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Abstract

Differentiable NAS (DARTS) is a simple and efficient neural architecture search
method that has been extensively adopted in various machine learning tasks. Never-
theless, DARTS still encounters several robustness issues, mainly the domination of
skip connections. The resulting architectures are full of parametric-free operations,
leading to performance collapse. Existing methods suggest that the skip connection
has additional advantages in optimization compared to other parametric operations
and propose to alleviate the domination of skip connections by eliminating these
additional advantages. In this paper, we analyze this issue from a simple and
straightforward perspective and propose that the domination of skip connections
results from parametric operations overfitting the training data while architecture
parameters are trained on the validation data, leading to undesired behaviors. Based
on this observation, we propose the operation-level early stopping (OLES) method
to overcome this issue and robustify DARTS without introducing any computa-
tion overhead. Extensive experimental results can verify our hypothesis and the
effectiveness of OLES.

1 Introduction

Neural architecture search (NAS) aims to automatically design high-performance neural architec-
tures Zoph and Le [2016] for given tasks in a data-driven manner. Deep learning models designed
by NAS have achieved state-of-the-art performance in a variety of tasks, such as image classifica-
tion Termritthikun et al. [2021], Real et al. [2018], Pham et al. [2018], semantic segmentation Liu
et al. [2019], graph learning Zhu et al. [2022a, 2023], and recommender systems Chen et al. [2022],
Zhu et al. [2022b]. Among various NAS methods, differentiable architecture search (DARTS) Liu
et al. [2018] significantly improves the efficiency of NAS through parameter-sharing and continuous
relaxation. DARTS converts discrete architecture selections into continuous architecture parameters
α and optimizes them via gradient-based optimizers.

Despite its simplicity and efficiency, DARTS still has several issues that make it difficult to outperform
other NAS methods, even a simple random search Li and Talwalkar [2020], Yu et al. [2019], in many
cases. The first issue is the performance gap. Due to the discrepancies between discrete architectures
and continuous architecture parameters, the derived model shows non-negligible performance degra-
dation Liu et al. [2018]. Additionally, DARTS suffers from serious robustness problems Nayman
et al. [2019], Chen et al. [2019], Liang et al. [2019], Chu et al. [2020], Zela et al. [2019], Wang et al.
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[2021]. In particular, during the search phase of DARTS, as the number of training epochs increases,
the searched architectures will fill with parametric-free operations Chu et al. [2019a], such as skip
connections or even random noise, leading to performance collapse. These issues waste a lot of
computational resources and seriously hinder the application of DARTS.

The domination of skip connections is the major robustness issue of DARTS Wang et al. [2021].
Many studies have investigated why the domination of skip connections happens and how to alleviate
this issue. Most of them believe that skip connections exhibit unfair advantages in gradient-based
optimization during the search phase Liang et al. [2019], Chu and Zhang [2020], Chu et al. [2019a]
or stabilize the supernet training by constructing residual blocks Chu et al. [2020]. To address
this problem, they propose eliminating these unfair advantages Chu et al. [2019a] or separating
the stabilizing role Chu et al. [2020], mainly drawing inspiration from ResNet He et al. [2015].
However, the generic optimization in ResNet differs fundamentally from the bi-level optimization
in DARTS. Therefore, observations and theories based on uni-level optimization are insufficient
to support the claim that skip connections still have unfair advantages in DARTS. The work Wang
et al. [2021] analyzes this problem from the perspective of architecture selection and proposes that
the magnitude of the architecture parameter may not reflect the strength of the operation. Based on
this assumption, a perturbation-based architecture selection method is proposed. However, this idea
conflicts with the fundamental motivation of DARTS, which utilizes continuous relaxation to solve
the combinatorial optimization problem approximately. Xie et al. [2021] suggests that overfitting in
bi-level optimization is the primary reason for the catastrophic failure of DARTS and alayzes it from
a unified theoretical framework, which is similar to our conjecture.

In contrast to the above sophisticated assumptions, in this paper, we take a simpler and more
straightforward perspective to consider the reasons for the domination of skip connections. We
observe that the robustness problem of DARTS is caused by overfitting. Specifically, the parameters
of operations (e.g., convolution) in the supernet overfit the training data and gradually deviate from
the validation data. Meanwhile, the architecture parameters are trained on the validation data, causing
the advantages of parametric operations to weaken progressively and ultimately leading to the
domination of parametric-free operations. It is evident that the supernet is always overparameterized.
Additionally, the architecture parameters also affect the supernet training, with operations that exhibit
advantages in the early stage of search being more prone to overfitting.

Based on the above observations, we further propose an operation-level early stopping (OLES) 1

method to address the domination of skip connections. The OLES method monitors each operation
in the supernet to determine if it tends to overfit the training data and stops training the operation
when overfitting occurs. Specifically, we utilize the gradient matching (GM) method Hu et al. [2022]
to compare the gradient directions of operation parameters on the training data and the validation
data. If the difference between them remains large in multiple consecutive iterations, the operation
will stop training. This approach not only alleviates the domination of skip connections and but also
sharpens the distribution of architecture parameters with more search iterations, thereby reducing
the performance gap caused by discretization. Moreover, our method only needs to maintain the
directions of operation gradients. Due to only minimal modifications to the original DARTS, the
additional overhead is negligible.

In summary, we make the following contributions:

• We analyze the robustness issue of DARTS from a new perspective, focusing on the overfit-
ting of operations in the supernet.

• We propose the operation-level early stopping method to address the domination of skip
connections in DARTS with negligible computation overheads.

• Extensive experiments demonstrate the effectiveness and efficiency of our method, which
can achieve state-of-the-art (SOTA) performance on multiple commonly used image classifi-
cation datasets.

1Open-source code can be found at https://github.com/PasaLab/oles.
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2 Background and Related Work

2.1 Neural Architecture Search

Over the years, a variety of NAS methods have been proposed, including evolutionary-based Termrit-
thikun et al. [2021], Real et al. [2018], Guo et al. [2020], reinforcement-learning-based Zoph and Le
[2016], Pham et al. [2018], and gradient-based Liu et al. [2018], Xie et al. [2018], Cai et al. [2018]
methods. They have achieved great success in many computer vision (CV) and natural language
processing (NLP) So et al. [2019] tasks. As a pioneering work, NAS-RL Zoph and Le [2016] uses
an RNN controller to generate architectures and employs the policy gradient algorithm to train the
controller. However, this method suffers from low search efficiency. To improve the search efficiency,
the cell-based micro search space Zoph et al. [2017] and weight-sharing mechanism Pham et al.
[2018] have been proposed. DARTS Liu et al. [2018], which also takes advantage of weight-sharing,
utilizes the gradient-based method to optimize architecture parameters and model weights alterna-
tively. Recently, train-free NAS methods Chen et al. [2021a], Li et al. [2023] that utilize proxy metrics
to predict the ranking or test performance of architectures without training have been proposed to
further promote search efficiency.

