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Abstract

Large Language Models (LLMs) and traditional Reinforcement Learning (RL)
agents lack robust causal reasoning, often relying on spurious correlations. We
introduce Causal Reflection, a framework that moves beyond simple reward opti-
mization to build dynamic causal models of an environment. Our approach features
a temporal, action-based causal function that models state, action, time, and pertur-
bation to capture delayed and nonlinear effects. We also define a formal Reflect
mechanism that identifies mismatches between predicted and observed outcomes,
generating causal hypotheses to revise the agent’s internal model. Within this
architecture, LLMs are not black-box reasoners but structured interpreters, translat-
ing formal causal outputs into natural language explanations. This work lays the
theoretical groundwork for agents that can adapt, self-correct, and communicate
causal understanding.

1 Introduction

The exponential growth in artificial intelligence capabilities has intensified the need for systems that
understand not just what happens, but why. Traditional reinforcement learning (RL) paradigms, while
successful in maximizing reward signals, fundamentally lack the capacity to model the temporal
cause-effect relationships that govern dynamic systems [Kiciman et al., 2023, Seitzer et al., 2021].
This limitation becomes especially pronounced when agents must adapt to changing environments,
explain their decisions, or transfer learned behaviors across domains, particularly in business and
enterprise settings where resilient decision systems are critical. Similarly, while large language
models (LLMs) excel at knowledge synthesis and reasoning over static information, they also lack an
inherent understanding of causality in temporal contexts [Jiao et al., 2024, Du et al., 2017]. Despite
their promise, the integration of LLMs with causal reasoning for decision-making over time remains
largely unexplored.

Addressing these challenges requires a paradigm shift away from correlation-based models. To this
end, recent advances in causal inference offer a promising path forward by replacing them with
interpretable causal frameworks designed to capture stable and invariant relationships [Deng et al.,
2023]. Within reinforcement learning, this approach directly confronts critical limitations, preventing
agents from succumbing to spurious correlations and enabling them to generalize beyond their
training environments [Wan et al., 2024]. Several studies have begun exploring causal reinforcement
learning by incorporating structural causal graphs to improve sample efficiency and robustness [Liu
et al., 2025, Peters et al., 2017]. However, these methods typically assume fixed causal structures
and thus fail to capture the dynamic nature of cause-effect relationships that change over time [He
et al., 2025]. Moreover, the current integration of LLM reasoning capabilities with RL environments
remains superficial, lacking a principled framework for state understanding. This gap is particularly
evident in scenarios requiring agents to reason about delayed effects, temporal dependencies, and
the evolution of causal mechanisms, i.e. the capabilities essential for real-world deployment where
causality unfolds across extended time horizons.

This paper introduces a novel framework that addresses these limitations through three key contribu-
tions. First, we present a temporal, action-based causal function, enabling the capture of both linear
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and nonlinear causal relationships in dynamic systems. Second, we demonstrate how this framework
extends beyond traditional reinforcement learning paradigms. Third, we outline how LLMs can
integrate this causal schema for enhanced generative and predictive tasks. In sum, our approach
represents a fundamental shift toward causal reflection in agents for more interpretable, robust, and
generalizable artificial intelligence systems.

2 Background and Related Work

The convergence of causal inference and reinforcement learning is an emerging paradigm that
addresses fundamental limitations in traditional sequential decision-making systems. This section
provides a systematic review of the foundational concepts and methodological approaches that inform
our framework.

2.1 Causal Inference in Reinforcement Learning

Integrating causal reasoning into reinforcement learning (RL) has emerged as a critical research
direction, prompted by the realization that traditional RL agents often rely on spurious correlations
rather than true cause-effect relationships [Deng et al., 2023]. Causal Reinforcement Learning (CRL)
addresses this limitation by embedding causal understanding directly into the learning process [Deng
et al., 2023].

CRL leverages formalisms like Structural Causal Models (SCMs) to represent the underlying me-
chanics of an environment, moving beyond surface-level associations. Grounded in Pearl’s Causal
Hierarchy, this approach enables agents to reason not only associatively, but also interventionally and
counterfactually. As a result, agents gain a rudimentary form of self-reflection, evaluating alternative
histories to improve generalization, sample efficiency, and explainability [Bareinboim et al., 2021].

