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Abstract
This study presents an innovative reinforcement
learning (RL) control approach to facilitate soft
exosuit-assisted human walking. Our goal is to
address the ongoing challenges in developing re-
liable RL-based methods for controlling physi-
cal devices. To overcome key obstacles—such
as limited data, the absence of a simulator for
human-robot interaction during walking, the need
for low computational overhead in real-time de-
ployment, and the demand for rapid adaptation
to achieve personalized control while ensuring
human safety—we propose an online Adaptation
from an offline Imitating Expert Policy (AIP) ap-
proach. Our offline learning mimics human expert
actions through real human walking demonstra-
tions without robot assistance. The resulted pol-
icy is then used to initialize online actor-critic
learning, the goal of which is to optimally person-
alize robot assistance. In addition to being fast
and robust, our online RL method also posses im-
portant properties such as learning convergence,
dynamic stability, and solution optimality. We
have successfully demonstrated our simple and
robust framework for safe robot control on all
five tested human participants, without selectively
presenting results. The qualitative performance
guarantees provided by our online RL, along with
the consistent experimental validation of AIP con-
trol, represent the first demonstration of online
adaptation for softsuit control personalization and
serve as important evidence for the use of online
RL in controlling a physical device to solve a
real-life problem.
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1. Introduction
Goal of this study. Wearable robots such as rigid exoskele-
tons and soft exosuits have been extensively researched and
have shown great promise for gait rehabilitation (Rodrı́guez-
Fernández et al., 2021) and for assisting human walking to
reduce physical efforts (Collins et al., 2015). Unlike rigid ex-
oskeletons, soft, garment-like devices made from materials
like silicone elastomers and fabrics provide a more com-
fortable, safer, and adaptable user experience (Granberry
et al., 2017; Save et al., 2025; Yumbla et al., 2021). Yet,
effectively controlling the wearable robots to seamlessly
work with human users in locomotion tasks remain a major
challenge. This may be why deployment of the promising
wearable technology still have limited success in real-world
deployment. Reinforcement learning points to two potential
solutions: sim-to-real approach or direct design in the real
physical environment. However, devising a near-perfect
simulator for human-soft exosuit walking is exceptionally
costly if at all possible given the unpredictable human be-
havior while wearing a foreign robotic device, and the ubiq-
uitous presence of noise, delay, and other uncertainty in the
environment. Challenges of controlling a soft wearable
exosuit. First off, soft inflatable exosuits lack a robust model
of their dynamics (Polygerinos et al., 2015), not to mention
modeling the interaction dynamics between the user and the
robot, a necessary step in building a high fidelity simulator.
These unique challenges stem from that the pneumatic dy-
namics of the soft inflatable actuators (Joshi & Paik, 2021)
are complicated in part by the nonlinear nature of soft actu-
ators due to material properties and design geometry. The
fabric-based actuators result in highly compliant behavior
that enables high levels of deformations (Hasan et al., 2022).
The manufacturing process of the actuators also introduces
significant variations and uncertainties (Joshi & Paik, 2021).
Further wear and tear of the fabric only makes problem more
complicated. Lacking a reliable model or simulator of the
soft robot has made controlling a soft inflatable exosuit more
complex than a traditional rigid exoskeleton (Polygerinos
et al., 2015). Unlike rigid exoskeletons where the assistive
torque is determined by motor actuators and can be directly
used as a control parameter, for soft inflatables, the torque
is generated from two collaborative sources: the human and
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the exosuit, which is nearly impossible to quantify. Ad-
ditionally, the inflation/deflation of the actuators typically
introduces longer actuation delays than motor-actuated ex-
oskeleton, a factor that potentially reduces stability margins
in control system design. Contributions of this study. Our
approach of online Adaptation from an offline Imitating
expert Policy (AIP) provides a holistic framework that en-
ables efficient, effective, and direct physical device control
in order to overcome the challenges of lacking a simulator,
limited data, and robustness in real time deployment. Specif-
ically, 1) instead of an algorithm-centric approach that has
been mostly developed and deployed based on extensive
simulations or vast amount of data in successful offline-to-
online robot RL control (Levine et al., 2020; Kumar et al.,
2020; Lee et al., 2022) we rely on a data-centric approach
to account for environmental noise, delay, and other un-
certainties. 2) The actor-critic online adaptation approach
has shown its capability of successfully addressing distri-
bution shift as we adapt offline learned policy to individual
new users. Validations are provided by real experiments
involving human users walking with the soft exosuit. Re-
sults successfully show that soft exosuit control has assisted
human normative walking with reduced human effort. 3)
Additionally, we provide qualitative online learning perfor-
mance assurances such as learning convergence, dynamic
stability and human safety, and solution optimality. The
qualitative performance guarantees, along with the consis-
tent experimental validation of AIP control, represent the
first demonstration of online adaptation for softsuit control
personalization and serve as important evidence for the use
of online RL in controlling a physical device to solve a
real-life problem.

2. Related Work
Control of Soft Exosuit. A fundamental control challenge
with wearable devices is modeling the interaction dynamics
between the user and the robot for optimal coordination
(Polygerinos et al., 2015; Nesler et al., 2018; O’Neill et al.,
2022; Liu et al., 2022; Wu et al., 2022), and additional
challenges as discussed in Appendix B. Several studies
have achieved successful coordination through human-in-
the-loop optimization methods. In Siviy et al. 2020, offline
optimization of a cable-driven ankle exosuit is performed to
generate the assistive torque profile. In Ding et al. 2018, the
authors perform human-in-the-loop optimization through a
Bayesian optimization to identify the peak and offset timing
of hip extension assistance with a cable-driven hip exo-
suit. In Kim et al. 2019b, the authors advance this frame-
work by coupling Bayesian optimization with a Kalman
filter metabolic estimator to deliver plantar flexion assis-
tance to the ankle with a cable-driven ankle exosuit. In Li
et al. 2022a, the authors developed a hierarchical human-in-
the-loop controller of a cable-driven exosuit for impedance

adaptation to different terrains. An offline cable control
parameter optimization was developed in Li et al. 2022b,
which relies on an impedance model based on the geomet-
ric relationship of ankle joint. While these studies have
achieved coordination between the robot and the user, they
have a strong prerequisite that the wearable robot possesses
a robust dynamical model. They also lack the ability of
online tuning and personalizing for different users. There-
fore, new innovations are needed for those wearable devices
ready for real life deployment.

Offline-to-online RL is an effective and practical approach
for robot control. Extensive research effort has been put
into addressing the distribution shift from offline to online.
The issue has been explored through various approaches.
Zhang et al. 2023 introduces policy expansion which ex-
pand the policy with another learnt policy and implements
a Boltzmann action selection strategy. Several studies (Lee
et al., 2022; Zhao et al., 2023a;b) utilize an ensemble of
pessimistic value functions to mitigate distributional shift.
Zhong et al. 2024 develops a sim-to-real application on
gantry crane. Nakamoto et al. 2024 proposes training an
additional value function to address over-conservatism. Li
et al. 2023 introduces a policy regularization term for trust-
region-style updates. Lei et al. 2023 uses an on-policy
optimization strategy unify offline and online training with-
out extra regularization. However, nearly all of the current
offline-to-online RL approaches rely on extensive simula-
tions or a vast amount of offline data, and none of them
have demonstrated directly learning from physical environ-
ment using only limited data for an offline policy (Levine
et al., 2020; Kumar et al., 2020). Furthermore, almost all
the demonstrated robot control applications are under struc-
tured environment such as those in warehouse settings or
performing specific tasks.

The PPO and SAC methods have been widely used in online
robotic learning, again, relying heavily on extensive simula-
tions for under structured environment learning. Both algo-
rithms have shown great ability to learn stochastic policies
by parameterizing a probability distribution over actions.
These distribution-based policies facilitate exploration by
sampling actions during training (Haarnoja et al., 2018;
Schulman et al., 2017). However, applying PPO and SAC
in soft exosuit robot that does not have a simulator or a
dynamic model of human-robot interaction, presents true
challenges. Additionally, in wearable robotics with human
in the loop, user comfort and safety are of great importance.
Human participants become frustrated if the robot operates
erratically (Dani et al., 2020). This necessitates exploration
of using deterministic control policies.

Data-centric approach in offline imitation learning (IL).
IL is a natural and effective part of reinforcement learn-
ing (RL) to device a reasonable initial policy (Taylor et al.,
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Figure 1. (a): Offline imitation learning using normative human walking data with ground truth provided by MoCap. The learned policy is
then used to initialize online RL. (b): Online, personalized RL control of the soft exosuit to achieve human-robot normative walking while
minimizing human effort measured by EMG activity. Sensor data are acquired via IMU for real-time control. (c): Knee angle profile of a
complete gait cycle (in %) with the four gait phases as shown.