2.2 Preliminaries of Differentiable Neural Architecture Search

We will now provide a detailed review of DARTS. The original DARTS Liu et al. [2018] relies on a
cell-based micro search space, where each cell contains N nodes and E edges organized in a directed
acyclic graph (DAG). Each node represents a feature map x(i), and each edge is associated with an
operation o ∈ O, where O denotes the set of candidate operations (e.g., skip connect, sep conv 3x3,
etc.). During architecture search, instead of applying a single operation to a specific node, continuous
relaxation is applied to relax the categorical choice of a specific operation to a mixture of candidate
operations, i.e., ō(i,j)(x) =

∑
o∈O

exp(α(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )
o(x). α = {α(i,j)} serves as the architecture

parameters. DARTS then jointly optimizes architecture parameters α and model weights w with the
following bi-level objective via alternative gradient descent:

min
α

Lval(w
∗, α)

s. t. w∗ = argmin
w

Ltrain(w,α).

Since DARTS follows the weight-sharing mechanism, we refer to the continuous relaxed network
as the "supernet". At the end of the search phase, a discretization phase is performed by selecting
operations with the largest α values to form the final architecture.

2.3 Robustifying DARTS

Despite its simplicity and efficiency, the undesired domination of skip connections is often observed
in DARTS. Previous works have attempted to eliminate the domination of skip connections by
diminishing their unfair advantages. DARTS+Liang et al. [2019] uses a fixed value to constrain the
number of skip connections. Progressive DARTSChen et al. [2019] adds a Dropout after each skip
connection operation. DARTS−Chu et al. [2020] introduces an auxiliary skip connection to separate
the unfair advantage of the skip connection by analyzing it from the perspective of ResNet He et al.
[2015]. Another strategy is to remove the exclusive competition of operation selection in DARTS.
FairDARTSChu et al. [2019a] replaces the Softmax relaxation of DARTS with Sigmoid and offers an
independent architecture parameter for each operation. NoisyDARTSChu and Zhang [2020] injects
unbiased noise into the candidate operations to ensure that the good ones win robustly. However,
DARTS+PT Wang et al. [2021] believes that the magnitude of the architecture parameter is not a
good indicator of operation strength and proposes a perturbation-based architecture selection method.

Our work is also related to GM-NAS Hu et al. [2022], which falls in the field of Few-Shot NAS Zhao
et al. [2021]. Although our method and GM-NAS both employ the GM score as a mathematical tool,
they are entirely distinct lines of work. GM-NAS argues that due to coupled optimization between
child architectures caused by weight-sharing, One-Shot supernet’s performance estimation could
be inaccurate, leading to degraded search results. As a result, GM-NAS proposes to reduce the
level of weight-sharing by splitting the One-Shot supernet into multiple separated sub-supernets.

3



0 5000 10000 15000 20000 25000 30000 35000 40000
Step

−1

0

1

2

3

V
al

ue
of

A
rc

hi
te

ct
ur

e
Pa

ra
m

et
er

Skip-Connection
Sep-Conv-3x3
Sep-Conv-5x5
Dil-Conv-3x3

1

2

3

4

5

6

V
al

id
at

io
n

L
os

s

Skip-Connection
Sep-Conv-3x3
Sep-Conv-5x5
Dil-Conv-3x3

(a) The architecture parameters and validation losses of different
operations. The solid line represents the value of architecture param-
eter, while the dotted line represents the validation loss.
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(b) The architecture parameters of dif-
ferent parametric-free operations.

Figure 1: The motivational experiment to vefiry the domination of skip connections is due to the
overfitting of operations.

GM-NAS utilizes GM scores to make splitting decisions, determining whether a module should be
shared among child architectures. The GM scores in GM-NAS are computed based on the gradient
information of different child architectures on shared parameters. In contrast, we aim to address the
problem of skip connection donimation from a totally new perspective and employ the GM score as
an indicator for early stopping, preventing operation parameter overfitting. The GM scores, in our
approach, are calculated using the gradient information of parameters on training and validation data.

3 Motivation and Methodology

In this section, we argue that the domination of skip connections is due to the overfitting of operations
in the supernet and demonstrate this hypothesis through a simple motivational experiment. Based on
our observations, we propose an operation-level early stopping method to address this issue.

3.1 The Domination of Skip-Connection is Due to Overfitting

In DARTS, we observe that skip connections dominate due to the overfitting of operations in
the supernet to the training data, causing them to increasingly deviate from the distribution of
the validation data. However, the architecture parameters are trained on the validation data, thus
operations are selected based on their validation performance. As the number of training iterations
increases, the parametric operations overfit more seriously, and the parametric-free operations
gradually dominate.

To verify the above conjecture, we present empirical evidence on the relationship between the
overfitting of operations in the supernet and architecture parameters. We retain only architectural
parameters on one edge in DARTS’ search space and set all other architectural parameters to 0
to ensure that they will not be trained. In Figure 1, we record the architecture parameter and the
validation loss with the corresponding output of each operation in this edge. From Figure 1a, we
can observe that the validation losses of all parametric operations grow even faster as the training
steps increase, and the architecture parameter gradually decreases, exhibiting an obvious negative
correlation with the validation loss. Moreover, Figure 1bshows that the skip connection easily obtains
higher architecture parameters, exhibiting advantages over other parametric-free operations. This is
mainly due to the fact that the skip connection can always retain more information from the input.

Most existing works suggest that the domination of skip connections is due to their unfair advantage.
To investigate this claim, we follow the settings of FairDARTS Chu et al. [2019a] and replace the
Softmax relaxation in DARTS with the Sigmoid relaxation. The unfair advantage of skip connections
will be eliminated by removing the exclusive competition among operations. We then rerun the
experiment and present the results in Figure 2, which shows that even after removing the exclusive
competition, the architecture parameters still exhibit a negative correlation with the validation losses,
similar to that in Figure 1a. It illustrates that the unfair advantage of skip connections is not the
fundamental reason for their domination. Instead, it is the effect of the overfitting of operations in the
supernet on the training of architecture parameters.
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3.2 Operation-Level Early Stopping
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Figure 2: The architecture parameters and validation losses
of different operations in FairDARTS.

Based on the above observations, we
propose an operation-level early stop-
ping method to alleviate the domina-
tion of skip connections and enhance
the robustness of DARTS. During the
search phase, the architecture param-
eters have an effect on the supernet
training, resulting in different oper-
ations with different architecture pa-
rameters being trained differently. Op-
erations that exhibit advantages in the
early stage will get more attention and
are more prone to overfitting. More-
over, the operation is the basic unit of
choice in DARTS, which selects operations to form the final architecture. Therefore, we perform
early stopping for each operation. If early stopping can be performed for each operation during the
supernet training, when the operation tends to overfit, the overfitting problem can have less impact on
the training of architecture parameters, and the supernet can also be fully trained.