In practice, current CRL methodologies apply causal principles to improve policy learning. For
instance, some approaches integrate causal discovery with reinforcement learning by using causal
Dynamic Bayesian Networks to model state–action–reward relationships, enabling more informed
action selection [Méndez-Molina et al., 2022]. While promising, these techniques face challenges in
scalability and are typically constrained to low-dimensional or simplified environments, exposing a
significant gap in applying CRL to complex, high-dimensional settings [Méndez-Molina et al., 2022].

2.2 Temporal Causality Models

Modeling temporal causal relationships poses challenges distinct from static inference, requiring
frameworks that capture how cause-effect dynamics evolve over time [Gkorgkolis et al., 2025,
Calderon and Berman, 2024]. Temporal Structural Causal Models (TSCMs) extend traditional SCMs
by explicitly representing time-varying causal structures and dependencies [Gkorgkolis et al., 2025].
Recent advances have also addressed non-stationarity in dynamic systems, for instance, Temporal
Autoencoders for Causal Inference (TACI) enable the measurement of shifting causal interactions
without the need for continual retraining [Calderon and Berman, 2024].

Despite these innovations, existing models often lack an internal mechanism for self-reflection. Self
Relfection here refers to a model’s ability to question and revise their own causal assumptions when
confronted with structural breaks. This gap is the focus of our work.

These modeling challenges are further complicated by foundational questions about the nature of
causality in temporal systems. For example, coupled chaotic systems have been shown to violate
assumptions such as Granger causality, which presumes that causes precede effects in a linear,
time-delayed fashion [Paluš et al., 2018]. Such findings highlight the importance of distinguishing
between simple signal transfer and complex nonlinear interactions when designing robust causal
models, especially those intended to operate across varying time scales [Paluš et al., 2018]. We
believe, incorporating this understanding is essential for developing models that not only adapt to
dynamic environments but also revise their causal assumptions in the face of unexpected structural
changes.
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2.3 Large Language Models in Causal Reasoning

The emergence of large language models (LLMs) has opened new frontiers for causal reasoning,
with studies demonstrating state-of-the-art performance on benchmarks for pairwise causal discovery,
counterfactual reasoning, and event causality [Kiciman et al., 2023]. Unlike traditional methods that
rely on statistical relationships, LLMs leverage vast causal knowledge embedded in their training data
to perform complex tasks, such as generating causal graphs from text and translating between formal
and natural language representations [Kiciman et al., 2023, Gkountouras et al., 2024]. However,
this capability is often shallow, typically aligned with Level-1 reasoning and lacks the self-reflective
mechanisms needed to scrutinize its own decision-making [Wang and Shen, 2024, Ashwani et al.,
2024, Chi et al., 2024]. Instead of understanding causal structures, it relies heavily on memorized
patterns, which can lead to significant performance degradation in novel scenarios and unpredictable
failures.

To address these limitations, recent work has explored self-correction, where models iteratively
refine their outputs based on internal or external feedback. A parallel paradigm endows LLM agents
with self-reflection capabilities, allowing them to verbally reflect on past failures to refine future
plans and improve performance [Shinn et al., 2023]. Building on these ideas, a promising research
direction is the integration of LLMs with structured causal frameworks [Liu et al., 2025, Gkountouras
et al., 2024]. Hybrid approaches that combine language models with causal world models provide a
systematic interface between natural language and formal causal structures, enabling more robust,
causally-aware reasoning [Gkountouras et al., 2024]. These integrated systems have demonstrated
superior performance compared to pure LLM-based methods, particularly for complex inference and
long-horizon planning tasks [Gkountouras et al., 2024]. This informs our framework’s approach,
which aims to leverage LLM capabilities while maintaining rigorous causal foundations through
structural modeling and counterfactual reasoning.

3 Theoretical Framework

This section formalizes the core technical contributions of our Causal Reflection framework. We
begin by defining the fundamental concepts before presenting the Causal Reflection function and
discussing its theoretical properties. The objective is to establish a rigorous mathematical foundation
for modeling causality in dynamic and potentially non-stationary environments.