2011). To address the issue of distribution shift when ap-
plied in online environments (Ross et al., 2011; Spencer
et al., 2021), two typical approaches have been explored.
Algorithm-centric approaches aim to learn robust policies
by imposing task-specific assumptions based on specific
characteristics of the task (Galashov et al., 2022; Guhur
et al., 2023; James & Davison, 2022), or acquiring addi-
tional data to model environment dynamics for the agent to
return to in-distribution states (Englert et al., 2013; Qi et al.,
2022). Some approaches enhance action representation such
as using Gaussian or mixture models to capture all expert
actions (Chi et al., 2023; Mandlekar et al., 2021). Others
reduce the task length by employing temporal abstraction of
the action spaces (Shridhar et al., 2023; Zhao et al., 2023c).
Data-centric approaches prioritize data quality, primarily
aiming to maximize state diversity. Numerous studies fo-
cus on modifying data collection processes to expose the
expert to a diverse set of state transitions through shared
control (Cui et al., 2019; Kelly et al., 2019; Ross et al.,
2011). Some methods allow human intervention to correct
robot behavior when necessary (Gandhi et al., 2023; Man-
dlekar et al., 2020). Active learning guides data collection
toward more informative samples by prioritizing questions
that maximize information gain while minimizing the diffi-
culty of selecting queries(Bıyık et al., 2019; Cui & Niekum,
2018). However typical data-centric techniques, such as
collecting more data, diversifying state transition, actively
learning human walking dynamics, or human intervention
of natural and normative walking, are entirely unfeasible
for easy to understand reasons. We focus on improving
data quality with two specific considerations: 1) to avoid
long data collection processes, and 2) effectively deal with
environmental noise to address our unique problem chal-
lenge. With such a data-centric framework, we expect to
improve action divergence (Belkhale et al., 2024) between
the learned policy and the demonstration policy, thereby to
improve task success rates.

3. Method
Our online Adaptation from an offline Imitating expert Pol-
icy (AIP) procedure consists of two main phases. First, we
develop a data-centric offline learning approach by employ-
ing IL. We aim to capture a baseline normative walking
policy by focusing on improving data quality and thus the
quality of the initial policy for online adaptation. Second,
to personalize RL controller for new users online, we use
an actor-critic online learning method, the direct heuristic
dynamic programming (dHDP) (Si & Wang, 2001), which
is a deterministic policy gradient method. It is based on the
idea that the actor adjusts the policy in the direction of the
action-value gradient, and the critic updates the action-value
function. The idea can also be found in NFQCA (Hafner &
Riedmiller, 2011), which in turn, in DPG (Silver et al., 2014)
and DDPG (Lillicrap et al., 2015). A more detailed discus-
sion on dHDP and its performance evaluation in comparison
to DDPG, as well as its several significant applications in
complex and realistic engineering systems can be found in
Appendix B. Ultimately, due to the holistic considerations
that define the AIP method, it is one of the first realizations
that does not rely on a simulator or vast amount of offline
data to train an offline policy and successfully adapt it online
for new users.

3.1. Physical Setup

Refer to Figure 1, the AIP solution involves two main phases,
offline imitation learning (Figure 1.a) and online personal-
ized RL (Figure 1.b). In both phases, a participant walks on
the treadmill at a constant speed of 1 m/s. The inertial mea-
surement unit (IMU) sensors collect kinematic data while
the electromyography (EMG) sensors measure muscle ac-
tivity simultaneously. A Motion Capture (MoCap) System,
which provides ground truth measurement of the human
joint motion, is time synced with the IMU and EMG sensors
in the offline phase and the ground truth walking profiles
were used to train an offline human policy as an initial policy
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for online training. The complete anthropometric data of
the subjects and IRB can be seen in Appendix A and details
on the placement of the soft inflatable exosuit, its manufac-
turing, wearable sensors, etc. can be found in Appendix D.
Experiment protocol can be found in Appendix E.

3.2. State and Control Variables

An analysis of knee joint kinematics reveals two critical
regions associated with knee stance extension (from point
A to B) and swing extension (from point C to D) during a
gait cycle (Figure 1.c). The four extrema mark the transition
from one gait phase to another: marker A is the maximum
knee flexion during mid stance, B the maximum knee ex-
tension during terminal stance phase, C the maximum knee
flexion during mid swing phase, and D the maximum knee
extension adjacent to heel strike. These transition points
and their related characteristics are therefore considered for
inclusion in the state representation from the human walk-
ing profile. Specifically, the state variables include the peak
knee flexion angle at point C as denoted by θf , the time
instances tA and tC of peak knee flexion at the stance and
swing phases, respectively, the duration of the stance phase
(between point A and point B) defined as dA = tB − tA,
and the duration of the swing phase (between point C and
point D) defined as dC = tD− tC . Thus, we define the state
variable as follows:

s = [tA, dA, tC , dC , θf ]
T . (1)

Unlike rigid exoskeletons where the torque is generated by
electrical motors and can be directly used as a control pa-
rameter, for soft inflatable actuators, the amount of assistive
torque is determined by both human knee torque and the ac-
tuator pressure, the two collaborative sources. It is therefore
not feasible to use torque directly as the control variable for
the exosuit. Instead, only properly timed inflation and defla-
tion of the exosuit will provide the necessary and optimal
assistance to the human user (Figure 1.c). On the contrary, if
the exosuit is not properly operated, it may cause discomfort
or even injury to the human user. Toward this end, the RL
controller must determine the optimal timings to operate the
exosuit and these control parameters are:

u = [t1, d1, t2, d2]
T , (2)

where t1 is the onset timing of inflation of the exosuit to
assist stance extension, the duration for which the air pres-
sure is maintained during this phase is d1. Similarly, t2
represents the onset timing of inflation of the exosuit to
assist swing flexion, and the corresponding duration for
maintaining air pressure during this phase is given by d2.
As it takes time for the exosuit to inflate and deflate, it is
expected that an optimal RL controller should successfully
learn the optimal timings of t1 and t2, which are expected
to be close to or ahead of the maximum flexion timings tA

and tC . By precisely adjusting these timings and durations,
the RL controller ensures that the exosuit provides optimal
assistance to the user’s knee movement, enhancing over-
all gait efficiency and reducing muscle effort quantified by
EMG measurement (EMG Effort). Note that, it is natural to
maintain consistency in the state and action spaces during
both offline and online learning.

3.3. Safety Constraints

To ensure human participants walk continuously and safely,
we consider several safety constrains: 1) the actuator pres-
sure is limited to 206.8 kpa; 2) the control timings and
inflation/deflation durations are constrained by taking ref-
erence of those during participant’s normative walking as
shown in Table 4, which are within realistic ranges (Zhang
et al., 2020b). These physical constraints help prevent sig-
nificant misalignment between controller timing and the
respective gait phase during human walking. Without these
constraints, it may trigger soft actuator deployment and
cause discomfort or injury to the user; and 3) the online
training objective is set for the control timings to approach
those during normative walking, and thus in a safe state.
Details of the safety constraints and their physical repre-
sentations are in Appendix C. Additionally, we provide
a theoretical performance analysis of the online learning
process to ensure learning convergence, optimal timing so-
lution, and human-robot interaction dynamic stability under
reasonable conditions and within these safety constraints
(Appendix F).

3.4. Offline Human Normative Walking Policy

We take a different perspective of not focusing on develop-
ing another offline method, but instead, focusing on how
to improve data quality to make offline imitation learning
more effective in developing a good quality offline policy.
By doing so, we aim to demonstrate the generalizability
and data efficiency of our method by ONLY collecting of-
fline walking data from a SINGLE participant (participant
1) with N = 150. Detailed information about the offline
data collection process can be found in Appendix E. Our im-
itation learning approach utilizes Behaviour Cloning (BC)
(Torabi et al., 2018; Bain & Sammut, 1995; Daftry et al.,
2017) to derive an effective imitation policy based on data
D = {s(k)|, k = 1, 2, ..., N}, obtained from normative
walking demonstrations under natural walking condition of
a human participant, where N represents the total number
of gait cycles over which the state variable data is collected
from the MoCap system.

A good offline normative walking policy should serve the
following two purposes. First, it provides a reasonable ini-
tial policy for online tuning tailored for individual users
while both offline and online learning are subject to simi-
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lar environmental uncertainties such as sensor and actuator
noise. As such, this offline policy helps online policy tuning
to be kept in a reasonable and meaningful range. Second,
this offline learned policy should capture key human loco-
motion characteristics even under intra- and inter-person
variations (Zhang et al., 2020a; Ahn & Hogan, 2012) as
human locomotion (such as knee angle) exhibits similar
patterns as shown in Figure (1.c).

Improve data quality. Based on most recent results that
data-centric approaches have greater impact than algorithm-
centric approaches on the effectiveness of imitation learning
(Belkhale et al., 2024), we aim to improve data quality
and expect that to be especially effective in addressing our
unique challenges associated with the human-robot system
under study. We therefore propose a reducing intra-person
and inter-person variation (RIIV) method to improve mea-
sured data quality as it is likely to be the one and the most
effective and efficient approach. As a result, we compare
our RIIV with a common benchmark approach that normal-
izes the raw measurements of state variables into the [-1,1]
range.

