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Transferable Diffusion-based Unrestricted Adversarial Attack on
Pre-trained Vision-Language Models

Anonymous Author(s)

ABSTRACT
Pre-trained Vision-Language Models (VLMs) have shown great abil-
ity in various Vision-Language tasks. However, these VLMs exhibit
inherent vulnerabilities to transferable adversarial examples, which
could potentially undermine their performance and reliability in
real-world applications. Cross-modal interactions have been demon-
strated to be the key point to boosting adversarial transferability,
but the utilization of them is limited in existing multimodal transfer-
able adversarial attacks. Stable Diffusion, which contains multiple
cross-attention modules, possesses great potential in facilitating
adversarial transferability by leveraging abundant cross-modal in-
teractions. Therefore, We propose a Multimodal Diffusion-based
Attack (MDA), which conducts adversarial attacks against VLMs
using Stable Diffusion. Specifically, MDA initially generates adver-
sarial text, which is subsequently utilized as guidance to optimize
the adversarial image during the diffusion process. Besides lever-
aging adversarial text in calculating downstream loss to obtain
gradients for optimizing image, MDA also takes it as the guiding
prompt in adversarial image generation during the denoising pro-
cess, which enriches the ways of cross-modal interactions, thus
strengthening the adversarial transferability. Compared with pixel-
based attacks, MDA introduces perturbations in the latent space
rather than pixel space to manipulate high-level semantics, which
is also beneficial to improving adversarial transferability. Experi-
mental results demonstrate that the adversarial examples generated
by MDA are highly transferable across different VLMs on different
downstream tasks, surpassing state-of-the-art methods by a large
margin.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Pre-trained Vision-Language Models, Diffusion-based Unrestricted
Attack, Adversarial Transferability

1 INTRODUCTION
Recently, pre-trained Vision-Language Models (VLMs) have at-
tracted considerable attention, due to their remarkable performance
on a wide range of Vision-Language tasks, including image-text
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retrieval, visual entailment and visual grounding [10, 26, 41]. How-
ever, existing research has revealed that VLMs are vulnerable to
adversarial examples [40]. By making imperceptible modifications
to benign images and altering a small portion of the words in benign
text, the crafted adversarial examples can easily mislead state-of-
the-art VLMs. Importantly, adversarial examples generated against
one VLM can still mislead other VLMs due to their transferability,
even if these models use different architectures or are used for dif-
ferent tasks [17]. The transferability of adversarial examples makes
it feasible to perform more practical black-box attacks, which poses
a serious security risk for the deployment of VLMs in safety-critical
scenarios.

In this paper, we primarily investigate the transferability of ad-
versarial examples across different VLMs. Different from unimodal
models, VLMs can handle both image and text modalities simulta-
neously as well as image-text pairs exhibit intrinsic alignment and
complementarity to each other, making it impractical to employ
transferable unimodal attack methods directly. Perturbing image
and text independently without considering their interactions may
cause the attack to fail due to the two unimodal perturbations con-
flicting with each other. To consider interactions between attacks
of different modalities, existing transferable multimodal attacks
collaboratively instead of independently perturb image-text pairs.
Moreover, VLMs typically involve a range of non-classification tasks
such as cross-modal retrieval, so it is appropriate to conduct attacks
against the embedding representations instead of the downstream
task labels.

Although cross-modal interactions turn out to be effective in
improving the transferability of adversarial examples across VLMs,
existing transferable multimodal attack methods have limited con-
sideration for them. Specifically, these methods solely utilize the
paired information from another modality as supervision to guide
the optimization of the adversarial direction for onemodality, which
does not adequately model the correspondence between images and
their corresponding text. Based on this, we believe that taking more
fused information between image and text modalities into account
could further improve the transferable attack performance against
VLMs. Recently, Stable Diffusion [25] has come to the fore due to
accurately and conveniently manipulating the given image with
the guidance of a text prompt. Given the cross-attention modules
in Stable Diffusion capable of facilitating cross-modal interaction,
we believe that leveraging Stable Diffusion to craft adversarial ex-
amples could further fuse information between image and text
modalities, thereby improving the transferable attack performance
against VLMs. Nevertheless, existing transferable diffusion-based
attacks mainly focus on unimodal models [1] yet are seldom ex-
plored on VLMs.

