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Abstract

We propose a novel two-stage framework, Coarse-to-Fine Part Assembly (CFPA),
for 3D shape assembly from basic parts. Effective part assembly demands precise
local geometric reasoning for accurate component assembly, as well as global
structural understanding to ensure semantic coherence and plausible configurations.
CFPA addresses this challenge by integrating semantic abstraction and symmetry-
aware reasoning into a unified pose prediction process. In the first stage, semantic
super-parts are constructed via an optimal transport formulation to capture high-
level object structure, which is then propagated to individual parts through a dual-
range feature propagation mechanism. The second stage refines part poses via cross-
stage feature interaction and instance-level geometric encoding, improving spatial
precision and coherence. To enable diverse yet valid assemblies, we introduce
a symmetry-aware loss that jointly models both self-symmetry and inter-part
geometric similarity, allowing for diverse but structurally consistent assemblies.
Extensive experiments on the PartNet benchmark demonstrate that CFPA achieves
state-of-the-art performance in assembly accuracy, structural consistency, and
diversity across multiple categories. Code is available at https://github.com/
zhangxinyi364/CFPA.

1 Introduction

3D part assembly, the task of estimating accurate 6-DoF poses for a set of basic parts to reconstruct a
coherent 3D shape, is a fundamental yet challenging problem in robotics, vision, and digital design [1–
5]. This task is particularly challenging due to the complex geometric dependencies between parts,
the absence of explicit semantic structure, the pervasive presence of symmetries, and the vast number
of potential combinations.

Recent advances in 3D part assembly have focused on modeling structural dependencies among parts.
Graph-based approaches [6, 7] encode local geometric relationships through message passing on
learned part graphs, but their receptive field is often limited and insufficient for capturing high-level
object structure. Transformer-based methods [8, 9] improve long-range reasoning by leveraging global
self-attention, yet they typically process parts as flat sequences and struggle to encode hierarchical
or permutation-invariant semantics. Generative approaches, including VAEs [10], GANs [11], and
score-based diffusion models [12], attempt to model joint distributions over object structure and
part-level geometry [13–15]. While powerful, they often rely on implicit, handcrafted, or fixed part
hierarchies, which can be brittle and category-specific. To address this, we propose to learn high-

∗Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/zhangxinyi364/CFPA
https://github.com/zhangxinyi364/CFPA


level semantic super-parts via optimal transport, which provide meaningful guidance for subsequent
coarse-to-fine pose prediction and support more coherent and semantically aware assembly.

Beyond semantic reasoning, another challenge in 3D part assembly is handling symmetry within indi-
vidual parts and geometrically similar parts, common in real-world objects like self-symmetric chair
seats or repeated structures like chair legs. These symmetries lead to multiple valid configurations that
are indistinguishable under standard supervision. Some methods address this by introducing instance
encoding, losses, or constraints to discourage geometrically similar parts from occupying equivalent
position [8, 9, 16]. Others reduce part-wise pose ambiguity through part pose normalization and
further leverage part-level geometric similarity to model part relations [6, 8, 17, 18]. Furthermore,
some methods exploit symmetry to reduce complexity during fragment reassembly by aligning parts
based on their symmetric relationships [19–21]. However, most existing methods focus on precise
part assembly and overlook the interchangeable structural roles of self-symmetric parts or parts with
minor geometric differences. In contrast, our approach jointly models both intra-part and inter-part
symmetries, enabling the generation of accurate, diverse, and structurally plausible assemblies.

In this paper, we propose CFPA (Coarse-to-Fine Part Assembly), a two-stage framework that jointly
models semantic structure and geometric symmetry. It first performs coarse pose estimation by
constructing semantic super-parts via optimal transport, which guides prediction through a novel
dual-range feature propagation. The part poses are then refined using cross-stage interaction and
instance-level geometry encoding to enhance spatial precision and structural coherence. CFPA
further incorporates a symmetry-aware loss that supervises multiple consistent pose configurations
by explicitly modeling both intra-part and inter-part symmetries. Experiments on PartNet show that
CFPA outperforms prior methods in pose accuracy, structural consistency, and assembly diversity.

2 Related Work

3D Part Assembly 3D part assembly, which aims to estimate 6-DoF poses for object parts to form
coherent shapes, has evolved from rule-based and probabilistic approaches to modern deep learning
frameworks. Early methods [1, 22–25] relied on handcrafted rules or statistical models to retrieve
and align parts from shape repositories. With the rise of deep learning, recent methods focus on
learning inter-part relationships and global structure directly from data. Graph-based models [6, 7, 24]
capture local dependencies via message passing, while Transformer-based frameworks [8, 9, 17]
enable long-range reasoning and instance-level disambiguation through attention mechanisms and
structural constraints. To improve diversity and probabilistic modeling, generative methods such
as VAEs, GANs, and diffusion models have been explored [15, 26, 27]. Task-specific strategies
have also been designed, and Li et al. [28] propose precise alignment through peg-hole constraints,
while guided approaches such as GPAT [29], Img-PA [18] and Imagine [30] leverage external
cues like planning sequences or images. Despite these advances, many existing methods lack
explicit semantic structuring and struggle with symmetry-induced uncertainties, which are critical for
producing consistent and diverse assemblies in complex scenarios. Our work addresses these gaps by
introducing semantic super-parts and a symmetry-aware reasoning for pose prediction.

Multi-scale Feature for Shape Generation Multi-scale feature modeling [31–35] plays a crucial
role in modeling complex object structures. Early works such as StructureNet [36] and PT2PC [37]
introduced hierarchical representations via trees and graphs to encode semantic part relationships,
mainly for shape generation. Later, assembly-focused models like DGL [6] and RGL [7] extended
this idea by leveraging graph neural networks to reason over both global context and local interactions
during part refinement. Recent transformer-based models further expand multi-scale reasoning.
SPAFormer [38] integrates global attention with PCA-based symmetry grouping to enhance long-
range dependencies, while 3DHPA [17] models part-whole hierarchies through super-part message
passing based on geometric similarity. The works of [18, 36, 39] also conduct feature interaction
within geometrically similar part sets. In parallel, Score-PA [15] employs diffusion processes to
jointly learn global and local feature distributions for generative assembly. However, prior methods
commonly rely on fixed part groupings and uniform feature aggregation, which limits their ability
to model both overall structure and detailed geometry, especially for repetitive or symmetric parts.
We learn semantic part abstractions in a data-driven way and adaptively propagate global and local
context to improve structural alignment.
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Figure 1: Pipeline of our CFPA. We first perform coarse pose estimation using super-parts derived via
optimal transport, followed by pose refinement through cross-stage interactions. A symmetry-aware
loss is proposed to improve pose accuracy while allowing structurally consistent variations.