3.1 Core Concepts and Definitions

To ground our framework, let us first establish a formal vocabulary that extends traditional state-action
representations to explicitly account for time and nonlinear influences.

• State (St): The state at time t, denoted as St, is a comprehensive vector representing the
complete configuration of the environment. This representation is assumed to be sufficiently
rich to capture all relevant variables describing the system at a given moment, which can
implicitly include spatial, contextual, or environmental information.

• Action (At): An action, At, is an intervention performed by an agent or an external force
on the system at time t. It represents a deliberate change intended to influence the system’s
trajectory.

• Time (Tt): Time, Tt, is a continuous or discrete variable that imposes a strict temporal
ordering on states and actions. Its inclusion is critical for moving beyond mere association
to inferring causal relationships, as causes are generally understood to precede their effects
in physical systems.

• Perturbation Factor (δ): A key innovation of our framework is the introduction of a
perturbation factor, δ. This term represents small, often unobserved or unexpected influences
that can trigger nonlinear, disproportionate, or chaotic effects within the system. It formalizes
the sensitivity to initial conditions, often described as the "butterfly effect," where a minor
event can initiate a cascade of significant consequences.

The explicit modeling of δ provides a mechanism to address the critical challenge of non-stationarity
and structural breaks in temporal causal models, a known limitation of existing approaches that often
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assume fixed causal structures. By incorporating δ, our framework can represent environments where
the underlying causal mechanisms themselves can evolve spuriously over time.

3.2 The Temporal Action-Based Causal Function

We formulated a causal function, C, that maps the state, action, time, and perturbation from current to
a future state (Figure 1). We build this function progressively to illustrate its components.

Figure 1: General workflow of the Causal Reflection framework. An agent’s causal model C makes
a prediction, which is compared against the observed outcome. Discrepancies trigger the Reflect
mechanism to generate hypotheses and update the model. The LLM translates the formal outputs
into natural language.

First, we define a basic causal mapping that models direct, immediate effects:

C(St, At, Tt)→ St+1 (1)

This function expresses a simple causal relationship where an action At in state St at time Tt directly
results in the subsequent state St+1. To account for real-world complexities where effects are often
not instantaneous, we extend the function to incorporate temporal delays. By introducing a delay
factor k, the function can model long-term causal relationships:

C(St, At, Tt, Tt+k)→ St+k (2)

Here, the effect of an action taken at time Tt manifests at a future time Tt+k. This capability is the
key for reasoning about systems with significant lags between cause and effect, a common feature in
domains like economics, medicine, and climate science. And, finally, to capture the full dynamics of
complex, non-stationary systems, we introduce the complete temporal action-based causal function,
which integrates the perturbation factor δ:

C(St, At, Tt, δ)→ St+k (3)

This is the key for modeling systems where causality is not only delayed but also nonlinear and
time-varying. For instance, in an ecological model, a small environmental perturbation (δ), such
as a lightning strike, might nonlinearly amplify the effect of a routine event (Action At) on animal
behavior (State St+k) in a manner that linear models cannot capture. We treat δ not as random noise
but as a latent indicator of structural deviation capturing unmodeled influences such as adversarial
actions, domain drift, or unobserved confounders.

3.3 Properties

The proposed causal function exhibits several key properties that distinguish it from traditional
models.

1. Nonlinear Causal Propagation: The inclusion of δ allows the function to model how small
causes can propagate through a system to produce disproportionate effects. This can be
operationalized through specific functional forms, such as:

St+k = St + f(At, Tt) · e−δ (4)

In this example, f(At, Tt) represents the standard dynamic effect of an action, while the
term e−δ acts as a nonlinear scaling factor based on the perturbation. This formulation
explicitly models how unforeseen events can amplify or dampen causal effects.

2. Temporal Dependency and Delayed Effects: The explicit inclusion of Tt and the delay
parameter k makes the framework inherently suited for reasoning about causality across
extended time horizons. This directly addresses the challenges of modeling temporal
dependencies noted in existing literature.
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3. Sensitivity to Initial Conditions: By formalizing the role of δ, our framework is designed
to be sensitive to the initial conditions of the system, a defining characteristic of complex
and chaotic systems. This property is a critical differentiator from purely probabilistic or
linear causal models, that may fail to predict state transitions in environments subject to
structural breaks or emergent phenomena.

