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ABSTRACT

Generative flow networks (GFlowNets), as an emerging technique, can be used as
an alternative to reinforcement learning for exploratory control tasks. GFlowNet
aims to generate distribution proportional to the rewards over terminating states,
and to sample different candidates in an active learning fashion. GFlowNets need
to form a DAG and compute the flow matching loss by traversing the inflows and
outflows of each node in the trajectory. No experiments have yet concluded that
GFlowNets can be used to handle continuous tasks. In this paper, we propose gen-
erative continuous flow networks (CFlowNets) that can be applied to continuous
control tasks. First, we present the theoretical formulation of CFlowNets. Then,
a training framework for CFlowNets is proposed, including the action selection
process, the flow approximation algorithm, and the continuous flow matching loss
function. Afterward, we theoretically prove the error bound of the flow approx-
imation. The error decreases rapidly as the number of flow samples increases.
Finally, experimental results on continuous control tasks demonstrate the perfor-
mance advantages of CFlowNets compared to many reinforcement learning meth-
ods, especially regarding exploration ability.

1 INTRODUCTION

As an emerging technology, generative flow networks (GFlowNets) (Bengio et al., 2021a;b) can
make up for the shortcomings of reinforcement learning (Kaelbling et al., 1996; Sutton & Barto,
2018) on exploratory tasks. Specifically, based on the Bellman equation (Sutton & Barto, 2018),
reinforcement learning is usually trained to maximize the expectation of future rewards; hence the
learned policy is more inclined to sample action sequences with higher rewards. In contrast, the
training goal of GFlowNets is to define a distribution proportional to the rewards over terminating
states, i.e., the parent states of the final states, rather than generating a single high-reward action
sequence (Bengio et al., 2021a). This is more like sampling different candidates in an active learning
setting (Bengio et al., 2021b), thus better suited for exploration tasks.

GFlowNets construct the state transitions of trajectories into a directed acyclic graph (DAG) struc-
ture. Each node in the graph structure corresponds to a different state, and actions correspond
to transitions between different states, that is, an edge connecting different nodes in the graph.
For discrete tasks, the number of nodes in this graph structure is limited, and each edge can only
correspond to one discrete action. However, in real environments, the state and action spaces are
continuous for many tasks, such as quadrupedal locomotion (Kohl & Stone, 2004), autonomous
driving (Kiran et al., 2021; Shalev-Shwartz et al., 2016; Pan et al., 2017), or dexterous in-hand ma-
nipulation (Andrychowicz et al., 2020). Moreover, the reward distributions corresponding to these
environments may be multimodal, requiring more diversity exploration. The needs of these envi-
ronments closely match the strengths of GFlowNets. (Bengio et al., 2021b) proposes an idea for
adapting GFlowNets to continuous tasks by replacing sums with integrals for continuous variables,
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and they suggest the use of integrable densities and detailed balance (DB) or trajectory balance
(TB) Malkin et al. (2022) criterion to obtain tractable training objectives, which can avoid some
integration operations. However, this idea has not been verified experimentally.

In this paper, we propose generative Continuous Flow Networks, named CFlowNets for short, for
continuous control tasks to generate policies that can be proportional to continuous reward func-
tions. Applying GFlowNets to continuous control tasks is exceptionally challenging. In generative
flow networks, the transition probability is defined as the ratio of action flow and state flow. For
discrete state and action spaces, we can form a DAG and compute the state flow by traversing a
node’s incoming and outgoing flows. Conversely, it is impossible for continuous tasks to traverse all
state-action pairs and corresponding rewards. To address this issue, we use important sampling to
approximate the integrals over inflows and outflows in the flow-matching constraint, where we use
a deep neural network to predict the parent nodes of each state in the sampled trajectory. The main
contributions of this paper are summarized as the following:

Main Contributions: 1) We extend the theoretical formulation and flow matching theorem of pre-
vious GFlowNets to continuous scenarios. Based on this, a loss function for training CFlowNets is
presented; 2) We propose an efficient way to sample actions with probabilities approximately pro-
portional to the output of the flow network, and propose a flow sampling approach to approximate
continuous inflows and outflows, which allows us to construct a continuous flow matching loss; 3)
We theoretically analyze the error bound between sampled flows and inflows/outflows, and the tail
becomes minor as the number of flow samples increases; 4) We conduct experiments based on con-
tinuous control tasks to demonstrate that CFlowNets can outperform current state-of-the-art RL algo-
rithms, especially in terms of exploration capabilities. To the best of our knowledge, our work is the
first to empirically demonstrate the effectiveness of flow networks on continuous control tasks. The
codes are available at http://gitee.com/mindspore/models/tree/master/research/gflownets/cflownets

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

A stochastic, discrete-time and sequential decision task can be described as a Markov Decision
Process (MDP) , which is canonically formulated by the tuple:

M = 〈S,A, P,R, γ〉. (1)

In the process, s ∈ S represents the state space of the environment. At each time step, agent receives
a state s and selects an action a on the action space A. This results in a transition to the next state
s′ according to the state transition function P (s′|s, a) : S × A × S → [0, 1]. Then the agent gets
the reward r based on the reward function R(s, a) : S × A → R. A stochastic policy π maps
each state to a distribution over actions π(·|s) and gives the probability π(a|s) of choosing action
a in state s. The agent interacts with the environment by executing the policy π and obtaining
the admissible trajectories {(st, at, rt, st+1)}nt=1, where n is the trajectory length. The goal of an
agent is to maximize the discounted return Es0:n,a0:n [

∑∞
t=0 γ

trt | s0 = s, a0 = a, π], where E is
the expectation over the distribution of the trajectories and γ ∈ [0, 1) is the discount factor.

2.2 GENERATIVE FLOW NETWORK

GFlowNet sees the MDP as a flow network. Define s′ = T (s, a) and F (s) as the node’s transition
and the total flow going through s. Define an edge/action flow F (s, a) = F (s → s′) as the flow
through an edge s→ s′. The training process of vanilla GFlowNets needs to sum the flow of parents
and children through nodes (states), which depends on the discrete state space and discrete action
space. The framework is optimized by the following flow consistency equations:∑

s,a:T (s,a)=s′

F (s, a) = R (s′) +
∑

a′∈A(s′)

F (s′, a′) , (2)

which means that for any node s, the incoming flow equals the outgoing flow, which is the total flow
F (s) of node s.
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3 CFLOWNETS: THEORETICAL FORMULATION

Considering a continuous task with tuple (S,A), where S denotes the continuous state space and A
denotes the continuous action space. Define a trajectory τ = (s1, ..., sn) in this continuous task as a
sequence sampled elements of S such that every transition at : st → st+1 ∈ A. Further, we define
an acyclic trajectory τ = (s1, ..., sn) as a trajectory satisfies the acyclic constraint: ∀sm ∈ τ, sk ∈
τ,m 6= k, we have sm 6= sk. Denote s0 and sf respectively as the initial state and the final state
related with the continuous task (S,A), we define the complete trajectory as any sampled acyclic
trajectory from (S,A) starting in s0 and ending in sf . Correspondingly, a transition s → sf into
the final state is defined as the terminating transition, and F (s→ sf ) is a terminating flow.

