 + e
1
tπ

(c−b)
=

1

e−∞ + 1 + e−∞ = 1 .

3. xi = α or xi = β: Then either a − b = 0 and c − b < 0, or a − b > 0 and c − b = 0, so
that in the limit

lim tπ → 0
1

e
1
tπ

(a−b) + 1 + e
1
tπ

(c−b)
=

1

1 + 1 + e−∞ = 1/2 .

To obtain the desired behavior at the boundaries, i.e.π̂(xi) = 1 or π̂(xi) = 0, the output
must thus be either ceiled or floored.

□
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A.2 LOGICAL CONJUNCTION.

The soft logical conjunction for a set of predicates π̂(xi) is defined as

â(x) =
∑d

i=1 wi∑d
i=1 wiπ̂(xi)−1

.

Given a set of non-negative weights w ∈ [0,∞)d, with at least one weight being positive, the soft
logical conjunction takes values in [0, 1] given d predicates π̂(xi) ∈ [0, 1].

Proof: The domain of the reciprocal is π̂(xi)
−1 ∈ [1,∞). Hence, it holds that all ∀i ∈ [d] :

wiπ̂(xi)
−1 ≥ wi > 0 and thus for their sum

∑d
i=1 wiπ̂(xi)

−1 ≥
∑d

i=1 wi > 0. Then the soft
logical conjunction is bounded by

0 ≤
∑
i=1

1

wiπ̂(xi)−1
≤

∑d
i=1 wi∑d

i=1 wiπ̂(xi)−1
= â(x) ≤ 1 .

In particular, â(x) = 1 if ∀i, wi > 0 : π̂(xi) = 1, as then it holds that π̂(xi)
−1 = 1 and∑d

i=1 wiπ̂(xi)
−1 =

∑d
i=1 wi. On the other hand, â(x) = 0 if there exists an index i where wi > 0

and π̂(xi)
−1 = ∞ ↔ π̂(xi) = 0. □

Let us now consider the limit tπ → 0. Then, it holds that π̂(xi) ∈ {0, 1} for all i. In that case
â(x) ∈ {0, 1}, as either all ∀i : π̂(xi) = 1 ∨ wi = 0 =⇒ â(x) = 1, or ∃i : w > 0 ∧ π̂(xi) =
0 =⇒ â(x) = 1, i.e. it corresponds to the logical conjunction of the predicates.

A.3 RELAXED CONJUNCTION

The relaxed conjunction â(x) is defined as

η =
ϵ∑d

i=1 wi

, â(x) =
∑d

i=1 wi∑d
i=1 wi

1+η
π̂(xi)+η

.

We first show that for π̂(xj) = 0 the resulting soft conjunction is upper bounded by ϵ.

Proof: Let π̂(xj) = 0 and wj ≥ 1. Then the relaxed conjunction is

â(x) =
∑d

i=1 wi∑
i ̸=j wi

1+η
π̂(xi)+η + wj

1+η
π̂(xi)+η

â(x) =
∑d

i=1 wi∑
i ̸=j wi

1+η
π̂(xi)+η + wj

1+η
η

Consider the maximum value of the denominator, i.e. π̂(xi) = 1 for all i ̸= j. Then the denominator
is lower bounded by

∑
i ̸=j

wi
1 + η

π̂(xi) + η
+ wj

1 + η

η
≥

∑
i ̸=j

wi
1 + η

1 + η
+ wj

1 + η

η
=

∑
i ̸=j

wi + wj
1 + η

η
.
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Thus we have

â(x) ≤
∑d

i=1 wi∑
i ̸=j wi + wj

1+η
η

=
η
∑d

i=1 wi

η
∑

i̸=j wi + wj(1 + η)

=
η
∑d

i=1 wi

η
∑d

i=1 wi + wj

=

ϵ∑d
i=1 wi

∑d
i=1 wi

ϵ∑d
i=1 wi

∑d
i=1 wi + wj

=
ϵ

ϵ+ wj
≤ ϵ .