Symmetry for Shape Understanding Symmetry is a fundamental property in 3D shapes, playing
a crucial role in structural reasoning and part assembly. It includes self-symmetry, where a part
remains invariant under transformations like rotation, translation, and reflection, and inter-part
geometric similarity, where multiple parts share nearly identical shapes. Early works focused on
detecting reflective and rotational symmetries for shape matching and alignment [40–44]. Later
methods integrated symmetry into deep models for structural generation, such as StructureNet [36],
which encodes symmetric part relationships via hierarchical graphs, as well as SAGNet [45] and
ShapeFlow [46], which treat symmetry as an inductive bias to guide part deformation. SDM-NET [47]
implicitly encodes symmetry in latent codes to guide part generation. Recent methods like DGL [6],
Score-PA [15], and Img-PA [18] group geometrically similar parts for feature interaction, while
SPAFormer [38] and 3DHPA [17] use PCA or bounding box similarity to enhance attention during
part assembly. Symmetry is also particularly critical in deterministic fragment assembly, where it
guides the precise reconstruction of broken objects using symmetry-based priors to align fractured
parts [16, 19, 21]. These approaches typically encode symmetry as an architectural prior. In this work,
we model inter-part similarity to enhance representations and further propose a symmetry-aware loss
that accounts for both self-symmetry and geometric similarity, enabling diverse yet valid assemblies.

3 Method

Let {Pi}Ni=1 denote a set of 3D part point clouds, where each part Pi ∈ RD×3 contains D points.
Our goal is to predict the corresponding 6-DoF part poses {t∗i , r∗i }Ni=1, where t∗i ∈ R3 is the
translation vector and r∗i ∈ R4 is the rotational quaternion. The assembled shape is then given by
S∗ =

⋃N
i=1(r

∗
i ◦ Pi + t∗i ), with ◦ denoting the rotation operation, which can be implemented via

Rodrigues’ formula [48], and
⋃

denoting the union operation.

Effective 3D part assembly requires not only the precise prediction of part poses for correct component
assembly, but also a deep understanding of the global structure to ensure semantic consistency and
generate plausible configurations. We propose CFPA (Coarse-to-Fine Part Assembly), a two-stage
framework that integrates structural priors, geometric reasoning, and symmetry-aware supervision
into the pose prediction pipeline. The overall architecture is illustrated in Figure 1. It begins with
coarse pose estimation using semantic super-parts and a dual-range feature propagation strategy
(Section 3.1), followed by a pose refinement stage that leverages cross-stage attention and instance
encoding (Section 3.2). Additionally, we introduce a symmetry-aware loss that encourages both pose
accuracy and assembly diversity (Section 3.3) by exploiting intra-part and inter-part symmetries.

3.1 Coarse Pose Estimation with Semantic Super-Part

We conduct coarse part-wise poses estimation guided by semantic super-parts, which serve as high-
level structural priors capturing object-level semantics. These super-parts are constructed via an
optimal transport formulation that yields compact and coherent part groupings in feature space. Their
representations are then propagated to individual parts through a dual-range mechanism that integrates
both local and global structural cues, enabling accurate pose prediction.

3



3.1.1 Semantic Super-Parts Construction via Optimal Transport

Given a set of parts {Pi}Ni=1, we first extract part-wise features {fi}Ni=1 using a shared lightweight
PointNet [49]. To capture the high-level structural information of the object, we then construct a set
of semantic super-parts {hj}Mj=1 from {fi}Ni=1, with M ≤ N . These super-parts serve as compact,
semantically meaningful representations that encode the global structure of the target shape.

To encourage compact and semantically consistent part grouping, we formulate the assignment of
part features to super-parts as an entropy-regularized optimal transport problem, which provides a
principled and differentiable way to compute soft assignments. Specifically, we learn a transport
matrix T = {Tij} ∈ RN×M that defines soft correspondences between individual part features
and super-part representations. Each super-part is then computed as a weighted aggregation of part
features according to the transport matrix T :

hj =

N∑
i=1

Tijfi, j = 1, . . . ,M. (1)

The transport matrix T can be obtained by minimizing the following entropy-regularized objective
using Sinkhorn’s algorithm [50]:

T ∗ = argmin
T

N∑
i=1

M∑
j=1

TijCij − ϵ

N∑
i=1

M∑
j=1

Tij log Tij , (2)

where Cij = ⟨fi, hj⟩ denotes the inner product cost between part feature fi and super-part feature
hj , and ϵ > 0 is a regularization coefficient that balances transport cost and entropy.

The resulting semantic super-parts {hj}Mj=1 encapsulate the global structural context implied by the
input part set. These high-level representations serve as semantic anchors for subsequent dual-range
feature propagation, providing informative priors for coarse part-wise pose estimation.

3.1.2 Dual-Range Feature Propagation

Leveraging the semantic super-parts, we propose a dual-range feature propagation to enhance part
features by incorporating the local and global structural context, supporting accurate pose prediction.

Short-Range Feature Propagation To embed localized structural priors into part features, we
perform short-range propagation from the nearest semantic super-part. For each part feature fi, we
identify its closest super-part from {hj}Mj=1 via Euclidean distance in the feature space, denoted
by h⋆

i . The paired representations of fi, h⋆
i are then concatenated and passed through a multi-layer

perceptron (MLP) to produce an enhanced representation:

f̂i = MLP ([fi, h
⋆
i ]) , i = 1, . . . , N. (3)

This operation enriches part representations with structural priors from their nearest semantic super-
parts. The features {f̂i}Ni=1 preserve local geometric detail while integrating contextual cues from
nearest semantic super-part, enabling more coherent representations for downstream pose estimation.

Long-Range Feature Propagation To capture holistic structural dependencies at the global scale,
we introduce a long-range feature propagation mechanism that integrates semantic information
from all super-parts and reinforces spatial coherence through geometry-aware message passing.
Specifically, we compute the Super-to-Base attention-weighted aggregation over all super-parts as:

fS2B
i =

M∑
j=1

αij · (hjWV ), with {αij}Mj=1 = Softmax
(
{(fiWQ)(hjWK)⊤}Mj=1

)
, (4)

where WK ,WV ,WQ are learnable projection matrices. This mechanism enables each part to selec-
tively integrate high-level semantic cues from the entire structural representation. To promote spatial
coherence and suppress isolated responses, we further refine the attended features through message
passing among geometrically similar parts:

fS2B-MP
i =

∑
g∈Ω(i)

βigf
S2B
g , i = 1, ..., N, (5)
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where Ω(i) denotes the set of geometrically similar parts to i, and βig is normalized affinity weights
for the subgraph of geometrically similar parts (details in Appendix). The final long-range propagated
feature is obtained by fusing original part feature fi and refined representation fS2B-MP

i through MLP:

f̃i = MLP
([
fi, f

S2B-MP
i

])
, i = 1, ..., N. (6)

This long-range propagation complements the short-range path by incorporating global semantic
structure and promoting geometric consistency across parts, leading to more contextually informed
part representations for downstream pose prediction.