4 Framework Architecture

This section outlines the operational architecture of the Causal Reflection framework, detailing the
system design and the novel integration schema for Large Language Models (LLMs).

The framework is designed as a modular system that separates causal inference from linguistic
interpretation. An agent interacts with its environment, observing and collecting data to form a
structured causal tuple (St, At, Tt, δ). This tuple serves as the input to the temporal action-based
causal function, C. The function processes this input to generate a prediction about a future state,
St+k, or a distribution over possible future states. This formal, symbolic output is then passed to the
LLM component. The LLM’s role is not to choose an action or optimize a policy, but to translate the
abstract causal inference into an intelligible explanation or a set of testable hypotheses.

Our framework redefines the role of LLMs in causal reasoning systems. Instead of relying on the
implicit, and often brittle, causal knowledge stored in an LLM’s parameters, we utilize the LLM as a
sophisticated generative inference engine.

• Input: The LLM receives the structured causal tuple (St, At, Tt, δ) and the corresponding
predicted outcome(s) from the causal function C.

• Processing: The LLM leverages its vast linguistic capabilities to process this formal input.
It is tasked with translating the symbolic representation of the cause-effect relationship into
natural language.

• Output: The LLM generates outputs such as causal explanations (e.g., "The system is
predicted to transition to state St+k because action At was performed, and its effect was
significantly amplified by perturbation δ”) or counterfactual hypotheses (e.g., "Had pertur-
bation δ not occurred, the model predicts the system would have transitioned to state S′

t+k
instead”).

This integration schema directly addresses the widely recognized limitation of "shallow" or "Level-1"
causal reasoning in LLMs. Current models often succeed by matching patterns seen during training
but fail in novel scenarios because they lack a genuine model of causal mechanisms.

Our framework mitigates this by enforcing a separation of concerns: the rigorous causal logic resides
entirely within our formal function C, while the LLM is responsible for the subsequent linguistic
interpretation. The LLM is not asked an open-ended question like "What caused Y?"; it is given a
constrained task: "Given that our formal model C predicts X causes Y under condition δ, generate an
explanation." This grounds the LLM’s output in an external, verifiable causal structure, providing a
pathway toward more robust and trustworthy causal explanations from AI systems.

Additionally, we operationalize the concept of "self-reflection" through a formal mechanism that
enables the agent to learn from experience by refining its internal causal model. This is centered
around a Reflect function, which formalizes the process of analyzing discrepancies between
predicted and observed outcomes. The mechanism is defined as:

S′
t+k = Reflect(St, At, Tt, δ) (5)

The Reflect function serves as the core of Causal Reflection. When an agent takes an action and
the observed outcome differs from the one predicted outcome by its causal function C, the Reflect
function is invoked. It uses the components of the causal tuple to generate hypotheses about the
source of the discrepancy.

For example, the agent might reason: "My action At did not lead to the expected state. The
Reflect function, analyzing the context, suggests this could be due to an unmodeled or misestimated
perturbation δ. Hypothesis: a new type of perturbation is active under these conditions."

This approach represents a significant advance over existing self-reflection paradigms, such as the
Reflexion framework [Shinn et al., 2023]. While Reflexion improves agent behavior through verbal
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reinforcement and meta-cognitive feedback, its reflection process remains heuristic and unstructured.
In contrast, Causal Reflection introduces a formal mechanism rooted in a causal model of the
environment. Rather than interpreting failure as a vague signal to try a new plan, our agent detects
structural mismatches between expected and observed outcomes, prompting it to generate specific,
falsifiable causal hypotheses. This elevates reflection from intuition to inference, enabling the agent
to function by explaining, testing, and revising its internal model of the world’s causal structure. We
formalize this process through a dedicated function, Reflect, which takes as input:

• The current state St, action At, time Tt, and estimated perturbation δ,

• The predicted outcome Ŝt+k generated by the causal model C,
• The observed outcome Sobs

t+k.