□

Derivatives. To compute its derivatives, we will use the quotient rule for differentiation,
i.e. d

dx
f(x)
g(x) = f ′(x)g(x)−f(x)g′(x)

g(x)2 , where

f(x,w) =

d∑
i=1

wi ,
∂f

∂wj
= 1 ,

∂f

∂π̂(xj)
= 0

g(x,w) =

d∑
i=1

wi
1 + η

π̂(xi) + η
,

∂g

∂wj
=

1 + η

π̂(xj) + η
,

∂g

∂π̂(xj)
= − wj(1 + η)

(π̂(xj) + η)2

Then, the partial derivative of the relaxed conjunction with respect to the predicate π̂(xj) is

∂â(x)
∂π̂(xj)

=
0(
∑d

i=1 wi
1+η

π̂(xi)+η ) + (
∑d

i=1 wi)
wj(1+η)

(π̂(xj)+η)2(∑d
i=1 wi

1+η
π̂(xi)+η

)2

=
(
∑d

i=1 wi)wj(1 + η)

(π̂(xj) + η)2
(∑d

i=1 wi
1+η

π̂(xi)+η

)2 .

Let the predicate xl be off, i.e. π̂(xl) = 0 and wl > 0. Then the derivative for π̂(xj) is

lim
π̂(xl)→0

∂â(x)
∂π̂(xj)

=
(
∑d

i=1 wi)wj(1 + η)

(π̂(xj) + η)2
(
wl

1+η
η +

∑
i ̸=j wi

1+η
π̂(xi)+η

)2 .

The term wl
1+η
η is finite and positive, so that the gradient does not vanish if a predicate is off. In the

worst case that all predicates are off, i.e. π̂(xi) = 0 for all i, the derivative is

(
∑d

i=1 wi)wj(1 + η)

η2
(∑d

i=1 wi
1+η
η

)2

We note that 1 + η ≈ 1 for small η, so that approximately the gradient is

(
∑d

i=1 wi)wj

η2
(∑d

i=1 wi
1
η

)2 =
wj∑d
i=1 wi

.
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Next, we consider the derivative with respect to the weight wj .

∂â(x)
∂wj

=
1(
∑d

i=1 wi
1+η

π̂(xi)+η )−
1+η

π̂(xj)+η (
∑d

i=1 wi)(∑d
i=1 wi

1+η
π̂(xi)+η

)2

=

∑d
i=1 wi(

1+η
π̂(xi)+η − 1+η

π̂(xj)+η )(∑d
i=1 wi

1+η
π̂(xi)+η

)2 .

Let all predicates be off, i.e. π̂(xi) = 0 for all i except for one predicate π̂(xl) > 0 with wl > 0.
Then the derivative for wj in the case of l ̸= j is

∂â(x)
∂wj

=
wl(

1+η
π̂(xl)+η − 1+η

η )

wl
1+η

π̂(xl)+η +
∑d

i ̸=l wi
1+η
η

> 0 ,

as the numerator the denominator are positive. In the case of l = j, the derivative is

∂â(x)
∂wj

=

∑
i ̸=j wi(

1+η
η − 1+η

π̂(xj)+η )

wj
1+η

π̂(xj)+η +
∑d

i̸=j wi
1+η
η

.

Again, the numerator is positive as 1+η
η > 1+η

π̂(xj)+η since π̂(xj) > 0 whilst the denominator stays
the same as in the case of l ̸= j. Overall, this show that as long as there exists a π̂(xl) > 0 with
wl > 0, the gradient with respect to the weight wj is positive.

A.4 RULE LIST.

The hard rule list rl(x) uses the rule active rule aj(x) = 1 with the highest priority pj to determine
the output, i.e.

rl(x; θ,p) = cj

s.t. aj(x; θj) = 1 ∧ ∀i ̸= j : ai(x) = 0 ∨ pj > pi .

