
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADMP-GNN: ADAPTIVE DEPTH MESSAGE PASSING
GNN

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have proven to be highly effective in various
graph representation learning tasks. A key characteristic is that GNNs apply a
fixed number of message-passing steps to all nodes in the graph, regardless of
the varying computational needs and characteristics of each node. Through em-
pirical analysis of real-world data, we show that the optimal number of message-
passing layers differs for nodes with different characteristics. This insight is fur-
ther validated with experiments on synthetic datasets. To address this, we propose
Adaptive Depth Message Passing GNN (ADMP-GNN), a novel framework that
dynamically adjusts the number of message-passing layers for each node, leading
to enhanced performance. This approach is applicable to any model that follows
the message-passing scheme. We evaluate ADMP-GNN on the node classification
task and observe performance improvements over a wide range of GNNs.

1 INTRODUCTION

A plethora of structured data comes in the form of graphs (Bornholdt & Schuster, 2001; Cao et al.,
2020); this has driven the need to develop neural network models that can effectively process and
analyze graph-structured data, known as Graph Neural Networks (GNNs). GNNs recently gathered
increasing attention following their successes in learning complex node and graph representations,
showcasing impressive success in various applications (Corso et al., 2022; Rampášek et al., 2022).
Many GNNs are instances of Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017a)
such as Graph Isomorphism Networks (GIN) (Xu et al., 2019) and Graph Convolutional Networks
(GCN) (Kipf & Welling, 2017). A common characteristic of GNNs is that they typically employ
a fixed number of message-passing steps for all nodes, determined by the number of layers in the
GNN (Gilmer et al., 2017b). This static approach raises an intriguing question: Should the num-
ber of message-passing steps be adapted individually for each node to better capture their unique
characteristics and computational needs?

Determining the optimal number of message-passing layers for each node in a Graph Neural Net-
work (GNN) presents a significant challenge due to the intricate and diverse nature of graph struc-
tures, node features, and learning tasks. While deeper GNNs are capable of capturing long-range
dependencies (Liu et al., 2021), they can also encounter issues like oversmoothing, where nodes
become indistinguishably similar (Luan et al., 2022). This underscores the critical importance of
selecting the appropriate number of layers for a GNN to effectively capture the necessary graph
information. In dense graphs, where information can propagate quickly, even shallow GNNs can
effectively capture local information (Zeng et al., 2020). Conversely, sparse graphs, particularly
those with isolated nodes or limited connectivity, may require additional layers to facilitate effective
information sharing (Zhang et al., 2021; Zhao & Akoglu, 2020). An even more compelling idea is
to adjust the GNN depth for each node based on its local complexity and structural properties. This
adaptive approach could be especially beneficial for graphs with varied local structures, ensuring
that each node is processed according to its unique requirements.

Dynamic Neural Networks, also known as Adaptive Neural Networks, represent a class of models
that possess the ability to adjust their architecture or parameters depending on the input. Dynamic
Neural Networks have gained significant popularity, especially in the field of computer vision. This
adaptability enables them to achieve improved performance metrics such as accuracy, computational
efficiency, and robustness. The adaptation includes, for example, the number of layers and skip

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

connections (Li et al., 2017; Huang et al., 2016; Sabour et al., 2017). However, applying these
adaptations to graph learning tasks presents unique challenges. While Dynamic Neural Networks
excel in structured and homogeneous data environments like computer vision, graph data involves
overcoming complexities related to the inherent complex structure of graphs. Moreover, for node
classification tasks, input samples are interconnected through graph edges, necessitating specialized
techniques to dependencies.

In this work, we focus on the task of node classification by proposing ADMP-GNN, a novel approach
that dynamically adapts the number of layers for each node within a GNN. Our main contributions
are as follows:

1. Node-Specific Depth Analysis in Graph Neural Networks. We demonstrate through
empirical analysis that different nodes within the same graph may require varying numbers
of message-passing steps to accurately predict their labels. This finding underscores the
importance of node-specific depth in GNNs.

2. Adaptive Message-Passing Layer Integration. We present ADMP-GNN, a novel ap-
proach that enables any GNN to make predictions for each node at every layer. Training
the GNN to predict labels across all layers is a multi-task setting, which often suffers from
gradient conflicts leading to suboptimal performance. To address this, we propose a se-
quential training methodology where layers are progressively trained and their gradients
are subsequently frozen, thereby mitigating conflicts and improving overall performance.

3. Adaptive Layer Policy Learning for Node Classification. We propose a heuristic method
to learn a layer selection policy using a set of validation nodes. This policy is then applied
to select the optimal layer for predicting the labels of test nodes, ensuring that each node
exits the GNN at the most appropriate layer for its specific classification task.

4. Model-Agnostic Flexibility. Our approach is model-agnostic and can be integrated with
any GNN architecture that employs a message-passing scheme. This flexibility enhances
the GNN’s performance on node classification tasks, providing a significant improvement
over traditional fixed-layer approaches.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) are a class of deep learning methods that operate on graph data.
As most neural networks, GNNs are formed by stacking many layers. Each layer, ℓ, is responsible
for updating the node representations {h(ℓ)u , u ∈ V}0≤ℓ≤L, relying on the graph structure and the
output from the previous layer, {h(ℓ−1)

u , u ∈ V}. The goal of a GNN layer ℓ is to update node
representations relying mainly on the structure of the graph (V,E) and the output of the previous
layer H(ℓ−1). Conventionally, the nodes features are used as input of the first layer {h(0)u , u ∈ V} =
[xv]v∈V ∈ RN×d, where N is the number of nodes and d is the features dimension. A basic GNN
layer is based on the message passing mechanism and consists of two components: (i) Aggregate
Layer ψ that applies for each node v, a permutation invariant function to its neighbors, denoted by
N (v) to generate the aggregated node feature; (ii) Update Layer ϕ that combines the aggregated
node feature m(ℓ)

v with the previous hidden vector h(ℓ−1)
v , and generate a new representation h(ℓ)v of

the same node v:
m(ℓ)

v = ψ(ℓ)({h(ℓ−1)
u , u ∈ N (v)}),

h(ℓ)v = ϕ(ℓ)(h(ℓ−1)
v ,m(ℓ)

v).

Depending on the task, an additional readout or pooling function can be added after the last layer to
aggregate the representation of nodes.

hG = READOUT(H(ℓ)).

2.2 DYNAMIC-DEPTH NEURAL NETWORKS

Dynamic neural networks have emerged as a focal point in the realm of deep learning. Unlike
static models with fixed computational graphs and parameters during inference, dynamic networks

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Layers

0.32

0.34

0.36

0.38

0.40

0.42

Ac
cu

ra
cy

Computers

Dense Subgraph
Sparse Subgraph

0 2 4 6 8 10
Layers

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Ac
cu

ra
cy

Photo
Dense Subgraph
Sparse Subgraph

Figure 1: Effect of GCN Depth on Sparse and Dense Subgraphs: The figure shows the performance
of GCN models when varying layer depths, and comparing its effectiveness on both sparse and dense
subgraphs.

adapt their structures or parameters based on varying inputs. This dynamic flexibility gives models
significant benefits, such as improved accuracy, enhanced computational efficiency, and superior
adaptability (Wang et al., 2020; Zhou et al., 2020). A popular type of dynamic neural networks
includes those that dynamically adjust network depth based on each input. For instance in natu-
ral language processing, some adaptive large language models employ adaptive depth to optimize
both inference speed and computational memory usage of the Transformer architecture (Elbayad
et al., 2020; Schuster et al., 2022; Vaswani et al., 2017). In the field of computer vision, there are
studies that dynamically generate filters conditioned on each input, enhancing flexibility without
significantly increasing the number of model parameters (Jia et al., 2016).