A trajectory flow F (τ) : τ 7→ R+ is defined as any nonnegative function defined on the set of
complete trajectories τ . For each trajectory τ , the associated flow F (τ) contains the number of
particles (Bengio et al., 2021b) sharing the same path τ . In addition, the tuple (S,A, F ) is called
a continuous flow network. Let T (s, a) = s′ indicate an action a that could make a transition from
state s to attain s′. Then we make the following assumptions.
Assumption 1. Assume that the continuous take (S,A) is an “acyclic” task, which means that
arbitrarily sampled trajectories τ are acyclic, i.e.,

si 6= sj ,∀si, sj ∈ τ = (s0, ..., sn), i 6= j.

Assumption 2. Assume the flow function F (s, a) is Lipschitz continuous, i.e.,

|F (s, a)− F (s, a′)| ≤ L||a− a′||, a, a′ ∈ A, (3)

|F (s, a)− F (s′, a)| ≤ L||s− s′||, s, s′ ∈ S, (4)

where L is a constant.
Assumption 3. Assume that for any state pair (st, st+1), there is a unique action at such that
T (st, at) = st+1, i.e., taking action at in st is the only way to get to st+1. Hence we can define
st := g(st+1, at), where g(·) is a transition function. And assume actions are the translation actions.

The necessity and rationality of Assumptions 1-3 are analyzed in the appendix. Under Assumption 1,
we define the parent set P(st) of a state st as the set that contains all of the direct parents of st that
could make a direct transition to st, i.e., P(st) = {s ∈ S : T (s, a ∈ A) = st}. Similarly, define
the child set C(st) of a state st as the set contains all of the direct children of st that could make a
direct transition from st, i.e., C(st) = {s ∈ S : T (st, a ∈ A) = s}. Then, we have the following
continuous flow definitions, where Assumptions 2-3 make these integrals integrable and meaningful.
Definition 1 (Continuous State Flow). The continuous state flow F (s) : S 7→ R is the integral of
the complete trajectory flows passing through the state:

F (s) =

∫
τ :s∈τ

F (τ)dτ. (5)

Definition 2 (Continuous Inflows). For any state st, its inflows are the integral of flows that can
reach state st, i.e.,∫

s∈P(st)
F (s→ st)ds =

∫
s:T (s,a)=st

F (s, a)ds = F (st) =

∫
a:T (s,a)=st

F (s, a)da, (6)

where a : s→ st and s = g(st, a) since Assumption 3 holds.
Definition 3 (Continuous Outflows). For any state st, the outflows are the integral of flows passing
through state st with all possible actions a ∈ A, i.e.,∫

s∈C(st)
F (st → s)ds = F (st) =

∫
a∈A

F (st, a)da. (7)

Based on the above definitions, we can define the transition probability P (s→ s′|s) of edge s→ s′

as a special case of conditional probability introduced in Bengio et al. (2021b). In particular, the
forward transition probability is given by

PF (st+1|st) := P (st → st+1|st) =
F (st → st+1)

F (st)
. (8)
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Similarly, the backwards transition probability is given by

PB(st|st+1) := P (st → st+1|st+1) =
F (st → st+1)

F (st+1)
. (9)

For any trajectory sampled from a continuous task (S,A), we have

∀τ = (s1, ..., sn), PF (τ) :=

n−1∏
t=1

PF (st+1|st) (10)

∀τ = (s1, ..., sn), PB(τ) :=

n−1∏
t=1

PB(st|st+1), (11)

and we further have

∀s ∈ S\{sf},
∫
s′∈C(s)

PF (s′|s)ds′ = 1 and ∀s ∈ S\{s0},
∫
s′∈P(s)

PB(s′|s)ds′ = 1. (12)

Given any trajectory τ = (s0, ..., sn, s) that starts in s0 and ends in s, a Markovian flow (Bengio
et al., 2021b) is defined as the flow that satisfies

P (s→ s′|τ) = P (s→ s′|s) = PF (s′|s),

and the corresponding flow network (S,A, F ) is called a Markovian flow network (Bengio et al.,
2021b). Then, we present Theorem 1 proved in the appendix B.1, which is an extension of Proposi-
tion 19 in Bengio et al. (2021b) to continuous scenarios.

Theorem 1 (Continuous Flow Matching Condition). Consider a non-negative function F̂ (s, a) tak-
ing a state s ∈ S and an action a ∈ A as inputs. Then we have F̂ corresponds to a flow if and only
if the following continuous flow matching conditions are satisfied:

∀s′ > s0, F̂ (s′) =

∫
s∈P(s′)

F̂ (s→ s′)ds =

∫
s:T (s,a)=s′

F̂ (s, a : s→ s′)ds

∀s′ < sf , F̂ (s′) =

∫
s′′∈C(s′)

F̂ (s′ → s′′)ds′′ =

∫
a∈A

F̂ (s′, a)da.

(13)

Furthermore, F̂ uniquely defines a Markovian flow F matching F̂ such that

F (τ) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
. (14)

Theorem 1 means that as long as any non-negative function satisfies the flow matching conditions,
a unique flow is determined. Therefore, for sparse reward environments, i.e., R(s) = 0, ∀s 6= sf ,
we can obtain the target flow by training a flow network that satisfies the flow matching conditions.
Such learning machines are called CFlowNets, and we have the following continuous loss function:

L(τ) =

sf∑
st=s1

(∫
st−1∈P(st)

F (st−1 → st)dst−1 −R(st)−
∫
st+1∈C(st)

F (st → st+1)dst+1

)2

.

However, obviously, the above continuous loss function cannot be directly applied in practice. Next,
we propose a method to approximate the continuous loss function based on the sampled trajectories
to obtain the flow model.

4 CFLOWNETS: TRAINING FRAMEWORK

For continuous tasks, it is usually difficult to access all state-action pairs to calculate continuous
inflows and outflows. In the following, we propose the CFlowNets training framework to address
this problem, which includes an action sampling process, a flow matching approximation process.
Then, CFlowNets can be trained based on an approximate flow matching loss function.

4



Published as a conference paper at ICLR 2023

CFlowNet

... ...

... ...

... ...

... ...
CFlowNet

Continuous Flow  
Matching Loss 

Randomly Sample Continuous Action

Randomly Sample Continuous Action

Inflows

Inflows
Approximation

Outflows
Approximation

... ...... ...

Probability 
Distribution

Action Probability 
Buffer     

CFlowNet

Forward
Propagation

Environment

Interaction TrainingFlow Sampling

Outflows / Reward

Figure 1: Overall framework of CFlowNets. Left: During the environment interaction phase, we
sample actions to update states with probabilities proportional to the reward according to CFlowNet.
Middle: We randomly sample actions to approximately calculate the inflows and outflows, where a
DNN is used to estimate the parent states. Right: Continuous flow matching loss is used to train the
CFlowNet based on making inflows equal to outflows or reward.

4.1 OVERALL FRAMEWORK

The overview framework of CFlowNets is shown in Figure 1, including the environment interaction,
flow sampling, and training procedures. During the environment interaction phase (Left part of Fig-
ure 1), we sample an action probability buffer based on the forward-propagation of CFlowNets. We
name this process the action selection procedure, as detailed in Section 4.2. After acquiring the ac-
tion, the agent can interact with the environment to update the state, and this process repeats several
steps until the complete trajectory is sampled. Once a buffer of complete trajectories is available, we
randomly sample K actions and compute the child states to approximately calculate the outflows.
For the inflows, we use these sampled actions together with the current state as the input to the deep
neural network G to estimate the parent states. Based on these, we can approximately determine
the inflows. We name this process the flow matching approximation procedure (Middle part of Fig-
ure 1), as detailed in Section 4.3. Finally, based on the approximate inflows and outflows, we can
train a CFlowNet based on the continuous flow matching loss function (Right part of Figure 1), as
details in Section 4.4. The pseudocode is provided in Appendix C.