We defined the soft rule list as

r̂l(x; θ,p) =
k∑

j=1

cj · Îj(x) ,

where

Îj(x) = e
a
p
j
(x)+Gj

trl /

k∑
j=1

e
a
p
j
(x)+Gj

trl ,

where Gj follows a Gumbel distribution, and apj (x) = aj(x) · pj .

Let tπ → 0 and trl → 0, and all priorities be unique, i.e. ∀j, l : pj ̸= pk, and assume that there
always is an active rule, i.e. ∀x : ∃j : aj(x) = 1, which can be easily achieved by adding an always
active rule. Then, the soft rule list converges to the hard rule list.

Proof: Let us consider the limit tπ → 0. Then, the soft predicate π̂(xi;αi, βi, tπ) converges to the
hard predicate π(xi;αi, βi) as per A.1 and for all ∀i : â(xi) ∈ {0, 1}.

We now show that for trl → 0 the indicator function Îj(x) converges to the hard indicator function
Ij(x). Given that all priorities are unique, the arg max of a(x) = r(x) · p is unique, as either

aj(x) =
{
pj if aj(x) = 1

0 otherwise

Since there is at least one active rule with a positive priority pj , the arg max is greater 0 and
equal to a pj , which by definition is unique, and which corresponds exactly to the rule for which
aj(x) = 1∧ ∀i ̸= j : ai(x) = 0∨ pj > pi. In the limit of trl → 0, the Gumbel softmax converges to
the arg max function (Jang et al., 2017b), which shows that the soft rule list in the limit is equivalent
to the hard rule list. □
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B DATASET STATISTICS

We retrieve the datasets from the UCI repository (Dheeru & Efi, 2017), the imodels-data repository
(Singh et al., 2021) and the pmlb repository (Romano et al., 2016).

dataset #samples #features %numerical features #positive samples #negative samples %pos samples

adult 32561 14 0.64 7841 24720 0.24
android 29332 86 0.00 14700 14632 0.50
breast cancer 277 17 0.06 81 196 0.29
compas two year clean 6172 20 0.20 2990 3182 0.48
covid 1494 16 0.06 809 685 0.54
credit card clean 30000 33 0.55 6636 23364 0.22
credit g 1000 60 0.05 700 300 0.70
crx 690 15 0.47 307 383 0.44
default 30000 5 0.40 6636 23364 0.22
diabetes 768 8 1.00 268 500 0.35
eeg eye state 14980 14 1.00 6723 8257 0.45
electricity 45312 8 0.88 19237 26075 0.42
fico 10459 23 0.91 5459 5000 0.52
haberman 306 3 1.00 225 81 0.74
heart 270 15 0.33 120 150 0.44
hepatitis 155 19 0.32 123 32 0.79
horse colic 368 22 0.32 136 232 0.37
juvenile clean 3640 286 0.01 487 3153 0.13
madelon 2600 500 0.97 1300 1300 0.50
magic 19020 10 1.00 6688 12332 0.35
ozone-level 2534 72 1.00 2374 160 0.94
pc1 1109 21 1.00 77 1032 0.07
phishing 11055 30 0.00 6157 4898 0.56
phoneme 5404 5 1.00 1586 3818 0.29
qsar biodeg 1055 41 0.71 356 699 0.34
ring 7400 20 1.00 3736 3664 0.50
titanic 2099 8 0.38 681 1418 0.32
tokyo1 959 44 0.84 613 346 0.64

Table 3: Dataset statistics for the 25 real-world datasets used in our experiments. We say a feature
is numerical if it has more than 10 unique values.

C HYPERPARAMETERS

For each of the methods we performed a grid search over their hyperparameters and chose the con-
fuirgation that achieved the best performance on the validation datasets: [eeg eye state, horse colic,
ozone-level, pc1, breast cancer] according to the weighted F1 score. For each of the runs we have a
time limit of 24 hours, after which the experiments were terminated. The hyperparameters for each
of the methods are as follows:

For SBRL, we performed a grid search the following hyperparameters: listlengthprior ∈ [2, 3, 4];
for listwidthprior ∈ [1, 2, 3]; for maxcardinality ∈ [1, 2, 3] and for minsupport, we fixed the value at
0.05. The number of monte-carlo sampling chains is set to 5 or 10.