Specifically, for each gait cycle of length T , let the origi-
nal measurements of each state variable of s, as in Equa-
tion (1), be denoted by ζ. The following computations are
performed component-wise for each of the state variables
(j = 1, 2, ..., 5).

1) The benchmark DIRECT method normalizes the raw sen-
sor measurements (ζ) of states into [-1,1] by the following
procedure,

s = 2

(
ζ −min(ζ)

max(ζ)−min(ζ)

)
− 1. (3)

2) The RIIV method.

The first step of RIIV reduces intra-person step length vari-
ations by converting gait timing from actual time into gait
percentage by normalizing over a gait cycle T , that is

ξ =
ζ

T
. (4)

The second step reduces inter-person variation by transfer-
ring state variables into the range of [−1, 1],

s = 2

(
ξ − inf(ξ)

sup(ξ)− inf(ξ)

)
− 1, (5)

where the values of inf(ξ) and sup(ξ) are from established
studies of biomechanics literature (Zhang et al., 2020b),
which is shown in Table 6 in Appendix C.

Imitation policy. Once real time measurements for of-
fline policy training are obtained during normative human
walking, BC is utilized to train an offline imitation human

walking policy π(sk), which maps human state from IMU
sensors to control timings and durations of normative walk-
ing with the ground truth provided by MoCap, namely,
π = {tA, dA, tC , dC} ∈ D. We use ”action divergence”
to measure offline cost ck in BC learning,

ck =
1

2
(π(sk)− πk)

2. (6)

Therefore the actor with policy parameter (ϕ) minimizes a
supervised loss as:

L(ϕ) =
1

N

N∑
k=0

ck. (7)

which is the distance between the RL policy and that used
in human demonstration.

3.5. Online, Personalized Soft Exosuit Control

Personalizing soft robot control for individuals face the fol-
lowing offline to online learning challenges: 1) Data out of
distribution (OOD) due to inter- and intra-human variance;
2) Limited availability of human walking data; and 3) Hard-
ware limitations including communication delays, sensor
noise, and significant delay in actuation. 4) Human accep-
tance of the physical device which is directly correlated with
human trust in the device and comfort when walking under
robot control. Our solution relies on a good data quality im-
provement procedure and an efficient online reinforcement
learning algorithm, the dHDP which can sccessfully address
the above OOD problems as shown in Appendix G.

The dHDP actor-critic learning has demonstrated online
learning convergence under limited data conditions empiri-
cally in several wearable robotics applications (Wen et al.,
2016a;b; 2017a; 2019). Additionally, dHDP with expeirence
replay and target network has shown compatible perfor-
mance to DDPG in many DMC robotic control problems
(Wu et al., 2024). Along with nice theoretical properties
of dHDP (Sectoin 3.6) and practical successes in previous
studies, we employ dHDP in our current study to learn the
exosuit control solution with 5-dim state space and 4-dim
action space.

The goal of online learning control of the soft exosuit is
to minimize the user’s muscle effort by improving the ef-
fectiveness of the exosuit assistance. We thus consider two
necessary performance metrics: gait normalcy thus safety
constraint, and muscle effort. the online learning objective is
therefore to minimize the overall cost over policy π, defined
as follows:

Qπ(sk, uk) = E[
∞∑
t=k

γt−kct|sk, uk], (8)

where sk ∼ p (· | sk−1, uk−1), uk = π (sk), ck =
c(sk, uk) is the stage cost, and the discount factor 0 <
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γ < 1. The stage cost ck in the above is formulated to take
into consideration of two important performance measures
in online learning of personalized optimal policy to achieve
robot-assisted normative walking with reduced energy ex-
penditure.

First, we embed normative walking and safety constraint
ϵs as one of the important performance considerations
in the performance index (Equation 10). Specifically,
ϵs = (s− s̃)

2, where target state s̃ is defined in Appendix C,
and is extracted from the offline normative walking profile
using MoCap data as in Table 4. Additionally, ϵs is bounded
within safety constraint provided in Table 5. It ensures that
the subject does not deviate significantly from the target,
thereby preventing potential falls or discomfort. The sec-
ond consideration of reducing human energy expenditure is
reflected by reduced muscle activity, which is measured per
gait cycle, namely, the EMG effort ϵe is determined by

ϵe =
1

2
(

T∑
t=0

fE(t))
2 (9)

which fE(t) is the EMG sensor value at time t of a gait and∑T
t=0 fE(t) simulates the integral of the EMG signal under

a complete gait cycle of length T .

We thus have the stage cost ck formulated by balancing
the reduction of EMG effort and adherence to state error
tolerance and safety constraints, and it is consequently used
in formulating the total cost in Equation (8):

ck = ϵs + ϵe. (10)

The dHDP is then used to provide online learning of a
personalized optimal policy for individual users. Further
details about dHDP, its actor and critic network realizations,
and its implementation can be found in Appendices E and
F.

3.6. Qualitative Properties of the Learning Process and
Control Performance Associated with dHDP Online
Learning

We provide a theoretical analysis to characterize proper-
ties of the learning process and the control performance,
specifically those related to learning convergence, solution
optimality, and control system stability as a result of online
dHDP learning initialized by an offline policy obtained via
imitation learning. Details are provided in Appendix F.

4. Results and Analysis
This study of directly learning to control a physical device,
the robotic exosuit, to assist normative human walking aims
at exploring the feasibility of RL in achieving stable and

efficient learning without a simulator. As a result, we have
shown promising first steps in addressing key challenges
of RL control for real life applications. Furthermore, our
AIP as a data-centric, offline to online approach reveals its
practical usefulness to address environment uncertainty due
to variations in human, sensor and actuator noise and delay
that are unavoidable in real physical environments. Videos
of the experiments can be seen in supplemental files.

Performance Criteria. The results reported in this study
were based on the following performance metrics: 1) The
stage cost as shown in Equation 10 to reflect online learning
performance; 2) Peak knee error as a kinematic measure
of normative walking and also to reflect walking safety;
3) EMG activity (Equation 9) which reflects human effort
during walking; 4) Time to convergence of RL online learn-
ing (influencing human physical fatigue); 5) ”Action diver-
gence” to measure offline policy optimality as in Equation
(6). For all the metrics, better performance is associated
with smaller/shorter outcomes.

Questions Addressed. Our real experimental results aim at
answering the following questions:
1) Is RIIV an effective method for improving IMU sensor
data quality in our data-centered solution framework?
2) Can offline normative human walking policy be further
adapted and customized for individual participants via robot
online learning to achieve optimal human-robot interaction?
3) Is human adaptation alone sufficient to improve perfor-
mance with reduced effort?
4) Is there evidence that both human and robot co-adapted
to achieve optimal interaction
5) To achieve optimal interaction between the human and
the robot, what are essential control cost objectives to be
considered in RL design?
6) Is the method generalizable to other locomotion tasks
beyond level-ground walking?

Q1: (Offline Benchmark Study) Our RIIV method is
practically effective in capturing invariant normative
walking characteristics while directly accounting for sen-
sor and actuator noise in real environments, thereby
improving offline policy optimality or action divergence.
From Figure 2 and Table 2, we can clearly see advantages
of using RIIV procedure over the Direct method (Section
3.4) to process raw IMU sensor data. 1) Firstly, RIIV results
in significantly lower training cost and faster convergence
than the Direct Method. As illustrated in the four bar charts
in Figure 2, the RIIV method (green bar) reduces the action
divergence effect more greatly than the Direct Method (or-
ange bar) does, indicating that RIIV more accurately aligns
with true human walking characteristics. 2) Next, RIIV has
shown to be capable of accounting for significant uncertain-
ties inherent in physical sensing and actuation, as demon-
strated by the green bar with its values closer to the ground
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Figure 2. Offline learning outcomes as evidence of the essential role of processing raw sensor measurements in AIP as a data-centric
method. (Left): Comparison of cost performance, Equation (7), using Direct and RIIV, the shaded regions represent the 95 % confidence
range of the five random seeds. (Right 4 panels): The MoCap data is used as ground truth in the comparisons, where action divergence
(AD) as in Equation (6) was measured (the closer to 0 the better.): ”blue” is AD between IMU sensed data and the truth; ”orange” is AD
between Direct and Truth; and ”green” is AD between RIIV and Truth.

Table 1. Performance of AIP method in terms of stage cost, peak knee error, and EMG effort.