3.1.3 Coarse Part Pose Estimation

Based on the short-range and long-range propagated features {f̂i}Ni=1 and {f̃i}Ni=1, we estimate the
coarse poses for individual parts. For each part, the two features are concatenated and passed through
a multi-head attention (MHA) module to capture inter-part dependencies:

{fCoarse
i }Ni=1 = MHA

(
{[f̂i, f̃i]}Ni=1

)
. (7)

The resulted coarse features {fCoarse
i }Ni=1 are then processed by MLP to predict rigid transformation,

consisting of rotational quaternion ri and translation vector ti, and the transformed part P̄i is achieved:

ri, ti = MLP(fCoarse
i ), P̄i = ri ◦ Pi + ti, i = 1, ..., N. (8)

By integrating semantic priors from super-parts and capturing structural dependencies via dual-
range propagation, the coarse stage yields an initial pose estimation that is globally coherent and
semantically informed. This provides a reliable initialization for subsequent pose refinement.

3.2 Pose Refinement

Building upon the coarsely transformed parts {P̄i}Ni=1, we perform pose refinement by incorporating
coarse-stage semantic guidance and modeling part-level geometric relations.

Specifically, we first extract part-wise features from {P̄i}Ni=1 using a shared, lightweight Point-
Net [49], which produces the feature set {gi}Ni=1. These features serve as queries in a cross-stage
attention module, with keys and values taken from the coarse-stage features {fCoarse

i }Ni=1. The re-
sulting attended features {g̃i}Ni=1 encode coarse-to-fine guidance for each part. To further enhance
spatial coherence and structural consistency, we incorporate instance encoding {ei}Ni=1, which en-
codes geometric similarity and inter-part relations following [8] (details in Appendix). Finally, we
concatenate gi, g̃i, ei for each part, and apply MHA to obtain refined part feature {fRefine

i }Ni=1, and
regress the final pose by MLP:

{fRefine
i }Ni=1 = MHA

(
{[gi, g̃i, ei]}Ni=1

)
, r∗i , t

∗
i = MLP

(
fRefine
i

)
, i = 1, ..., N, (9)

where r∗i and t∗i denote the predicted rotational quaternion and translation vector for part Pi, respec-
tively. The final transformed part and the assembled shape are computed as:

P ∗
i = r∗i ◦ Pi + t∗i , S∗ =

N⋃
i=1

P ∗
i . (10)

This refinement stage enhances transformation precision by combining semantic guidance from the
coarse stage with fine-grained geometric reasoning, ultimately yielding more accurate part-wise pose
predictions and structurally coherent assemblies.

3.3 Training Objective

We design the training objective to optimize part-level pose accuracy and global structural consistency,
while allowing symmetry-consistent diversity in part configurations, through a combination of part,
shape, and symmetry-aware losses defined as follows.
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Part and Shape Losses Denoting the predicted pose for part Pi as F(Pi) = {r∗i , t∗i }, to ensure
accurate part placement, we supervise the predicted transformation against its ground-truth pose
{rGT

i , tGT
i } using a standard part loss [6, 7, 15]:

LPart =

N∑
i=1

Lpose

(
F(Pi), {rGT

i , tGT
i }

)
,

with Lpose(F(Pi), {rGT
i , tGT

i }) = ∥t∗i − tGT
i ∥2 + γdc

(
r∗i ◦ Pi, r

GT
i ◦ Pi

)
,

(11)

where dc denotes the Chamfer distance [18] between transformed point clouds, and γ balances
translation and rotation terms. To further encourage global consistency, we supervise the assembled
shape S∗ against the ground-truth shape SGT by shape loss as [6–8, 17]:

LShape = dc
(
S∗,SGT) . (12)

The part and shape losses provide complementary supervision at the local and global levels, jointly
promoting accurate pose estimation and structurally coherent assemblies.

Symmetry-Aware Loss To support diverse yet semantically valid part configurations, we introduce
a symmetry-aware loss that explicitly accommodates multiple pose solutions induced by inherent part
symmetries. It accounts for two cases, (1) self-symmetry where a part is indistinguishable from its
flipped counterpart (e.g., a chair seat symmetric under vertical flipping as in Figure 2), and (2) inter-
part geometric similarity where parts with nearly identical shapes can assume interchangeable roles
(e.g., chair legs). These symmetries imply that structurally equivalent assemblies may admit multiple
plausible configurations. Instead of enforcing a unique canonical pose, we select the best-aligned
symmetric variant during training, enabling robust and symmetry-consistent learning.

Figure 2: Parts with self-symmetry
and geometric similarity in a chair.

For self-symmetry, we consider all sign-flipped variants of the
ground-truth pose {rGT

i , tGT
i }, denoted as {τ ◦ {rGT

i , tGT
i }}τ∈Z3

2
,

where τ ∈ Z3
2 represents a flipping operation along x-, y- and

z-axis having 23 = 8 possible transformations. We select the flip
τ⋆i that yields the lowest pose error with respect to the predicted
pose F(Pi):

τ∗i = argmin
τ∈Z3

2

Lpose

(
F(Pi), τ ◦ {rGT

i , tGT
i }

)
. (13)

To further account for assembly diversity arising from geomet-
rically similar parts, we identify the set Ω(i) of ground-truth
indices whose axis-aligned bounding box differences from Pi

below a fixed threshold. The symmetry-aware loss encourages consistency between thr predicted
pose F(Pi) and the most similar flipped ground-truth pose in this set, where each candidate j uses its
own optimal self-symmetry transformation τ∗j obtained from Eq. (13):

LSym =

N∑
i=1

min
j∈Ω(i)

Lpose(F(Pi), τ
∗
j ◦ {rGT

j , tGT
j }). (14)

This formulation strengthens pose supervision by leveraging symmetry to accommodate diverse yet
semantically valid configurations, while maintaining consistent with ground-truth transformations.

Total Training Objective We define the total training objective as a weighted combination of part
loss, shape loss, and symmetry-aware loss as:

L = LPart + LShape + λLSym, (15)

where λ is hyper-parameter balancing contribution of symmetry-aware loss in the overall optimization.