For DRNET, we tested the following hyperparameters: lr ∈ [0.001, 0.01, 0.1]; and lam ∈
[0.0001, 0.001, 0.01]; epochs ∈ [1000, 2000, 3000]; and or lam ∈ [0.0001, 0.001, 0.01]. As
GREEDY has only one hyperparameter, we optimized max depth ∈ [3, 5, 7, 10] For CLASSY, we
tested the following hyperparameters: beam width ∈ [50, 100, 150, 200]; n cutpoints ∈ [3, 5, 10];
and max depth ∈ [3, 5, 10]. For CORELS, we performed a grid search with the following hyper-
parameters: c ∈ [0.005, 0.01, 0.02]; n iter ∈ [5000, 10000, 15000]; max card ∈ [2, 3, 4]; and
min support ∈ [0.01, 0.02, 0.05]. For NYRULES, we performed a grid search with the following
hyperparameters: n epochs ∈ [250, 500, 1000]; min support ∈ [0.1, 0.2]; max support ∈ [0.8, 0.9];
lambd ∈ [0.5]; and lr ∈ [0.002, 0.025, 0.05]. For RLNET, we conducted a grid search with the fol-
lowing hyperparameters: lr ∈ [0.001, 0.01, 0.1]; lambda and ∈ [0.0001, 0.001, 0.01]; n epochs ∈
[1000, 2000, 3000]; and l2 lambda ∈ [0, 0.001, 0.01]. To optimize XGBOOST, we explored a range
of hyperparameters through grid search: xg learning rate ∈ [0.001, 0.01, 0.1]; xg max depth ∈
[3, 5, 7, 10]; xg n estimators ∈ [50, 100, 200, 300]; and xg reg lambda ∈ [0, 0.001, 0.01].
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NYRULES RLNET RRL DRNET GREEDY CLASSY CORELS SBRL RIPPER XGBOOST