Performance Evaluations Beginning of Online Training (Offline IL policy) End of Online Training

Human Participant 1 2 3 4 5 1 2 3 4 5
Stage Cost 0.94 ± 0.16 0.95 ± 0.23 1.1 ± 0.47 1.42 ± 0.57 0.99 ± 0.19 0.43 ± 0.06 0.49 ± 0.12 0.37 ± 0.06 0.35 ± 0.08 0.49 ± 0.09

Training Peak Knee Error N/A N/A N/A N/A N/A 0.39 ± 0.05 0.23 ± 0.04 0.16 ± 0.14 0.37 ± 0.27 0.22 ± 0.07
Training EMG Effort N/A N/A N/A N/A N/A 0.54 ± 0.03 0.59 ± 0.13 0.43 ± 0.09 0.57 ± 0.14 0.65 ± 0.09

Evaluation Peak Knee Error 0.48 ± 0.09 0.33 ± 0.06 0.28 ± 0.05 0.4 ± 0.2 1.12 ± 0.15 0.41 ± 0.02 0.23 ± 0.04 0.18 ± 0.18 0.38 ± 0.07 0.56 ± 0.12
Evaluation EMG Effort 0.66 ± 0.01 0.96 ± 0.3 0.55 ± 0.09 0.8 ± 0.27 0.92 ± 0.17 0.52 ± 0.05 0.32 ± 0.02 0.42 ± 0.07 0.38 ± 0.02 0.41 ± 0.07

Baseline without Exosuit Assistance End of Online Training

EMG Effort 0.631 ± 0.06 1.14 ± 0.03 0.68 ± 0.04 0.6 ± 0.03 0.71 ± 0.06 -14.4% -48.2% -36.8% -5% -8.5%

Table 2. Statistic data of Figure 2. The MoCap Video data is used
as ground truth in the comparisons, where action divergence (AD)
as in Equation (6) was measured (the closer to 0 the better.)

Action Divergence Sensor DIRECT RIIV
tA 0.03 ± 0.003 0.038 ± 0.002 0.02 ± 0.002
dA 0.004 ± 0.01 0.259 ± 0.015 0.0003 ± 0.007
tC 0.0926 ± 0.03 0.21 ± 0.025 0.02 ± 0.003
dC 0.0963 ± 0.02 0.02 ± 0.009 0.02 ± 0.01

truth, especially for tA, tc, and dc, where there are notable
discrepancies between raw sensor data and the ground truth,
and also, a rather significant delay in the actuator due to
inflation/deflation time.

Q2: Online learning effectively adapted the initial offline
policy to provide personalized control for individual par-
ticipants and enable robust performance in human-robot
normative walking.

From Table 1, although the offline policy enables walking,
it does not achieve optimal performance in terms of cost,
kinematic error, and EMG measures. As shown in Figure
3 and Table 1, while the offline policy directly benefits par-
ticipants 2 and 3 in terms of reduced EMG effort (below
baseline shown by dashed line), it fails to do so for partic-
ipants 1, 4 and 5. Through online training, Performance
metrics improve for reduced cost and kinematic error, and
most importantly, reduced EMG effort for all subjects. No-
tice additionally that online training resulted in consistent
and robust assistance to human walking. From Figure 3 and

Table 1, a significant intra-subject variance and inter-subject
variance is apparent. At the initial online learning stage
(gait cycle 1), the same offline policy produced varying per-
formances across different participants. However, by the
end of training, the cost consistently converged to similar
values of around 0.5, which indicates that online training has
effectively customized the initial offline policy for each indi-
vidual, allowing all participants to reach normative walking
patterns with at least a 20% reduction in EMG effort.

Q3: Human adaptation alone cannot sufficiently im-
prove human walking performance. To isolate the effect
of co-adaptation, a feasible approach was to disable the
robot’s adaptation in order to observe human adaptation.
This is implemented by freezing policy updates. The re-
sults are shown in Figure 7, where in row A (baseline),
participants walked naturally and showed their natural gait
pattern; in row C (after online training), the policy is already
optimized, so no further human adaptation is needed. In
both cases, we observe no sign of human adaptation. In
row B (using offline-learned, and fixed policy), this offline
policy is not optimal and needs to be personalized. This
is where we speculate that the participants may realize the
mismatch and attempt to adapt. But due to a lack of clear
or consistent direction, the participants’ responses did not
exhibit any discernible pattern or trend. For example, P1
shows delayed timing in tA, while others do not exhibit
this behavior. Similarly, P5 demonstrated a slightly earlier
duration in dC , which was not seen in other participants.
In contrast, evidence of human-robot co-adaptation during
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Figure 3. Results of online training for all five participants where the shaded regions indicate the 95% confidence interval for the three
online trials. The dashed lines are respectively the baseline human walking EMG effort without exosuit assistance. Participant 1 provided
the offline policy.

Figure 4. Timing and duration in state and control variables to demonstrate adaptation taking place during online learning. In the top
panel above the bar charts, the blue line segment is dA, the red is dC , the purple is d1 and the green is d2. The bar plots show the mean
differences in timing and duration between respective actual human walking measurements and those of the robot control. Specifialy,
δtA = t1 − tA, δdA = d1 − dA, δtC = t2 − tC , and δdC = d2 − dC .

online learning was clear, the benefit of which is shown in
the discussion Q4 below.

Q4: Human and robot co-adapted to achieve normative
walking with reduced human EMG Effort

1) Refer to Table 1, online training of robot control has led
to normative walking, as measured by the peak knee angle
approaching that during normative walking (small peak knee
error), and reduced EMG effort for all participants. This is
a result of online co-adaptation between the human and the
robot. To see that, we show next how robot control has taken
effect by looking into measurable human walking states. 2)
Let’s examine the duration of human stance phase (dA) and
swing phase (dC ) of offline policy and after online learning.
Note that the respective duration has changed little (refer
to the top row of Figure 4 above the bar charts with more
details provided in (Figure 9), and Figure 8a & b). This is
because the participants walk naturally and thus maintains
their normative walking patterns. 3) In the meantime, note
that the robot has reduced its stance duration (d1) and swing
duration (d2) to accommodate soft actuator deployment
delays (refer to the top row of Figure 4 above the bar charts).
4) Next, if we inspect the robot control onset timing t1 for
stance, it varied around human stance timing tA (refer to
the bar plots in Figure 4 with more details shown in Figure
9 B). As the soft actuators are to provide leg support for
stance, the human responses could vary depending on how

they weigh the importance of reducing effort during this less
effort demanding phase of walking. 5) The swing phase soft
actuator onset timing t2, however, has adapted to be ahead
of the human actual start of swing tC . Inflating actuators in
this phase is critical to reduce human effort of lifting the leg
and swing it forward. Note that the initial policy from offline
learning also resulted in an even earlier swing onset t2, an
outcome that may be caused by out-of-distribution effect as
there was no soft actuator deployment during offline training.
Consequently, to accommodate soft actuator delays there
has to be an early onset, but cannot be too early so that the
soft actuator is in the way of a normal knee swing flexion
(reduce the peak knee angle error). Additional details about
addressing the OOD issue can be found at Appendix G.

Q5 (Ablation Study) Both safe regulation of joint kine-
matics and reduction of human EMG effort are neces-
sary to achieve stable human-robot normative walking.
We performed an ablation study on the cost objective func-
tion. Our proposed performance index, which incorporates
both EMG effort and kinematic error or state error, demon-
strates superior performance. By balancing the reduction
of EMG effort and adherence to state error tolerance and
safety constraints, the RL controller optimizes both aspects
of the user’s walking behavior. Refer to Figure 3, this bal-
anced approach leads to convergence, stability, and signifi-
cant improvements in the user’s mobility, as evidenced by
lower stage cost, peak knee error, and decreased EMG effort.

8
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Figure 5. Ablation study: Learning performance under different formulation of objective functions associated with ablation study 1)
Without EMG effort in the control objective function 2) Without kinematic term in the control objective function 3) Full version of
objective function. Row A: Results of online training for three different objective functions. Row B: Results of robot controller timing for
three different objective functions. The shaded regions represent the 95 % confidence range of the three experiment trials. The x-axis is
the number of gaits. The black dash lines are the reference BASELINE from human normative walking profiles.

However, if only EMG effort or Kinematic error was used
in Equation 10, not only the EMG did not reduce but also
it resulted in a significant learning variance. The absence
of state kinematic error in the cost function (Figure 5 Or-
ange line) resulted in failure to maintain normative walking
patterns, which led to increased EMG levels and overall
less effective assistance . The absence of EMG effort in the
performance index (Figure 5 Green line) leads to a lack
of focus on reducing muscle activity. Consequently soft
exosuit failed to provide the necessary support to reduce
muscular strain, resulting in increased EMG levels .

Q6 AIP is generalizable to incline walking. As a first step
of extension, we developed a new incline walking platform
to validate the feasibility of AIP in more complex locomo-
tion tasks. As shown in Figure 10, which are results from
a 7-degree incline treadmill walking, increasing the incline
significantly alters gait kinematics. However, as shown
in Panel C, the AIP method remains robust, consistently
reducing EMG effort below BASELINE levels across all
participants.

5. Limitation and Future Work
Firstly, the AIP method has been tested for a single side con-
trol of one leg. Extending it to bilateral control introduces
challenges in coordinating and synchronizing assistance
across limbs. Multi-agent RL offers a promising direction to
address this open question. Secondly, RL’s reliance on exten-
sive data is a persistent limitation. Methods such as LNSS
(Zhong et al., 2023a), ATD (Zhong et al., 2023b), and other
techniques such as transfer learning are promising directions

under active development, as they have been shown effec-
tive to accelerate convergence and reduce user-specific data
needs. Additionally, our roadmap also includes extending
the method beyond basic treadmill-simulated level-ground
walking to encompass more complex and realistic tasks and
scenarios, such as walking at variable speeds, incline and
decline walking, among others. Another impactful future
research could expand this approach to consider a broader
and more diverse population, integrate complex locomotion
patterns, and explore long-term adaptation.