Based on the analysis mentioned above, we propose an unre-
stricted attack framework on different Vision-and-Language tasks,
named Multimodal Diffusion-based Attack (MDA). Specifically,
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MDA initially utilizes the pairwise benign text and image as a
guide for generating adversarial text, followed by inversing the be-
nign image into latent space, and applying modifications in latent
space influenced by adversarial text, to generate a high transferable
adversarial image with satisfactory imperceptibility. To preserve
the structure and appearance of images, MDA imposes constraints
on the self-attention maps, which have been demonstrated to reg-
ulate structure effectively [1]. To preserve the original content
structure of adversarial images, MDA imposes constraints on the
self-attention maps of Stable Diffusion, which have been demon-
strated effective for structure retention [1].

Compared with existing transferable multimodal attack methods,
MDA optimizes the image latent of off-the-shelf Stable Diffusion
instead of directly manipulating image pixels, resulting in intro-
ducing distortions in high-level semantics. MDA not only utilizes
the adversarial text to calculate the gradients used for updating
adversarial image, but also takes it as the prompt with its high-level
semantics to guide the adversarial image generation during the
denoising process, which significantly enhances the cross-modal in-
teractions, thus leading high transferability. To evaluate the attack
performance of the proposed MDA, we conduct extensive exper-
iments on image-text and text-image retrieval, visual entailment
and visual grounding. Experimental results show that our proposed
MDA outperforms the current state-of-the-art baselines by a large
margin(e.g., in image-text retrieval task, the transferable attack
success rate of MDA is more than 30% higher than that of SGA
on Flickr30K dataset), showing great performance on adversarial
transferability. We also evaluate the cross-task transferability of
MDA and other baselines, and the results demonstrate that besides
cross-model settings, MDA is also highly transferable in cross-task
settings compared with other baselines. Besides listing experimen-
tal results, we also exhibit visualizations of the adversarial images
and analyze their characteristics on imperceptibility.

The major contributions of this paper could be summarized as
follows.

• To the best of our knowledge, we are the first to investi-
gate multimodal unrestricted attack on VLMs via Stable
Diffusion and propose a novel attack framework, named
Multimodal Diffusion-based Attack(MDA).

• To address the insufficiency of cross-modal interactions in
existing multimodal attack methods, MDA strengthens the
cross-modal interactions by shifting image latent gradu-
ally to adversarial semantic space with the adversarial text
guidance, thus enhancing the adversarial transferability.

• We conduct extensive experiments on several multimodal
tasks and achieve state-of-the-art transferable attack per-
formance under black-box settings, surpassing other attack
methods by a large margin.

2 RELATEDWORK
2.1 Adversarial Attacks
Adversarial attack is first proposed in computer vision highlighting
the vulnerability of deep learning models [28]. In the field of attacks
on VLMs, Co-attack [40] collectively carries out the attacks on the
image modality and the text modality, based on the observation

that bi-modal perturbation is stronger than single-modal pertur-
bation. SGA [17] used multi-scale images and all paired texts to
generate adversarial examples, leveraging the richness of data to
increase adversarial transferability. Inspired by optimal transport
theory [31], OT-Attack [4] uses a more balanced image-text match
to conduct attack. SA-Attack [5] enhanced the transferability by
utilizing EDA [34] and SIA [33] during the process of adversarial
example generation. Although these methods have been explored
to enhance the success rate of transfer attacks on VLMs, the adver-
sarial transferability is still limited due to their pixel-based nature.
When compared to white-box attacks, there is still a significant
drop in attack success rate under black-box settings.