Overfitting occurs when a model is too complex and fits the training data distribution too closely,
resulting in poor performance on the validating data. When a model is overfitting, the training loss
continues to decrease while the validation loss increases, indicating that the optimization direction
(i.e., the direction of gradients) of the model parameters on the training data will be inconsistent
with that on the validation data. To identify overfitting, we propose using the gradient direction of
the operation parameters. If the gradients on the training and validation data differ significantly in
direction, we consider the operation to tend to overfit the training data.

Algorithm 1 DARTS with operation-level early stopping

Require: Supernet weights w; architecture parameters α; number of search iterations I; number of
consecutive iterations for GM M ; threshold of GM score for verifying overfitting ξ.

Ensure: Searched architectures.
1: Construct a supernet A;
2: for each i ∈ [1, I] do
3: Get a batch of training data Btrain;
4: Update weights w by ∇wLtrain(w,α,Btrain);
5: Record the training gradient of each operation gotrain;
6: Get a batch of validation data Bval;
7: Update parameters α by ∇αLval(w,α,Bval);
8: Record the validation gradient of each operation goval;
9: Compute the gradient matching score over consecutive M iterations based on Eq. 1.

10: Stop the gradient of an operation o if GM(gotrain, g
o
val) < ξ

11: end for
12: Derive the final architecture based on learned α.

Concretely, for an operation o, let Po denote the parameters of o, and gotrain and goval denote the
gradients of Po on a training batch and a validation batch, respectively. We calculate the cosine
similarity between gotrain and goval to quantify the differences in the direction of the operations’
gradients as follows:

GM(gotrain, g
o
val) =

∑M
m=1 COS(gotrain, g

o
val)

M
,

where COS(gotrain, g
o
val) =

gotrain · goval
|gotrain||goval|

,

gotrain =
∂Ltrain(w,α,Btrain)

∂Po
, goval =

∂Lval(w,α,Bval)

∂Po
,

(1)

where Btrain and Bval denote batches of training data and validation data, respectively. The GM
score is computed as the average cosine similarity between training gradients and validation gradients
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over M consecutive steps. The gradient matching score here is similar to that in GM-NAS Hu
et al. [2022]. When the GM score falls below a predefined threshold of ξ ∈ (0, 1) within M steps,
the operation is considered to be overfitting. Consequently, if GM < ξ for an operation o, the
parameters of this operation will not be updated during subsequent supernet training. And the
remaining operations and architecture parameters will be trained as usual.

Through the operation-level early stopping method, the overfitting of operations in the supernet can be
alleviated. Benefiting from the attribute that the DARTS search process involves alternating between
training the supernet on the training data and training architecture parameters on the validation data,
we only need to maintain the gradient of each operation on a training data batch and a validation data
batch in one iteration, with negligible additional computational overhead. As a result, OLES can
alleviate the domination of skip connections, making DARTS more robust. This allows for training
DARTS with more iterations to obtain better architectures and sharper architecture parameters,
resulting in a smaller discretization gap and improving performance. The algorithm for DARTS with
operation-level early stopping can be found in Algorithm 1.

4 Experiments

4.1 Search Spaces and Experimental Settings

To verify the effectiveness of OLES, we conduct experiments on three different search spaces: the
standard DARTS’ search space, NAS-Bench-201, and MobileNet-like search space. We keep all
experimental settings the same as the original in each search space and only use the first-order
optimization, as our method only needs to freeze the operation parameters during the supernet
training. In addition to the standard hyperparameters in DARTS, our method introduces an additional
hyperparameter, i.e., the overfitting threshold ξ, to stop operation training. We determine the threshold
ξ by averaging the cosine similarity over 20 iterations for 30 randomly initiated architectures in each
search space. And the gradient matching (GM) score is dynamically computed by averaging over
every 20 iterations throughout the entire training process to reduce variance. Following Algorithm 1,
we stop updating parameters of the corresponding operation o when GM(gotrain, g

o
val) is lower than

the threshold ξ.

4.2 Performance on DARTS’ CNN Search Space

4.2.1 CIFAR-10

We conduct NAS on CIFAR-10 using DARTS’ search space and then transfer the searched archi-
tectures to CIFAR-100. The threshold ξ is set to 0.3. As shown in Table 1, our method OLES
consistently outperforms other recent SOTA NAS methods. OLES achieves a top-1 test error of
2.30% on CIFAR-10 with nearly the same search cost as DARTS of 0.4 GPU-days. Moreover,
the robustness of OLES is also guaranteed, as evidenced by the excellent average result of three
independent runs. When the architectures searched on CIFAR-10 are transferred to CIFAR-100,
our method still achieves a competitive test error of 16.30%. This indicates that the architectures
searched by OLES are transferable and expressive, and the architecture parameters do not overfit the
CIFAR-10 dataset.

4.2.2 CIFAR-100

We conduct NAS on CIFAR-100, and the results are presented in Table 2. The threshold ξ is set to
0.4. OLES still exhibits significant advantages, improving the test error of DARTS from 20.58% to
17.30% without incurring extra search costs. It demonstrates that our method can adapt to datasets
of different sizes and consistently improve the performance of DARTS. OLES not only consistently
outperforms other methods that focus on the skip-connection domination issue, but also surpasses
more sophisticated NAS methods (e.g., GM+DARTS Hu et al. [2022]) on CIFAR-10 and CIFAR-100
without requiring extensive code modifications or introducing additional computational overheads.

4.2.3 Transfer to ImageNet

To verify the transferability of architectures discovered by OLES, we transfer the best architecture
derived from CIFAR-10 to ImageNet. Following the setting of DARTS, we train the searched
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Table 1: Comparison with state-of-the-art NAS methods on CIFAR-10, and the transferred results
on CIFAR-100 are also reported. ⋄: reported by Chen et al. [2019]. ∗: produced by rerunning the
published code. ‡: transfer architectures discovered on CIFAR-10 to CIFAR-100.