6. Conclusion
In this study, we introduce the AIP method to address the
challenges of soft exosuit-assisted human walking by bridg-
ing offline and online learning, rather than developing yet
another RL method. By leveraging existing RL algorithms
(dHDP), AIP enables personalized assistance to reduce hu-
man physical effort during normative walking. AIP im-
proves data quality through the RIIV method, integrating of-
fline imitation learning with RIIV and online dHDP learning
for data-efficient, personalized assistance. Our framework,
implemented and demonstrated in a physical environment,
overcomes the challenge of optimizing human-robot inter-
action without a dedicated simulator or dynamic model.
We validated our approach on five participants without selec-
tively presenting results, demonstrating a simple yet robust
solution for safe robot control. The co-adaptation between
human and robot effectively mitigates actuator delays, re-
ducing muscular effort and enhancing human-robot synergy.
This work paves the way for personalized robotic assistance
in rehabilitation and performance enhancement.
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Impact Statement
This paper is the first to demonstrate the application of re-
inforcement learning (RL) for controlling a soft exosuit to
assist human walking with reduced effort. Our study specif-
ically focuses on providing walking assistance to healthy
individuals walking on a flat treadmill. This study is not
attended for walking rehabilitation applications, which will
be considered in our future work. What we have shown in
this study is an important first step toward future broader ap-
plications of the technology. We chose this setting because
implementing such technology without thoroughly testing
it on healthy participants under the most common condi-
tion (such as level ground) could raise significant societal
concerns. Notably, assistive walking technologies for unim-
paired and impaired populations are typically approached
separately, each with distinct objectives.

In the case of unimpaired individuals, as addressed in our
study, the goal is to reduce the effort required for walking
while still achieving a normative gait—consistent with the
aim stated in our paper’s title. In contrast, wearable robots
designed for individuals with physical impairments have
different priorities. For these populations, improving gait
symmetry, balance, and walking speed takes precedence
over reducing effort. This is due, in part, to compelling
evidence that irregular gait patterns, such as those seen
in individuals with unilateral lower limb amputations, can
lead to secondary complications if not properly addressed.
Asymmetrical gait, for example, is commonly observed in
amputees and is associated with secondary health issues like
osteoarthritis in the non-amputated joints (Hof et al., 2007;
Adamczyk & Kuo, 2014) and lower back pain (Ehde et al.,
2001).

Given these considerations and the outcomes of this study,
we believe that our current AIP framework has the potential
to be further developed for studies focusing on assistive
walking for individuals with physical impairments and have
the potential to scale up such as walking at varying speed,
on different surfaces, ascending and descending stairs. How-
ever, this would require redefining the control design objec-
tives, rethinking offline data collection strategies, and devel-
oping a new experimental protocol tailored to the unique

needs of this population. These adjustments are crucial to
effectively address the distinct challenges of impaired gait
and to ensure the success of such an extension.
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A. Participant Information and IRB approve
Five healthy individuals (3 male and 2 female, participated in the study under a protocol approved by the Institutional
Review Board (IRB ID#: STUDY00011110 for level ground walking) and ( IRB ID#: STUDY00019873 for incline walking)
The average height, weight, and age of the recruited participants were 163 ± 8 cm, 66.1 ± 11.6 kg, and 28 ± 1.9 years,
respectively. The complete anthropometric data of the subjects can be seen in Table 3.

Figure 6 is a summary of histograms of the range of gait patterns which directly illustrate gait diversity of the participants.
These data show that the participants’ gait patterns span a broad spectrum, which covers safe and normative walking ranges
as reported in well-established human dynamic walking literature. We therefore consider our experimental data capture
commonly observed gait variations.

Table 3. Subject participants’ anthropometric data.

Subject Gender Age Weight (kg) Height (m)

S1 M 26 76 1.75
S2 F 27 52 1.54
S3 M 28 79 1.65
S4 F 31 57.5 1.58
S5 M 28 80 1.72

Figure 6. Histogram to show Diversity of Gait Patterns across all the participants. All recorded gaits show coverage of possibles region
within the normative walking ranges ( tA ∈ [0.1, 0.2], dA ∈ [0.1, 0.3], tC ∈ [0.6, 0.75],dC ∈ [0.1, 0.3])

B. Additional Related Work
RL successes with and without simulated environments. The most celebrated reinforcement learning (RL) achievements
with superhuman performance are in playing computer games (Silver et al., 2014; Mnih et al., 2015). These successes are
largely attributable to the use of unbiased simulation environments, which provide extensive and repeatable training data.
However, the simulator-based successes have rarely been duplicated in the real physical world. High-fidelity simulators
are often prohibitively expensive or even impossible to construct due to the complex dynamics, limitations in assessing
and representing inherently uncertain physical systems, such as sensor and actuator noise, communication delays and other
factors (Rao et al., 2020; Niu et al., 2022; Nikovski et al., 2024). Nonetheless, RL has been directly applied to physical
systems without the use of simulators. For example, (Inoue et al., 2017) presents a method to enable industrial robots
to perform high-precision assembly tasks (such as the peg-in-hole) by training an LSTM using reinforcement learning
directly on the physical device. There have been some other successful demonstrations of RL agents interacting with
simulated raw environments instead of simulators providing directly accessible state-action-reward data. For example,
(Hilleli & El-Yaniv, 2018) trains RL agents for autonomous highway steering using raw image sequences from a simulated
environment. The VPT (Baker et al., 2022) is a semi-supervised imitation learning method, where an inverse dynamics
model (IDM) is trained with labeled data to generate pseudo-labels for a vast amount of unlabeled online videos. This allows
for training a behavioral prior that exhibits nontrivial zero-shot capabilities and can be fine-tuned using imitation learning
and reinforcement learning to perform complex tasks. The method is shown to achieve significant results in the Minecraft
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Game, especially the crafting diamond tools, which were impossible for RL alone previously. The AR2-D2 (Duan et al.,
2023) allows users to record themselves manipulating objects, and the data is then used to train a real robot to perform
similar tasks. Despite these efforts, these studies still depend on gathering large amounts of data, often requiring hundreds
of hours of long sequences of video or episodes, for RL to effectively converge. There is a significant gap in research
addressing RL applications that operate under limited data conditions, particularly those with fewer than a few hundred
state transitions. Another compounding factor that significantly complicates the problem in data-scarce environments is the
human-in-the-loop effect, which is difficult to model or build a simulator for the human-robot interacting dynamics. These
issues remain largely unexplored.

Offline to Online RL Offline-to-online RL has been explored through various approaches. (Zhang et al., 2023) introduce
policy regularization via expansion and implement a Boltzmann action selection strategy. Several studies, including (Lee
et al., 2022), (Zhao et al., 2023a), and (Zhao et al., 2023b), utilize an ensemble of pessimistic value functions to mitigate
distributional shift, which serves as an implicit form of conservatism. (Nakamoto et al., 2024) propose training an additional
value function to address over-conservatism issues caused by the initialized value function in the offline phase. (Niu
et al., 2022) develop a dynamics-aware policy evaluation scheme to bridge the dynamic gap between source and target
domains. (Li et al., 2023) introduce a policy regularization term for trust-region-style updates. (Lei et al., 2023) use an
on-policy optimization method that unifies both offline and online training without extra regularization. However nearly all
of the current offline to online RL collects the offline data based on extensive simulations with millions of samples and
none of them have demonstrated directly learning from physical environment using LIMITED data for an offline policy.
Our AIP approach is one of the first realization that does not require simulator to provide offline data and We developed
our RIIV-based, data centric approach not only reduces intra-person step length variations but also reduces inter-person
variation. Because of our innovative data-centric approach, plus our use of well-established methods (BC and dHDP), our
AIP approach demonstrated its impressive performance as we have reported.

dHDP algorithm. The dHDP is one of the earliest deterministic policy gradient methods (Si & Wang, 2001). This class of
algorithms is considered more effective than popular methods such as PPO (Schulman et al., 2017) and SAC (Haarnoja
et al., 2018) for real-time continuous control applications. The dHDP is based on a fundamental principle that the actor
adjusts the policy in the direction of the action-value gradient, and the critic updates the action-value function. This idea is
considered a predecessor in a better known algorithm, the NFQCA (Hafner & Riedmiller, 2011), which in turn, is considered
a predecessor of the even better known DPG algorithm (Silver et al., 2014), which, as we know, has been further developed
into good algorithms, such as DDPG and SAC. In a nutshell, the dHDP is a bare-bone policy gradient method. All these
methods can be made more stable by integrating experience replay and target networks, which were first introduced in the
deep Q-networks (DQN) (Mnih, 2013). A more detailed discussion on dHDP and its performance evaluation in comparison
to DDPG, as well as its several significant applications in complex and realistic engineering systems, such as Apache
helicopter stabilization, tracking, and reconfiguration control (Enns & Si, 2003), power grid (Sun et al., 2012), chemical
processes (Yang et al., 2021), fuzzy control system (Gao & Liu, 2016), Single-Axis Servo Mechanism System (El-Sousy
et al., 2024), and more can be found in (Wu et al., 2024).