To the best of our knowledge, in the field of GNNs, there has been no prior work proposing adaptive
depth for each node. However, several studies have focused on combining all GNN layers. These
works typically aim to adapt GNN architectures for heterogeneous graphs (Chien et al., 2020) and
leverage information from higher-order neighbors (Xu et al., 2018a). Additionally, other related
approaches here concern residual connections to mitigate issues like oversmoothing (Chen et al.,
2020). While combining GNN layers can be viewed as a form of depth-adaptive strategy, where the
final node representation is guided by the optimal intermediate hidden states, this approach remains
static because the same inference policy is applied uniformly across all nodes and learned layer
aggregators stay fixed after training.

3 ADMP-GNN: ADAPTIVE DEPTH MESSAGE-PASSING BASED GNN

In this section, we first present an empirical analysis highlighting the necessity for node-specific
depth in GNNs. Then, we introduce our Adaptive Depth Message Passing-based GNN (ADMP-
GNN). Our study includes experiments on both synthetic and real-world datasets to illustrate the
importance and potential benefits of this methodology.

3.1 NODE-SPECIFIC DEPTH ANALYSIS IN GRAPH NEURAL NETWORKS

Analysis on Synthetic Graphs. The goal of this analysis is to motivate the need to use a vary-
ing number of message-passing steps based on the specific characteristics of individual nodes. As
discussed in the introduction, this approach becomes especially interesting in hybrid graphs where
nodes exhibit diverse properties, such as local structures and node features. In this experiment, we
focus on analyzing the impact of the number of message-passing layers on node with varied local
neighborhood sparsity. To do so, we construct a graph by merging two subgraphs extracted from a
real-world dataset, such as Computers and Photo (Shchur et al., 2018). Both subgraphs contain the
same number of nodes, exhibit nearly identical homophily, and have equally distributed node labels.
The main difference between these subgraphs lies in their structure as one subgraph is sparse, while
the other is dense. Consequently, nodes within each subgraph share similar structural characteris-
tics. In Appendix A, we give the construction details of these synthetic datasets, and we visualize
the adjacency matrix of these synthetic graphs, with additional details provided in the appendix, c.f.
Figure 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We trained a L different GCN models, with a varying number of layers ℓ ∈ [[0, L]], where L repre-
sents the maximum depth. For this experiment, we set L = 10. Although each GCN was trained on
the entire synthetic graph, which is a combination of the sparse and dense subgraphs, we evaluated
the performance of each model separately on the individual subgraphs. This allows us to assess the
impact of GNN depth on different types of local subgraph structures. The results of this analysis
are presented in Figure 1. As observed, in dense subgraphs, the test accuracy decreases at a faster
rate, while in sparse subgraphs, the drop in accuracy occurs later, typically around layers 2 or 3.
Moreover, the optimal number of layers differs between sparse and dense subgraphs. For instance,
in the Computers dataset, the highest accuracy is achieved at layer 2 for the sparse subgraph, while
for the dense subgraph, the optimal performance is reached at layer 0. Additionally, in the Photo
dataset, we observe a distinct behavior starting from layer 6, where the impact of GNN depth di-
verges between sparse and dense subgraphs. This highlights the need to adapt the number of layers
per node based on its characteristics.

Analysis on Real Word Graphs. Given a maximum GNN depth L, we should train L+1 different
GNNs, each with a distinct number of layers ℓ, where ℓ ranges from 0 and L. Subsequently, a policy
must be established to determine the optimal GNN with the appropriate number of layers for each
individual node. However, training L + 1 GNNs separately can be computationally expensive. A
more efficient approach involves designing a single GNN with L + 1 layers that provides predic-
tions at each intermediate layer. To ensure that this new configuration is equivalent to the previous
approach (i.e., training L + 1 GNNs separately), the computational graph responsible for making
predictions at layer ℓ must be identical to that of a GNN with ℓ layers. Furthermore, the classifica-
tion performance at layer ℓ should yield results comparable to those of a conventional GNN with ℓ
layers. In what follows, we propose ADMP-GNN, an extension of message passing neural networks
that respect the aforementioned challenges.

3.2 ADAPTIVE MESSAGE-PASSING LAYER INTEGRATION

We introduce ADMP-GNN, an adaptation of a Message Passing Neural Network, with a maximum
depth ofL layers. The goal is to ensure that the computational graph and the performance of ADMP-
GNN at a certain layer matches that of traditional GNNs when trained and tested on the same number
of layers. To achieve this, we incorporate an additional Update function, denoted as ϕ(ℓ)Ex , to directly
predict node labels at a given layer ℓ (Ex stands for ‘Exit’). The function ϕ(ℓ)Ex is defined as follows:

p(ℓ)v = ϕ
(ℓ)
Ex

(
h(ℓ−1)
v ,m(ℓ)

v

)
= Softmax

(
W̃ (ℓ)m(ℓ)

v

)
,

where W̃ (ℓ) ∈ Rd(ℓ)×c is a learnable weight matrix, d(ℓ) is the dimension of the hidden representa-
tion at the ℓ-th layer, and c is the number of classes. To obtain predictions at a deeper layer ℓ′ ≥ ℓ,
we continue the message passing using another Update function ϕ(ℓ)Ct (Ct stands for ‘Continuation’):

p(ℓ)v = ϕ
(ℓ)
Ex

(
h(ℓ−1)
v ,m(ℓ)

v

)
,

h(ℓ+1)
v = ϕ

(ℓ)
Ct(h

(ℓ−1)
v ,m(ℓ)

v).

In Figure 2, we illustrate the architecture of the proposed ADMP-GNN. For ℓ = 0, we directly use
the Exit Update function on the node features, i.e., m(0)

v = xv ,

∀v ∈ V, p(0)v = ϕ
(0)
Ex

(
m(0)

v

)
= Softmax

(
W̃ (0)xv

)
.

3.3 TRAINING SCHEME OF ADMP-GNN

Our next objective is to train ADMP-GCN to predict node labels across all layers ℓ ∈ {0, . . . , L}
simultaneously. For each layer ℓ, we denote by θℓ the weights of the function ψ(ℓ) ◦ ϕ(ℓ)Ct (·). We
explored two different strategies.

Aggregate Loss Minimization (ALM). The straightforward approach aims to optimize the sum of
losses at each layer, formulated as follows,

argmin
θ

Ev∈V [SL(v)] := argmin
θ0,...,θL

Ev∈V

[
L∑

ℓ=0

L
(
p(ℓ)v (m(0)

v , θ0, . . . , θℓ), yv

)]
, (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Ex. Update

Agg.

Ex. Update

Agg.

Ex. Update

Ct. Update Agg.

Ex. Update

Ct. Update

Aggregate function

Exit Update function

Continuation Update function

Model weights trained at

Model weights trained at

Model weights trained at

Model weights trained at

Figure 2: Illustration of ADMP-GNN, when the maximum GNN depth is L = 3.

where p(ℓ)v (m
(0)
v , θ0, . . . , θℓ) = ϕ

(ℓ)
Ex(m

(ℓ)
v) is the prediction for the node v at the layer ℓ, and L is the

Cross Entropy Loss. This approach may encounter gradient conflicts, particularly for early layers
involved in both computation and back-propagation across upper layers.

Sequential Training (ST). We have studied an alternative training setup where we progressively
train one GNN layer at a time, subsequently freezing each layer after training. More formally, the
problem in (1) can be tackled using dynamic programming as follows:

∀v ∈ V, Sℓ+1(v) = L
(
p(ℓ)v (m(0)

v , θ⋆0 , . . . , θ
⋆
ℓ , θℓ+1), yv

)
+ Sℓ(v)

θ⋆ℓ = argmin
θℓ

Ev∈V [Sℓ(v)] ,

where ∀v ∈ V, S0(v) = L(ϕ(0)Ex, yv). For each intermediate layer 0 ≤ ℓ ≤ L − 1, by training this
layer on the node classification task, we obtain high-quality node representations [h(ℓ)v]v∈V . These
representations are directly employed for predictions and serve as a robust foundation for the label
predictions of the subsequent layer ℓ+ 1. Algorithm 1 offers a summary of the approach.