NAS method Test Err(%) Params
(M)

Search Cost
(GPU-days) Search Method

CIFAR-10 CIFAR-100

DenseNet-BC Huang et al. [2016] 3.46 - 25.6 - Manual
ResNet + CutOutHe et al. [2015] 4.61 17.8 1.7 - Manual

NASNet-A + CutOut Zoph et al. [2017] 2.65 - 3.3 1800 RL
AmoebaNet-A Real et al. [2018] 3.34± 0.06 - 3.2 3150 Evolution
AmoebaNet-B Real et al. [2018] 2.55± 0.05 - 2.8 3150 Evolution
PNAS Liu et al. [2017] 3.41± 0.09 - 3.2 225 MDL
ENAS + CutOut Pham et al. [2018] 2.89 - 4.6 0.5 RL

DARTS(1st) + CutOutLiu et al. [2018] 3.00± 0.14 17.76⋄ 3.3 0.4 Gradient
DARTS(2nd) + CutOutLiu et al. [2018] 2.85± 0.08∗ 17.54⋄ 3.4 0.4 Gradient
P-DARTS Chen et al. [2019] 2.50 16.55 3.4 0.3 Gradient
R-DARTS(L2) Zela et al. [2019] 2.95± 0.21 - - 1.6 Gradient
FairDARTS Chu et al. [2019a] 2.54 - 2.8 0.4 Gradient
DARTS- Chu et al. [2020] 2.59± 0.08 - 3.5± 0.13 0.4 Gradient
SGAS(1st) Li et al. [2020] 2.39 - 3.8 0.25 Gradient
DARTS+PT Wang et al. [2021] 2.48(2.61± 0.08) 19.05‡ 3.0 0.8 Gradient
DrNAS Chen et al. [2021b] 2.46± 0.03 - 4.1 0.6 Gradient
β-DARTS Ye et al. [2022] 2.53± 0.08 16.24± 0.22 3.75± 0.15 0.4 Gradient
GM+DARTS(1st) Hu et al. [2022] 2.35 16.45 3.7 1.1 Gradient
OLES 2.30(2.41± 0.11) 16.30(16.35 ± 0.05) 3.4 0.4 Gradient

Table 2: Comparison with NAS methods on CIFAR-100. ⋄: reported by Dong and Yang [2019]. †:
reported by Zela et al. [2019]. ∗: produced by rerunning the published code.

NAS method Test Err (%) Params
(M)

Search Cost
(GPU-days) Search Method

ResNet + CutOutHe et al. [2015] 22.10⋄ 1.7 - Manual
PNAS Liu et al. [2017] 19.53⋄ 3.2 150 MDL
ENAS + CutOut Pham et al. [2018] 19.43⋄ 4.6 0.45 RL

DARTS Liu et al. [2018] 20.58± 0.44† 3.4 0.4 Gradient
GDAS Dong and Yang [2019] 18.38 3.4 0.2 Gradient
P-DARTS Chen et al. [2019] 17.46∗ 3.6 0.3 Gradient
R-DARTS(L2)Zela et al. [2019] 18.24∗ - 1.6 Gradient
DARTS- Chu et al. [2020] 17.51± 0.25 3.3 0.4 Gradient
PR-DARTS Zhou et al. [2020] 20.10∗ 3.6 0.17 Gradient
DARTS+PT Wang et al. [2021] 18.78∗ 3.4 0.8 Gradient
β-DARTSYe et al. [2022] 17.33∗ 3.83± 0.08 0.4 Gradient
GM+DARTSHu et al. [2022] 17.42∗ 3.6 1.3 Gradient
OLES 17.30 3.4 0.4 Gradient

architecture from scratch for 250 epochs, and the results are presented in Table 3. Our method
achieves 24.5% top-1 test error. Compared to other NAS methods, the architectures derived from
OLES still exhibit competitive performance. Notably, we do not introduce any additional training
techniques such as SE modules and Swish, but simply follow the original DARTS setting to transfer
the architectures. Therefore, the performance of OLES on ImageNet can be further enhanced by
incorporating these training tricks.

4.3 Performance on NAS-Bench-201

NAS-Bench-201 Dong and Yang [2020] provides a unified benchmark for analyzing various up-to-
date NAS algorithms. It contains 4 internal nodes with 5 operations (i.e., Zero, Skip Connection,
1×1 Conv, 3×3 Conv, 3×3 AvgPol). NAS-Bench-201 offers a similar cell-based search space that
comprised a total of 15625 unique architectures. The architectures are trained on three datasets (i.e.,
CIFAR-10, CIFAR-100, and ImageNet16-120). The comparison results are shown in Table 4, and
the threshold ξ is set to 0.7. DARTS performs extremely poorly on NAS-Bench-201. We suppose
that it is due to the fact that the search space of NAS-Bench-201 is extremely compact, contains few
parametric operations, and the number of operation parameters varies widely, which makes it difficult
for DARTS to adapt to NAS-Bench-201. OLES significantly outperforms DARTS on all datasets and
is competitive among other NAS methods. It demonstrates the generality of OLES, which can adapt
to different search spaces and datasets.
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Table 3: Comparison with NAS methods on ImageNet. ⋄: reported by Chu et al. [2019a]. Other results
are from their original papers. DARTS- and NoisyDARTS-A are directly searched on ImageNet and
use SE modules and Swish to improve performance. Other methods in the bottom block are searched
on CIFAR-10 and then transferred to ImageNet.

NAS method Test Err (%) Params
(M)

Search Cost
(GPU-days) Search Method

Top-1 Top-5

Inception-v1 Szegedy et al. [2015] 30.2 10.1 6.6 - Manual
MobileNet-V2 Sandler et al. [2018] 28.0 - 3.4 - Manual
ShuffleNet Zhang et al. [2017] 26.3 - ∼5 - Manual

NASNet-A Zoph et al. [2017] 26.0 8.4 5.3 1800 RL
AmoebaNet-A Real et al. [2018] 25.5 8.0 5.1 3150 Evolution
AmoebaNet-B Real et al. [2018] 26.0 8.5 5.3 3150 Evolution
PNAS Liu et al. [2017] 25.8 8.1 5.1 225 SMBO
MnasNet-92 Tan et al. [2018] 25.2⋄ 8.0⋄ 4.4 1667 RL

DARTS(2nd) + CutOutLiu et al. [2018] 26.9 8.7 4.7 0.4 Gradient
SNAS Xie et al. [2018] 27.3 9.2 4.3 1.5 Gradient
GDAS Dong and Yang [2019] 25.0 8.5 5.3 0.2 Gradient
P-DARTS Chen et al. [2019] 24.4 7.4 5.1 0.3 Gradient
PC-DARTS Xu et al. [2019] 25.1 7.8 5.3 3.8 Gradient
FairDARTS-B Chu et al. [2019a] 24.9 7.5 4.8 0.4 Gradient
NoisyDARTS-A Chu and Zhang [2020] 22.1 6.0 5.5 12 Gradient
DARTS- Chu et al. [2020] 23.8 6.1 5.5 4.5 Gradient
DARTS+PT Wang et al. [2021] 25.5 8.0 4.6 0.8 Gradient
DrNAS Chen et al. [2021b] 23.7 7.1 5.7 4.6 Gradient
β-DARTSYe et al. [2022] 23.9 7.0 5.5 0.4 Gradient
GM + DARTS(2nd) Hu et al. [2022] 24.5 7.3 5.1 2.7 Gradient
OLES 24.5 7.4 4.7 0.4 Gradient