4.2 ACTION SELECTION PROCEDURE

Starting from an empty set, CFlowNets aim to obtain complete trajectories τ = (s0, s1, ..., sf ) ∈ T
by iteratively sampling at ∼ π(at|st) = F (st,at)

F (st)
with tuple {(st, at, rt, st+1)}ft=0. However, it is

difficult to sample trajectories strictly according to the corresponding probability of at, since the
actions are continuous, we cannot get the exact action probability distribution function based on
the flow network F (st, at). To solve this problem, at each state st, we first uniformly sample M
actions from A and generate an action probability buffer P = {F (st, ai)}Mi=1, which is used as
an approximation of action probability distributions. Then we sample an action from P according
to the corresponding probabilities of all actions. Obviously, actions with larger F (st, ai) will be
sampled with higher probability. In this way, we approximately sample actions from a continuous
distribution according to their corresponding probabilities.
Remark 1. After the training process, for tasks that require a larger reward, we can sample actions
with the maximum flow output in P during the test process to obtain a relatively higher reward. How
the output of the flow model is used is flexible, and we can adjust it for different tasks.

4.3 FLOW MATCHING APPROXIMATION

Once a batch of trajectories B is available, to satisfy flow conditions, we require that for any node
st, the inflows

∫
a:T (s,a)=st

F (s, a)da equals the outflows
∫
a∈A F (st, a)da, which is the total flow
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F (st) of node st. However, obviously, we cannot directly calculate the continuous inflows and
outflows to complete the flow matching condition. An intuitive idea is to discretize the inflows
and outflows based on a reasonable approximation and match the discretized flows. To do this, we
sample K actions independently and uniformly from the continuous action space A and calculate
corresponding F (st, ak), k = 1, ...,K as the outflows, i.e., we use the following approximation:∫

a∈A
F (st, a)da ≈ µ(A)

K

K∑
k=1

F (st, ak), (15)

where µ(A) denotes the measure of the continuous action space A.

By contrast, an approximation of inflow is more difficult since we should find the parent states first.
To solve this problem, we construct a deep neural network G (named “retrieval” neural network)
parameterized by φ with (st+1, at) as the input while st as the output, and train this network based
on B with the MSE loss. That is, we want use G to fit function g(·). The network G is usually easy
to train since we consider tasks satisfy Assumption 3, and we can obtain a high-precision network
G through simple pre-training. As the training progresses, we can also occasionally update G based
on the sampled trajectories to ensure accuracy. Then, the inflows can be calculated approximately:∫

a:T (g(st,a),a)=st

F (g(st, a), a)da ≈ µ(A)

K

K∑
k=1

F (Gφ(st, ak), ak). (16)

Next, by assuming that the flow function F (s, a) is Lipschitz continuous in Assumption 2, we
could provide a non-asymptotic analysis for the error between the sample inflows/outflows and the
true inflows/outflows. Theorem 2 establishes the error bound between the sample outflows (resp.
inflows) and the actual outflows (resp. inflows) in the tail form and shows that the tail is decreasing
exponentially. Furthermore, the tail gets much smaller with the increase of K, which means the
sample outflows (resp. inflows) are a good estimation of the actual outflows (resp. inflows).
Theorem 2. Let {ak}Kk=1 be sampled independently and uniformly from the continuous action space
A. AssumeGφ? can optimally output the actual state st with (st+1, at). For any bounded continuous
action a ∈ A and any state st ∈ S, we have

P

(∣∣∣µ(A)

K

K∑
k=1

F (st, ak)−
∫
a∈A

F (st, a)da
∣∣∣ ≥ t) ≤ 2 exp

(
− Kt2

2(Lµ(A)diam(A))2

)
(17)

and

P

(∣∣∣µ(A)

K

K∑
k=1

F (Gφ?(st, ak), ak)−
∫
a:T (s,a)=st

F (s, a)da
∣∣∣ ≥ t)

≤ 2 exp

(
− Kt2

2
(
Lµ(A)(diam(A) + diam(S))

)2
)
, (18)

whereL is the Lipschitz constant, diam(A) denotes the diameter of the action spaceA and diam(S)
denotes the diameter of the state space S.

4.4 LOSS FUNCTION

Based on (15) and (16), the continuous loss function can be approximated by

Lθ(τ) =

sf∑
st=s1

[
K∑
k=1

Fθ(Gφ(st, ak), ak)− λR(st)−
K∑
k=1

Fθ(st, ak)

]2
, (19)

where θ is the parameter of the flow network F (·) and λ = K/µ(A). Note that in many tasks we
cannot obtain exact µ(A). For such tasks, we can directly set λ to 1, and then adjust the reward
shaping to ensure the convergence of the algorithm1.

1A commonly used reward shaping method is to multiply the reward by a constant and adjust the reward to
an appropriate range to ensure better convergence. Therefore, after setting λ to 1, a reasonable reward shaping
operation can also compensate for the influence of λ error.
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It is noteworthy that the magnitude of the state flow at different locations in the trajectory may not
match. For example, the initial node flow is likely to be larger than the ending node flow. To solve
this problem, inspired the log-scale loss introduced in GFlowNets (Bengio et al., 2021a), we can
modify (19) into:

Lθ(τ) =

sf∑
st=s1

{
log

[
ε+

K∑
k=1

expF log
θ (Gφ(st, ak), ak)

]

− log

[
ε+ λR(st) +

K∑
k=1

expF log
θ (st, ak)

]}2

, (20)

where ε is a hyper-parameter that helps to trade off small versus large flows and helps avoid the
numerical problem of taking the logarithm of tiny flows. Note that Theorem 2 cannot be used to
guarantee the unbiasedness of (20) because logE(x) 6= E log(x). But experiments show that this
approximation works well.

5 RELATED WORKS

Generative Flow Networks. Generative flow networks are proposed to enhance exploration capa-
bilities by generating a distribution proportional to the rewards over terminating states (Bengio et al.,
2021b;a). Since the network only samples actions based on the distribution of the corresponding re-
wards, rather than focusing only on actions that maximize rewards such as reinforcement learning, it
can perform well on tasks with more diverse reward distributions, and has been successfully applied
to molecule generation (Bengio et al., 2021a; Malkin et al., 2022; Jain et al., 2022), discrete proba-
bilistic modeling (Zhang et al., 2022b), structure learning (Deleu et al., 2022), causal discovery Li
et al. (2022) and graph neural network Li et al. (2023). The connection between deep generative
models and GFlowNets is discussed in Zhang et al. (2022a) through the lens of Markov trajectory
learning. In Bengio et al. (2021b), an idea is proposed for adapting GFlowNets to continuous tasks
by replacing sums with integrals for continuous variables. Malkin et al. (2022) and Bengio et al.
(2021b) propose detailed balance (DB) and trajectory balance (TB) objectives, which use paramet-
ric forward and backward policies in the objective function. These new objective functions do not
require evaluating the flow model on multiple parents of a state, which is more efficient, especially
for high-dimensional environments. Malkin et al. (2022) and Bengio et al. (2021b) mentioned that
these objective functions can also be used in continuous scenarios by replacing the policy likelihoods
in the objective with probability densities. A possible disadvantage is that it is not easy to estimate
PF and PB in a continuous environment, since the state space is much larger than in a discrete sce-
nario, and a small error in modeling probability densities can greatly affect the final performance.
How to combine DB and TB with CFlowNets will be a worthy future work.