Letting
ϵ = Loss(Ŝt+k, S

obs
t+k) (6)

the agent triggers reflection when ϵ exceeds a threshold τ , indicating a causal mismatch. The Reflect
mechanism then initiates hypothesis generation:

Ht = Reflect(St, At, Tt, δ, ϵ) := argmax
H

[
P
(
Sobs
t+k | H

)
− P

(
Spred
t+k | C

)]
(7)

Here, H denotes a candidate hypothesis, such as a shift in a causal dependency, an unmodeled
confounder, or a misestimated perturbation factor δ. These hypotheses are interpretable and testable,
grounded in structured reasoning rather than neural approximation.

To close the loop between formal inference and explainability, we introduce a modular architecture
for Reflective Causal Agents, composed of three distinct modules:

• Causal Inference Engine models dynamic systems with the function

C(St, At, Tt, δ)→ St+k,

capturing delayed and nonlinear effects
• Reflect Mechanism performs structured self-correction by generating and evaluating causal

hypotheses when discrepancies are detected
• LLM-Based Interpreter translates formal causal tuples and hypotheses into natural lan-

guage explanations or counterfactuals, acting as a generative interface with users.

This architecture explicitly separates inference from interpretation. The causal engine governs
reasoning; the language model merely reports its conclusions. This prevents LLMs from hallucinating
ungrounded causal chains, a known limitation in language-based agents. Instead, explanations take
the form:

“Action: At was expected to lead to St+k, but instead resulted in S′
t+k.

Hypothesis: perturbation δ shifted the influence of At, activating an alternate causal
pathway.”

By design, Reflective Causal Agents do not simply optimize for external reward. They aim to
build and revise an internal model of the environment’s causal dynamics. This shift from policy
optimization to causal understanding positions them for stronger generalization, interpretability, and
alignment especially in non-stationary environments where brittle policies and black-box reasoning
often fail.

5 Comparison with Existing Approaches

To situate our framework, we compare it with traditional reinforcement learning and contemporary
causal reinforcement learning approaches. Causal Reflection targets dynamic, time-varying causal
relationships. Unlike typical Casual Reinforcement Learning (CRL) that uses static graphs, our
temporal causal function models non-stationary environments. Including time T and perturbation
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Algorithm 1 Reflect Mechanism for Causal Hypothesis Generation
Require: Current state St, action At, time Tt, perturbation δ, causal function C, observed outcome

Sobs
t+k, loss function L, threshold τ

Ensure: Set of causal hypotheses Ht

1: Ŝt+k ← C(St, At, Tt, δ)

2: ϵ← L(Ŝt+k, S
obs
t+k)

3: if ϵ > τ then
4: Generate candidate hypothesesH to explain discrepancy
5: Ht ← arg max

H∈H

[
P (Sobs

t+k | H)

− P (Ŝt+k | C)
]

6: for each H ∈ Ht do
7: Test hypothesis H
8: if H is valid then
9: Update causal function C with H

10: end if
11: end for
12: else
13: Ht ← ∅
14: end if
15: return Ht

δ helps capture evolving causal dynamics which is a key challenge in CRL research. Our Causal
Reflection framework introduces fundamental shifts in the objective, mechanism, and capabilities of
an intelligent agent.(see Table 1).

The table below summarizes these differences.

Table 1: Comparison of Decision-Making Paradigms

Dimension Traditional RL (PPO) Causal RL (CRL) Causal Reflection
Primary Goal Maximize cumulative Improve policy learning Build an accurate, dynamic

reward. (sample efficiency, causal model for
generalization) using a explanation and prediction.
causal model.

Core Mechanism Policy optimization via Causal discovery/ Predictive modeling and
trial-and-error. inference on a static causal hypothesis testing

world model to inform on a dynamic world model.
policy.

Handling of Time Sequential states, but no Often assumes a static, Explicitly models temporal
explicit model of time-invariant causal delays and time-varying
temporal causality. graph. dynamics.

Role of LLM N/A, or used for auxiliary Can be a source of prior A generative inference
tasks like reward knowledge for the static engine that translates the
shaping. causal graph. formal causal model’s

output into natural language
explanations.