2.2 Vision-Language Models
Pre-trained Vision-Language Models (VLMs) represent a class of
neural network architectures designed to learn rich cross-modal rep-
resentations by jointly processing visual and linguistic data. These
models aim to capture the inherent interdependencies between
visual content, such as images or videos, and textual information,
including captions, descriptions, or natural language questions.
Most early works on VLMs used pre-trained object detectors to
capture local features [14, 30, 32]. Since there has been an increas-
ing interest in Vision Transformers (ViTs) [3] recently, numerous
studies based on ViTs have emerged [11, 12, 24], proposing an end-
to-end transformation of the input images into patches, thereby
enhancing the inference speed. In this work, same as relevant prior
works [4, 5, 17, 40], we adopt ALBEF [12], TCL [36] and CLIP [24]
as inference models. ALBEF and TCL receive inputs of image and
text modalities simultaneously and process these two modalities
with their respective encoders to get visual and textual features.
Then, the visual and textual features are sent into multimodal fu-
sion module to get a fused multimodal feature. In contrast, CLIP
outputs two unimodal features instead of a fused one. According to
the categorization in [40], ALBEF and TCL belong to fused models,
while CLIP belongs to aligned models.

2.3 Vision-Language Tasks
Vision-Language tasks encompass a broad category of problems
that involve the integration and interaction of visual and textual
information. In this work, we choose image-text retrieval, text-
image retrieval, visual grounding and visual entailment as our
downstream tasks. Brief introductions about these tasks are listed
below:
Image-Text and Text-Image Retrieval. In image-text retrieval,
an image is sent to an inference model to retrieve the most relevant
text, while in text-image retrieval, text is the input and image is
the output. For fused models(ALBEF and TCL), feature similarity
score is computed using the output of image and text encoder
across all image-text pairs. The top-k candidates are then sent into
multimodal encoder to calculate the matching score and ranked. For
aligned models, since there is no multimodal encoder, the matching
score is calculated and ranked based on the output of two unimodal
encoders.
Visual Entailment. The goal of visual entailment is to predict
whether the hypothesis(text) could be reasoned with the informa-
tion provided by the premise(image), which is proposed in [35].
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Figure 1: The framework of MDA. In MDA, adversarial text is
generated via text attack at first. After the adversarial text is
obtained, StableDiffusion is then used to generate adversarial
image with the guidance of adversarial text as the prompt.
Subsequently, the adversarial image-text pair is sent into
VLM and the gradients for updating latent z

𝑇
is calculated

according to the downstream task loss. z
𝑇
is then used to

generate adversarial image in the next iteration. Update for
z
𝑇
and adversarial image generation are repeated multiple

times. DDIM is leveraged to accelerate the diffusion process.

Visual entailment could be seen as a classification task that contains
three classes: Entailment, Neutral and Contradiction. In ALBEF and
TCL, a fully connected layer is used to transform [CLS] token to
class probabilities.
Visual Grounding. The goal of visual grounding is to identify and
locate the objects or regions in the visual data that correspond to
the textual description provided. In ALBEF, attention map is used
to rank the detected proposals [37].

3 METHOD
3.1 Problem Formulation
In Vision-Language tasks, we denote the image input as x𝑖𝑚𝑔 and
the text input as x𝑡𝑥𝑡 . The goal of the transferable multimodal
adversarial attack is tomakemodifications to benign image-text pair
yielding adversarial image-text pair {x′

𝑖𝑚𝑔
, x′𝑡𝑥𝑡 }. The optimization

problem for generating adversarial image-text pair on surrogate
pre-trained VLM 𝑓 (·, ·) is formulated as follows:

max
(x′

𝑖𝑚𝑔
,x′𝑡𝑥𝑡 )

L(x′𝑖𝑚𝑔, x
′
𝑡𝑥𝑡 ; 𝑓 ), (1)

where L(·, ·) denotes the loss function respective of the down-
stream Vision-Language tasks. The generated adversarial image-
text pairs can mislead other target VLMs 𝑔(·, ·) into 𝑔(x′

𝑖𝑚𝑔
, x′𝑡𝑥𝑡 ) ≠

𝑔(x𝑖𝑚𝑔, x𝑡𝑥𝑡 ) without knowledge about 𝑓 (·, ·).
Cross-modal interactions can significantly enhance the trans-

ferability of multimodal attacks in existing works [17]. However,
the simple gradient calculation of the adversarial text during the

image adversarial attack process in existing works [40] renders
the under-utilization of cross-modal interactions. Further effort is
needed to facilitate deeper cross-modal interactions. We leverage
the diffusion model to generate unrestricted adversarial images.
Guided by adversarial text during each denoising step, the gener-
ated adversarial image with further cross-modal interactions highly
boosts adversarial transferability.