Table 4: Results on NAS-Bench201.
NAS method CIFAR-10 CIFAR-100 ImageNet16-120

valid test valid test valid test

DARTS(2nd) Liu et al. [2018] 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00
SNAS Xie et al. [2018] 90.10± 1.04 92.77± 0.83 69.69± 2.39 69.34± 1.98 42.84± 1.79 43.16± 2.64
DSNAS Hu et al. [2020] 89.96± 0.29 93.08± 0.13 30.87± 16.40 31.01± 16.38 40.61± 0.09 41.07± 0.09
PC-DARTS Xu et al. [2019] 89.96± 0.15 93.41± 0.30 67.12± 0.39 67.48± 0.89 40.83± 0.08 41.31± 0.22
DARTS- Chu et al. [2020] 91.03± 0.44 93.48± 0.40 71.36± 1.51 71.53± 1.51 44.87± 1.46 45.12± 0.82
iDARTS Zhang et al. [2021a] 89.86± 0.60 93.58± 0.32 70.57± 0.24 70.83± 0.48 40.38± 0.59 40.89± 0.68
RLNAS(random label)Zhang et al. [2021b] 89.94± 0.00 93.35± 0.00 70.98± 0.00 70.71± 0.00 43.86± 0.00 43.70± 0.00
DrNASChen et al. [2021b] 91.55± 0.00 94.36± 0.00 73.49± 0.00 73.51± 0.00 46.37± 0.00 46.34± 0.00
β-DARTS Ye et al. [2022] 91.55± 0.00 94.36± 0.00 73.49± 0.00 73.51± 0.00 46.37± 0.00 46.34± 0.00
GM + DARTSHu et al. [2022] 91.03± 0.24 93.72± 0.12 71.61± 0.62 71.83± 0.97 42.19± 0.00 42.60± 0.00
OLES 90.88± 0.10 93.70± 0.15 70.56± 0.28 70.40± 0.22 44.17± 0.49 43.97± 0.38

4.4 Performance on MobileNet-like Search Space

Table 5: Results on ImageNet using the MobileNet-like
search space.

NAS method Top-1 Top-5 Params(M)

PloxylessNAS Cai et al. [2018] 24.9 7.5 7.1
FBNet-C Wu et al. [2018] 25.1 7.9 4.4
FairNAS-A Chu et al. [2019b] 24.7 7.6 4.6
FairDARTS-D Chu et al. [2019a] 24.4 7.4 4.3
RLNAS Zhang et al. [2021b] 24.4 7.4 5.3
GM+ProxylessNAS Hu et al. [2022] 23.4 7.0 4.9
OLES 24.7 7.6 4.7

As described in FairDARTS Chu
et al. [2019a], the domination of
skip connections also exists in the
MobileNet-like search space. The su-
pernet is built on MobileNetV2 San-
dler et al. [2018] and comprises 21
choice blocks, each with 7 candidate
operations. As the MobileNet search
space is not naturally designed for
DARTS, we make minor modifica-
tions to the MobileNet search space
as FairDARTS and perform NAS on
the ImageNet dataset. The threshold
ξ is set to 0.4. The results are summarized in Table 5, and the corresponding searched architecture
is visualized in Appendix D.1. We can observe that OLES can also achieve highly competitive
performance in the MobileNet search space.
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5 In-Depth Analysis

5.1 Different Gradient Direction Similarity Measures

Table 6: Test accuracy(%) with different gradient direction similarity measures on NAS-Bench-201.
Dataset Cosine Similarity L2 Distance Direction Distance Hard Threshold

CIFAR-10 93.77 92.35 90.59 93.65
CIFAR-100 70.11 69.39 67.40 70.19
ImageNet 44.23 42.38 38.28 43.86

As described in Section 3.2, we use cosine similarity to measure the difference in the operation’s
gradient directions between the training and validation data. To examine the effect of different
gradient direction similarity measures for computing the gradient matching score, we compare
cosine similarity with three other measures: L2 distance, direction distance, and hard threshold. The
mathematical definitions of the other three measures can be found in Appendix B. The direction
distance directly computes the fraction of elements that have different directions in two gradients.
And the hard threshold does not use the averaged value of M iterations to compute the GM score but
instead directly checks whether the direction distance can consistently be greater than a threshold in
consecutive M iterations. As shown in Table 6, cosine similarity performs better than the other three
methods. Therefore, we adopt cosine similarity as the gradient direction similarity measure of OLES.

5.2 Gradient Matching Score
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Figure 3: Trajectories of the cosine similarity of parametric operations and test accuracy during the
training of DARTS.
In Figure 3, we present the trajectories of consine similarity between gradients on training data
and validation data during the DARTS training. With the training process of DARTS, the cosine
similarities of parametric operations gradually decrease, which indicates that the cosine similarity
can reflect the overfitting of operations. And different parametric operations show similar trajectories.
Consequently, we set an unified GM score threshold for all parametric operations. Moreover, when
the number of training iterations continuously increases (>50), DARTS exhibits a noticeable decline
in test performance. Figure 3c further corroborates this finding, as the problem of performance
collapse due to the skip connection domination issue more easily appears in NAS-Bench-201. As a
result, it manifests the test performance declines at an earlier stage.

5.3 Training With Longer Epochs

As mentioned in Bi et al. [2019] and Chu et al. [2020], training DARTS with longer epochs enables
a better convergence of the supernet and architecture parameters. However, as shown in Figure 4a
and 4b, training standard DARTS with longer epochs exhibit serious performance collapse with the
domination of skip connections. The skip connection rapidly dominates after 50 epochs on CIFAR-10
and takes longer epochs on CIFAR-100. And we also find that other methods (e.g., FairDARTS, and
DARTS-PT) fail with longer training epochs as well. In contrast, as shown in Figure 4c and 4d,
OLES survives even after 200 epochs. The number of skip connections in OLES stays stable after a
specific number of epochs since most parametric operations are frozen. It demonstrates that OLES is
robust and can actually address the domination of skip connections. More experimental results and
searched architectures with longer training epochs can be found in Appendix C.2 and Appendix D.2.
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(a) DARTS on CIFAR-10.
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(b) DARTS on CIFAR-100.
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(c) OLES on CIFAR-10.
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(d) OLES on CIFAR-100.

Figure 4: Trajectories of the numbers of skip connections in the normal cell and the reduction cell on CIFAR-10
and CIFAR-100.

5.4 Comparison of Kendall Rank Correlation Coefficients

76 78 80 82 84 86 88
Search Accuracy(%)

96.7

96.8

96.9

97.0

97.1

97.2

Re
tra

in
in

g 
Ac

cu
ra

cy
(%

)

(78.54,96.72)
(75.42,96.76)

(83.90,96.91)

(88.06,96.99)
(83.87,97.03)

(81.38,97.02)

(76.46,97.09) (81.09,97.09)

(84.07,97.16)

(81.79,97.24)
Kendall_tau=0.13

(a) DARTS (2nd Order)

82 83 84 85 86 87 88 89 90
Search Accuracy(%)

97.0

97.1

97.2

97.3

97.4

97.5

97.6

97.7

Re
tra

in
in

g 
Ac

cu
ra

cy
(%

)

(88.25,97.25)

(88.36,97.72)

(87.94,97.02)

(82.72,97.32)

(87.27,97.19) (88.08,97.21)
(88.00,97.17)

(86.72,97.09)

(88.26,97.26)

(87.30,97.02)

Kendall_tau=0.41

(b) OLES (ours)

Figure 5: Comparison of search-retraining Kendall rank correlation coefficients τ . The results are
derived from 10 randomly selected architectures from a single run of DARTS and OLES.