6 Applications and Use Cases

The Causal Reflection framework offers practical benefits for building intelligent, explainable, and
aligned AI systems, demonstrated in two main applications.

Causal Self-Reflection for Explainability: Our framework enables deep causal explanations beyond
simple correlations. For example, a user logging states like “burnout,” actions like “taking on extra
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projects,” and timestamps can receive explanations generated by the LLM. Guided by the temporal
causal model, the LLM interprets the data to produce structured hypotheses explaining burnout as a
cumulative effect influenced by hidden factors (δ) such as stress or poor sleep. This interaction yields
actionable, formal causal insights.

Human-AI Alignment via Causal Hypotheses: Rather than just matching goals, the LLM uses the
causal model to reason about underlying mechanisms. For a user wanting to boost productivity, it
generates causal hypotheses based on past (S,A, T, δ) data like unplanned tasks causing overwhelm
after 24 hours or poor sleep intensifying workload effects and articulates targeted interventions. This
shifts AI support from surface-level advice to meaningful causal understanding and personalized
guidance.

7 Discussion and Future Work

While our framework offers a promising new direction, we believe that the theoretical contribution
that opens several avenues for future research. This section discusses a proposed validation strategy,
acknowledges open challenges, and outlines future research directions.

Learning the Causal Function: This paper has posited the theoretical existence and form of the
causal function C. A critical next step is to develop methods for learning its parameters from a
combination of observational and intervention data.

Validation Strategy: We propose the development of a benchmark suite of simulated environments
with known, dynamically changing causal relationships to validate our framework. For instance, a
simulated economic system could model government intervention as a perturbation (δ) that temporar-
ily alters the causal link between interest rates (Action) and inflation (State). Evaluation of such an
agent implementing Causal Reflection focuses not on traditional reward metrics, but on its ability to:

1. Identify the active causal graph: How quickly and accurately does the agent detect and
update its causal model following a structural break?

2. Predict future states: How effectively does the agent minimize prediction error, particularly
after perturbations?

Extension to Multi-Agent Systems: A compelling future direction is to extend the Causal Reflection
framework to Multi-Agent Reinforcement Learning (MARL). In such settings, an agent must model
not only the causal impact of its own actions but also the causal influence of other agents’ actions on
the environment and on each other. Applying causal reasoning to MARL [Briglia et al., 2025] is a
nascent but critical research area for understanding complex social and strategic interactions.

We treat this paper as a formal foundation for a forthcoming implementation, Causal Reflection
Agents, a simulation suite to evaluate their performance against LLMs and RL Agents.

8 Conclusion

We introduced Causal Reflection, a framework that shifts focus from reward maximization to building
accurate, interpretable causal models of dynamic environments. By modeling state, action, time,
and perturbations, our approach captures nonlinear, time-varying causal relationships. We also
outlined how LLMs can serve as generative engines to translate these formal outputs into structured,
natural language explanations. This framework lays the groundwork for more robust, adaptive, and
explainable AI systems aligned with human reasoning.

9 Limitations

Several challenges must be addressed to fully realize the potential of this framework, two of the most
urgent and critical ones being-

Scalability: Modeling complex, high-dimensional systems is computationally intensive. The state
representation St can become prohibitively large, and inferring the causal function C in such spaces
is a significant challenge, echoing broader issues in high-dimensional causal inference. Future work
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should explore factorization and representation learning techniques to create lower-dimensional,
causally sufficient state spaces. While reasoning over dynamic causal models increases complexity,
the framework is modular: δ estimation and Reflect are invoked conditionally (only when prediction
error is high), and causal model updates are localized. For high-dimensional state spaces, we
recommend applying dimensionality reduction techniques (e.g., Variational Autoencoders (VAEs) or
causal autoencoders) to obtain compact representations.

LLM Fidelity and Controllability: The framework relies on the LLM to be a faithful interpreter of
the formal model’s output. However, LLMs can "hallucinate" or misrepresent information. Research
is needed to develop methods for quantifying and mitigating these "translation errors" to ensure the
natural language explanations remain rigorously grounded in the underlying causal inference.

As more experiments and adaptions of Causal Reflection roll in, we are likely to see more limitations
discussed.
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