3.2 Multimodal Diffusion-based Attack (MDA)
In this section, we propose Multimodal Diffusion-based Attack
(MDA), a highly transferable multimodal unrestricted attack frame-
work, as displayed in Figure 1. Specifically, we utilize the Text
Modality Attack (Section 3.2.1) to generate adversarial text. Then
adversarial image is generated in the diffusion process with the
guidance of the adversarial text (Section 3.2.2). The algorithm for
MDA is presented in Algorithm 1. In the following, the framework
will be elaborated in detail.

3.2.1 Text Modality Attack. For text attack, our goal is to craft
an adversarial text that is most semantically dissimilar from the
benign text. Since text space is discrete, unlike attacks on pixel
space (e.g., FGSM [28] or PGD [18]), we cannot directly modify
tokens in the text based on the gradients obtained from the loss of
downstream tasks. Alternatively, we choose the tokens that cause
the most significant change in the feature space compared to the
benign text. For aligned models like CLIP [24] which is capable of
processing text-only input, the aforementioned text attack can be
represented by the following equations:

max
x′𝑡𝑥𝑡

(𝐾𝐿(𝐸𝑡 (x′𝑡𝑥𝑡 ), 𝐸𝑡 (x𝑡𝑥𝑡 ))), (2)

where 𝐸𝑡 (·) denotes text embedding and𝐾𝐿(·, ·) is Kullback-Leibler
divergence, which is adopted to quantify the distance between
the features of benign and adversarial text. For fused models like
ALBEF [12] and TCL [36], since image and text modalities are
designed to be sent into models simultaneously, the text attack is
conducted as follows:

max
x′𝑡𝑥𝑡

(𝐾𝐿(𝐸𝑚 (𝐸𝑡 (x′𝑡𝑥𝑡 ), 𝐸𝑖 ((𝑥𝑖 )), 𝐸𝑚 (𝐸𝑡 (x′𝑡𝑥𝑡 ), 𝐸𝑖 ((𝑥𝑖 )))), (3)

where 𝐸𝑖 (·) denotes image embedding and 𝐸𝑚 (·, ·) denotes the
multimodal embedding. In this work, we adopt BERT-Attack [13]
to conduct adversarial attack on text modality, which has been
consistently utilized in prior studies [4, 5, 17, 40] for conducting
multimodal attacks.

3.2.2 Image Modality Attack. In this work, we employ Stable Dif-
fusion [25] which has been pre-trained on extensive image-text
pairs to conduct image modality attack. Stable Diffusion contains
multiple cross-attention modules, and could significantly facili-
tate cross-modal interactions. Specifically, cross-modal interactions
happen when the embeddings of the visual and textual features
are fused through attention modules during noise prediction, and
subsequently boost adversarial transferability.

The procedure for conducting imagemodality attack is as follows.
After adversarial text is generated, it is taken as a prompt and
used to guide adversarial image generation in the diffusion process.