Table 7: Kendall-τ coefficients of architecture ranks based on searching and retraining metrics. ∗:
sample 4 excellent architectures in 4 rounds. Other methods randomly select 10 architectures from a
single run.

RandomNAS∗ DARTS GDAS∗ SGAS OLES

0.0909 0.13 -0.1818 0.42 0.41

Figure 5 indicates that the early stopping mechanism does not hurt the ranking performance of
DARTS. Additionally, we compare the Kendall rank correlation coefficients with other NAS methods,
including RandomNAS, DARTS, GDAS, and SGAS, as shown in Table 7.

Notably, the Kendall coefficient of OLES aligns closely with that of SGAS Li et al. [2020], which
aims to alleviate the effect of the degenerate search-retraining correlation problem. The results
demonstrate that by mitigating operation parameter overfitting, differentiable NAS is able to focus on
the potential of architectures themselves, thus enhancing the correlation between search metrics and
the architectures discovered.

6 Conclusion

This paper attempts to find the fundamental reason for the domination of skip connections in DARTS
from the new perspective of overfitting of operations in the supernet. We verified our conjecture
through motivational experiments and proposed the operation-level early stopping (OLES) method to
solve the domination of skip connections. OLES monitors the gradient direction of each operation
and determines whether it is overfitting based on the difference between the gradient directions on
the training data and the validation data. OLES can solve the domination of skip connections with
negligible computational overheads without imposing any limitations. Moreover, OLES achieves
state-of-the-art results of 2.30% test error on CIFAR-10 and 17.30% test error on CIFAR-100,
meanwhile reporting superior performance when transferred to ImageNet and on search spaces of
NAS-Bench-201 and MobileNet as well.
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A The Selection of Parametric-Free Operations on Various Search Spaces

Zela et al. [2019] designed four variants of the DARTS’ search space (S1-S4) and pointed out skip
connections tend to dominate compared with two other parametric-free operations, i.e., zero and
noise. To investigate whether the robustness issue in DARTS arises from the domination of skip
connections rather than other parametric-free operations, we extend the experimental settings in Zela
et al. [2019] to seven search spaces, including four types of parametric-free operations( avg_pool_-
3×3, skip_connect, noise, zero). These search spaces only differ from DARTS’ original space in
the number and types of operations on each edge. We follow the same experimental setup in Liu
et al. [2018] and execute DARTS on each search space. Figures 6-8 and 13-15 display the results on
S1-S3. We observe that skip connections tend to dominate more severely than other parametric-free
operations. By designing different combinations of parametric-free operations in S4-S7 search spaces,
Figures 9-12 and 16-19 show that skip connections also dominate under fair competition with other
parametric-free operations when the searched cells contain more than one type of parametric-free
operations. The corresponding performance for each search space is shown in Table 8. As a result,
the domination of skip connections is the primary cause of the shallow architecture of DARTS with
poor generalization and robustness.

• S1 consists of two operations: skip_connect and sep_conv_3×3.

• S2 consists of two operations: avg_pool_3×3 and sep_conv_3×3.

• S3 consists of two operations: noise and sep_conv_3×3. The noise operation replaces
each input value with a random Gaussian noise for N(0, 1). Differentiable NAS algorithms
generally avoid this operation because it hurts the performance of discretized architectures.

• S4 consists of three operations: skip_connect, noise, and sep_conv_3×3.

• S5 consists of three operations: skip_connect, avg_pool_3×3, and sep_conv_3×3.

• S6 consists of three operations: skip_connect, zero, and sep_conv_3×3. The zero operation
replaces each input value with zeros.

• S7 consists of five operations: skip_connect, avg_pool_3×3, noise, zero, and sep_conv_3×3.

Table 8: Performance of DARTS on search spaces S1-S7.
Search Space CIFAR-10 CIFAR-100

S1 3.28 26.05
S2 2.55 25.40
S3 3.69 24.70
S4 3.05 21.35
S5 3.03 23.77
S6 2.84 27.90
S7 2.70 22.17
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Figure 6: Normal and reduction cells found by DARTS on CIFAR-10 in search space S1.
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Figure 7: Normal and reduction cells found by DARTS on CIFAR-10 in search space S2.
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Figure 8: Normal and reduction cells found by DARTS on CIFAR-10 in search space S3.
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Figure 9: Normal and reduction cells found by DARTS on CIFAR-10 in search space S4.
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Figure 10: Normal and reduction cells found by DARTS on CIFAR-10 in search space S5.
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Figure 11: Normal and reduction cells found by DARTS on CIFAR-10 in search space S6.
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Figure 12: Normal and reduction cells found by DARTS on CIFAR-10 in search space S7.
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Figure 13: Normal and reduction cells found by DARTS on CIFAR-100 in search space S1.
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Figure 14: Normal and reduction cells found by DARTS on CIFAR-100 in search space S2.
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Figure 15: Normal and reduction cells found by DARTS on CIFAR-100 in search space S3.
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Figure 16: Normal and reduction cells found by DARTS on CIFAR-100 in search space S4.
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Figure 17: Normal and reduction cells found by DARTS on CIFAR-100 in search space S5.
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Figure 18: Normal and reduction cells found by DARTS on CIFAR-100 in search space S6.
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Figure 19: Normal and reduction cells found by DARTS on CIFAR-100 in search space S7.

B Gradient Distance Similarity Measures

In Section 5.1, four gradient distance measures are present. Next, we provide a comprehensive
mathematical definition for each measure. Let gotrain and goval denote the gradients of the operation
parameters Po on a training batch and a validation batch, respectively.

The GM score with L2 distance can be formulated as follows:

GML2(g
o
train, g

o
val) =

∑M
m=1 ∥gotrain − goval∥2

M
. (2)

And the GM score with direction distance can be formulated as follows:

GMdirection(g
o
train, g

o
val) =

∑M
m=1

∥go
train⊙go

val<0∥1

∥Po∥0

M
, (3)

where ⊙ denotes the element-wise product, and ∥gotrain ⊙ goval < 0∥1 represents the number of
elements whose directions are different.

However, the hard threshold method does not use the averaged gradient distances over M steps to
calculate the GM score. Instead, it directly checks whether the direction distance can consistently
exceed a threshold over the consecutive M steps. Let ξ denote the threshold. The hard threshold
method checks whether ∥go

train⊙go
val<0∥1

∥Po∥0
> ξ can still be satisfied for M consecutive steps.