To identify the optimal multi-task training configuration, we evaluate how much of a performance
drop we lose at each layer compared to the single task setting in GNN. The comparative analysis of
the three strategies is detailed in Tables 1,8,11, and 12. Our findings indicate that ADMP-GNN ST
outperforms ADMP-GNN ALM. Notably, the performance of ADMP-GNN ST is comparable to, or
even exceeds, that of GNN when trained under the single-task setting. Furthermore, ADMP-GNN
ST exhibits a smaller standard deviation, suggesting more consistent performance.

Time Complexity. The training setup ST, where we sequentially train the deep ADMP-GNN, incurs
relatively higher time costs due to the need for L+ 1 training iterations. However, in each iteration,
backpropagation is performed on a limited number of parameters, approximately equivalent to those
in a single message passing layer. Consequently, only a small number of epochs are required for
each training iteration. We report the training time of each approach in Table 5 in Appendix B.

3.4 ORACLE ACCURACY: EMPIRICAL JUSTIFICATION FOR NODE-SPECIFIC DEPTH IN
NEURAL NETWORKS

We define Oracle Accuracy as the maximum test accuracy achievable by allowing a node to select
the prediction from any layer. This is formally expressed as:

Accoracle =
1

|Vtest|
∑

v∈Vtest

1

{
yv ∈

L⋃
l=0

{ŷ(ℓ)v }

}
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Sequential Training of ADMP-GNN (ADMP-GNN ST)
Inputs: Graph G = (V, E) with node features, number of layers L, node classification loss function L,
foreach t ∈ {0, . . . , L} do

if t = 0 then
1. Set h(0)

v ← m
(0)
v = xv for all v ∈ V.

2. Compute predictions at layer ℓ = 0, i.e. ∀v ∈ V, p
(0)
v = ϕ

(0)
Ex(h

(0)
v).

3. Train the weights of ϕ(0)
Ex to minimize the objective L(p(0)v).

4. Freeze the gradients of ϕ(0)
Ex.

else
1. Use the continuation function ϕ(t−1)

Ct to update node representations

∀v ∈ V, h̃(t−1)
v = ϕ

(t−1)
Ct (h(t−1)

v).

2. Aggregate the information for neighbor nodes

∀v ∈ V, m(t)
v = ψ(t)({h̃(t−1)

u , u ∈ N (v)}).

3. Compute predictions at layer ℓ = t, i.e. ∀v ∈ V, p
(t)
v = ϕ

(t−1)
Ct (h̃

(t−1)
v ,m

(t)
v).

4. Train the weights of ϕ(t−1)
Ct , ψ(t), and ϕ(t)

Ex to minimize the objective L(p(t)v).

5. Freeze the gradients of ϕ(t−1)
Ct , ψ(t), and ϕ(t)

Ex.
end foreach

Table 1: Comparison of three GCN training settings: GCN trained separately for each layer; ADMP-
GCN ALM trained across all layers simultaneously using backpropagation on the summed loss;
ADMP-GCN ST trained using Dynamic Programming. (*) denotes single-task training.

#layers model Dataset
Cora CiteSeer CS PubMed Genius ogbn-arxiv

0
GCN(*) 56.38 (0.04) 57.18 (0.12) 88.04 (0.49) 72.50 (0.09) 80.82 (1.00) 48.88 (0.06)
ADMP-GCN ALM 56.96 (0.20) 58.44 (0.21) 87.06 (1.06) 72.11 (0.18) 80.03 (0.37) 36.50 (0.12)
ADMP-GCN ST 56.38 (0.06) 57.17 (0.09) 87.27 (1.29) 72.48 (0.14) 80.17 (0.79) 48.86 (0.03)

1
GCN(*) 76.90 (0.14) 69.68 (0.06) 91.74 (0.80) 76.63 (0.13) 80.23 (0.37) 55.21 (0.50)
ADMP-GCN ALM 75.67 (0.18) 70.12 (0.04) 90.55 (0.74) 73.74 (0.16) 80.13 (0.29) 39.54 (1.44)
ADMP-GCN ST 76.90 (0.00) 69.70 (0.00) 90.89 (0.81) 76.60 (0.00) 79.93 (0.00) 55.15 (0.00)

2
GCN(*) 81.06 (0.50) 71.05 (0.48) 91.67 (0.94) 79.46 (0.31) 79.88 (0.51) 66.92 (0.67)
ADMP-GCN ALM 70.82 (4.05) 60.95 (2.39) 31.2 (12.85) 75.10 (2.41) 79.64 (0.60) 55.25 (0.92)
ADMP-GCN ST 80.73 (0.33) 71.33 (0.40) 91.49 (0.66) 79.02 (0.21) 80.06 (0.11) 66.51 (0.65)

3
GCN(*) 79.14 (1.58) 66.33 (1.35) 89.80 (0.87) 78.50 (0.68) 80.00 (0.04) 67.33 (0.55)
ADMP-GCN ALM 68.64 (5.14) 51.30 (6.74) 47.82 (12.98) 74.17 (1.98) 80.04 (0.10) 56.22 (0.50)
ADMP-GCN ST 80.21 (0.52) 70.08 (0.90) 89.83 (1.02) 78.25 (0.51) 79.93 (0.00) 68.31 (0.48)

4
GCN(*) 75.96 (1.93) 60.33 (2.38) 78.90 (22.33) 76.59 (0.98) 80.01 (0.04) 65.49 (0.99)
ADMP-GCN ALM 67.88 (6.05) 49.29 (7.87) 52.76 (11.79) 73.40 (1.95) 80.04 (0.10) 56.43 (0.31)
ADMP-GCN ST 81.05 (0.49) 67.99 (0.74) 88.86 (0.70) 75.27 (1.02) 79.93 (0.00) 69.29 (0.74)

5
GCN(*) 70.09 (4.01) 57.40 (3.43) 77.96 (15.24) 74.32 (3.66) 80.01 (0.04) 63.04 (1.33)
ADMP-GCN ALM 67.68 (7.04) 50.14 (7.65) 54.53 (10.61) 73.27 (1.51) 80.04 (0.10) 56.66 (0.31)
ADMP-GCN ST 81.22 (0.36) 67.42 (0.75) 86.65 (1.52) 75.08 (0.94) 79.93 (0.00) 68.92 (1.00)

where Vtest is the set of test nodes, (ŷ(ℓ)v)l≤L represents the predictions for node v at each layer. The
oracle accuracy is greater than the accuracy at each single layer (i.e., Accuacies of ADMP-GCN PT
in Table 1); taking the predictions of all nodes at a specific layer is a sub-optimal choice of the exits.

Based on the findings presented in Tables 2, 2 it is evident that the oracle accuracy surpasses the
highest accuracies achieved by both GCN and ADMP-GCN PT. This empirical evidence strongly
suggests that in an optimal configuration, employing a distinct exit layer for each node is advanta-
geous.