Continuous Reinforcement Learning. Policy gradient algorithms are widely used for rein-
forcement learning problems with continuous action spaces. The deterministic policy gradient
(DPG) (Silver et al., 2014) algorithm is an actor-critic (Grondman et al., 2012; Rosenstein et al.,
2004) method that uses an estimate of the learned value Q(s, a) to train a deterministic policy
µ : S → A parameterized by θµ. Compared with CFlowNets, the policy is updated by apply-
ing the chain rule to the expected return J from the start distribution with respect to the policy
parameters:

∇θµJ ≈ ED
[
∇θµQ

(
s, a | θQ

)∣∣
a=µ(s|θµ)

]
= ED

[
∇aQ

(
s, a | θQ

)∣∣
a=µ(st)

∇θµµ (s | θµ)
]
,

(21)

where D is the replay buffer. The policy aims to maximize the expectation of future rewards, which
are estimated byQ-learning. In this setting, the trajectories generated by the policy may be relatively
homogeneous. However, the training goal of CFlowNets is to define a distribution proportional to
the rewards over terminating states, resulting in more diverse trajectories that are beneficial for
exploring the environment.

Later, deep DPG (DDPG) (Lillicrap et al., 2015) improves DPG and has good sample efficiency but
suffers from extreme brittleness and hyperparameter sensitivity. Therefore, it is difficult to extend
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DDPG to complex, high-dimensional tasks. To improve DDPG, twin delayed DDPG (TD3) (Fu-
jimoto et al., 2018) adopts an actor-critic framework and considers the interaction between value
update and function approximation error and in the policy. There are also some policy gradi-
ent (Sutton et al., 1999; Kohl & Stone, 2004; Khadka & Tumer, 2018) based algorithms that can be
adapted for continuous tasks, such as proximal policy optimization (PPO) (Schulman et al., 2017)
algorithms, asynchronous advantage actor-critic (A3C) (Stooke & Abbeel, 2018), and importance
weighted actor-learner architecture (IMPALA) (Espeholt et al., 2018). PPO has the benefits of trust
region policy optimization (Schulman et al., 2015), enabling multiple batches of data to be updated
together. Therefore, it is simpler to implement, more general, and has lower sample complexity.
Recently, phasic policy gradient (PPG) (Cobbe et al., 2021) is proposed to decouple the training
between policy and value function while keeping their feature sharing, and PPG optimizes each
objective with an appropriate level of sample reuse to improve sample efficiency. Most of these im-
proved policy gradient methods can be classified as aiming at maximizing reward, so none of them
are better suited for exploration tasks than CFlowNets.

Furthermore, some maximum entropy (Pitis et al., 2020; Haarnoja et al., 2018a; Hazan et al., 2019;
Yarats et al., 2021) based reinforcement learning algorithms can also be adapted for continuous
tasks, such as soft actor-critic (SAC) (Haarnoja et al., 2018b). By maximizing the expected reward
and entropy, the actor network of SAC can successfully complete tasks while acting as randomly
as possible. The difference between CFlowNets and SAC is: 1) SAC selects actions by a Gaussian
policy, which is less expressive than using a general unnormalized action p.d.f. F (s, a); 2) In the
general case, SAC learns to be proportional to the long-term return, which generates the trajectory
distribution satisfying p(τ) ∝ R(τ) with R(τ) is the return of τ . CFlowNets considers all possible
trajectories that lead to a terminal state sf , and learn the policy to generate sf with p(sf ) ∝ R(sf ).

6 EXPERIMENTS

To demonstrate the effectiveness of the proposed CFlowNets, we conduct experiments on several
continuous control tasks with sparse rewards, including Point-Robot-Sparse, Reacher-Goal-Sparse,
and Swimmer-Sparse. The visualization of these environments is shown in Figures 7, 8 and 9. Then
we compare CFlowNets with a few state-of-the-art baseline RL algorithms, such as DDPG (Lillicrap
et al., 2015), TD3 (Fujimoto et al., 2018), PPO (Schulman et al., 2017), and SAC (Haarnoja et al.,
2018b). More implementation details are provided in Appendix D.
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Figure 2: Reward distributions on
Point-Robot-Sparse Task.

Figure 2 illustrates the distributions of learned policies for
CFlowNets and RL algorithms. All curves are max-min nor-
malized. The gray curve is the ground truth of reward distri-
bution generated by the agent’s different actions when it goes
to coordinates (7, 7), which indicates that the optimal action
here is to go right or up. The red curve shows the flow net-
work output of CFlowNets under different actions, indicating
that CFlowNets have an excellent fitting ability to the reward.
In contrast, other reinforcement learning algorithms have dif-
ficulty fitting the actual reward distribution well.

Figures 3(a)-(c) show the number of valid-distinctive trajec-
tories explored as training progresses in Point-Robot-Sparse,
Reacher-Goal-Sparse, and Swimmer-Sparse environment, respectively. After a certain number of
training epochs, 10000 trajectories are collected. A valid-distinctive trajectory is defined as a re-
ward above a threshold δr while the MSE between the trajectory and other trajectories is greater
than another threshold δmse. That is, if the returns of both trajectories are high, but the two are
close and the MSE is small, we consider it only one valid-distinctive exploration. δr in Point-
Robot-Sparse, Reacher-Goal-Sparse, and Swimmer-Sparse is set as 0.5, -0.2, 5.0, respectively. δmse
in Point-Robot-Sparse, Reacher-Goal-Sparse, and Swimmer-Sparse is set as 0.02, 4.0, 1.0, respec-
tively. As can be seen from the figure, DDPG, TD3 and PPO have the worst exploration ability, only
one valid-distinctive trajectory is generated. SAC explores better at the beginning of training, and
decreases as the training progresses and gradually converges. In contrast, the exploration ability of
CFlowNets is very outstanding, the number of trajectories explored far exceeds other algorithms,
and the exploration ability has been stable as the training progresses.
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(a) Point-Robot-Sparse
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(b) Reacher-Goal-Sparse
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(c) Swimmer-Sparse
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Figure 3: Comparison results of CFlowNets, DDPG, TD3, SAC and PPO on Point-Robot-Sparse,
Reacher-Goal-Sparse, and Swimmer-Sparse tasks. Top: Number of valid-distinctive trajectories
generated under 10000 explorations. Bottom: The average reward of different methods.

Figures 3(d)-(f) indicate the rewards during the training process in Point-Robot-Sparse, Reacher-
Goal-Sparse, and Swimmer-Sparse environment, respectively. The shaded region represents 95%
confidence interval across 5 runs. Figure 3(d) and Figure 3(e) show that CFlowNets has the fastest
and more stable upward trend, and the final reward is ahead of that of other algorithms by a large
margin. In contrast, CFlowNets do not perform as well as other algorithms in Figure 3(f). Since
the rewards in Point-Robot-Sparse and Reacher-Goal-Sparse are more evenly distributed, so these
two tasks are more inclined to exploration. CFlowNets has better exploration ability and hence can
converge stably. As for Swimmer-Sparse, its reward distribution is relatively steep, and sampling
near the maximum reward can achieve faster convergence. It is reasonable for CFlowNets to perform
worse than RL on this task in terms of reward. However, in this environment, CFN can still maintain
a good exploration ability.