C Supplementary Experimental Results

C.1 Quantitative Analysis on Negative Correlation between Validation Loss and Architecture
Parameter

The results of our motivation experiments, as depicted in Figure 1, indicate a negative correlation
between validation loss and architecture parameter. To further provide a more rigid analysis, we cal-
culate the Kendall-correlations between validation loss and architecture parameter for each operation
and present the results in the Table 9. It can be observed that there is a clear negative correlation
between validation losses and architecture parameters, particularly for parametric operations.

Table 9: Kendall-τ correlations for architecutre parameters and validation losses of different opera-
tions in Figure 1a.

Skip-Connections Sep-Conv-3x3 Sep-Conv-5x5 Dil-Conv-3x

−0.36 −0.59 −0.73 −0.72
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C.2 Results with Longer Training Epoches
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Figure 20: Test accuracy of searched architectures on CIFAR-10 with longer search epochs.
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Figure 21: The number of skip connections in searched architectures on CIFAR-10. In Figure 21b,
there are some overlaps among the curves of DARTS and OLES.

Despite previous attempts to investigate the origins of the skip connection domination issue and its
corresponding solutions, it remains an open problem. These methods have put forth their hypotheses
but have not fully resolved the issue. To further exemplify the efficacy of addressing the skip
connection domination issue, we increase the number of iterations of supernet training. As depicted
in Figures 20 and 21, DARTS-PT Wang et al. [2021] fails to address the skip connection domination
issue when extending to very long training epoches, whereas OLES remains stable.

C.3 Hyperparameter Analysis

In OLES, the gradient matching score is dynamically computed by averaging over every 20 iterations
throughout the entire training process. The threshold ξ is determined based on the GM scores
within the initial 20 iterations. We conduct experiments to assess various iterations along with their
corresponding thresholds across different search spaces to explain the rationale behind selecting 20
iterations. The results, as shown in Table 10, demonstrate that computing the GM score using an
average across every 20 iterations yields the highest accuracy.

C.4 Results on DARTS S1-S4

DARTS S1-S4 are simplified variations of the DARTS search space proposed by R-DARTS Zela
et al. [2019] to investigate DARTS’ failure mode. In Appendix A, we have further expanded these
search spaces and presented DARTS’ failure mode (both in terms of performance and the searched
architectures) in these extended search spaces. In Table 11, we additionally provide a performance
comparison between OLES and other methods on DARTS S1-S4. The results demonstrate that OLES
also consistently outperforms DARTS, as well as R-DARTS Zela et al. [2019] and DARTS-PT Wang
et al. [2021] which are also dedicated to addressing the skip connection domination issue.
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Table 10: Performance on various search spaces using different numbers of iterations to calculate the
GM scores.

Iterations DARTS Search Space NAS-BENCH-201 Search Space
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 ImageNet16-120

10 97.33 80.83 80.57 47.93 26.29

20 97.70 82.70 93.89 70.75 44.38
30 97.05 82.39 91.93 66.97 38.87

40 97.19 81.32 89.76 64.69 32.73

Table 11: Performance comparison on the DARTS S1-S4 search spaces.
Datasets Spaces DARTS R-DARTS DARTS-PT OLES

CIFAR-10

S1 3.28 3.31 2.79 2.76
S2 2.55 2.44 2.47 2.43
S3 3.69 3.56 2.64 2.57
S4 3.05 3.05 2.92 2.73

CIFAR-100

S1 26.05 22.24 23.16 22.10
S2 25.40 23.34 22.10 22.18
S3 24.70 21.94 20.80 20.70
S4 21.35 20.70 19.98 19.18

C.5 Comparison with Train-Free NAS Methods

Table 12 compares OLES with two recently proposed train-free NAS methods, TE-NAS Zhao et al.
[2021] and ZiCo Li et al. [2023]. It is evident that OLES still outperforms train-free methods in most
cases. While train-free methods exhibit slightly superior performance on NAS-Bench-201 due to
its compact search space, in larger search spaces such as the DARTS search space, OLES performs
better than TE-NAS and ZiCo. Train-free NAS is a highly promising research direction, as it not only
greatly enhances NAS efficiency but also promotes a deeper understanding of neural networks.

Table 12: Comparison with TE-NAS and ZiCo. The test errors are reported.
NAS-Bench-201 DARTS Search Space

CIFAR-10 CIFAR-100 ImageNet-16-120 CIFAR-10 ImageNet
top-1 top-5

TE-NAS 6.1±0.47 28.76±0.56 57.62±0.46 2.63±0.064 26.2 8.3
ZiCo 6.0±0.4 28.9±0.3 58.20±0.3 2.45±0.11 - -
OLES 6.3±0.15 29.60±0.22 56.03± 0.38 2.41± 0.11 24.5 7.4

D Searched Architectures

D.1 Architecture on MobileNet-like Search Space

Following the experimental settings in Chu et al. [2019a], we modify the MobileNetV2 Sandler et al.
[2018] search space and perform OLES on ImageNet in this search space. The searched architecture
is illustrated in Figure 22.
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Figure 22: The architecture searched on the MobileNet-like search space.

D.2 Training With Longer Epochs

We train OLES and several other differentiable architecture search methods with 200 epochs to verify
whether they are robust enough in this case. According to our conjecture, as the number of training
epochs increases, the operations in the supernet become more prone to overfitting, leading to a more
serious issue of the domination of skip connections. In this section, we present some additional
results of the searched architectures using different numbers of training epochs.

D.2.1 Results on OLES

As described in Section 5.3, OLES can survive with longer training epochs. Specifically, the number
of skip connections in OLES keeps stable even when the number of training epochs reaches 150
or 200. The corresponding architecture genotypes on CIFAR-10 and CIFAR-100 are visualized in
Figures 23-26.
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Figure 23: Normal and Reduction cells discovered by OLES on CIFAR-10 for 150 epochs in the
standard DARTS’ search space.
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Figure 24: Normal and Reduction cells discovered by OLES on CIFAR-10 for 200 epochs in the
standard DARTS’ search space.
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Figure 25: Normal and Reduction cells discovered by OLES on CIFAR-100 for 150 epochs in the
standard DARTS’ search space.
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Figure 26: Normal and Reduction cells discovered by OLES on CIFAR-100 for 200 epochs in the
standard DARTS’ search space.

D.2.2 Results on FairDARTS

FairDARTS Chu et al. [2019a] adopts the Sigmoid instead of the exclusive Softmax for architecture
parameters and selects operations through a threshold value. However, our experiments show that no
operation can achieve the pre-defined threshold value in the normal cell when FairDARTS is trained
for 150 or 200 epochs. Following FairDARTS’ settings, we train it for 50, 150, and 200 epochs.
Table 13 shows the architecture genotypes, which can be visualized in Figure 27 and Figure 28.

Table 13: Architecture genotypes found by FairDARTS on CIFAR-10 for 50, 150 and 200 epochs,
respectively.