3.5 GENERALIZATION TO TEST NODES

In this section, we introduce a heuristic approach to predict the optimal exit layer for test nodes
based on the assumption that nodes exhibiting structural similarity should share the same exit layer.
The notion of structural similarity can be assessed using various metrics. In our work, we define the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: The first two rows of the table present the highest accuracy (± standard deviation) for
GCN and ADMP-GCN ST, with the corresponding layer where this accuracy is achieved indicated
in brackets [.]. The final row reports the Oracle accuracy for ADMP-GCN ST.

model Dataset
Cora CiteSeer CS PubMed Genius ogbn-arxiv

GCN 81.06 (0.50) [2] 71.05 (0.48) [2] 91.67 (0.94) [2] 79.46 (0.31) [2] 80.82 (1.00) [0] 67.33 (0.55) [3]
ADMP-GCN ST 81.22 (0.36) [5] 71.33 (0.40) [2] 91.49 (0.66) [2] 79.02 (0.21) [2] 80.17 (0.79) [0] 69.29 (0.74) [4]
ADMP-GCN ST - Oracle 89.43 (0.19) 81.96 (0.49) 97.24 (0.52) 90.13 (0.36) 85.97 (7.59) 79.64 (0.27)

structural similarity based on node centrality metrics, i.e., nodes are considered structurally similar if
they exhibit closely aligned centrality values within the graph. We measured node centralities using
both local metrics like degree and global metrics such as k-core (Malliaros et al., 2020), PageRank
scores (Brin & Page, 1998), and Walk Count indicating the number of walks of length 2 starting
from each node, which are detailed below.

k-core. We use the k-core decomposition of a graph, which involves iteratively removing nodes
with a degree less than k until no such nodes remain (Malliaros et al., 2020).

PageRank. We choose the PageRank-based centrality, defined as VPR[i, i] = (1 − PR(i))−1 for
each node i ∈ V , where PR(i) represents the PageRank score (Brin & Page, 1998). The PageRank
score measures the probability that a random walke visits a specific node, making it a key metric for
assessing node importance, especially in web search algorithms.

Walk Count. We define node centrality based on the number of walks of length ℓ starting from each
node i, expressed as

(
Aℓ

1
)
[i], where 1 ∈ RN is a vector of ones.

Using this assumption, we employ node clustering to partition the node set into C clusters, denoted
by P = ∪1≤c≤CPc. Each cluster c ∈ {1, . . . , C} is assigned a common exit layer ℓc ∈ {0, . . . , L},
determined using nodes excluded from the test set. Validation nodes are utilized for this purpose, as
training nodes typically are usually well-predicted in all layers. (i) Centrality scores are computed
for all nodes, considering metrics. (ii) Nodes are ranked based on their centrality scores (iii) These
centrality scores are discretized into C equal-sized buckets to facilitate the clustering process. (iv)
The optimal exit layer for each cluster is determined by evaluating the classification accuracy on
validation nodes within that cluster, i.e.,

∀c ∈ {1, . . . , C}, ℓc = argmax
ℓ∈{0,...,L}

Acc
{
p(ℓ)v ∈ Vval ∩ Pc

}
.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We use thirteen widely used datasets in the GNN literature. We particularly used the citation net-
works Cora, CiteSeer, and PubMed Sen et al. (2008), the co-authorship networks CS (Shchur et al.,
2018), the citation network between Computer Science arXiv papers ogbn-arxiv (Hu et al., 2020),
the Amazon Computers and Amazon Photo networks (Shchur et al., 2018), the non-homophilous
dataset genius (Lim & Benson, 2021), and the disassortative datasets Chameleon, Squirrel (Rozem-
berczki et al., 2021), and Cornell, Texas, Wisconsin from the WebKB dataset (Lim et al., 2021).
More details and statistics about the used datasets can be found in Appendix C. For the Cora, Cite-
Seer, and Pubmed datasets, we used the provided train/validation/test splits. For the remaining
datasets, we followed the framework in (Lim et al., 2021; Rozemberczki et al., 2021).

4.2 BASELINES

We compare our approach with architectures that combine all the hidden representations of nodes to
form a final node representation used for prediction. For each baseline model, we vary the number of
layers from 0 to 5, and we report in Table 3 the performance of the best number of layers with respect
to the test set. (i) This includes Jumping knowledge, which combines the nodes representation of
all layers using an aggregation layer, e.g., MaxPooling (JKMaxPool), Concatenation (JK-Concat),
or LSTM-attention (JK-LSTM)Xu et al. (2018b). (ii) Residuals-GCNII which use an initial residual

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Classification accuracy (± standard deviation) on different benchmark node classification
datasets for the baselines based on the GCN backbone. The higher the accuracy (in %) the better the
model. Highlighted are the first, second best results. OOM means Out of memory.

Model Cora CiteSeer CS PubMed genuis ogbn-arxiv

JKNET-CAT (Xu et al., 2018b) 79.52 (1.16) [2] 69.69 (0.05) [1] 91.23 (1.26) [1] 77.63 (0.59) [2] 81.46 (0.10) [2] 68.54 (0.57) [5]
JKNET-MAX (Xu et al., 2018b) 75.67 (0.18) [1] 70.12 (0.04) [1] 90.55 (0.74) [1] 75.10 (2.41) [2] 80.13 (0.29) [1] 56.66 (0.31) [5]
JKNET-LSTM (Xu et al., 2018b) 78.95 (0.62) [0] 65.83 (1.27) [0] 90.17 (1.41) [2] 77.73 (0.67) [0] OOM OOM
Residuals - GCNII (Chen et al., 2020) 76.84 (0.20) [1] 69.72 (0.06) [1] 90.84 (1.35) [1] 77.82 (0.44) [2] 81.36 (1.13) [2] 61.48 (3.10) [4]
AdaGCN 75.08 (0.27) 69.58 (0.19) 89.62 (0.51) 76.40 (0.12) 79.85 (0.00) 22.06 (1.67)
GPR-GNN 79.91 (0.43) [2] 69.21 (0.81) [2] 91.42 (1.12) [2] 79.0 (0.39) [2] 81.04 (0.41) [2] 68.03 (0.23) [3]

GCN 80.78 (0.72) [2] 71.25 (0.72) [2] 92.20 (0.00) [1] 79.32 (0.41) [2] 80.76 (1.05) [0] 64.37 (0.43) [2]
ADMP-GCN 81.22 (0.36) [5] 71.33 (0.40) [2] 91.49 (0.66) [2] 79.02 (0.21) [2] 80.17 (0.79) [0] 69.29 (0.74) [4]

ADMP-GCN w/ Degree 81.03 (0.53) 71.10 (0.50) 91.26 (0.59) 78.71 (0.39) 80.73 (1.00) 69.59 (0.28)
ADMP-GCN w/ k-core 81.19 (0.40) 71.27 (0.53) 91.29 (0.68) 78.73 (0.41) 80.73 (1.00) 69.55 (0.33)
ADMP-GCN w/ Walk Count 81.14 (0.41) 71.14 (0.50) 91.19 (0.64) 78.64 (0.60) 80.68 (0.97) 69.55 (0.34)
ADMP-GCN w/ PageRank 81.05 (0.46) 71.0 (0.29) 91.09 (0.99) 78.69 (0.56) 81.12 (1.41) 69.60 (0.29)

connection and an identity mapping at each layer. he initial residual connection ensures that the final
representation of each node retains at least a fraction of α from the input layer Chen et al. (2020).
(iii) GPR-GCN which combines adaptive generalized PageRank (GPR) scheme with GNNs Chien
et al. (2020). (iv) Ada-GCN, which proposes an RNN-like deep GNN architecture by incorporating
AdaBoost to combine the layers Sun et al. (2019). To have a fair comparison, we trained ADMP-
GNN as well as all the baselines under the same settings, and we fixed the maximum number of
layers to L = 5.

4.3 IMPLEMENTATION DETAILS

We train all the models using the Adam optimizer Kingma & Ba (2014) and the same hyperparame-
ters. The GNN hyperparameters in each dataset were performed using a Grid search on the classical
GCN; we detail the values of these hyperparameters in Table 7 of Appendix D. To account for the
impact of random initialization, each experiment was repeated 10 times, and the mean and standard
deviation of the results were reported. The experiments have been run on both an NVIDIA A100
GPU and an RTX A6000 GPU.