7 CONCLUSION

In this paper, we propose generative continuous flow networks to enhance exploration in continuous
control tasks. The theoretical formulation of CFlowNets is first presented. Then, a training frame-
work for CFlowNets is proposed, including the action selection process, the flow approximation
algorithm, and the continuous flow matching loss function. Theoretical analysis shows that the error
of the flow approximation decreases rapidly as the number of flow samples increases. Experimental
results on continuous control tasks illustrate the performance advantages of CFlowNets compared to
many reinforcement learning methods. Especially in the exploration ability, the effect of CFlowNets
far exceeds other state-of-the-art reinforcement learning algorithms.

Limitations: Similar to GFlowNets, CFlowNets aims to sample actions according to the flow net-
work, rather than selecting actions with maximizing rewards. Therefore, CFlowNets are more suit-
able for exploration-biased tasks. It does not perform as well as reinforcement learning on tasks
that aim to maximize reward. Of course, the purpose of CFlowNets is not to completely replace
reinforcement learning, but as a supplement to reinforcement learning, giving a new option for con-
tinuous control tasks. Future work: Future work will be how to combine CFlowNets with DB and
TB objective functions to improve training efficiency.
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A DISCUSSIONS

A.1 WHY IS ASSUMPTION 1 NECESSARY AND REASONABLE?

Necessity: For most environments, it is difficult to generate cycles when sampling a trajectory in a
continuous space. Since ∀t, µ({s0, ..., st}) = 0 and µ(A) = µ(A\{s0, ..., st}), that is, the proba-
bility of st+1 ∈ {s0, ..., st} is very small. However, cycles often arise when certain environments
have some special constraints. For example, a simple pendulum task (see Figure 4), the action is
to control the pendulum to rotate from the previous position to the next position at a certain angle.
For this task, it is difficult for a pendulum to rotate to exactly the same position in continuous space.
However, if a wall is added to the task, the pendulum can easily go to the same position (see Fig-
ure 5), i.e. a cycle will occur. Therefore, we still need to add an acyclic assumption to make the
theory and performance of CFlowNets guaranteed.

Rationality: This assumption is reasonable because for many continuous environments it is difficult
to form cycles in trajectories without special constraints. Even for tasks prone to form cycles, we
can directly add time steps in the state space to satisfy this assumption.

Figure 4: Pendulum. It is difficult for the state to be completely consistent in this continuous space.

Figure 5: Pendulum-with-Wall. The state becomes consistent when reaching the wall.
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Figure 6: Accumulated maximum Lipschitz constant of flow network F (s, a).

A.2 WHY IS ASSUMPTION 2 NECESSARY AND REASONABLE?

Necessity: This assumption is mainly used to guarantee the existence of flow-related integrals, and
to ensure that Theorem 2 holds.

Rationality: We justify this assumption based on simulations. As shown in Figure 6, we calcu-
late |F (s,a)−F (s,a′)|

‖a−a′‖ and |F (s,a)−F (s′,a)|
‖s−s′‖ of each sample tuple (s, a, a′) and (s, s′, a) to analysis the

Lipschitz constant, respectively. Their accumulated maximum Lipschitz constants are shown in Fig-
ures 6 (a) and (b), respectively. Clearly, there exists a finite Lipschitz constant for our flow network.
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In addition, Lipschitz continuous is a common assumption of neural networks, just some quick ex-
amples: Du et al. (2019); Jacot et al. (2018); Allen-Zhu et al. (2019); Alistarh et al. (2018) all use
this assumption to prove the convergence of algorithms.

A.3 WHY IS ASSUMPTION 3 NECESSARY AND REASONABLE?

Necessity: This assumption is used in Definition 2 and enables the retrieval neural network to fit
the function g(s, a). While there is a one-to-one correspondence between most environment state
transitions and actions, there are still some special cases where, given a state pair (s, s′), there can
be an infinite number of actions. For example: for Pendulum-with-Wall in Figure 5, after reaching
the wall, continuing to increase the action will not continue to change the state s′. In addition, a
special case of the translation action could be T (s, a) = s+a or using the special linear group, such
that Definition 2 and 3 hold. The translation action is used to ensure that there is no Jacobian term
in the continuous flow definition.

Rationality: This assumption is a property of many environments and therefore reasonable. For
environments that do not satisfy this assumption, we can try to satisfy this assumption by modifying
the state to add more information. For example, we can add the duration of the action to the state
space of Pendulum-with-Wall task in Figure 5. Even if the action increases after reaching the wall,
the position information will not be changed, but the duration will increase, so that the state transition
and the action will correspond one-to-one. The worst case is that we cannot change the environment
to satisfy the assumption. At this time, we mainly need to solve the problem that the output of the
retrieval neural network G cannot be multiple when the input is fixed. One of our conjectures is that
maybe we can alleviate this problem by adding some small random noise to the input, but this idea
has not been tested.

B PROOFS

B.1 PROOF OF THEOREM 1

Theorem 1. (Continuous Flow Matching Condition). Consider a non-negative function F̂ (s, a)

taking a state s ∈ S and an action a ∈ A as inputs. Then we have F̂ corresponds to a flow if and
only if the following continuous flow matching conditions are satisfied:

∀s′ > s0, F̂ (s′) =

∫
s∈P(s′)

F̂ (s→ s′)ds =

∫
s:T (s,a)=s′

F̂ (s, a : s→ s′)ds

∀s′ < sf , F̂ (s′) =

∫
s′′∈C(s′)

F̂ (s′ → s′′)ds′′ =

∫
a∈A

F̂ (s′, a)da.

(22)

Furthermore, F̂ uniquely defines a Markovian flow F matching F̂ such that

F (τ) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
. (23)

Proof. The proof is an extension of that of Proposition 19 in Bengio et al. (2021b) to the continuous
case. We first prove the necessity part of the proof. Given a flow network, for non-initial and non-
final nodes on a trajectory, the set of complete trajectories passing through state s′ is the union of
the sets of trajectories going through s → s′ for all s ∈ P(s′), and also is the union of the sets of
trajectories going through s′ → s′′ for all s′′ ∈ C(s′), i.e.,

{τ ∈ T : s′ ∈ τ} =
⋃

s∈P(s′)

{τ ∈ T : s→ s′ ∈ τ} =
⋃

s′′∈C(s′)

{τ ∈ T : s′ → s′′ ∈ τ}.

Then we have

F (s′) =

∫
τ :s′∈τ

F (τ)dτ =

∫
s∈P(s′)

∫
τ :s→s′∈τ

F (τ)dτds =

∫
s∈P(s′)

F (s→ s′)ds,
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and

F (s′) =

∫
τ :s′∈τ

F (τ)dτ =

∫
s′′∈C(s′)

∫
τ :s′→s′′∈τ

F (τ)dτds′′ =

∫
s′′∈C(s′)

F (s′ → s′′)ds′′.