3
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Given that adversarial attacks are designed to mislead the target
model by adding perturbations to the benign image, they can be
considered a special kind of image editing. In the same manner as
other existing image editing methods [2, 20, 22], we adopt DDIM
Inversion [27] (Please see supplementary materials for details.)
to map the benign image into latent space. Let 𝑉𝐸 (·) be the VAE
encoder of Stable Diffusion, the inversion process is conducted by
the following equation:

z0 = 𝑉𝐸 (x𝑖𝑚𝑔), z𝑇 = In(z𝑇−1) = In ◦ · · · ◦ In︸        ︷︷        ︸
𝑇

(z0), (4)

and In(·) in Equation 4 is denoted as follows:

In(z𝑡 ) =
√︂
𝛼𝑡+1
𝛼𝑡

z𝑡 +
√
z𝑡+1 (

√︂
1

𝛼𝑡+1 − 1
−
√︂

1
𝛼𝑡 − 1

)𝜖𝜃 (z𝑡 , 𝑡,∅). (5)

In the preceding equation, z𝑡 denotes the latent code, 𝛼𝑡 denotes
the noise scaling factor and 𝜖𝜃 (z𝑡 , 𝑡,∅) denotes the predicted noise
added in z𝑡 with null text ∅ =“”, respectively. 𝑡 is a certain timestep
and 𝑇 is the total number of timesteps. According to the study in
[20], an slight error is accumulated in each step of DDIM inversion,
but the accumulated error is negligible for unconditional diffusion
models, thus null text is chosen in the DDIM inversion of MDA
instead of clean text.

After obtaining the reversed latent z
𝑇
, the denoising process is

conducted to get the generated image x′
𝑖𝑚𝑔

with the guidance of
adversarial text:

z′𝑇 = z𝑇 , z′0 = De(z′1) = De ◦ · · · ◦ De︸          ︷︷          ︸
𝑇

(z′𝑇 ), x′𝑖𝑚𝑔 = 𝑉𝐷 (z′0).

(6)
Here𝑉𝐷 (·) is the decoder of VAE used to decode the image from

latent space to pixel space, and De(·) in Equation 6 is denoted as
follows:

De(z′𝑡 ) =
√︂
𝛼𝑡−1
𝛼𝑡

z′𝑡+
√︃
z′
𝑡−1 (

√︂
1

𝛼𝑡−1 − 1
−
√︂

1
𝛼𝑡 − 1

)𝜖𝜃 (z′𝑡 , 𝑡, x′𝑡𝑥𝑡 ,∅),
(7)

The classifier-free guidance(CFG) technique[8] is proposed as a
way to control the amount of weight the model gives to the condi-
tioning information with guidance scale parameter 𝜔 . CFG could
be regarded as an approach of adjusting the degree of cross-modal
interactions therefore is adopted during the denoising process of
our attack. CFG is expressed in Equation 7 as follows:

𝜖𝜃 (z′𝑡 , 𝑡,𝐶,∅) = 𝜔 · 𝜖𝜃 (z′𝑡 , 𝑡,𝐶) + (1 − 𝜔) · 𝜖𝜃 (z′𝑡 , 𝑡,∅). (8)

For better image reconstruction quality, we adopt the method
proposed in [20] to optimize the null text embedding before generat-
ing adversarial images. After x′

𝑖𝑚𝑔
is generated, gradients could be

calculated with the loss function J (·, ·) respective of downstream
Vision-Language tasks to update z

𝑇
. The subsequent equation rep-

resents the optimization goal:

L𝑎𝑡𝑡𝑎𝑐𝑘 = −J (x′𝑖𝑚𝑔, x
′
𝑡𝑥𝑡 ). (9)

Since our method is generative, it is necessary to prevent ex-
cessive alterations between the benign and adversarial images;
otherwise, the original semantic structure will be destroyed and
the adversarial image will look far different from the benign one, in
which case the adversarial attack generates an irrelevant image and
makes no sense. To preserve the original semantic structure, we
adopt the self-attention constraint introduced in [1], in which self-
attention maps are utilized to restrict the degree of modifications
between clean and adversarial latents. The corresponding structure
preserving loss is:

L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = ∥𝑠𝑎𝑐𝑙𝑒𝑎𝑛 − 𝑠𝑎𝑎𝑑𝑣 ∥2
2, (10)

where 𝑠𝑎𝑐𝑙𝑒𝑎𝑛 and 𝑠𝑎𝑎𝑑𝑣 represent the self-attention maps for the
benign and adversarial latents, respectively. Along with equation 9,
the total optimization objective is:

min
z′
𝑇

L𝑡𝑜𝑡𝑎𝑙 = 𝜇L𝑎𝑡𝑡𝑎𝑐𝑘 + L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 , (11)

where 𝜇 is used to control the relative weights of attack loss and
structure preserving loss. z′

𝑇
is updated for multiple times before

the adversarial example is determined. In Equation 11 we leave out
the notation denoting iterations for simplicity.