5 EXPERIMENTAL RESULTS

Through extensive experiments on multiple datasets, we can better understand the scenarios in which
ADMP-GCN proves to be effective. As observed in Tables 3, 4, 15, and 10, a comparison between
ADMP-GCN and ADMP-GIN against their respective baselines GCN and GIN demonstrates con-
sistently higher accuracy for most datasets. Regarding the centrality-based layer selection policy, it
becomes clear that when graphs exhibit a wide range of local density and centrality among nodes,
the centrality-based policy is particularly efficient. Most importantly, there is never a drop in ac-
curacy observed with ADMP-GNN. However, beyond this observation, it is challenging to provide
universal guidelines for selecting the most appropriate layer selection policy.

Table 4: Classification accuracy (± standard deviation) on different benchmark node classification
datasets for the baselines based on the GIN backbone. The higher the accuracy (in %), the better the
model. Highlighted are the first, second best results. OOM means Out of memory.

Model Cora CiteSeer CS PubMed genuis ogbn-arxiv
JKNET-CAT Xu et al. (2018b) 77.94 (0.67) [2] 64.82 (0.04) [1] 89.26 (1.18) [1] 75.89 (2.5) [2] OOM 60.23 (0.37) [1]
JKNET-MAX Xu et al. (2018b) 77.47 (0.81) [1] 64.96 (2.08) [2] 87.4 (2.11) [0] 76.21 (1.73) [0] OOM 51.84 (4.01) [0]
JKNET-LSTM Xu et al. (2018b) 77.39 (1.39) [2] 64.52 (2.02) [1] 87.27 (3.66) [3] 75.90 (1.63) [0] OOM OOM
GPR-GIN 76.83 (1.22) [2] 66.43 (1.15) [2] 88.15 (1.53) [5] 77.27 (0.87) [2] 80.82 (0.42) [3] 63.05 (0.44) [2]

GIN 77.73 (0.99) [2] 65.23 (1.45) [2] 90.29 (0.99) [1] 76.05 (1.14) [2] 80.78 (1.03) [0] 60.70 (0.15) [1]
ADMP-GIN 78.07 (0.68) [2] 65.41 (1.91) [2] 90.82 (1.15) [1] 76.46 (1.04) [4] 80.47 (0.91) [0] 60.85 (0.01) [1]

ADMP-GIN w/ Degree 78.12 (0.70) 66.82 (0.89) 90.70 (0.79) 76.07 (1.27) 81.68 (0.70) 60.85 (0.01)
ADMP-GIN w/ k-core 78.10 (0.64) 66.36 (1.03) 90.85 (0.93) 75.93 (1.13) 81.48 (0.64) 60.85 (0.01)
ADMP-GIN w/ Walk Count 78.19 (0.68) 65.79 (0.81) 90.77 (0.91) 76.72 (0.76) 81.21 (0.58) 60.85 (0.01)
ADMP-GIN w/ PageRank 77.78 (0.83) 67.08 (0.51) 90.72 (0.91) 76.63 (0.87) 81.89 (1.04) 60.85 (0.01)

Ablation Study. The choice of using validation nodes rather than training nodes for learning the
layer selection policy stems for the high prediction accuracy on training nodes across all layers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

This high accuracy leads to a significant distribution shift between the predictions for train nodes
and those for test nodes. Conversely, validation nodes, which were not utilized during the training
of the ADMP-GNN, present a more suitable option for learning the policy due to their unbiased
predictions. We tested a variety of Deep Learning mechanisms to predict the best exit layer for
each node. This included generalizing the policy by training neural networks to identify layers
that accurately predict node outcomes or by framing the problem as an optimal stopping problem
following the framework of Huré et al. (2021). However, these approaches require learning the
policy on a set of nodes larger than the test set, which is impractical for node classification tasks
where the training and validation node sets, available for policy learning, are typically smaller than
the test set.

6 CONCLUSION

In this work, we have proposed ADMP-GNN, a novel adaption of message passing neural networks
that enables any message passing neural network to make predictions for each node at every layer.
Additionally, we have proposed a sequential training approach aimed at achieving results compara-
ble to training multiple GNNs separately in a single-task setting. The empirical analysis of the results
demonstrates the need for a node-specific depth in GNNs to better capture the unique characteris-
tics and computational needs of each node. Determining the optimal number of message-passing
layers for each node presents a significant challenge due to several factors. Graph structures vary
widely in complexity and connectivity, influencing how information propagates through the net-
work. Node features introduce further variability, impacting the effectiveness of message passing.
However, through experiments, we identified instances where node centrality can help identify the
optimal layer for each node. We heuristically learn a layer selection policy using a set of validation
nodes. This policy is then generalized on the test nodes. Extensive experiments on multiple datasets
demonstrate ADMP-GNN’s effectiveness in improving the prediction accuracy of GNNs.

REFERENCES

Stefan Bornholdt and Heinz Georg Schuster. Handbook of graphs and networks. From Genome to
the Internet, Willey-VCH (2003 Weinheim), 2001.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1-7):107–117, 1998.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
series forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. CoRR, abs/2007.02133, 2020. URL https://arxiv.org/abs/
2007.02133.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Joint adaptive feature smoothing and
topology extraction via generalized pagerank gnns. CoRR, abs/2006.07988, 2020. URL https:
//arxiv.org/abs/2006.07988.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Dif-
fusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SJg7KhVKPH.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry, 2017a. URL https://arxiv.org/abs/1704.
01212.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017b.

9

https://arxiv.org/abs/2007.02133
https://arxiv.org/abs/2007.02133
https://arxiv.org/abs/2006.07988
https://arxiv.org/abs/2006.07988
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 646–661. Springer, 2016.

Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené. Deep neural networks algo-
rithms for stochastic control problems on finite horizon: convergence analysis. SIAM Journal on
Numerical Analysis, 59(1):525–557, 2021.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. Advances
in neural information processing systems, 29, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In ICLR, 2017.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=rJqFGTslg.

Derek Lim and Austin R Benson. Expertise and dynamics within crowdsourced musical knowl-
edge curation: A case study of the genius platform. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 15, pp. 373–384, 2021.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and Xiaokui Xiao. Eignn: Efficient
infinite-depth graph neural networks. Advances in Neural Information Processing Systems, 34:
18762–18773, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and Michalis Vazirgiannis.
The core decomposition of networks: theory, algorithms and applications. VLDB J., 29(1):61–92,
2020.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances
in neural information processing systems, 30, 2017.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. arXiv preprint arXiv:2207.07061, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi:
10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/index.php/aimagazine/
article/view/2157.

10

https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rJqFGTslg
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation, 2018. URL https://arxiv.org/abs/1811.05868.

Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Adagcn: Adaboosting graph convolutional networks
into deep models. arXiv preprint arXiv:1908.05081, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and Gao Huang. Glance and focus: a
dynamic approach to reducing spatial redundancy in image classification. CoRR, abs/2010.05300,
2020. URL https://arxiv.org/abs/2010.05300.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Ste-
fanie Jegelka. Representation learning on graphs with jumping knowledge networks. CoRR,
abs/1806.03536, 2018a. URL http://arxiv.org/abs/1806.03536.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5453–5462. PMLR, 10–15 Jul
2018b. URL https://proceedings.mlr.press/v80/xu18c.html.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In 7th International Conference on Learning Representations, 2019.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Rajgopal Kannan, Viktor Prasanna,
Long Jin, Andrey Malevich, and Ren Chen. Deep graph neural networks with shallow subgraph
samplers. 2020.

Wentao Zhang, Zeang Sheng, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and Bin Cui. Evalu-
ating deep graph neural networks. arXiv preprint arXiv:2108.00955, 2021.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rkecl1rtwB.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. McAuley, Ke Xu, and Furu Wei. BERT loses
patience: Fast and robust inference with early exit. CoRR, abs/2006.04152, 2020. URL https:
//arxiv.org/abs/2006.04152.