4 Experiment

Implementation Details We implement CFPA in PyTorch [51] using AdamW optimizer [52]
with batch size 64. Following [6, 7, 15, 17], all the input parts are centralized and normalized by
PCA and added with random noise during training. We adopt Min-of-N (MoN) strategy [53] for
optimization. The model learns M=16 super-parts and uses 8-head attention in all MHA layers. Key
hyper-parameters are set as ϵ=10−3, γ=10, and λ=0.1. Code will be released if paper is accepted.
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Table 1: Comparison for assembly accuracy evaluated by SCD, PA, and CA.

Methods
SCD(10−2) ↓ PA(%) ↑ CA(%) ↑

Chair Table Lamp Chair Table Lamp Chair Table Lamp

B-Global [18, 54] 1.46 1.12 0.79 15.70 15.37 22.61 9.90 33.84 18.60
B-LSTM [55] 2.35 1.71 0.90 8.08 10.55 24.68 10.05 18.28 30.23
DGL [6] 0.91 0.50 0.93 39.00 49.51 33.33 23.87 39.96 41.70
Score-PA [15] 0.71 0.42 1.11 44.51 52.78 34.32 30.32 40.59 49.07
IET [8] 1.34 0.66 0.89 37.60 48.86 32.86 25.44 40.35 52.75
SPAFormer [38] 0.67 0.38 - 55.88 64.38 - 36.39 57.60 -
RGL [7] 0.98 0.40 1.05 48.85 55.13 35.54 30.68 41.41 50.09
3DHPA [17] 0.51 0.32 0.82 63.01 64.58 33.49 48.28 58.00 62.01

Ours 0.49 0.33 0.77 69.24 68.48 36.35 49.20 58.51 63.32

Table 2: Comparison for assembly accuracy with mPA, mCA metrics.

Methods
mPA(%) ↑ mCA(%) ↑

Chair Table Lamp Chair Table Lamp

B-Global [18, 54] 28.01 44.55 37.03 29.05 44.27 42.34
B-LSTM [55] 14.49 15.92 43.75 18.91 31.77 43.21
DGL [6] 52.85 60.46 49.17 41.62 54.94 57.52
Score-PA [15] 58.80 65.61 49.06 43.96 53.72 62.55
IET [8] 49.29 59.34 48.29 42.51 55.27 64.47
RGL [7] 59.40 53.05 50.12 47.28 56.51 62.07
3DHPA [17] 77.06 75.06 48.47 64.47 71.00 75.81

Ours 81.28 78.57 52.84 65.73 71.84 76.58

Dataset In line with prior studies [6–8, 15, 18, 54, 55], we evaluate our method on the PartNet
dataset [56], focusing on the three largest object categories: Chair (6,323 shapes), Table (8,218
shapes), and Lamp (2,207 shapes). We follow the official data splits for every categories, using 70%
of the shapes for training, 10% for validation, and the remaining 20% for testing.

Evaluation Metrics Following prior work [6–8, 15, 18, 54, 55], we evaluate assembly performance
using five metrics: (1) Shape Chamfer Distance (SCD), which measures the geometric similarity
between assembled and ground-truth shapes; (2) Part Accuracy (PA), which assesses the correctness
of predicted part transformations based on a predefined distance threshold; (3) Connectivity Accuracy
(CA), which evaluates whether adjacent parts in the assembled shape are correctly connected within a
specified threshold; (4) Quality-Diversity Score (QDS) and (5) Weighted QDS (WQDS) [15], both of
which quantify the diversity and structural plausibility of generated assemblies. Detailed definitions
of all metrics are provided in the Appendix.

4.1 Results and Comparisons

We evaluate assembly accuracy on Chair, Table, and Lamp categories using SCD, PA, and CA, with
PA and CA computed under a Chamfer distance threshold of 0.01. As shown in Table 1, CFPA
achieves the best results in 8 out of 9 cases and ranks second in the remaining one, demonstrating its
effectiveness in both part assembly accuracy and structural consistency.

We also report PA and CA under varying thresholds (0.01-0.05), with performance curves in Figure 3
and average results in Table 2. CFPA consistently outperforms others across all settings. Notably,
the work of 3DHPA [17], which employs geometry-based super-parts also performs well on CA,
highlighting the benefit of hierarchical structural priors. Detailed values are in the Appendix.

We further evaluate assembly diversity using QDS and WQDS. As shown in Table 3, CFPA achieves
the highest WQDS across all categories and the highest QDS on Chair, indicating its ability to
generate shape diverse yet structurally valid assemblies.
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Figure 3: Performance curves of our CFPA and compared models on the Chair, Table and Lamp
categories under Chamfer distance threshold ranging from 0.01 to 0.05. Best viewed in color.

Table 3: Comparison of assembled shape diversity evaluated using QDS and WQDS.

Methods
QDS(10−5) ↑ WQDS(10−5) ↑

Chair Table Lamp Chair Table Lamp

B-Global [18, 54] 0.15 0.20 0.76 1.25 1.40 0.58
B-LSTM [55] 3.92 1.33 3.05 1.26 0.55 2.01
DGL [6] 1.69 3.05 1.84 1.35 2.97 1.73
Score-PA [15] 3.36 9.17 6.83 1.70 3.81 2.82
IET [8] 3.33 6.22 4.93 1.85 2.35 3.43
RGL [7] 5.85 7.55 6.37 2.09 3.51 3.15
3DHPA [17] 4.42 7.15 4.67 1.90 3.80 3.16

Ours 6.71 7.28 5.65 2.75 3.92 3.74

4.2 Ablation Study
Table 4: Ablation study on super-parts.

Methods SCD(10−2) ↓ PA(%) ↑ CA(%) ↑
1) CFPA-w/o-SP 0.54 66.75 47.75
2) CFPA-GE-SP 0.53 67.60 47.97
3) CFPA-KM-SP 0.54 69.20 47.48

CFPA 0.49 69.24 49.20

Effectiveness of Super-Part. CFPA predicts
coarse part poses with the help of semantic
super-parts constructed via optimal transport
(OT) in the feature space. We compare ith with
three variants: 1) CFPA-w/o-SP, which removes
super-part guidance; 2) CFPA-GE-SP, which
builds super-parts based on geometric similarity;
3) CFPA-KM-SP, which uses K-means clustering [57] to build semantic super-parts based on basic
part features. As shown in Table 4, super-part guidance improves performance, with OT-based
construction achieving the best results over heuristic variants.