According to [1, 19], the diffusion models exhibit a propensity to
concentrate on coarse semantic information in the early steps and
fine-grained information in the later steps. Besides, a larger number
of total timesteps could significantly impact the image generation,
enhancing the attack strength yet reducing the image quality. Thus,
we follow [1] and apply limited DDIM inversion steps at the back
of denoising process to preserve high-level semantics.

Algorithm 1 Multimodal Diffusion-bansed Attack(MDA)

1: Input: benign example (x𝑖𝑚𝑔, x𝑡𝑥𝑡 ), Vision-Language model 𝑓 ,
total timestep of DDIM𝑇 , attack iterations 𝐼 , VAE encoder𝑉𝐸 (·),
VAE decoder𝑉𝐷 (·), inverse process 𝐼𝑛(·), denoise process𝐷𝑒 (·)

2: Output: Adversarial example (x′
𝑖𝑚𝑔

, x′𝑡𝑥𝑡 )
3: z0 = 𝑉𝐸 (x𝑖𝑚𝑔)
4: for 𝑡 = 1, . . . ,𝑇 do
5: z𝑡 = 𝐼𝑛(z𝑡−1)
6: end for
7: z′

𝑇
= z

𝑇
8: for 𝑡 = 𝑇, . . . , 1 do
9: optimize null text embedding ∅𝑡

10: end for
11: x′𝑡𝑥𝑡 =BERT-Attack(x𝑡𝑥𝑡 )
12: for 𝑖 = 1, . . . , 𝐼 do
13: for 𝑡 = 𝑇, . . . , 1 do
14: z′

𝑡−1 = 𝐷𝑒 (z′𝑡 )
15: end for
16: x′

𝑖𝑚𝑔
= 𝑉𝐷 (z′0)

17: calculate L𝑎𝑡𝑡𝑎𝑐𝑘 using Eq. 9
18: calculate L𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 using Eq. 10
19: update z′

𝑇
over L𝑡𝑜𝑡𝑎𝑙 with AdamW optimizer

20: end for
21: x′

𝑖𝑚𝑔
= 𝑉𝐷 (z′0)