Then we finish the necessity part. Next we show sufficiency. Let Ẑ = F̂ (s0) be the partition
function and P̂F be the forward probability function, then there exists a unique Markovian flow
F with forward transition probability function PF = P̂F and partition function Z according to
Proposition 18 in Bengio et al. (2021b), and such that

F (τ) = Ẑ

n+1∏
t=1

P̂F (st|st−1) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
, (24)

where sn+1 = sf . In addition, according to Lemma 1, we have∫
τ∈T0,s

PB(τ)dτ =

∫
τ∈T0,s

∏
st→st+1∈τ

PB(st|st+1)dτ = 1.

Lemma 1. Considering a continuous task (S,A), where we have the transition probabilities defined
in (8) and (9). Define Ts,f and T0,s as the set of trajectories sampled from a continuous task starting
in s and ending in sf ; and starting in s0 and ending in s, respectively. Then we have

∀s ∈ S\{sf},
∫
τ∈Ts,f

PF (τ)dτ = 1 (25)

∀s ∈ S\{s0},
∫
τ∈T0,s

PB(τ)dτ = 1. (26)

Thus, we have for s′ 6= s0:

F (s′) = Ẑ

∫
τ∈T0,s′

∏
(st→st+1)∈τ

P̂F (st+1|st)dτ

= Ẑ
F̂ (s′)

F̂ (s0)

∫
τ∈T0,s′

∏
(st→st+1)∈τ

P̂B(st|st+1)dτ = F̂ (s′). (27)

Combine (27) with PF = P̂F yields ∀s→ s′ ∈ A, F (s→ s′) = F̂ (s→ s′). Finally, according to
Proposition 16 in Bengio et al. (2021b), for any Markovian flow F ′ matching F̂ on states and edges,
we have F ′(τ) = F (τ), which shows the uniqueness property. Then we complete the proof.

B.2 PROOF OF THEOREM 2

Theorem 2. Let {ak}Kk=1 be sampled independently and uniformly from the continuous action space
A. AssumeGφ? can optimally output the actual state st with (st+1, at). For any bounded continuous
action a ∈ A and any state st ∈ S, we have

P

(∣∣∣µ(A)

K

K∑
k=1

F (st, ak)−
∫
a∈A

F (st, a)da
∣∣∣ ≥ t) ≤ 2 exp

(
− Kt2

2(Lµ(A)diam(A))2

)
(28)

and

P

(∣∣∣µ(A)

K

K∑
k=1

F (Gφ?(st, ak), ak)−
∫
a:T (s,a)=st

F (s, a)da
∣∣∣ ≥ t)

≤ 2 exp

(
− Kt2

2
(
Lµ(A)(diam(A) + diam(S))

)2
)
, (29)

whereL is the Lipschitz constant, diam(A) denotes the diameter of the action spaceA and diam(S)
denotes the diameter of the state space S.
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Proof. First, we show that the expectation of sample outflow is the true outflow and the expectation
of sample inflow is the true inflow in Lemma 2.

Lemma 2. Let {ak}Kk=1 be sampled independently and uniformly from the continuous action space
A. Assume Gφ? can optimally output the actual state st with (st+1, at). Then for any state st ∈ S ,
we have

E

[
µ(A)

K

K∑
k=1

F (st, ak)

]
=

∫
a∈A

F (st, a)da (30)

and

E

[
µ(A)

K

K∑
k=1

F (Gφ?(st, ak), ak)

]
=

∫
a:T (s,a)=st

F (s, a)da, (31)

where s = g(st, a).

Then, define the following terms:

Γk =
µ(A)

K
F (st, ak)− 1

K

∫
a∈A

F (st, a)da =
1

K

∫
a∈A

[F (st, ak)− F (st, a)] da (32)

and

Λk =
µ(A)

K
F (Gφ?(st, ak), ak)− 1

K

∫
a:T (s,a)=st

F (s, a)da (33)

=
1

K

∫
a:T (s,a)=st

[F (Gφ?(st, ak), ak)− F (s, a)] da, (34)

where s = g(st, a).

Note that the variables {Γk}Kk=1 are independent and E[Γk] = 0, k = 1, . . . ,K according to
Lemma 2. So the following equations hold

P

(∣∣∣µ(A)

K

K∑
k=1

F (st, ak)−
∫
a∈A

F (st, a)da
∣∣∣ ≥ t) = P

(∣∣∣ K∑
k=1

Γk

∣∣∣ ≥ t) (35)

and

P

(∣∣∣µ(A)

K

K∑
k=1

F (Gφ?(st, ak), ak)−
∫
a:T (s,a)=st

F (s, a)da
∣∣∣ ≥ t) = P

(∣∣∣ K∑
k=1

Λk

∣∣∣ ≥ t) . (36)

Since F (s, a) is a Lipschitz function, we have

|Γk| ≤
1

K

∫
a∈A

∣∣F (st, ak)− F (st, a)
∣∣da

≤ L

K

∫
a∈A
||ak − a||da ≤

Lµ(A)diam(A)

K
. (37)

Together with Assumption 3, that is, for any pair of (s, a) satisfying T (s, a) = st, a is unique if we
fix s, we have

|Λk| ≤
1

K

∫
a:T (s,a)=st

∣∣F (Gφ?(st, ak), ak)− F (s, a)
∣∣da

≤ 1

K

∫
a:T (s,a)=st

∣∣F (Gφ?(st, ak), ak)− F (s, ak) + F (s, ak)− F (s, a)
∣∣da

≤ 1

K

∫
a:T (s,a)=st

L||Gφ?(st, ak)− s||+ L||ak − a||da

≤
Lµ(A)

(
diam(A) + diam(S)

)
K

. (38)
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Lemma 3 (Hoeffding’s inequality, Vershynin (2018)). Let x1, . . . , xK be independent random vari-
ables. Assume the variables {xk}Kk=1 are bounded in the interval [Tl, Tr]. Then for any t > 0,we
have

P

(∣∣∣ K∑
k=1

(xk − Exk)
∣∣∣ ≥ t) ≤ 2 exp

(
− 2t2

K(Tr − Tl)2

)
. (39)

Incorporating Tr = L
Kµ(A)diam(A) and Tl = − L

Kµ(A)diam(A) in Lemma 3 with (37), and
incorporating Tr = L

Kµ(A)(diam(A) + diam(S)) and Tl = − L
Kµ(A)(diam(A) + diam(S)) in

Lemma 3 with (38), we complete the proof.

B.3 PROOF OF LEMMA 1

Lemma 1. Considering a continuous task (S,A), where we have the transition probabilities defined
in (8) and (9). Define Ts,f and T0,s as the set of trajectories sampled from a continuous task starting
in s and ending in sf ; and starting in s0 and ending in s, respectively. Then we have

∀s ∈ S\{sf},
∫
τ∈Ts,f

PF (τ)dτ = 1 (40)

∀s ∈ S\{s0},
∫
τ∈T0,s

PB(τ)dτ = 1. (41)

Proof. We show by strong induction that (40) holds, mainly following the proof of Lemma 5 in
Bengio et al. (2021b), and then extending to (41) is trivial. Define d as the maximum trajectory
length in Ts,f , s 6= sf , we have:

Base cases: If d = 1, then ∫
τ∈Ts,f

PF (τ)dτ = PF (s→ sf ) = 1

holds by noting Ts,f = {(s→ sf )}.
Induction steps: Consider d > 1, by noting (12) we have∫

τ∈Ts,f
PF (τ)dτ =

∫
s′∈C(s)

∫
τ∈Ts→s′,f

PF (τ)dτds′ (42)

=

∫
s′∈C(s)

∫
τ∈Ts′,f

PF (s′|s)PF (τ)dτds′ (43)

=

∫
s′∈C(s)

PF (s′|s)ds′
∫
τ∈Ts′,f

PF (τ)dτ = 1, (44)

where the last equality follows by the induction hypotheses.