Adult 0.79± 0.01 0.81± 0.0 0.77± 0.04 0.82 ± 0.01 0.80± 0.0 0.82 ± 0.0 0.82 ± 0.0 0.65± 0.02 0.82 ± 0.0 0.86± 0.0
Android Malware 0.92± 0.0 0.95 ± 0.01 0.92± 0.03 0.95 ± 0.01 0.87± 0.0 0.94± 0.0 0.50± 0.0 nan± nan 0.87± 0.03 0.96± 0.0
COMPAS 0.66± 0.0 0.66± 0.01 0.60± 0.02 0.64± 0.01 0.66± 0.02 0.68 ± 0.02 0.65± 0.01 0.48± 0.01 0.65± 0.01 0.68 ± 0.01
Covid ICU 0.63± 0.03 0.61± 0.05 0.63± 0.03 0.49± 0.07 0.63± 0.02 0.61± 0.04 0.63± 0.01 0.54± 0.03 0.64 ± 0.02 0.64 ± 0.02
Credit Card 0.82 ± 0.0 0.81± 0.01 0.75± 0.07 0.80± 0.01 0.82 ± 0.0 0.81± 0.01 0.82 ± 0.0 0.52± 0.02 0.78± 0.01 0.82 ± 0.01
German Credit 0.72 ± 0.03 0.72 ± 0.04 0.72 ± 0.03 0.30± 0.02 0.72 ± 0.04 0.71± 0.04 0.70± 0.01 0.70± 0.02 0.72 ± 0.05 0.75± 0.02
Credit Screening 0.86 ± 0.02 0.84± 0.03 0.82± 0.03 0.50± 0.05 0.86 ± 0.02 0.85± 0.02 0.74± 0.04 0.86 ± 0.02 0.86 ± 0.02 0.85± 0.02
Diabetes 0.73± 0.02 0.73± 0.03 0.75 ± 0.05 0.45± 0.12 0.72± 0.03 0.73± 0.04 0.73± 0.03 0.55± 0.11 0.75 ± 0.06 0.74± 0.02
Electricity 0.76 ± 0.0 0.71± 0.01 0.65± 0.08 0.67± 0.01 0.76 ± 0.0 0.66± 0.0 0.73± 0.01 0.53± 0.02 0.76 ± 0.01 0.84± 0.0
FICO 0.70 ± 0.01 0.68± 0.01 0.65± 0.02 0.64± 0.02 0.70 ± 0.01 0.68± 0.02 0.65± 0.01 0.52± 0.01 0.70 ± 0.01 0.72± 0.01
Heart Disease 0.79± 0.04 0.75± 0.01 0.72± 0.04 0.52± 0.11 0.71± 0.05 0.78± 0.09 0.69± 0.05 0.61± 0.15 0.80 ± 0.05 0.79± 0.08
Hepatitis 0.79± 0.06 0.79± 0.06 0.79± 0.07 0.24± 0.05 0.80± 0.05 0.78± 0.03 0.83 ± 0.04 0.79± 0.04 0.78± 0.07 0.83 ± 0.06
Juvenile 0.88± 0.02 0.89± 0.01 0.88± 0.01 0.90 ± 0.01 0.86± 0.01 0.89± 0.01 0.87± 0.01 nan± nan 0.13± 0.01 0.90 ± 0.01
Magic 0.80 ± 0.01 0.79± 0.01 0.74± 0.02 0.79± 0.02 0.74± 0.01 0.77± 0.0 0.74± 0.0 0.57± 0.05 0.78± 0.01 0.87± 0.0
Phishing 0.91± 0.01 0.93± 0.01 0.83± 0.06 0.94 ± 0.0 0.89± 0.0 0.92± 0.01 0.44± 0.01 0.87± 0.02 0.89± 0.0 0.95± 0.0
Phoneme 0.78± 0.02 0.74± 0.01 0.74± 0.02 0.74± 0.01 0.76± 0.01 0.81 ± 0.01 0.75± 0.01 0.70± 0.04 0.77± 0.02 0.88± 0.01
QSAR 0.81± 0.03 0.84 ± 0.01 0.80± 0.02 0.64± 0.02 0.74± 0.03 0.82± 0.03 0.74± 0.01 0.71± 0.02 0.79± 0.03 0.86± 0.02
Ring 0.92 ± 0.02 0.81± 0.01 0.83± 0.04 0.50± 0.02 0.61± 0.02 0.68± 0.02 0.66± 0.02 0.70± 0.02 0.75± 0.04 0.94± 0.0
Titanic 0.79 ± 0.02 0.77± 0.02 0.72± 0.05 0.45± 0.08 0.79 ± 0.02 0.79 ± 0.02 0.71± 0.03 0.32± 0.02 0.78± 0.02 0.81± 0.03
Tokyo 0.91± 0.03 0.91± 0.02 0.91± 0.01 0.37± 0.05 0.88± 0.01 0.92 ± 0.02 0.87± 0.03 0.92 ± 0.01 0.92 ± 0.03 0.93± 0.02
Rank 3.25 3.98 5.78 6.55 4.50 3.70 5.83 7.31 3.95 n/a

Table 4: We report the results comparison on 20 real world datasets stemming from domains such as
medicine,finance, and criminal justice. We compare NYRULES against CORELS, SBRL, CLASSY,
GREEDY, RLNET, RRL, DRNET, and XGBOOST. We report the accuracy averaged over 5-fold
cross validation. The experiments were terminated after 24 hours, indicated by n/a. NYRULES
performs the best with respect to the Acc score, indicated by the lowest rank.

C.1 TEMPERATURE SCHEDULES

Temperature schedules are crucial in optimization problems involving soft approximations of dis-
crete functions. They help in gradually transitioning from a soft to a hard decision boundary, which
can improve convergence and performance. By adjusting the temperature parameter, we control the
smoothness of the approximations, allowing the model to explore the solution space more effectively
during the initial stages of training and then refine the solutions as training progresses.