PPO and SAC are widely used in robotic learning based on extensive simulations or under structured environment. Both
algorithms have shown great ability to learn stochastic policies by parameterizing a probability distribution over actions.
These distribution-based policies facilitate exploration by sampling actions during training (Haarnoja et al., 2018; Schulman
et al., 2017). However, applying PPO and SAC in exosuit robot that does not have a simulator or a dynamic model of
human-robot interaction, presents true challenges.

In wearable robotics, particularly with humans in the loop, safety and comfort are of paramount importance. Human
participants become frustrated if the robot operates erratically. An analogy is how people feel when they learn to ski. Falling
to the ground in arbitrary ways make them feel frustrated, a mental state that adversely affect their natural behavior or even
cause injuries. A stochastic policy can become a source of causing discomfort to human users. In other real time control
applications such as flight control, we cannot afford erratic control actions either due to safety concerns. Perhaps because of
this, to the best of our knowledge, all existing applications of PPO and SAC rely on simulators, which enable unlimited data
collection, and controls are conducted in structured environments. The reliance on huge amount of data and the needs of
safety assurance have significantly narrowed the pool of potentially feasible methods.

However dHDP has been shown convergent theoretically and demonstrated convergence under limited data conditions
empirically in several wearable robotics applications (Wen et al., 2016a;b; 2017a; 2019; Wu et al., 2022). Additionally,
dHDP has been shown its compatible performance to DDPG in many DMC robotic control problems (Wu et al., 2024).
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These nice theoretical properties and practical successful studies have given us the confidence to deploy dHDP in our current
study, which directly learn the exosuit control solution with 5-dim state space and 4-dim action space.

In summary, given the track record of dHDP in human-robot locomotion control applications, and also to build initial trust
in human participants for this new soft robot control problem, we took the first step of using dHDP to learn in real time
for soft robot assisted human walking with reduced effort. This has helped us overcome the critical issue to not rely on a
mathematical model or simulation model, which are nearly impossible to obtain (Brenneis et al., 2021). While this approach
has met our expectation in the current study, we recognize the limitations or potential challenges as summarized in the
Limitations section, and we plans to systematically explore and evaluate different solution architectures and algorithms in
future studies.

Modeling of soft exosuit A pertinent example of these challenges can be seen in the develo±ent and application of soft
inflatable exosuits. On one hand, modeling a simulator for these devices is highly complex (Polygerinos et al., 2015). This
is mainly due to the compliant nature of soft robots, which introduce physical properties that are difficult to model. For
instance, several studies have shown that even obtaining a quasi-static model of torque for a soft actuator is not trivial
(Nesler et al., 2018; O’Neill et al., 2022). On the other hand, the dynamic interaction between the human wearer and the
robot creates a highly coupled and complex system, making it even more challenging to model accurately (Zhu et al., 2022).

Control of rigid lower limb exoskeleton and powered prosthesis. Rigid robotic lower-limb exoskeletons and prostheses
and their controls are being actively researched or even commercially available (Huang et al., 2021; Siviy et al., 2023; Shi
et al., 2019). A typical control strategy of these devices often focus on mimicking the kinematics of biological joints
via position control (Bortole et al., 2015; Long et al., 2017). However, another control strategy, referred to as finite state
machine impedance control, is often preferred especially for consideration of achieving compliant lower limb behaviors.
This stratagy provides safe human-exoskeleton interactions, as biological systems are capable of in order to adapt to various
environments (Azocar et al., 2020). Unfortunately, neither of the above two strategies are applicable to soft exosuit. For
control actuation in either control strategy, rigid device control torques are generated by mechanical joint motor actuators,
which can be directly used as a control parameter. In soft inflatables, however, the torque is generated from both human and
the exosuit. Differentiating the two sources is difficult or nearly impossible. The natural control parameters for exosuit
instead is the timing of inflation and deflation, which introduces additional delays to actuation and thus reduced stability
margins have to be considered in the control design.

Personalized controls for individual users are common to all wearable lower limb devices, and human-in-the-loop (HIL)
optimization represents several important design approaches (Koller et al., 2016; Zhang et al., 2017; Ding et al., 2018;
Kim et al., 2019a; Bryan et al., 2021). They are used in open or closed-loop force or torque control to operate individual
joints. In those applications, Bayesian optimization plays a key role to provide optimal controls. These methods search for
an extremum on the system response surface to determine the optimal control parameters. Although these methods can
customize the control strategies or parameters, they are time-consuming and lack of adaptation. A small change of the
wearer requires a re-design of the control (Tu et al., 2021). It is noted that a large class of wearable rigid device controls
aims at achieving reducing metabolic cost reflected by oxygen intake. However, it usually takes long walking time to be
able to extract reliable measurements. This prohibits online and real time requirement that is highly desired for wearable
robot applications. To overcome the limitations due to control strategy or optimizaiton method, data-driven reinforcement
learning (RL)-based optimal adaptive control methods have been developed and successfully demonstrated for robot control
of exoskeletons and prostheses. (Wen et al., 2019; 2017b; Li et al., 2021). In these applications, robot control relies on
optimal cumulative cost/reward related to producing normative walking using directly measurable human-robot walking
variables. However, these methods have been principally implemented in rigid robot devices (Huang et al., 2021), not
soft inflatable exosuits, the control problem formulation is different and the solution presents unique challenges due to
discussions in the above.

C. Safety Constraints
The problem under investigation requires human physical safety and control system stability of the human-robot system. In
this study, physical safety refers to that the human participants do not fall or endure injury as a result of robot control. This is
ensured by imposing safety bounds to limit the soft suit inflation and inflating duration timing. The control system stability
is in the same classical control sense, and we set one of the RL design objective in Equation 11 that the state regulation
errors approach 0 (or practically error tolerance bounded). Our assurance of stability and safety is embedded in learning
quantitatively, and guaranteed by analysis qualitatively. Our systematic data have shown that these constraints are met and
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objectives achieved.

To ensure human participants walk continuously and safely, we consider several safety constrains: 1) the soft actuator
pressure is limited to 206.8 kpa; 2) the control timings and inflation/deflation duration are constrained by taking reference of
those during participant’s normative walking as shown in Table 4, which are within realistic ranges (Zhang et al., 2020b).
These physical constraints help prevent significant misalignment between controller timing and the respective gait phase
during human walking. Without these constraints, it may trigger soft actuator deployment and cause discomfort to the user;
and 3) the online training objective is set for the control timings to approach those during normative walking, and thus in a
safe state. Equation (11) renders such state constraint where the target state variables s̃ = [t̃A, d̃A, t̃C , d̃C , θ̃] (Table 4) are
obtained from normative walking profile without soft actuator deployment to assist human walking:

Table 4. Safety constraint for the control timing and target state for control regulation to reach.

Control t1 d1 t2 d2 Target State t̃A d̃A t̃C d̃C θ̃
Safety constraints (% gait phase) [0,20] [0,20] [60,80] [0,20] normal walking (% gait phase) 14% 15% 68% 15% 60o

ϵs = (s− s̃)2, (11)

where the respective error tolerance for each state variable is as shown in Table 5. They represent realistic sensing and
actuation errors inherent in physical systems, and they are physically meaningful, human physiologically realistic, and
validated in studies of human biomechanics such as (Zhang et al., 2020b).

Table 5. Ranges of state error tolerance that are used in learning for achieving normative walking.

Error Tolerance tA − t̃A dB − d̃B tC − t̃C dC − d̃C θ − θ̃
Tolerance Range [-5%,5%] [-5%,5%] [-5%,5%] [-5%,5%] [0, 40 deg]

Table 6. Tolerance values that ensure human normative walking.

State tA dB tC dC θ
inf value 10 % 10% 60% 10% 53o

sup value 20 % 30% 75% 30% 78o

D. Hardware Details
Soft inflatable actuators are designed to generate extension torque, fabricated from nylon fabric and thermoplastic
polyurethane to ensure a transparent interaction with the user. When the knee is flexed and the actuators are inflated, they
apply extension torque to the knee joint. These actuators are strategically positioned in the popliteal fossa to aid in knee
extension. Further design details of the soft inflatable exosuit can be found in (Sridar et al., 2018; Sridar et al., 2020).

The electro-pneumatic system that controls the real-time inflation of the exosuit includes:
a microcontroller (Raspberry Pi),
solenoid valves (MHE3-MS1H, Festo, Hauppauge, NY) for switching between inflation and deflation,
pressure sensors (ASDXAVX100PGAA5, Honeywell International Inc., Morris Plains, NJ) for monitoring the internal
pressure of the actuators.