Table 5: Ablation study on designs in the coarse
pose estimation stage and pose refinement stage.
Methods SCD(10−2)↓ PA(%)↑ CA(%)↑
4) CFPA-w/o-SRFP 0.57 66.77 44.71
5) CFPA-w/o-LRFP 0.51 68.93 47.56
6) CFPA-w/o-MP 0.60 63.60 40.28
7) CFPA-w/o-CA 0.51 67.47 44.42
8) CFPA-w/o-IE 0.55 64.81 44.44

CFPA 0.49 69.24 49.20

Effectiveness of Dual-Range Feature Propa-
gation. CFPA incorporates both short-range
and long-range feature propagation to transfer
information from super-parts to individual parts.
We evaluate three ablated variants: 4) CFPA-
w/o-SRFP, which removes short-range propaga-
tion; 5) CFPA-w/o-LRFP, which removes long-
range propagation; 6) CFPA-w/o-MP, which
omits feature refinement by message passing
within geometrically similar parts as defined in
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Figure 4: Qualitative results on the Chair, Table and Lamp categories.

Eq. (5). As shown in Table 5, all variants exhibit degraded performance, underscoring the importance
of both propagation mechanisms.

Effectiveness of Operations in Pose Refinement Stage. We assess the impact of cross-stage
attention and instance encoding by ablating each component with 7) CFPA-w/o-CA, which removes
cross-stage attention; 8) CFPA-w/o-IE, which removes instance encoding. As shown in Table 5,
both variants yield reduced performance, confirming the effectiveness of incorporating coarse-stage
guidance and geometric relationships.

Table 6: Ablation study on symmetry-aware loss.
Methods SCD(10−2) ↓ PA(%) ↑ CA(%) ↑
9) CFPA-w/o-SS 0.51 67.86 47.24
10) CFPA-w/o-GS 0.51 68.98 47.49
11) CFPA-w/o-SL 0.52 67.51 47.17

CFPA 0.49 69.24 49.20

Effectiveness of Symmetry-Aware Loss. The
symmetry-aware loss addresses both self-
symmetry and geometric similarity among in-
terchangeable parts. We ablate three variants:
9) CFPA-w/o-SS, which removes self-symmetry
supervision; 10) CFPA-w/o-GS, which removes
constraints on geometrically similar parts; 11)
CFPA-w/o-SL, which disables the symmetry-
aware loss entirely. As shown in Table 6, removing either component degrades performance, confirm-
ing the effectiveness of symmetry-aware supervision.

4.3 Qualitative Results

Ground TruthFinal Assembly

Pose 
Refinement

Pose
 Refinement

Pose 
Refinement

Coarse Part Pose 
Estimation

Coarse Part Pose 
Estimation

Coarse Part Pose 
Estimation

Coarse AssemblyInputs

Figure 5: Visualization of coarse-to-fine progress.

Figure 4 presents the qualitative results on Chair,
Table and Lamp categories. Our method pro-
duces more reasonable and structurally coherent
assemblies compared to previous methods. The
generated shapes by our CFPA demonstrate as-
sembly diversity arising from self-symmetric
components and geometrically similar parts,
while preserving overall structural validity.

Figure 5 illustrates the coarse-to-fine assembly
process. Starting with PCA-normalized parts
as inputs, the Coarse Pose Estimation stage es-
timates initial part poses (2nd column). In the
Pose Refinement stage, part poses are refined to
produce more accurate and structurally coherent
assembly configurations (3rd column), leading to final shapes that closely match ground truth.

More experimental details, ablation studies, and visualization are provided in the Appendix.
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5 Conclusion

We propose CFPA, a coarse-to-fine framework for 3D part assembly that integrates semantic super-
parts, dual-range feature propagation, and symmetry-aware supervision. By jointly modeling global
structure and geometric symmetry, CFPA enables accurate and diverse part assemblies. Extensive
experiments show that it achieves state-of-the-art performance in assembly accuracy, structural
consistency, and diversity across multiple categories. In future work, we plan to extend CFPA to
fragment reassembly and explore unsupervised learning to enhance robustness on unseen parts.

Limitation CFPA is designed for part-level assembly with semantically meaningful components and
is not directly applicable to fragment reassembly involving irregular or incomplete parts. Extending
the framework to handle such cases is a promising direction.

Impact Statement This work contributes to 3D part assembly by introducing a coarse-to-fine
framework that unifies semantic abstraction and symmetry-aware reasoning. By explicitly modeling
hierarchical structure and geometric symmetry, our method improves both accuracy and diversity in
assembly tasks. The proposed approach can benefit downstream applications in 3D design, CAD
modeling, and intelligent robotic assembly. This work poses no ethical concerns.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims presented in the abstract and introductions are supported by
empirical evidence in the experimental section (Section 4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this study are explicitly addressed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental setups are described in Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our code will be available if paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setups are described in Section 4 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The experiments in this study do not require statistical significance testing or
error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental setups are described in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research respects NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Details can be found in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release new datasets or models, so this is not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper uses open-weight models and public datasets for experiments. The
usage respects all the original licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no new assets introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components. There is no evidence that LLMs were
used in a way that affects the core methodology, scientific rigorousness, or originality of the
research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


Appendix

A Model Details

Physical meaning & intuitive interpretation of super-part from OT Physically, as Eq. (1), each
super-part is a weighted aggregation of basic part features learned via optimal transport, forming
compact prototypes that encode multiple related parts. Intuitively, these super-parts group function-
ally or geometrically similar parts into semantic clusters, providing mid-level abstractions without
predefined hierarchies.

Details on Geometrically Similar Part Set and Normalized Affinity Weights In Eq. (5) of
the main paper, we construct a graph to facilitate message passing among geometrically similar
parts, thereby enhancing feature consistency across structurally related components. In this graph,
each node represents an individual part, and edges are formed based on geometric similarity. This
process involves two steps: (1) constructing the sets of geometrically similar parts, and (2) computing
normalized affinity weights.

To determine geometric similarity, we follow [6] and compare the axis-aligned bounding box sizes of
each part. Two parts are considered similar if the absolute difference in their bounding box sizes is
below a predefined threshold (set to 0.1). These geometrically similar parts, such as chair arms or
legs, are grouped into fully connected subgraphs to enable dense information exchange. Parts that do
not belong to any similarity sets are treated as structurally unique and form isolated subgraphs; these
subgraphs are fully connected internally to ensure message propagation. Figure A.1 visualizes an
example of the graph resulting from a chair model.

For each subgraph, we assign uniform affinity weights to guide message passing. For a given part Pi

and its geometrically similar part Pg∈Ω(i), we compute the normalized affinity weight as:

βig =
1

|Ω(i)|
, ∀g ∈ Ω(i), (16)

where |Ω(i)| denotes the number of parts in the geometrically similar set for part Pi. This uniform
weighting avoids bias toward any individual part and ensures stable and balanced feature aggregation
within each subgraph.