We use a linear temperature decay during the second half of training for both temperatures. The
temperature starts at 1.0 and linearly decreases to 0.1 for the rule priority temperature trl and ranges
from 0.2 to 0.05 for the predicate temperature tπ . These values were determined through hyperpa-
rameter optimization and are unchanged across all experiments. The temperature is updated at each
epoch as follows:

temp_start = 1.0
temp_end = 0.1
temp = temp_start
step_size = (temp_start - temp_end)/(total_epochs*2)
If epoch >= total_epochs/2:

temp = temp - step_size

This schedule allows the model to maintain a high level of flexibility during the first half of training
with multiple active rules and gradually focus on only a single rule per sample in the latter half.

D REAL WORLD: ACCURACY

We report the accuracy of the methods on the real world datasets in Table 4. The conclusions
about the performance of the methods are consistent with the results obtained using the weighted F1
score. Although, the improvements of NYRULES over the baselines is more pronounced in terms of
accuracy. Nontheless, we report the weighted F1 score as the main evaluation metric, as it is more
informative about the performance of the methods in the presence of class imbalance.

E SYNTHETIC DATA

Lastly, we compare the best performing rule list models under different challenging settings. We
sample d independent, uniform feature variables Xi n times {xi | xi ∼ U(0, 1)d}. We sample m
indices Ind = {ind1, . . . , indm} out of {1, . . . , d} to be included in the rule. The range of each
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F1 Ablation Diff
Dataset

adult 0.80 0.66 0.14
android 0.92 0.33 0.59
breast-cancer 0.69 0.62 0.07
compas-two-year-clean 0.66 0.35 0.31
covid 0.62 0.29 0.34
credit-card-clean 0.79 0.68 0.11
credit-g 0.72 0.14 0.58
crx 0.86 0.58 0.28
diabetes 0.73 0.51 0.22
electricity 0.75 0.42 0.33
fico 0.70 0.31 0.39
haberman 0.69 0.70 -0.01
heart 0.78 0.40 0.39
hepatitis 0.79 0.07 0.71
juvenile-clean 0.88 0.80 0.07
magic 0.79 0.51 0.28
phishing 0.91 0.78 0.12
phoneme 0.79 0.59 0.20
qsar-biodeg 0.81 0.53 0.28
ring 0.92 0.33 0.59
titanic 0.77 0.54 0.23
tokyo1 0.91 0.19 0.72

interval β − α is determined by the target rule fraction s and the number of predicates as

r = β − α = s
1
m .

We thus create randomly uniform intervals by sampling for each feature i ∈ Ind a lower bound
αi ∼ U(0, 1 − r) and corresponding upper bound βi = αi + r. These intervals are then combined
into a rule aj(x) =

∧
i∈Ind αi < xi < βi that covers on expectation s of the total datapoints. We

repeat this process to generate k rules. Each rule is assigned a random priority pj ∼ [1, . . . , k]. We
set cj = 1 or cj = 0 uniformly at random to determine each rules class label. Thus, abiding by the
corresponding rule list rl(x), we assign the class label yi = cj for the rule j where aj(x) = 1 and
pj is maximal. Finally, for all samples xi where ∀j : aj(x) = 0, we assign the class label yi = 0
with probability 0.5 and yi = 1 otherwise.

We use the following parameters to generate the datasets reported in the experiments:

1. Rule complexity: d = 20, n = 5000, s = 0.1, k = 2,m ∈ {2, 4, 6, 8}.
2. Number of rules: d = 20, n = 5000, s = 0.1, k = {2, 4, 6, 8, 12},m = 2.
3. Sample complexity: d = 20, n ∈ {100, 500, 1000, 5000, 10000}, s = 0.1, k = 2,m = 2.