11

https://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.05300
http://arxiv.org/abs/1806.03536
https://proceedings.mlr.press/v80/xu18c.html
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB
https://arxiv.org/abs/2006.04152
https://arxiv.org/abs/2006.04152

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A NODE-SPECIFIC DEPTH ANALYSIS IN GRAPH NEURAL NETWORKS

We generate synthetic graphs of size N = 5, 000. We select nodes belonging to sparse or dense
regions in the original graph based on their core number. We consider only nodes with labels that
are sufficiently present in both dense and sparse region. Last, we randomly select nodes, all by
keeping the label distribution similar in both sparse and dense subgraphs.

0 250 500 750

0

200

400

600

800

Computers

0 200 400 600

0

100

200

300

400

500

600

Photo

Figure 3: The adjacency matrix of the synthetic graphs extracted from the real graphs Computers
and Photo.

B TIME COMPLEXITY

Table 5: The average time needed for each training setting for different datasets.

Model Cora squirel chamelon Computers Photo Ogbn-arxiv
ADMP-GCN ALM 14 36 15 51 26 266
ADMP-GCN ST 32 88 40 175 87 882

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C DATASET STATISTICS

Table 6: Statistics of the node classification datasets used in our experiments.

DATASET #FEATURES #NODES #EDGES #CLASSES EDGE HOMOPHILY
CORA 1,433 2,708 5,208 7 0.809
CITESEER 3,703 3,327 4,552 6 0.735
PUBMED 500 19,717 44,338 3 0.802
CS 6,805 18,333 81,894 15 0.808
CHAMELEON 2,325 2,277 62,792 5 0.231
CORNELL 1,703 183 557 5 0.132
SQUIRREL 2,089 5,201 396,846 5 0.222
WISCONSIN 1,703 251 916 5 0.206
TEXAS 1,703 183 574 5 0.111
PHOTO 745 7,650 238,162 8 0.827
OGBN-ARXIV 128 169,343 2,315,598 40 0.654
COMPUTERS 767 13752 491,722 10 0.777

D HYPERPARAMETER CONFIGURATIONS

Table 7: Hyperparameters used in our experiments.

DATASET HIDDEN SIZE LEARNING RATE DROPOUT PROBABILITY

CORA 64 0.01 0.8
CITESEER 64 0.01 0.4
PUBMED 64 0.01 0.2
CS 512 0.01 0.4

ARXIV-YEAR 512 0.01 0.2
CHAMELEON 512 0.01 0.2
CORNELL 512 0.01 0.2
DEEZER-EUROPE 512 0.01 0.2
SQUIRREL 512 0.01 0.2
WISCONSIN 512 0.01 0.2
TEXAS 512 0.01 0.2
PHOTO 512 0.01 0.6
OGBN-ARXIV 512 0.01 0.5
COMPUTERS 512 0.01 0.2
PHYSICS 512 0.01 0.4
PENN94 64 0.01 0.2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS ON GCN

Table 8: Comparison of three GCN training settings: GCN – trained separately for each layer;
ADMP-GCN ALM trained across all layers simultaneously using backpropagation on the summed
loss; ADMP-GCN ST trained using Dynamic Programming. (*) denotes single-task training.

#layers model Dataset
Photo Computers chamelon Cornell Wisconsin Texas squirrel

0
GCN(*) 70.18 (3.39) 56.83 (2.92) 33.55 (0.00) 40.54 (0.00) 70.59 (0.00) 64.86 (0.00) 26.42 (0.00)
ADMP-GCN ALM 68.23 (3.11) 56.61 (2.07) 30.70 (0.00) 40.54 (0.00) 52.94 (0.00) 64.86 (0.00) 22.60 (0.06)
ADMP-GCN ST 70.56 (3.33) 57.94 (3.62) 33.55 (0.00) 40.54 (0.00) 70.59 (0.00) 64.86 (0.00) 26.42 (0.00)

1
GCN(*) 65.86 (5.18) 59.62 (3.40) 38.16 (0.00) 40.54 (0.00) 56.86 (0.00) 64.86 (0.00) 21.23 (0.00)
ADMP-GCN ALM 64.49 (6.95) 57.60 (6.63) 27.41 (0.00) 40.54 (0.00) 54.90 (0.00) 64.86 (0.00) 19.31 (0.00)
ADMP-GCN ST 64.03 (3.63) 56.61 (5.44) 38.16 (0.00) 40.54 (0.00) 56.86 (0.00) 64.86 (0.00) 21.23 (0.00)

2
GCN(*) 82.32 (2.97) 69.05 (2.60) 58.73 (0.96) 54.59 (2.91) 57.06 (1.85) 62.16 (1.21) 33.40 (0.68)
ADMP-GCN ALM 48.10 (6.28) 34.06 (10.87) 40.39 (0.95) 44.32 (1.32) 56.86 (1.52) 62.16 (0.00) 21.73 (0.28)
ADMP-GCN ST 85.80 (0.43) 68.22 (4.53) 58.77 (1.08) 55.95 (4.02) 56.86 (1.52) 61.89 (1.46) 33.57 (0.46)

3
GCN(*) 86.51 (2.33) 75.32 (4.18) 58.40 (2.46) 45.95 (3.42) 43.33 (2.23) 44.59 (4.05) 36.29 (0.73)
ADMP-GCN ALM 79.78 (4.17) 53.40 (9.51) 49.67 (1.03) 38.92 (5.43) 46.47 (2.16) 50.00 (3.25) 29.65 (2.22)
ADMP-GCN ST 85.82 (1.76) 73.69 (3.67) 50.79 (1.02) 48.38 (3.07) 47.25 (2.23) 57.30 (5.38) 32.95 (0.45)

4
GCN(*) 75.36 (12.68) 61.77 (20.27) 51.12 (7.56) 47.03 (2.16) 51.57 (2.91) 48.38 (3.51) 37.73 (0.80)
ADMP-GCN ALM 82.37 (4.86) 62.61 (5.71) 49.63 (1.90) 44.59 (4.23) 48.04 (2.67) 52.43 (4.86) 28.99 (1.40)
ADMP-GCN ST 87.08 (0.77) 72.35 (5.44) 53.86 (2.44) 51.35 (3.20) 50.39 (1.76) 57.84 (5.01) 34.74 (0.48)

5
GCN(*) 78.49 (7.79) 55.63 (14.13) 50.07 (1.73) 46.76 (4.53) 45.88 (2.18) 53.51 (6.02) 36.52 (1.01)
ADMP-GCN ALM 82.57 (5.33) 63.05 (9.21) 48.36 (1.86) 48.92 (3.72) 46.67 (4.71) 49.46 (5.93) 29.60 (1.70)
ADMP-GCN ST 86.37 (0.85) 74.53 (3.65) 53.86 (1.39) 52.70 (3.02) 50.59 (1.47) 56.49 (3.07) 32.11 (1.14)

Table 9: The first two rows of the table present the highest accuracy (± standard deviation) for
GCN and ADMP-GCN ST, with the corresponding layer where this accuracy is achieved indicated
in brackets [.]. The final row reports the Oracle accuracy for ADMP-GCN ST.

model Dataset
Photo Computers chamelon Cornell Wisconsin Texas squirrel

GCN 86.51 (2.33) [3] 75.32 (4.18) [3] 58.73 (0.96) [2] 54.59 (2.91) [2] 70.59 (0.00) [0] 64.86 (0.00) [0] 37.73 (0.80) [4]
ADMP-GCN DT 87.08 (0.77) [4] 74.53 (3.65) [5] 58.77 (1.08) [2] 55.95 (4.02) [2] 70.59 (0.00) [0] 64.86 (0.00) [0] 34.74 (0.48) [4]
ADMP-GCN ST - Oracle 96.14 (0.81) 90.15 (0.97) 79.5 (1.31) 74.59 (3.24) 80.39 (0.00) 77.84 (2.36) 69.54 (0.65)

Table 10: Classification accuracy (± standard deviation) on different benchmark node classification
datasets for the baselines based on the GCN backbone. The higher the accuracy (in %) the better the
model. Highlighted are the first, second best results. OOM means Out of memory.