B.4 PROOF OF LEMMA 2

Lemma 2. Let {ak}Kk=1 be sampled independently and uniformly from the continuous action space
A. Assume Gφ? can optimally output the actual state st with (st+1, at). Then for any state st ∈ S ,
we have

E

[
µ(A)

K

K∑
k=1

F (st, ak)

]
=

∫
a∈A

F (st, a)da (45)

and

E

[
µ(A)

K

K∑
k=1

F (Gφ?(st, ak), ak)

]
=

∫
a:T (s,a)=st

F (s, a)ds, (46)

where s = g(st, a).
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Proof. Since {ak}Kk=1 is sampled independently and uniformly from the continuous action spaceA,
then we have

E [F (st, ak)] =
1

µ(A)

∫
a∈A

F (st, a)da. (47)

Therefore, we obtain

E

[
µ(A)

K

K∑
k=1

F (st, ak)

]
=
µ(A)

K

K∑
k=1

E [F (st, ak)] (48)

=

∫
a∈A

F (st, a)da. (49)

Since Assumption 3 holds, for any pair of (s, a) satisfying T (s, a) = st, a is unique if we fix s, we
have

E [F (Gφ?(st, ak), ak)] =
1

µ(A)

∫
a:T (s,a)=st

F (s, a)da,

where s = g(st, a).

Therefore, we get

E

[
µ(A)

K

K∑
k=1

F (Gφ?(st, ak), ak)

]
=
µ(A)

K

K∑
k=1

E [F (Gφ?(st, ak), ak)]

=

∫
a:T (s,a)=st

F (s, a)da.

Then we complete the proof.

C PSEUDOCODE OF CFLOWNETS

For clarity, we show pseudocode for CFlowNets in Algorithm 1.

Algorithm 1 Generative Continuous Flow Networks (CFlowNets) Algorithm
Initialize: Flow network θ; a pretrained retrieval network Gφ; and empty buffer D and P

1: repeat
2: Set t = 0, s = s0
3: while s 6= terminal and t<T do
4: Uniformly sample M actions {ai}Mi=1 from action space A
5: Compute edge flow Fθ(st, ai) for each ai ∈ {ai}Mi=1 to generate P
6: Sample at ∼ P and execute at in the environment to obtain rt+1 and st+1

7: t = t+ 1
8: end while
9: Store episodes {(st, at, rt, st+1)}Tt=1 in replay buffer D

10: [Optional] Fine-tuning retrieval network Gφ based on D
11: Sample a random minibatch B of episodes from D
12: Uniformly sample K actions {ak}Kk=1 from action space A for each state in B
13: Compute parent states according to {Gφ(s, ak)}Kk=1 for each state in B
14: Inflows:
15: log[ε+

∑K
k=1 expF log

θ (Gφ(st, ak), ak)]
16: Outflows or reward:
17: log[ε+ λR(st) +

∑K
k=1 expF log

θ (st, ak)]
18: Update flow network Fθ according to (20)
19: until convergence
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Figure 7: Visualization of Point-Robot-Sparse task.

(a) (b) (c) (d)

Figure 8: Visualization of Reacher-Goal-Sparse task.

(a) (b) (c) (d)

Figure 9: Visualization of Swimmer-Sparse task.

D ADDITIONAL EXPERIMENTS

D.1 VISUALIZATION OF ENVIRONMENT

As shown in Figures 7, 8 and 9, we provide the visualization of Point-Robot-Sparse, Reacher-Goal-
Sparse, and Swimmer-Sparse tasks. In Point-Robot-Sparse, the goal of the agent is to navigate
two different goals. The agent starts at the starting coordinate (0, 0) and moves towards the target
coordinate one step at a time. The environment has two target coordinates (5, 10) and (10, 5) with
a maximum episode length of 12, and the environment returns a reward only when the last step is
reached. Rewards are issued by measuring the distance between the agent’s current position and the
target node, and the closer the distance, the greater the reward. Each time the agent can take a step
from any angle to the upper right.

Both Reacher-Goal-Sparse and Swimmer-Sparse are adapted from OpenAI Gym’s MuJoCo envi-
ronment. In the Reacher-Goal-Sparse, “Reacher” is a two-jointed robotic arm. The goal of the
agent is to reach a randomly generated target by moving the robots end effector. Figure 8 shows the
movement process of the robotic arm. By adjusting the torque applied at the hinge joint, the end
effector can gradually approach the target. In the Swimmer-Spars, the “swimmer” is suspended in a
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two-dimensional pool, and the goal is to move as fast as possible towards the right or left. Figure 9
shows the shape change process of the robot during motion. By taking the action that applies torque
on the rotors and using the fluids friction, the robot can swim faster. We set the maximum number
of steps to 50 for these two environments. For Reacher-Goal-Sparse, when the last step is reached,
the environment returns a reward that measures how far the agent is from the randomly generated
target. The closer the agent is to the target, the greater the reward. For Swimmer-Sparse, the farther
to the left or right from the starting point, the greater the reward returned.

D.2 ADDITIONAL ANALYSIS

Figure 10 shows that the average reward and reward distribution of different algorithms on the Point-
Robot-OneGoal-Sparse task, where an agent needs to navigate to a specific location. Figure 10
(a) indicates that CFLowNets can obtain the highest average return compared to other RL-based
algorithms. In Figure 10 (b), all algorithms are able to fit the reward distribution well under the one
goal setting, while CFlowNets can achieve better. Note that RL algorithms can also learn the reward
distribution in this task, since maximizing the reward is the optimal policy in the case of a single
objective, and the policy is not difficult to learn.

In Figure 11, we provide the action reward distribution of different algorithms with 2e4 total
timesteps on Point-Robot-Sparse with Point (4,8), Point (8,4) and Point (7,7), respectively. Note
that unlike Figure 2, where the total number of timesteps is 1e5, here we show the result with 2e4
total timesteps since we found DDPG is overfit after 1e5 timesteps in this task. Therefore we show
the results without overfitting for a fairer comparison. We can see that no matter at which point, the
policy of CFlowNets can better match the real reward distribution. For example, at points (4,8) and
(8,4), CFlowNet tends to choose actions that guide the agent towards (5, 10) and (10, 5), respec-
tively. For a location between two goals (point (7,7)), there are two directions that allow the agent to
reach goals with high rewards. In contrast, the policy learned by RL algorithms can only occasion-
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Figure 10: The average reward and reward distributions of CFlowNets, DDPG, TD3, SAC and PPO
on Point-Robot-OneGoal-Sparse task.
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(b) Point (8,4)
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(c) Point (7,7)

Figure 11: The reward distributions of different points on Point-Robot-Sparse task.
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Figure 12: Sampled trajectories on Point-Robot-OneGoal-Sparse task.
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Figure 13: Sampled trajectories on Point-Robot-Sparse task.

ally match the true reward distribution of a certain point, and cannot stably match every point. This
also shows that the policies learned by RL algorithms is relatively simple. CFlowNets learn more
diverse policies for agents to reach different goals with high rewards, while other methods usually
find one goal instead of all potentially high reward locations.
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Figure 14: Reward distributions on Point-
Robot-Sparse Task.