Subgraph 1 Subgraph 2 Subgraph 3

 Graph for a Chair

Left Arm Right Arm

Back

Cushion
Seat Base

Back Right Leg

Front Left Leg

Front Right Leg

Back Left Leg

Figure A.1: Graph for a chair. Nodes represent individual parts, and edges denote connectivity based
on geometric similarity. Subgraphs 1 and 3 contain geometrically similar parts (e.g., arms, legs)
which are fully connected to facilitate message passing. Subgraph 2 consists of geometrically isolated
parts (e.g., back, cushion, seat base) that do not belong to any geometrically similar part set, and they
are fully connected to enable massage passing among structurally unique parts.

Details on Pose Refinement Stage The pose refinement stage enhances part-level representations
by incorporating cross-stage attention and instance encoding, enabling more accurate and structurally
consistent pose estimation.

The cross-stage attention mechanism utilizes coarse features {fCoarse
i }Ni=1 as keys and values, and

part features {gi}Ni=1 as queries, where all feature vectors are of dimension 256. We implement
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multi-head attention (MHA) with 8 heads operating in a 32-dimensional subspace using scaled
dot-product attention.

For instance encoding, following [8], we employ a 40-dimensional embedding {ei}Ni=1 as a unique
instance encoding vector for part i, formed by concatenating an inter-class encoding that uniquely
identifies each individual part and an intra-class encoding that establishes relationships among
geometrically-similar parts.

For pose prediction, we first pass the concatenated features [gi, g̃i, ei] through a MHA with 8-head to
facilitate part-to-part information exchange. The output features are then processed by an multilayer
perceptron (MLP) with dimensions [1024, 512, 7] using ReLU activations, where the final layer
predicts rotational quaternion and translation vector for each part.

Details on Lightweight PointNet The input part features are extracted using a shared PointNet [49]
applied to the part point clouds. An MLP (with dimensions [64, 256, 512, 1024]) is first applied to
transform the 3-dimensional point positions into 1024-dimensional features, and then a global max-
pooling operation is applied to aggregate point-level features into a compact part-wise representation,
which is further processed through three fully connected layers (with dimensions [1024, 512, 256]) to
obtain a final 256-dimensional embedding for each part.

Computational cost of the proposed components To evaluate the computational cost of our
proposed components, we report key metrics for a single forward pass with a batch size of 64,
including the number of parameters (Million, M), GPU memory usage (GB), forward time (ms), and
GFLOPS. We analyze the CFPA model and its variants, each excluding specific components as: 1)-2)
CFPA-w/o-refine/coarse MHA that exclude the multi-head attention in the pose refinement/coarse
pose estimation stage; 3) CFPA-w/o-OT that removes the OT-based super-part construction; 4)-5)
CFPA-w/o-SRFP/LRFP that remove the short-/long-range feature propagation; 6) CFPA-w/o-MP
that removes the message passing in long-range feature propagation; 7) CFPA-w/o-CA that removes
the cross-stage attention; 8) CFPA-w/o-SL that removes the symmetry-aware loss. We also report the
computational cost of the baseline method that removes all of the above components.

As shown in Table A.1, removing these components leads to a reduction in computational cost
compared to the full CFPA model. Notably, some of these components are specifically designed to
operate based on the relationships between parts and super-parts rather than directly on point clouds,
with the maximum number of parts limited to 20 and super-parts to 16. This design inherently requires
only a small computational cost. Additionally, certain components, such as OT, short-range feature
propagation, and message passing, do not introduce any learnable parameters, further contributing to
their relatively low computational cost.

Table A.1: Computational cost comparisons.

Method #Para.(M) GPU Memory(GB) Forward time(ms) GFLOPS

baseline 21.33 24.05 641.36 86.22
1) CFPA-w/o-refine MHA 22.90 24.28 674.80 86.26
2) CFPA-w/o-coarse MHA 25.14 26.72 772.09 86.30
3) CFPA-w/o-OT 25.89 26.80 657.87 86.34
4) CFPA-w/o-SRFP 25.89 26.36 804.91 86.34
5) CFPA-w/o-LRFP 25.76 24.68 778.68 86.33
6) CFPA-w/o-MP 25.89 24.60 791.31 86.34
7) CFPA-w/o-CA 25.63 25.71 698.05 86.33
8) CFPA-w/o-SL 25.89 26.60 802.72 86.34

CFPA 25.89 27.04 806.80 86.34

B Experiment Details

The model is trained for 500 epochs using a batch size of 64 across 4 NVIDIA RTX 4090 GPUs.
We adopt the AdamW optimizer with an initial learning rate of 7.5 × 10−5 and a weight decay
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of 1 × 10−4. A cosine annealing learning rate schedule is applied with a decay factor of 100 to
progressively reduce the learning rate over the training process.

Each input 3D part is represented as a point cloud containing 1,000 points, which are sampled by
Farthest Point Sampling [58]. To ensure consistency and invariance to translation and rotation, all
parts are pre-aligned to canonical coordinate system by Principal Component Analysis (PCA).

B.1 Evaluation Metrics

We evaluate our method using five commonly adopted metrics in part assembly tasks: Shape Chamfer
Distance (SCD), Part Accuracy (PA), Connectivity Accuracy (CA), Quality-Diversity Score (QDS),
and Weighted Quality-Diversity Score (WQDS). The definitions of these metrics are provided below.

Shape Chamfer Distance (SCD) The Shape Chamfer Distance (SCD) quantifies the geometric
discrepancy between two point clouds by computing the average nearest-neighbor distance between
points in each set. Formally, given two point sets X and Y , the Chamfer distance is defined as:

dc(X ,Y) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22 (17)

In our case, SCD is computed between the predicted assembled shape S∗ and the ground truth shape
SGT, i.e., dc(S∗, SGT).

Part Accuracy (PA) It evaluates the proportion of parts whose transformed point clouds, using the
predicted transformations, yield accurate geometric alignment with their ground-truth counterparts,
as measured by the Chamfer Distance. Specifically, it is defined as:

PA =
1

N

N∑
i=1

1
(
dc

(
T (Pi) , T GT (Pi)

)
< τp

)
, (18)

where 1(·) is indicator function. T (Pi) and T GT (Pi) represent the transformed part point clouds
using the predicted and ground-truth transformations, respectively. dc represents the Chamfer distance,
and τp is the predefined threshold.

Connectivity Accuracy (CA) It measures the structural correctness of pairwise part connections in
the assembled shape. For each contact point pair {c∗ij , c∗ij} in the ground-truth object space, where
c∗ij is the point on part i closest to part j and c∗ji is the corresponding nearest point on part j to part i.
we identify their corresponding coordinates in the canonical part spaces (normalized using PCA) as
{cij , cij}. The predicted transformations Ti, Tj are then applied to these canonical points, and their
distance is measured in the predicted assembled space. The connectivity accuracy is defined as:

CA =
1

|C|
∑

{cij ,cji}∈C

1 (d (Ti (cij) , Tj (cji)) < τc) , (19)

where C denotes the set of all contact point pairs in the assembly, d is the Euclidean distance, and τc
is the predefined threshold.