Rule Complexity. We begin by varying rule complexity through increasing the number of pred-
icates πi per rule. We report the F1 score in Figure 7a. Overall, NYRULES is consistently the
best performing method. In particular, NYRULES is the only method that does not require pre-
discretization of the features and can learn the thresholds of the predicates exactly. Especially for
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Figure 7: F1 score of a synthetic rule list. NYRULES is performant for complex rules (a), rule lists
with few and many rules (b) and scales well with a large number of samples (c).
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Uniform Diff kMeans Diff Fixed a Diff Hard Conj. Diff

heart 0.78 -0.00 0.79 0.01 0.79 0.01 0.40 -0.39
credit-g 0.66 -0.06 0.71 -0.01 0.64 -0.09 0.14 -0.58
juvenile-clean 0.89 0.01 0.86 -0.02 0.80 -0.07 0.80 -0.07
compas-two-year-clean 0.59 -0.06 0.65 -0.00 0.66 0.00 0.35 -0.31
fico 0.65 -0.05 0.70 -0.00 0.68 -0.02 0.31 -0.39
credit-card-clean 0.79 -0.00 0.72 -0.07 0.68 -0.11 0.68 -0.11
android 0.92 -0.00 0.92 0.00 0.92 -0.00 0.33 -0.59
phishing 0.91 0.00 0.91 0.00 0.91 0.00 0.78 -0.12
electricity 0.63 -0.12 0.74 -0.00 0.74 -0.01 0.42 -0.33
qsar-biodeg 0.79 -0.02 0.79 -0.02 0.79 -0.02 0.53 0.28
phoneme 0.66 -0.13 0.77 -0.02 0.59 -0.20 0.59 -0.20
adult 0.75 -0.04 0.66 -0.14 0.66 -0.14 0.66 -0.14
covid 0.61 -0.02 0.64 0.02 0.64 0.02 0.29 -0.34
diabetes 0.73 0.00 0.74 0.00 0.66 -0.07 0.51 -0.22
hepatitis 0.79 -0.00 0.76 -0.02 0.76 -0.03 0.07 -0.71
magic 0.75 -0.04 0.75 -0.04 0.77 -0.02 0.51 -0.28
titanic 0.77 -0.01 0.77 -0.01 0.77 -0.01 0.54 -0.23
tokyo1 0.91 0.00 0.91 0.00 0.91 0.00 0.19 -0.72
crx 0.85 -0.00 0.86 0.00 0.86 -0.00 0.58 -0.28
ring 0.73 -0.19 0.72 -0.20 0.80 -0.12 0.33 -0.59

Average 0.76 -0.04 0.77 -0.03 0.75 -0.04 0.43 -0.3

Table 5: Ablation study comparing the obtained F1 scores using uniform and kmeans based binning,
as well as a fixed rule priority. NYRULES accuracy is negatively impacted by each’s components
removal.

the most complex rules with 8 predicates, NYRULES holds the biggest advantage over the other
methods. Here, exact thresholding is crucial, as inaccuracies over multiple dimensions compound
and limit the obtainable F1 score with pre-discretized features.

Number of Rules. Next, we increase the number of rules k sampled in a rule list, whilst keeping
each rule fixed at 2 predicates. We report the F1 score in Figure 7b. NYRULES maintains a consistent
advantage over it competition in both the low and high rule list regime.

Sample Complexity. Lastly we examine the sample complexity of each method, reported in Fig-
ure 7c. For 100 sampled datapoints, all methods are closely matched. NYRULES gradient based op-
timization continuously improves as the number of samples increases, whilst RLNET and GREEDY
improvement caps out at 1000 samples. In the high sample regime of 10.000 samples, NYRULES
holds the biggest advantage over the other methods.

The synthetic experiments further highlight the advantage of fully flexible thresholding, especially
for complex rules, and show that NYRULES scales well with the number of samples and rules.
Therefore, in real world applications where the majority of features are continuous and with many
samples, NYRULES can offer a competitive edge over existing alternatives.

F ABLATION STUDIES

We perform an ablation study to investigate the impact of the different components of our method.
We provide the F1 score when using uniform, kmeans pre-processing of continuous features, a fixed
rule priority p and with a hard conjunction in Table 5.
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