Figure 12 and Figure 13 show the results of trajec-
tories visualization produced by different algorithms.
In the Point-Robot-OneGoal-Sparse task, the trajecto-
ries of DDPG, TD3, and PPO are single, while SAC
can select actions from the policy probability distribu-
tion, so different trajectories can be obtained. In con-
trast, CFlowNets found more diverse trajectories and
also found the highest reward goal (thickened red tra-
jectory), which means that CFlowNets can better ex-
plore the region near the goal. In the Point-Robot-
Sparse task, the RL-based algorithms seek only one
goal. However, CFlowNets can find all goals.

It is worth noting that in Figure 13 (e), the density of
CFlowNets sampling trajectories is not as dense as in
Figure 12 (e) near the maximum reward. Rather, it is denser on the diagonal. This is because in
most positions, the action probability of choosing to go up and to the right is relatively high, so it
is easier to go to the diagonal direction in combination. In addition, the reward on the line between
two goals is not small. When sampling according to the output of the flow model as a probability,
many trajectories themselves are more likely to reach the diagonal. Figure 14 shows the true reward
distribution of Point-Robot-Sparse, where the reward is higher in the area near two goals and the
line between two goals.

D.3 EXPERIMENT RESULTS ON HIGHWAY-PARKING-SPARSE

We evaluate the performance of CFLowNets on Highway-Parking-Sparse, which is an ego-vehicle
control task. As shown in Figure 15, the goal is to make the ego-vehicle park in a given space with
the appropriate orientation by adjusting its controller. The dimension of the vehicle observation
is 18, consisting of the distance between the vehicle and parking, the vehicle speed, the triangular
heading information, the goal the agent should attempt to achieve, and the goal that it currently
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(a) (b) (c) (d)

Figure 15: Visualization of Highway-Parking-Sparse task.
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(b) Number of Distinctive Trajectories

Figure 16: The average reward and number of valid-distinctive trajectories generated under 10000
explorations of CFlowNets, DDPG, TD3, and SAC on Highway-Parking-Sparse.

achieves. The action space includes control over the throttle and steering angle, and the reward
function is set as the distance between the ego-vehicle and parking. Figure 16 shows the average
reward and the number of valid-distinctive trajectories explored as training progresses of different
algorithms, which illustrates that the performance of CFlowNets is more promising than other RL-
based algorithms. Even for higher-dimensional continuous tasks, CFlowNets have very competitive
reward results (outperforming DDPG, TD3, and SAC), while achieving much better exploration
performance than RL-based algorithms.

D.4 BASELINES

We compare our proposed CFlowNets to the following baselines:

• Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015). https://github.
com/sfujim/TD3/blob/master/DDPG.py

• Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018). https:
//github.com/sfujim/TD3

• Soft Actor-Critic (SAC) (Haarnoja et al., 2018b). https://github.com/
denisyarats/pytorch_sac/

• Proximal Policy Optimization (PPO) (Schulman et al., 2017). https://github.com/
DLR-RM/stable-baselines3/blob/master/stable_baselines3/ppo/
ppo.py

D.5 HYPER-PARAMETER

We provide the hyper-parameters of all compared methods under different environments in Table 1,
Table 2, Table 3, Table 4, and Table 5.

As for “Total Timesteps”, “Start Traning Timestep”, “Max Episode Length”, “Actor Network Hid-
den Layers”, “Critic Network Hidden Layers”, “Optimizer”, “Learning Rate”, and ”Discount Fac-
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tor”, we set them the same for all algorithms for a fair comparison. As for these specific parameters
for baseline algorithms, we remain them the same as those in the original code to achieve good per-
formance. As for these specific parameters of our CFlowNets, we set the number of sample flows
to 100 and the action probability buffer size to 1000 to tradeoff the performance and computational
load. Note that CFlowNets dose not require as large a replay buffer size as other RL algorithms,
since the exploration ability of CFlowNets is better than that of others. And a good policy can al-
ready be learned from a small replay buffer. This is also an advantage of CFlowNets compared to
RL based algorithms.

Table 1: Hyper-parameters of CFlowNets under different environments.

Point-Robot-Sparse Reacher-Goal-Sparse Swimmer-Sparse

Total Timesteps 100,000 100,000 100,000
Start Traning Timestep 4,000 7,500 7,500
Max Episode Length 12 50 50

Flow Network Hidden Layers [256,256] [256,256] [256,256]
Retrieval Network Hidden Layers [256,256,256] [256,256,256] [256,256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0003 0.0003 0.0003

Batchsize 128 128 128
Number of Sample Flows 100 100 100

Action Probability Buffer Size 1,000 1,0000 10,000
Replay Buffer Size 8,000 2,000 2,000

ε 1.0 1.0 1.0

Table 2: Hyper-parameter of DDPG under different environments.

Point-Robot-Sparse Reacher-Goal-Sparse Swimmer-Sparse

Total Timesteps 100,000 100,000 100,000
Start Traning Timestep 4,000 7,500 7,500
Max Episode Length 12 50 50

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0003 0.0003 0.0003

Batchsize 256 256 256
Discount Factor 0.99 0.99 0.99

Replay Buffer Size 100,000 100,000 100,000
Target Network Update Rate 0.005 0.005 0.005

Table 3: Hyper-parameter of TD3 under different environments.

Point-Robot-Sparse Reacher-Goal-Sparse Swimmer-Sparse

Total Timesteps 100,000 100,000 100,000
Start Traning Timestep 4,000 7,500 7,500
Max Episode Length 12 50 50

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0003 0.0003 0.0003

Batchsize 128 128 128
Discount Factor 0.99 0.99 0.99

Replay Buffer Size 100,000 100,000 100,000
Gaussian Exploration Noise 0.1 0.1 0.1
Target Network Update Rate 0.005 0.005 0.005
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Table 4: Hyper-parameter of SAC under different environments.

Point-Robot-Sparse Reacher-Goal-Sparse Swimmer-Sparse

Total Timesteps 100,000 100,000 100,000
Start Traning Timestep 4,000 7,500 7,500
Max Episode Length 12 50 50

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0003 0.0003 0.0003

Batchsize 1024 1024 1024
Discount Factor 0.99 0.99 0.99

Replay Buffer Size 100,000 100,000 100,000
Target Update Interval 1 1 1

Table 5: Hyper-parameter of PPO under different environments.

Point-Robot-Sparse Reacher-Goal-Sparse Swimmer-Sparse

Total Timesteps 100,000 100,000 100,000
Max Episode Length 12 50 50

Policy Network Hidden Layers [64,64] [64,64] [64,64]
Value Network Hidden Layers [64,64] [64,64] [64,64]

Optimizer Adam Adam Adam
Learning Rate 0.0003 0.0003 0.0003

Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99
GAE Parameter 0.95 0.95 0.95

Timesteps per Update 2048 2048 2048
Number of Epochs 10 10 10
Clipping Parameter 0.2 0.2 0.2

Value Loss Coefficient 0.5 0.5 0.5
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