Model Photo Computers chamelon Cornell Wisconsin Texas squirrel
JKNET-CAT Xu et al. (2018b) 87.92 (1.98) [2] 74.68 (6.92) [3] 56.89 (1.77) [2] 46.22 (5.73) [5] 72.55 (0.00) [0] 64.86 (0.00) [0] 41.26 (0.88) [2]
JKNET-MAX Xu et al. (2018b) 88.02 (2.21) [2] 77.97 (2.57) [0] 57.70 (2.79) [2] 45.95 (5.41) [5] 62.75 (2.63) [1] 68.65 (4.05) [5] 41.36 (0.59) [2]
JKNET-LSTM Xu et al. (2018b) 87.74 (1.94) [0] 77.13 (2.80) [1] 53.07 (4.47) [2] 43.78 (3.78) [2] 62.94 (2.23) [1] 64.86 (0.00) [0] 41.32 (0.58) [1]
Residuals - GCNII Chen et al. (2020) 86.99 (2.47) [2] 62.83 (19.61) [2] 61.03 (2.07) [2] 55.14 (8.48) [5] 70.59 (0.00) [0] 64.86 (0.00) [0] 35.90 (1.25) [5]
AdaGCN 64.84 (0.89) 58.68 (1.31) 47.37 (0.48) 70.00 (4.75) 75.88 (1.76) 72.43 (1.62) 29.15 (0.77)
GPR-GNN 89.16 (2.04) [2] 77.43 (3.32) [2] 63.29 (0.91) [2] 62.70 (4.65) [2] 58.82 (1.24) [2] 59.19 (3.72) [2] 38.52 (1.06) [4]

GCN 86.51 (2.33) [3] 75.32 (4.18) [3] 58.73 (0.96) [2] 54.59 (2.91) [2] 70.59 (0.00) [0] 64.86 (0.00) [0] 37.73 (0.80) [4]
ADMP-GCN 87.08 (0.77) [4] 74.53 (3.65) [5] 58.77 (1.08) [2] 55.95 (4.02) [2] 70.59 (0.00) [0] 64.86 (0.00) [0] 34.74 (0.48) [4]

ADMP-GCN w/ Degree 88.15 (1.52) 75.53 (2.09) 58.75 (0.91) 44.32 (4.22) 63.92 (1.30) 56.49 (1.89) 35.07 (1.13)
ADMP-GCN w/ k-core 88.31 (1.31) 75.57 (1.88) 58.97 (1.09) 48.11 (4.65) 68.82 (1.37) 60.81 (3.25) 34.46 (0.70)
ADMP-GCN w/ Walk Count 88.42 (1.51) 76.14 (2.08) 58.29 (1.22) 51.89 (4.32) 67.45 (1.80) 68.65 (2.16) 34.39 (0.89)
ADMP-GCN w/ PageRank 88.21 (1.45) 75.50 (2.23) 58.44 (1.23) 55.14 (4.86) 65.29 (2.16) 60.00 (3.15) 34.68 (0.66)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

F EXPERIMENTS ON GIN

Table 11: Comparison of three GIN training settings: GIN trained separately for each layer; ADMP-
GIN ALM trained across all layers simultaneously using backpropagation on the summed loss;
ADMP-GIN ST trained using Dynamic Programming. (*) denotes single-task training.

#layers model Dataset
Cora CiteSeer CS PubMed Genius ogbn-arxiv

0
GIN(*) 56.40 (0.06) 57.14 (0.09) 87.17 (1.41) 72.49 (0.08) 80.78 (1.03) 48.87 (0.04)
ADMP-GIN ALM 58.00 (0.00) 61.50 (0.00) 86.36 (0.78) 73.20 (0.00) 79.95 (0.10) 36.49 (0.19)
ADMP-GIN ST 56.38 (0.04) 57.17 (0.08) 87.41 (0.95) 72.47 (0.14) 80.47 (0.91) 48.87 (0.04)

1
GIN(*) 75.17 (0.09) 64.79 (0.03) 90.29 (0.99) 74.97 (0.11) 78.42 (4.95) 60.9 (0.15)
ADMP-GIN ALM 74.50 (0.00) 66.50 (0.00) 88.66 (1.18) 75.40 (0.00) 72.07 (17.44) 59.43 (0.73)
ADMP-GIN ST 75.07 (0.06) 64.80 (0.00) 90.82 (1.15) 75.00 (0.00) 77.01 (12.06) 60.85 (0.01)

2
GIN(*) 77.73 (0.99) 65.23 (1.45) 87.93 (0.71) 76.05 (1.14) 78.89 (0.48) 16.23 (9.60)
ADMP-GIN ALM 63.53 (4.80) 60.68 (2.09) 12.90 (8.05) 72.20 (4.11) 79.60 (0.51) 47.63 (3.20)
ADMP-GIN ST 78.07 (0.68) 65.41 (1.91) 87.47 (2.18) 76.04 (0.88) 72.99 (13.48) 10.13 (8.00)

3
GIN(*) 74.40 (1.14) 60.81 (2.20) 82.13 (2.24) 74.97 (1.69) 52.22 (28.47) 6.00 (0.17)
ADMP-GIN ALM 66.99 (2.85) 59.57 (2.57) 17.69 (12.02) 74.15 (2.00) 68.00 (23.98) 27.51 (16.25)
ADMP-GIN ST 76.28 (1.11) 65.13 (1.00) 83.60 (3.72) 76.21 (1.75) 80.04 (0.09) 13.74 (9.66)

4
GIN(*) 67.68 (4.07) 57.54 (2.92) 47.37 (17.10) 73.62 (1.63) 80.05 (0.10) 6.07 (0.21)
ADMP-GIN ALM 68.78 (4.30) 60.12 (2.36) 21.07 (14.15) 74.20 (2.57) 79.36 (1.18) 15.23 (11.85)
ADMP-GIN ST 74.94 (1.58) 65.21 (1.54) 81.33 (2.15) 76.46 (1.04) 80.04 (0.09) 16.02 (10.78)

5
GIN(*) 32.48 (10.47) 54.76 (2.32) 18.56 (11.32) 67.98 (5.80) 80.05 (0.10) 6.19 (0.39)
ADMP-GIN ALM 67.46 (4.34) 59.74 (1.95) 29.16 (13.84) 73.94 (2.42) 79.99 (0.10) 14.61 (12.11)
ADMP-GIN ST 71.34 (2.09) 63.89 (1.39) 79.10 (1.84) 75.75 (1.09) 79.57 (1.40) 15.72 (12.13)

Table 12: Comparison of three GIN training settings: GIN trained separately for each layer; ADMP-
GIN ALM trained across all layers simultaneously using backpropagation on the summed loss;
ADMP-GIN ST trained using Dynamic Programming.(*) denotes single-task training.