Epochs Architecture genotype

50

Genotype(normal=[(’sep_conv_3x3’, 2, 0), (’dil_conv_5x5’, 2, 1), (’dil_conv_-
3x3’, 3, 0), (’dil_conv_3x3’, 3, 1), (’sep_conv_5x5’, 4, 1)], normal_concat =
range(2, 6), reduce= [ (’skip_connect’, 2, 0), (’dil_conv_5x5’, 2, 1), (’skip_-
connect’, 3, 2), (’sep_conv_3x3’, 3, 0), (’skip_connect’, 4, 2), (’sep_conv_3x3’,
4, 0), (’skip_connect’, 5, 2), (’skip_connect’, 5, 0)], reduce_concat=range(2, 6))

150
Genotype(normal=[ ], normal_concat=range(2, 6), reduce=[(’max_pool_3x3’,
2, 0), (’max_pool_3x3’, 2, 1), (’skip_connect’, 3, 2), (’max_pool_3x3’, 3, 0),
(’skip_connect’, 4, 2), (’max_pool_3x3’, 4, 0), (’skip_connect’, 5, 3), (’skip_-
connect’, 5, 2)], reduce_concat= range(2, 6))

200
Genotype(normal=[ ], normal_concat=range(2, 6), reduce=[(’avg_pool_3x3’, 2,
0), (’ max__pool_3x3’, 2, 1), (’skip_connect’, 3, 2), (’max_pool_3x3’, 3, 0),
(’skip_connect’, 4, 3), (’skip_connect’, 4, 2), (’sep_conv_3x3’, 5, 0), (’dil_conv_-
3x3’, 5, 1)], reduce_concat= range(2, 6))
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Figure 27: Normal and Reduction cells discovered by FairDARTS on CIFAR-10 for 50 epochs in the
standard DARTS’ search space.
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Figure 28: Reduction cells discovered by FairDARTS on CIFAR-10 for 150 and 200 epochs in the
standard DARTS’ search space. Note that normal cells are empty when FairDARTS is trained for 150
and 200 epochs.

D.2.3 Results on DARTS+PT

DARTS+PT Wang et al. [2021] evaluates operation strength by measuring its contribution to the su-
pernet’s performance instead of the magnitude of the architecture parameter. Following DARTS+PT’s
settings, we train DARTS with the permutation-based architecture selection method for 50, 150, and
200 epochs, and the corresponding architecture genotypes are shown in Table 14. When extending to
over 150 epochs, the resulting architectures are also full of skip connections. Furthermore, to avoid
inaccurate evaluation of the operation strength during discretization, DARTS+PT needs to fine-tune
the remaining supernet until it converges again. The architecture genotypes with tuned supernets are
shown in Table 15, Figure 29, and Figure 30. It’s worth noting that the test error of the final resulting
architecture for 200 epochs on CIFAR-10 will drop to 6.28%.

Table 14: Architecture genotypes found by DARTS+PT on CIFAR-10 for 50, 150, and 200 epochs,
respectively. (without supernet tuning)

Epochs Architecture genotype

50

Genotype(normal=[(’sep_conv_3x3’, 0), (’dil_conv_3x3’, 1), (’sep_conv_3x3’,
0), (’dil_conv_3x3’, 2), (’dil_conv_3x3’, 3), (’skip_connect’, 0), (’dil_conv_5x5’,
4), (’dil_conv_5x5’,3)], normal_concat=range(2, 6), reduce=[(’max_pool_3x3’,
0), (’max_pool_3x3’, 1), (’max_pool_3x3’, 0), (’skip_connect’, 2), (’skip_con-
nect’, 2), (’skip_connect’, 3), (’skip_connect’, 2), (’avg_pool_3x3’, 0)], reduce_-
concat=range(2, 6))

150

Genotype(normal=[(’dil_conv_3x3’, 1), (’sep_conv_3x3’, 0), (’skip_connect’, 2),
(’skip_connect’, 0), (’skip_connect’, 1), (’skip_connect’, 2), (’skip_connect’, 1),
(’skip_connect’, 2)], normal_concat=range(2, 6), reduce=[(’max_pool_3x3’, 1),
(’max_pool_3x3’, 0), (’skip_connect’, 2), (’max_pool_3x3’, 0), (’skip_connect’,
2), (’skip_connect’, 3), (’skip_connect’, 3), (’skip_connect’, 2)], reduce_con-
cat=range(2, 6))

200

Genotype(normal=[(’dil_conv_3x3’, 1), (’sep_conv_3x3’, 0), (’skip_connect’, 2),
(’skip_connect’, 1), (’skip_connect’, 1), (’skip_connect’, 2), (’skip_connect’, 1),
(’skip_connect’, 0)], normal_concat=range(2, 6), reduce=[(’max_pool_3x3’, 1),
(’avg_pool_3x3’, 0), (’skip_connect’, 2), (’avg_pool_3x3’, 0), (’skip_connect’,
2), (’skip_connect’, 3), (’skip_connect’, 3), (’skip_connect’, 2)], reduce_con-
cat=range(2, 6))
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Table 15: Architecture genotypes found by DARTS+PT on CIFAR-10 for 150 and 200 epochs,
respectively. (with supernet tuning)

Epochs Architecture genotype

150

Genotype(normal=[(’sep_conv_3x3’, 0), (’dil_conv_3x3’, 1), (’skip_connect’,
0), (’skip_connect’, 2), (’skip_connect’, 0), (’dil_conv_5x5’, 3), (’skip_connect’,
1), (’sep_conv_5x5’, 4)], normal_concat=range(2, 6), reduce=[(’max_pool_3x3’,
0), (’max_pool_3x3’, 1), (’avg_pool_3x3’, 0), (’skip_connect’, 2), (’dil_conv_-
5x5’, 0), (’skip_connect’, 3), (’dil_conv_5x5’, 2), (’skip_connect’, 4)], reduce_-
concat=range(2, 6))

200

Genotype(normal=[(’sep_conv_3x3’, 0), (’dil_conv_3x3’, 1), (’sep_conv_3x3’,
0), (’skip_connect’, 2), (’skip_connect’, 0), (’dil_conv_5x5’, 3), (’skip_connect’,
1), (’dil_conv_5x5’, 4)], normal_concat=range(2, 6), reduce=[(’sep_conv_3x3’,
0), (’max_pool_3x3’, 1), (’max_pool_3x3’, 0), (’skip_connect’, 2), (’sep_conv_-
3x3’, 1), (’skip_connect’, 3), (’sep_conv_5x5’, 0), (’skip_connect’, 3)], reduce_-
concat=range(2, 6))
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Figure 29: Normal and Reduction cells discovered by DARTS+PT on CIFAR-10 for 150 epochs in
the standard DARTS’ search space (with supernet tuning).
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Figure 30: Normal and Reduction cells discovered by DARTS+PT on CIFAR-10 for 200 epochs in
the standard DARTS’ search space (with supernet tuning).
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