Kinematic data were collected using:
a camera-based motion capture system (T40s, VICON Inc., Los Angeles, CA) sampling at 100 Hz.
EMG sensors (Delsys Trigno, Delsys, Natick, MA) were used to capture muscle activity, sampled at 2000 Hz.
An instrumented treadmill (Bertec Inc., Columbus, OH) was used as the platform for the walking trials. The treadmill is
equipped with force plates that measure the user’s ground reaction forces at a sample rate of 2000 kHz.
An IMU motion capture system (Ultium Motion, Noraxon Inc., Scottsdale, AZ) was used to detect the maximum knee
joint angle.
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EMG sensors were placed on both legs over three muscles of interest: vastus lateralis (VL), biceps femoris (BF) and rectus
femoris (RF). The raw EMG data were first band-pass filtered (Butterworth, 4th order, 20 Hz and 450 Hz cutoff frequencies).
The profile of the signal was obtained by computing the root-mean-square envelope using a moving window of 250 ms. The
integral of the envelope was computed for each gait cycle to quantify the overall muscular effort.

E. Experimentation, Hyperparameters and Implementation Details
We use PyTorch for all implementations. All results were obtained using our desktop with Intel Core i9-12900K proces-
sor.Experimentation. The experiments consisted of two sets of walking: an offline, normative walking session with the
exosuit attached but not inflated, and an online walking session with RL-controlled exosuit inflation and deflation. Data of
one participant was recorded during offline walking for one experiment session. The offline session lasted around 10 minutes
of about 170 steps. For the online human-robot collaborative walking, three sessions were performed for each participant.
Each online session began with the controller initialized to the learned offline policy from IL, and lasted 10 minutes of about
150 steps. All participants walked at a constant speed of 1 m/s on the treadmill during all experimental sessions, Safety
constraints were imposed as discussed in Section 3.3. Data Collection for Offline Training. After a two-minute warm-up
period for participant 1 to get accustomed to the experimental setup and walking speed, data collection began. MoCap video
data of the state variables s in Equation (1) were collected. MoCap data were synchronized with the time sequences of
the state variables to provide control target for offline training. Data Collection for Online Training. After a two minute
warm up period, the learned offline policy (refer to Section 3.4) was used for initializing the online RL controller for all
participants. To mitigate environment noise and intra-human variance, a consecutive 5 steps were used to obtain one gait
sample, resulting in a total of 30 gait samples. The RL policy update was performed for every gait sample. Performance
Evaluations. Evaluation sessions were performed after online learning convergence upon meeting criteria (Table 5). Each
participant rested for 5 minutes after online learning prior to evaluation which involves walking of 100 steps in about 6
minutes. Evaluation data were processed using similar procedures to those used in processing online learning data.

E.1. Offline Training Procedure

The offline training consist with 200 episode. An Episode start with the first offline data in the dataset D to the end of the
dataset with total data points of 150. For each training trial, we use an off-policy exploration strategy, adding Gaussian noise
N (0, 0.05) to each control. The algorithm hyperparameter for offline training is as Table 7.

Hyperparameter Value
Exploration noise N (0, 0.05)
Noise clip ± 0.5
Policy update frequency 2
Batch size 32
Buffer size 200
γ 0.95
τ 0.1
Adam Learning rate 0.001

Table 7. Hyper Parameters used for offline training

E.2. Online Training Procedure

For the online human-robot collaborative walking, three sessions were performed for each participant. Each online session
began with the controller initialized to the learned offline policy from IL, and lasted 10 minutes of about 150 steps. All
participants walked at a constant speed of 1 m/s on the treadmill during all experimental sessions, Safety constraints were
imposed as discussed in Section 3.3. The algorithm hyperparameter for offline training is as Table 8.

E.3. Network Structure and optimizer

The actor-critic networks in DHDP are implemented by feedforward neural networks with two layers of weights. Each layer
has 256 hidden nodes with rectified linear units (ReLU) for both the actor and critic. The input layer of actor has the same
dimension as observation state. The output layer of the actor has the same dimension as action requirement with a tanh unit.
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Hyperparameter Value
Exploration noise N (0, 0.01)
Noise clip ±0.1
Policy update frequency 2
Batch size 5
Buffer size 20
γ 0.95
τ 0.4
Adam Learning rate 0.001

Table 8. Hyper Parameters used for online training

Critic receives both state and action as input to THE first layer and the output layer of critic has 1 linear unit to produce Q
value. Network parameters are updated using Adam optimizer with a learning rate of 10−3.

E.4. Code

For Code and data, please visit https://github.com/JennieSi-Lab-RLOC/ICML2025-AIP

F. dHDP solution and properties
To find thd dHDP solution, let the critic value as Equation 8 be Qθ where θ denotes the critic weights that are to be learned
by using dHDP. Specifically, weight updates were performed to minimize the loss as a function of the weights (θ):

L(θ) = Es∼pπ,u∼π

[
(y −Qθ(sk, uk))

2
]
, (12)

where in the above, y denotes the critic target. Accordingly, the actor weights (denoted by (ϕ)) are updated by applying the
chain rule to the total return from the start distribution J with respect to the policy parameter (ϕ):

∇ϕJ(ϕ) = Es∼pπϕ

[
∇uQθ(sk, uk)|uk=πϕ(sk)

∇ϕπϕ(sk)
]
. (13)

The update rules for the critic and the actor, respectively are:

θ ← θ + α∇θL(θ),

ϕ← ϕ+ α∇ϕJ(ϕ),
(14)

where α is the learning rate.

Here we analyze and characterize properties of the learning process and the control performance, specifically those related
to learning convergence, solution optimality, and stability as a result of online dHDP learning. In the following, we express
the exosuit control system with the following general nonlinear dynamics for the ease of discussion although this model is
unknow, and our offline to online learning is completely data-driven.

sk+1 = f(sk, uk), k = 0, 1, ... (15)

where s ∈ R5 and u ∈ R4 are defined in Equations 1, 2, respectively, k denotes discrete time steps.

The objective of optimal control is to find a control policy that can stabilize system (15) and minimize the cost-to-go in
Equation (8).

According to the Bellman optimality principle, the optimal cost-to-go satisfies the following relationship,

Q∗(sk, uk) = ck(sk, uk) + γQ∗(sk+1, π
∗(sk+1)), (16)

and the optimal control law π∗ can be expressed as

π∗(sk) = argmin
uk

Q∗(sk, uk), (17)
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where Q∗ (sk, uk) is the state-action value function corresponding to the optimal control policy π∗ (sk).

We need the following definition and assumption to develop our results.

Definition 1. (Stabilizable System) A nonlinear dynamical system is said to be stabilizable on a compact set Ω ∈ Rn, if for
all initial states s0 ∈ Ω, there exists a control sequence u0, u1, . . . , uk, . . . such that the state sk → se as k →∞ where se

is a equilibrium point.

Assumption F.1. System (15) is controllable and stabilizable. The system state sk = se is an equilibrium of the system
under the control uk = π (sk) = ue for sk = se, i.e., f(se, ue) = se. The feedback control sequence uk is determined from
control policy π represented by the actor neural network, and in the most general case is bounded by actuator saturation.

Assumption F.2. The stage cost function ck (sk, uk) is finite, continuous in sk and uk, and positive semi-definite with
ck(sk, uk) = 0 if and only if sk = se and uk = ue.

Note that the above assumptions are reasonable and realistic, as they are under the presumptions that a person who can use a
exosuit to assist walking can reach an equilibrium state that they can achieve normative walking while their muscle activities
are reduced to a level less than that without wearing assistance.

As a actor-critic method, dHDP solve the Bellman’s optimality by learning to approximate both policy and value functions
where actor refers to the learned policy and critic refers to the learned value. An actor-critic algorithm starts with an initial
value, e.g., Q0(s, u) = 0 and an initial arbitrary policy π0. Then for i = 0, 1, 2, ..., it iterates between policy update and
policy evaluation steps.

Qi+1 (sk, uk) = ck (sk, uk) + γQi (sk+1, πi (sk+1)) , (18)

and
πi (sk) = argmin

uk

Qi (sk, uk) . (19)

Or by combining (18) and (19), we have

Qi+1 (sk, uk) = ck (sk, uk) + γ min
uk+1

Qi (sk+1, uk+1) . (20)

Theorem F.3. Let Assumptions F.1 and F.2 hold. Let Qi be the sequence of estimated Q values starting from Q0 = 0 at ith
update of RL agent. For policy πi, its actor network weights are updated based on the policy gradient estimator (14), and
the controls are bounded by the output function of the action network. Then

(1) Bounded: there is an upper bound Y such that 0 ≤ Qi(sk, uk) ≤ Y , for i = 1, 2, ....

(2) Qi is a non-decreasing sequence satisfying Qi(sk, uk) ≤ Qi+1(sk, uk),∀i.