Meanwhile, following [17], we apply mean part accuracy (mPA) and mean connectivity accuracy
(mCA) for more comprehensive evaluation as follows:

mPA =
1

|Ξ|
∑
τp∈Ξ

PA, mCA =
1

|Ξ|
∑
τc∈Ξ

CA, (20)

where Ξ = {0.01, 0.02, 0.03, 0.04, 0.05} represents a predefined set of Chamfer distance thresholds.

Quality-Diversity Score (QDS) Following [15, 17], we use QDS to jointly evaluate the structural
quality and geometric diversity of generated assemblies, which is defined as:

QDS =
1

N2

N∑
i,j=1

dc
(
S∗
i , S

∗
j

)
1 (CA(S∗

i ) > τq)1
(
CA(S∗

j ) > τq
)
, (21)

where 1(·) is indicator function, and dc(·) is Chamfer distance. The threshold τq is set to 0.5.
QDS incorporates quality constraints by excluding pairs with low assembly quality, simultaneously
evaluating both diversity and quality of the generated shapes.
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Weighted Quality-Diversity Score WQDS is the weighted QDS with the connectivity accuracy,
prioritizing assembled shapes with high-quality connections between parts:

WQDS =
1

N2

N∑
i,j=1

dc
(
S∗
i , S

∗
j

)
CA(S∗

i ) CA
(
S∗
j

)
1 (CA (S∗

i ) > τq)1
(
CA

(
S∗
j

)
> τq

)
. (22)

B.2 Experimental Results under Multiple Thresholds

Tables B.1–B.3 report detailed numerical results corresponding to Figure 2 in the main paper, present-
ing PA and CA for our CFPA and several state-of-the-art baselines across a range of Chamfer distance
thresholds (0.01–0.05) on the Chair, Table, and Lamp categories. The consistently superior perfor-
mance of CFPA across all thresholds and object classes highlights its robustness and effectiveness in
achieving accurate and structurally coherent part assemblies.

Table B.1: Comparisons on Chair category of PA / CA at Chamfer distance thresholds of 0.01 to 0.05.

Method
PA(%) ↑ CA(%) ↑

0.01 0.02 0.03 0.04 0.05 AVG 0.01 0.02 0.03 0.04 0.05 AVG

B-Global [18, 54] 15.70 22.02 28.72 34.74 38.86 28.01 9.90 23.04 31.06 38.00 43.26 29.05
B-LSTM [55] 8.08 12.36 15.46 17.39 19.14 14.49 10.04 15.29 19.58 23.20 26.44 18.91
DGL [6] 39.00 49.45 55.25 58.96 61.30 52.85 23.87 35.50 44.01 50.35 55.12 41.62
RGL [7] 48.85 56.02 62.02 64.71 65.41 59.40 30.68 42.80 48.48 54.80 59.62 47.28
Score-PA [15] 44.51 56.14 61.33 64.81 67.11 58.80 30.32 38.63 46.66 52.36 56.58 43.96
IET [8] 37.60 38.37 53.65 57.43 59.39 49.29 25.44 37.46 44.97 50.14 54.56 42.51
3DHPA [17] 63.01 74.91 79.76 82.93 84.71 77.06 48.28 59.97 67.16 71.80 75.12 64.47

Ours 69.24 79.07 83.64 86.36 88.10 81.28 49.20 61.66 68.79 73.06 75.95 65.73

Table B.2: Comparisons on Table category of PA / CA at Chamfer distance thresholds of 0.01 to 0.05.

Method
PA(%) ↑ CA(%) ↑

0.01 0.02 0.03 0.04 0.05 AVG 0.01 0.02 0.03 0.04 0.05 AVG

B-Global [18, 54] 15.37 43.56 49.77 54.69 59.36 44.55 33.84 35.98 44.10 50.58 56.86 44.27
B-LSTM [55] 10.55 13.80 16.10 18.55 20.58 15.92 18.28 26.27 32.64 38.21 43.43 31.77
DGL [6] 49.51 56.21 62.44 66.74 70.28 60.46 39.96 50.03 57.68 62.72 66.50 54.94
RGL [7] 55.13 66.68 69.81 73.65 75.90 53.05 41.41 51.80 58.60 64.19 66.57 56.51
Score-PA [15] 52.78 61.68 67.38 71.48 74.72 65.61 40.59 47.96 55.29 60.16 64.62 53.72
IET [8] 48.86 55.99 60.64 64.37 66.84 59.34 40.35 50.66 57.23 62.26 65.84 55.27
3DHPA [17] 64.58 72.62 76.88 79.69 81.89 75.06 58.00 67.69 73.23 77.01 79.79 71.00

Ours 68.48 76.17 80.10 83.07 85.04 78.57 58.51 68.40 74.15 77.88 80.24 71.84

Table B.3: Comparisons on Lamp category of PA / CA at Chamfer distance thresholds 0.01 to 0.05.

Method
PA(%) ↑ CA(%) ↑

0.01 0.02 0.03 0.04 0.05 AVG 0.01 0.02 0.03 0.04 0.05 AVG

B-Global [18, 54] 22.61 31.38 38.85 42.56 49.77 37.03 18.60 35.79 46.13 52.42 58.74 42.34
B-LSTM [55] 29.59 38.80 45.78 50.13 54.47 43.75 28.31 38.83 44.85 49.45 54.60 43.21
DGL [6] 33.33 44.83 51.45 56.71 59.91 49.17 41.70 50.60 60.36 67.23 71.08 57.52
RGL [7] 35.54 46.40 51.68 56.95 60.05 50.12 50.09 56.23 64.43 67.53 72.08 62.07
Score-PA [15] 34.32 44.71 51.04 56.58 60.14 49.06 49.07 57.24 65.42 71.38 76.29 62.55
IET [8] 32.86 43.15 49.56 56.14 59.73 48.29 52.75 57.65 66.52 70.87 74.56 64.47
3DHPA [17] 33.67 42.42 49.97 55.89 60.41 48.47 62.01 72.32 78.09 82.13 84.52 75.81

Ours 36.35 47.81 54.91 60.15 64.68 52.84 62.45 74.02 78.64 82.67 85.12 76.58
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B.3 Details on Ablation Study in the Main Paper

Details for CFPA-w/o-SP In Table 4 of the main paper, we conduct an ablation study to assess the
contribution of semantic super-parts. In the CFPA-w/o-SP variant, the coarse pose estimation stage
is performed without leveraging super-part. Instead, the dual-range feature propagation is applied
directly to the raw part-level features extracted from the input point clouds by PointNet [49].