#layers model Dataset
Photo Computers chamelon Cornell Wisconsin Texas squirrel

0
GIN(*) 70.19 (2.91) 56.83 (3.89) 33.55 (0.00) 40.54 (0.00) 70.59 (0.00) 64.86 (0.00) 26.42 (0.00)
ADMP-GIN ALM 69.16 (3.27) 56.27 (3.0) 30.7 (0.00) 40.54 (0.00) 52.94 (0.00) 64.86 (0.00) 22.62 (0.05)
ADMP-GIN ST 68.68 (3.36) 56.71 (2.77) 33.55 (0.00) 40.54 (0.00) 70.59 (0.00) 64.86 (0.00) 26.42 (0.00)

1
GIN(*) 82.32 (2.03) 70.9 (2.64) 61.03 (0.10) 40.54 (0.00) 56.86 (0.00) 64.86 (0.00) 47.65 (0.27)
ADMP-GIN ALM 78.79 (2.84) 65.28 (2.17) 56.75 (0.09) 40.54 (0.00) 54.9 (0.00) 64.86 (0.00) 44.12 (0.39)
ADMP-GIN ST 83.35 (1.67) 71.88 (3.80) 60.96 (0.00) 40.54 (0.00) 56.86 (0.00) 64.86 (0.00) 47.65 (0.00)

2
GIN(*) 83.86 (2.19) 63.39 (10.3) 63.57 (1.01) 61.62 (2.65) 54.71 (2.7) 64.86 (2.96) 19.84 (1.59)
ADMP-GIN ALM 25.83 (9.5) 13.04 (8.6) 22.37 (0.00) 40.0 (3.97) 49.61 (3.51) 64.32 (2.91) 20.11 (0.85)
ADMP-GIN ST 68.44 (23.78) 42.65 (17.47) 62.3 (2.18) 59.46 (2.42) 53.33 (2.6) 64.32 (1.62) 19.31 (0.00)

3
GIN(*) 28.63 (13.64) 19.9 (9.2) 26.29 (1.94) 35.68 (2.65) 48.04 (4.04) 60.54 (5.82) 24.84 (2.06)
ADMP-GIN ALM 17.94 (6.7) 23.04 (13.93) 26.29 (1.31) 44.05 (4.53) 50.2 (5.13) 64.59 (7.69) 19.95 (2.4)
ADMP-GIN ST 71.32 (19.8) 54.4 (16.24) 48.84 (2.76) 43.51 (3.51) 56.27 (5.26) 64.59 (14.58) 26.03 (0.52)

4
GIN(*) 14.43 (4.93) 12.51 (8.6) 29.63 (2.48) 43.78 (4.15) 51.57 (1.53) 66.76 (4.69) 20.47 (1.26)
ADMP-GIN ALM 11.81 (6.16) 9.01 (9.74) 21.01 (2.16) 45.14 (4.02) 50.78 (3.22) 64.05 (3.83) 19.18 (1.57)
ADMP-GIN ST 68.49 (16.64) 52.61 (19.82) 44.54 (4.16) 45.14 (4.84) 50.59 (3.14) 68.92 (5.7) 26.59 (1.36)

5
GIN(*) 14.22 (5.42) 12.55 (7.97) 26.47 (3.22) 43.51 (4.43) 50.2 (6.09) 66.22 (1.81) 20.6 (1.25)
ADMP-GIN ALM 15.84 (4.93) 9.81 (7.59) 28.82 (5.47) 42.97 (5.33) 49.41 (4.09) 65.14 (5.05) 19.77 (1.52)
ADMP-GIN ST 68.48 (13.8) 58.96 (9.83) 43.31 (3.01) 44.05 (4.53) 45.69 (5.19) 67.57 (9.44) 29.74 (2.46)

Table 13: The first two rows of the table present the highest accuracy (± standard deviation) for
GCN and ADMP-GCN ST, with the corresponding layer where this accuracy is achieved indicated
in brackets [.]. The final row reports the Oracle accuracy for ADMP-GIN ST.

model Dataset
Cora CiteSeer CS PubMed Genius ogbn-arxiv

GIN 77.73 (0.99) [2] 65.23 (1.45) [2] 90.29 (0.99) [1] 76.05 (1.14) [2] 80.78 (1.03) [0] 60.9 (0.15) [1]
ADMP-GIN ST 78.07 (0.68) [2] 65.41 (1.91) [2] 90.82 (1.15) [1] 76.46 (1.04) [4] 80.47 (0.91) [0] 60.85 (0.01) [1]
ADMP-GIN ST - Oracle 90.76 (0.27) 81.87 (0.63) 97.64 (0.18) 92.73 (0.54) 92.07 (6.13) 71.23 (2.69)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 14: The first two rows of the table present the highest accuracy (± standard deviation) for
GCN and ADMP-GCN ST, with the corresponding layer where this accuracy is achieved indicated
in brackets [.]. The final row reports the Oracle accuracy for ADMP-GIN ST.

model Dataset
Photo Computers chamelon Cornell Wisconsin Texas squirrel

GIN 83.86 (2.19) [2] 70.9 (2.64) [1] 63.57 (1.01) [2] 61.62 (2.65) [2] 70.59 (0) [0] 66.76 (4.69) [4] 47.65 (0.27) [1]
ADMP-GIN ST 83.35 (1.67) [1] 71.88 (3.8) [1] 62.3 (2.18) [2] 59.46 (2.42) [2] 70.59 (0) [0] 68.92 (5.7) [4] 47.65 (0.0) [1]
ADMP-GIN ST - Oracle 95.92 (1.03) 90.4 (2.66) 86.73 (0.9) 73.24 (4.75) 80.78 (1.18) 84.05 (3.07) 78.41 (0.89)

Table 15: Classification accuracy (± standard deviation) on different benchmark node classification
datasets for the baselines based on the GIN backbone. The higher the accuracy (in %) the better the
model. Highlighted are the first, second best results. OOM means Out of memory.

Model Photo Computers chamelon Cornell Wisconsin Texas squirrel
JKNET-MAX Xu et al. (2018b) 82.48 (2.95) [1] 69.62 (3.57) [1] 59.61 (2.24) [2] 47.84 (4.84) [4] 57.84 (2.19) [0] 66.49 (2.16) [5] 23.19 (3.55) [2]
JKNET-LSTM Xu et al. (2018b) 87.02 (1.42) [2] 76.50 (1.44) [2] 62.61 (1.39) [2] 50.54 (3.64) [2] 57.84 (3.64) [4] 70.81 (3.15) [1] 26.34 (4.31) [0]
GPR-GIN 85.82 (1.02) [2] 76.01 (3.2) [3] 67.26 (0.5) [2] 62.97 (2.97) [5] 68.04 (3.62) [4] 73.78 (2.72) [5] 46.78 (1.8) [2]

GIN 83.86 (2.19) [2] 70.9 (2.64) [1] 63.57 (1.01) [2] 61.62 (2.65) [2] 70.59 (0.00) [0] 66.76 (4.69) [4] 47.65 (0.27) [1]
ADMP-GIN 83.35 (1.67) [1] 71.88 (3.8) [1] 62.3 (2.18) [2] 59.46 (2.42) [2] 70.59 (0.00) [0] 68.92 (5.7) [4] 47.65 (0.00) [1]

ADMP-GIN w/ Degree 84.15 (1.17) 74.55 (2.89) 64.43 (1.47) 46.49 (4.65) 66.47 (2.83) 69.46 (3.21) 47.65 (0.00)
ADMP-GIN w/ k-core 84.08 (1.09) 74.58 (3.56) 64.65 (1.45) 46.76 (4.84) 70.78 (4.68) 71.89 (4.22) 47.65 (0.00)
ADMP-GIN w/ Walk Count 84.03 (1.31) 73.85 (3.70) 63.38 (1.53) 58.11 (6.07) 63.14 (3.90) 74.86 (2.97) 47.65 (0.00)
ADMP-GIN w/ PageRank 84.36 (1.32) 74.27 (2.97) 63.31 (1.1) 55.41 (3.68) 65.49 (3.3) 70.81 (3.78) 47.65 (0.00)

16

	Introduction
	Related Work
	Graph Neural Networks
	Dynamic-Depth Neural Networks

	ADMP-GNN: Adaptive Depth Message-Passing based GNN
	Node-Specific Depth Analysis in Graph Neural Networks
	Adaptive Message-Passing Layer Integration
	Training Scheme of ADMP-GNN
	Oracle Accuracy: Empirical Justification for Node-Specific Depth in Neural Networks
	Generalization To Test Nodes

	Experimental Setup
	Datasets
	Baselines
	Implementation Details

	Experimental Results
	Conclusion
	Node-specific depth analysis in graph neural networks
	Time Complexity
	Dataset Statistics
	Hyperparameter configurations
	Additional Experiments on GCN
	Experiments on GIN