(3) Convergence: the limit of the sequence, Q∞ (sk, uk) = limi→∞ Qi (sk, uk), satisfies

Q∞ (sk, uk) = ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1) . (21)

(4) Optimality: the Q-value sequence Qi (sk, uk) and the corresponding policy πi (sk), with π∞ (sk) = limi→∞ πi (sk),
converge to the optimal value Q∗ and optimal policy π∗, respectively:

π∞ (sk) = π∗ (sk) , (22)

Q∞ (sk, uk) = Q∗ (sk, uk) . (23)

Proof . (1) Let η(sk) be a deterministic control policy represented by a neural network which is a continuous mapping from
sk in stochastic environment E. Let Z0(·) = 0, and Zi be updated by

Zi+1 (sk, uk) = ck (sk, uk) + γZi (sk+1, η (sk+1)) , (24)

Thus, Z1 (sk, uk) = ck (sk, uk).

According to Lemma 2 in (Gao et al., 2024), we obtain
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Zi+1 (sk, uk)

=

i∑
j=0

γjck (sk+j , η (sk+j)) ≤
∞∑
j=0

γjck (sk+j , η (sk+j)) .
(25)

If Assumption F.1 holds, ck(sk+j , uk+j) is bounded, there exists an upper bound Y such that

∞∑
j=0

γjck (sk+j , η (sk+j)) ≤ Y, (26)

According to Lemma 1 in (Gao et al., 2024), as Qi+1 is the result of minimizing the right-hand side of (20), we have

Qi+1 (sk, uk) ≤ Zi+1 (sk, uk) ≤ Y,∀i. (27)

(2) Define a value sequence Φi as

Φi+1 (sk, uk) = ck (sk, uk) + γΦi (sk+1, πi+1 (sk+1)) , (28)

and Φ0 = Q0 = 0. In the following, a shorthand notation is used for Φi(sk+1, πi+1) = Φi(sk+1, πi+1(sk+1)).

Since Φ0 (sk, uk) = 0 and Q1 (sk, uk) = ck(sk, uk), and ck is positive semi-definite under Assumption F.2,

Φ0 (sk, uk) ≤ Q1 (sk, uk) . (29)

From (18) and (28), we get

Qi+1 (sk, uk)− Φi (sk, uk)

= γ [Qi (sk+1, πi)− Φi−1 (sk+1, πi)] ≥ 0.
(30)

Therefore,
Φi (sk, uk) ≤ Qi+1 (sk, uk) . (31)

Further by using Lemma 1 in (Gao et al., 2024)

Qi (sk, uk) ≤ Φi (sk, uk) ≤ Qi+1 (sk, uk) . (32)

This completes the proof of Theorem F.3 (2).

(3) From parts (1) and (2) in the above, Qi is a monotonically non-decreasing sequence with an upper bound. Therefore, its
limit exists. Let the limit be limi→∞ Qi (sk, uk) = Q∞ (sk, uk).

Given i and for any uk+1, according to (18), there is

Qi (sk, uk) ≤ ck (sk, uk) + γQi−1 (sk+1, uk+1) . (33)

As Qi is monotonically non-decreasing, we have

Qi−1 (sk, uk) ≤ Q∞ (sk, uk) , (34)

the following then holds
Qi (sk, uk) ≤ ck (sk, uk) + γ min

uk+1

Q∞ (sk+1, uk+1) . (35)

As i→∞, we have
Q∞ (sk, uk) ≤ ck (sk, uk) + γ min

uk+1

Q∞ (sk+1, uk+1) . (36)

On the other hand, since the cost-to-go function sequence satisfies

Qi+1 (sk, uk) = ck (sk, uk) + γ min
uk+1

Qi (sk+1, uk+1) , (37)
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applying inequality (34) as i→∞,

Q∞ (sk, uk) ≥ ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1) . (38)

Based on (36) and (38), (21) is true. This completes the proof of Theorem F.3 (3).

(4) According to Theorem F.3 (3) and by using Equations (18) and (19), we have

Q∞ (sk, uk) = ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1)

= ck (sk, uk) + γQ∞ (sk+1, π∞ (sk+1)) ,
(39)

and
π∞ (sk) = argmin

uk

Q∞ (sk, uk) . (40)

Observing (39) and (40), and then (16) and (17), we can find that (22) and (23) are true. This completes the proof of
Theorem F.3 (4).

Theorem F.4. Let Assumptions F.1 and F.2 hold, and Qi be the sequence of estimated Q values starting from Q0 = 0. For
policy πi, its actor network weights are updated based on the policy gradient estimator (14). If Qi converges to Q∞ as
πi → π∞, then π∞ is a stabilizing policy.

Proof. If Assumption F.1 holds, let µ(sk) be a stabilizing control policy, and let its cost-to-go Λi be updated by the following
equation from Λ0(·) = 0,

Λi+1 (sk, uk) = ck (sk, uk) + γΛi (sk+1, µ (sk+1)) , (41)

We have

Λi (sk, uk) =

i∑
j=0

γjR (sk+j , µ (sk+j)) , (42)

Because µ(sk) is a stabilizing policy, if Assumption F.1 and F.2 holds, we have sk → se and ck(sk, uk)→ 0 as k →∞.
Therefore, Λi(sk, uk)→ 0 as k →∞.

Next, from Lemma 1 in (Gao et al., 2024), πi minimizes Qi, we have

Qi (sk, uk) ≤ Λi (sk, uk) . (43)

Since Λi(sk, uk)→ 0 as k →∞, we have Qi(sk, uk)→ 0 as k →∞.

From Theorem F.3 (3), we obtain ck(sk, uk) = 0 as k →∞. Further, under Assumption F.2, ck(sk, uk) = 0 if and only
sk = se, we have sk → se as k →∞. This completes the proof.

G. Addressing OOD Problem
A primary challenge during online training was caused by a significant actuator delay associated with soft actuator inflation
and deflation. Specifically, there is an approximately 0.2-second delay to fully inflate and 0.25-second delay to deflate.
These delays could not be adequately captured during the offline imitation learning phase as offline policy was obtained
without exosuit control. As shown in Figure 4, to compensate for the inflation delay, the control variable t1 was significantly
shifted to an earlier onset, allowing the system to anticipate the slower actuator response time. Similarly, to mitigate the
impact of deflation delays, the duration variables d1 and d2 were substantially shortened, ensuring that the system could
maintain synchronization with the human walking pattern. These adjustments were critical in aligning the actuator responses
with the real-time dynamics of human movement, thereby enhancing the overall effectiveness of AIP by achieving normative
walking with reduced effort while all safety constraints are met.

H. Human Adaptation
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Figure 7. EMG profile and Characteristic timings and durations of gait trials A) Baseline: without actuating the exosuit. B) Under the
offline policy obtained from offline training. C) Under a trained online policy obtained after online learning convergence. The results
in row B) illustrate how participants responded and adapted to an offline-trained policy. However, their adaptations show no clear or
consistent trend toward reducing EMG effort. In contrast, the human-robot co-adaptation process during online learning led to a consistent
reduction in EMG effort, as demonstrated in Figures 3 and 4. The shaded regions represent the 95 % confidence range of the three
experiment trials. The x-axis is the number of gaits. The results in row A) included one trial since there is no control assistance.

Figure 8. Characteristic timings and durations of gait trials: a) Raw gait data in seconds during training. b) Respective RIIV-processed
data. c) RL policy during training. The shaded regions represent the 95 % confidence range of the three experiment trials. The x-axis is
the number of gaits.
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Figure 9. Row A represents actual experimental data from evaluations of both the offline-trained policy and the online-trained policy.
Row B: explores human-robot co-adaptation by analyzing the timing differences between the RL controller and human gait, specifically:
Specifialy, δtA = t1 − tA, δdA = d1 − dA, δtC = t2 − tC , and δdC = d2 − dC . On Human Robot Co-adaptation: 1) The gait
duration after online training increases to accommodate inflation/deflation (time it takes to actuate the airbag) as row A) shows that the
dashed orange line is longer than solid blue line. 2) Preserved Typical Human Gait: The duration of human stance dA, dC changed very
little indicating that participants continue walking naturally with their typical gait patterns. 3) Stance Onset Timing t1: as Row B) shows,
that for majority of the participants (4 out of 5), RL adjusted the control to align more closely with the human stance onset timing tA And
one participant, the control onset shifted slightly earlier. 4) Swing Onset Timing t2: consistently shifts earlier than the human’s actual
swing starting time tC , ensuring actuators inflate in time to assist lifting the leg. The offline policy had an even earlier t2, likely due to the
attached actuator but the absence of actuator deployment during training. However, if this onset is too early, it could hinder natural knee
movement—hence, online learning automatically adjusted it to strike a balance between assistance and preserving gait mechanics.
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I. Incline Task

Figure 10. A) 7 Degree of Incline Walking B) Walking Profiles vary over incline angles C) Complete Online Training Results of 7 Degree
Incline Walking with 2 Participants. The shaded regions represent the 95 % confidence range of the three experiment trials. The x-axis is
the number of gaits. The dashed line in the EMG effort panel represent the BASELINE EMG effort when there is no control of the
device.
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