Details for CFPA-GE-SP In the experiment of CFPA-GE-SP, we construct the super-part based on
geometric similarity, and the parts with similar axis-aligned bounding boxes are considered to belong
to the same super-part. The feature of each super-part is obtained by applying max-pooling over the
features of its constituent parts which are extracted by PointNet [49].

Details for CFPA-KM-SP For the model of CFPA-KM-SP, we employ K-means clustering [57]
on all the part features extracted by PointNet [49]. The process begins by randomly initializing
M clustering centroids and then assigning each part feature to its nearest centroid with Euclidean
distance. Each centroid is then iteratively updated by averaging the features assigned to it.

Details for CFPA-w/o-SS In Table 6 of the main paper, we perform an ablation study to evaluate
the impact of the symmetry-aware loss, particularly its treatment of self-symmetry and inter-part
geometric similarity. In the CFPA-w/o-SS variant, we disable the self-symmetry supervision and
retain only the constraint on geometrical similar parts. Specifically, the symmetry-aware loss is
modified to compare the predicted pose of each part against the ground-truth poses of geometrically
similar counterparts, defined as:

Lw/o-SS
Sym =

N∑
i=1

min
j∈Ω(i)

Lpose(F(Pi), {rGT
j , tGT

j }). (23)

where Ω(i) denotes the set of parts geometrically similar to Pi, and F(Pi) is the predicted pose of
part Pi. This variant allows us to isolate and assess the contribution of self-symmetry modeling
within the overall symmetry-aware supervision.

Details for CFPA-w/o-GS In the CFPA-w/o-GS variant, we ablate the geometric similarity compo-
nent of the symmetry-aware loss while only retaining supervision on self-symmetry. Specifically,
only symmetric transformations for ground-truth part are considered during training. The loss is:

Lw/o-GS
Sym =

N∑
i=1

min
τ∈Z3

2

Lpose(F(Pi), τ ◦ {rGT
i , tGT

i }). (24)

where Z3
2 represents the set of eight possible axis-flipping transformations, and τ ◦{rGT

i , tGT
i } denotes

the flipped version of ground-truth part under transformation τ . This formulation evaluates the effect
of modeling self-symmetry in isolation, without considering inter-part geometric similarity.

C More Ablation Studies

Effectiveness of Super-Part Numbers. The number of semantic super-parts (M ) is a critical factor
in the performance of CFPA. A small M may group functionally distinct parts, resulting in the loss
of structural detail, and a large M may overemphasize local features while compromising global
coherence. The results on Chair category (Figure C.1) indicate that the optimal performance is
achieved at M = 16.

Table C.1: Ablation study on hyper-parameter in loss.
λ SCD(10−2) ↓ PA(%) ↑ CA(%) ↑
0.1 0.49 69.24 49.20
1 0.51 68.86 47.85
10 0.52 69.45 47.08

Effectiveness of Hyper-parameter in Loss
Function. The hyper-parameter λ in the
overall loss modulates the influence of the
symmetry-aware loss term relative to the
part-level and shape-level supervision objec-
tives. To investigate its effect, we conduct
an ablation study on the Chair category by
varying λ and reporting the corresponding
performance in Table C.1. The results indicate that setting λ = 0.1 yields the best performance.
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Figure C.1: Performance curves in PA, CA and SCD for CFPA with varying super-parts numbers.

Table C.2: Ablation study on graph construction.
Methods SCD(10−2) ↓ PA(%) ↑ CA(%) ↑
12) CFPA-w/o-UPC 0.54 68.05 46.77
13) CFPA-FC-UP 0.53 68.78 47.53

CFPA 0.53 68.48 48.48

Effectiveness of Graph Construction based
on Geometric Similarity In Eq. (5), mes-
sage passing is performed on a part graph
constructed according to geometric similar-
ity, as described in Section A. Parts with sim-
ilar axis-aligned bounding boxes are grouped
into subgraphs, while geometrically unique
parts without similar counterparts are also grouped into a fully connected subgraph. To evaluate the
effectiveness of this graph construction strategy, we compare two alternative designs: 12) CFPA-w/o-
UPC, where geometrically unique parts remain isolated and do not communicate with other parts;
13) CFPA-FC-UP, where each unique part is fully connected to all other parts. The results presented
in Table C.2 validate the effectiveness of our proposed balanced graph construction. By preserving
geometric similarity through subgraphs and modeling functional relationships among unique parts,
CFPA achieves the best performance.

Performance of the proposed symmetry-aware loss on other baselines To evaluate the general-
ization ability of the proposed symmetry-aware loss, we conducted experiments by integrating it into
various baseline methods. As shown in Table C.3, the models equipped with our symmetry-aware
loss (* -w/-SL, where * represents the baselines) achieve improved performance.

These results demonstrate that the symmetry-aware loss is not only effective within our framework
but also generalizable across diverse baseline methods. This further validates its robustness and
applicability in 3D part assembly tasks.

Table C.3: Comparison of different baselines with our symmetry-aware loss.

Method SCD↓ PA(%)↑ CA(%)↑ QDS(10−5)↑ WQDS(10−5)↑
B-Global [18, 54] 1.46 15.70 9.90 0.15 1.25
B-Global-w/-SL 1.21 18.10 12.92 0.43 1.21

B-LSTM [55] 2.35 8.08 10.05 3.92 1.26
B-LSTM-w/-SL 2.35 9.34 11.25 4.03 1.33
DGL [6] 0.91 39.00 23.87 1.69 1.35
DGL-w/-SL 0.87 41.77 29.51 1.66 1.73
RGL [7] 0.98 48.85 30.68 5.85 2.09
RGL-w/-SL 0.92 49.15 33.27 5.91 1.55

Score-PA [15] 0.71 44.51 30.32 3.36 1.70
Score-PA-w/-SL 0.65 43.77 31.32 5.11 1.41

IET [8] 1.34 37.60 25.44 3.33 1.85
IET-w/-SL 1.21 38.53 27.21 3.33 1.93
3DHPA [17] 0.51 63.01 48.28 4.42 1.90
3DHPA-w/-SL 0.51 66.34 47.21 4.82 2.01
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D More Visualization Results

We provide more visualization results for instances from the Chair, Table, and Lamp categories in
Figure D.1, Figure D.2, and Figure D.3, respectively. Compared to previous methods, our model
generates assembly results that align more closely with ground-truth configurations, indicating
superior accuracy. In particular, our approach effectively captures diverse assembly variations (e.g.,
different arrangements of chair and table legs), showcasing its robustness and adaptability in the 3D
part assembly task.

Figure D.1: Qualitative results on the Chair category.

Figure D.2: Qualitative results on the Table category.
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Figure D.3: Qualitative results on the Lamp category.
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