22: return (x′
𝑖𝑚𝑔

, x′𝑡𝑥𝑡 )
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4 EXPERIMENTS
4.1 Experiment Settings
Datasets. For image-text and text-image retrieval task, we consider
two commonly used datasets: Flickr30K [23] and MSCOCO [15]
dataset. Flickr30K dataset contains 31783 images, and each image
corresponds to five captions. MSCOCO dataset contains 123,287
images, and each image corresponds to approximately five captions.
For visual entailment task, we use SNLI-VE [35] dataset. Images
in SNLI-VE dataset are the same as those in Flickr30K dataset and
correspond to varied number of captions. For visual grounding
task, we use RefCOCO+ [38] dataset, which contains 49856 object
entities, 141,564 captions and 19,992 images.
Vision-LanguageModels.We follow previous studies [4, 5, 17, 40]
and evaluate three popular VLMs, including ALBEF [12], TCL [36]
and CLIP [24]. ALBEF is a Vision-Language model constructed on
a transformer-based architecture, composed of an image encoder,
a text encoder and a multimodal encoder. TCL shares a common
architecture with ALBEF, but is trained with different strategies
including cross-modal alignment, intra-modal contrastive, and local
mutual information maximization. CLIP has two implementations,
one with ResNet-101 [6] and the other ViT/B-16 [3] as the image
encoder. These two implementations are denoted CLIPCNN and
CLIPViT, respectively.
Implementation Details.We adopt BERT-Attack [13] to generate
text adversarial examples with a text perturbation bound 𝜖𝑡 of
1 token and word list length 𝑊𝑙 = 10. Images are resized to a
resolution of 224x224 pixels before fed into ALBEF or TCL, and
384x384 pixels before fed into CLIP. DDIM [27] with 20 steps is
implemented as the sampler of Stable Diffusion [25], and DDIM
inversion steps is set to 5. The guidance scale 𝜔 of Stable Diffusion
is set to 2.5. The size of images generated by Stable Diffusion is
224x224. The number of iterations of updating latent is 30 and
AdamW [16] with learning rate of 0.01 is adopted as the optimizer.
The relative weight control factor 𝜇 is 0.5. The image perturbation
bound 𝜖𝑖 of all pixel-based attacks used in the following experiments
is set to 2/255. All experiments are performed on a single RTX 3090
GPU.
Evaluation Metrics. Attack Success Rate (ASR) is employed to
measure the adversarial robustness of the target models. The cal-
culation method of ASR varies in different tasks. A higher ASR
indicates better attack performance. We adopt Frechet Inception
Distance (FID) [7] to measure the natrualness of the crafted adver-
sarial images. FID is calculated between the adversarial images and
the benign images from the corresponding validation set. A lower
FID indicates better image quality. We also adopt NIMA-AVA [29]
trained on AVA dataset [21] for image quality assessment. A higher
NIMA-AVA indicates better image quality.

4.2 Attack Performance on Image-Text and
Text-Image Retrieval

In order to test the attack performance of MDA, we first conduct ex-
periments on image-text and text-image retrieval tasks on Flickr30K
dataset. Besides MDA, we also adopt PGD [18], BERT-Attack [13],
Sep-Attack [17], Co-Attack [40] and Set-level Guidance Attack
(SGA) [17] as the compared attacks. ASR based on R@K (R stands

for recall) is used as the metric and the value of K is set to 1, 5, 10 in
the experiments. Results on ASR are listed in Table 1 and Table 2.

Tables 1 and Table 2 demonstrate the significant superiority of
our method over all other attacks in both image-text and text-image
retrieval tasks under black-box setting. For instance, in image-text
retrieval task, the ASR on TCL with adversarial examples generated
on ALBEF using our method surpass those of SGA bymore than 30%
(76.29% vs. 45.42% for R@1, 59.20% vs. 24.93% for R@5, and 51.10%
vs. 16.48% for R@10, respectively). Adversarial examples generated
on ALBEF (aligned VLM) also achieve high transfer attack perfor-
mance on CLIPViT and CLIPCNN (fused VLMs), which indicates
that our MDA could provide strong cross-architecture adversarial
transferability. The exceptional performance of our method can be
attributed to several key factors. Firstly, in addition to using ad-
versarial text to compute the gradients necessary for updating the
adversarial image, our MDA leverages adversarial text as a prompt
to guide the generation of adversarial images. This approach allows
us to maximize the utilization of adversarial text compared to other
methods. Furthermore, Stable Diffusion, employed in MDA, incor-
porates transformer modules consisting of multiple cross-attention
blocks, facilitating extra cross-modal interactions. By enhancing
these interactions and maximizing the use of adversarial text, our
method achieves higher adversarial transferability. In addition to
enhancing cross-modal interactions, the design of MDA incorpo-
rates several other factors that contribute to improving adversarial
transferability. By perturbing the latent space instead of pixel space,
MDA introduces distortions in high-level semantics, which has
been shown to enhance adversarial transferability according to
recent studies [9, 39]. Furthermore, MDA includes an additional
denoising process and leverages transformations provided by Sta-
ble Diffusion that are unrelated to gradients calculated using the
loss of downstream task. This feature helps mitigate overfitting
of the surrogate model. However, it is important to note that the
performance of MDA is slightly lower in ASR compared to SGA
under white-box settings. This discrepancy is attributed to the fact
that generative diffusion-based attacks rely less on the surrogate
model, resulting in poorer white-box attack performance.

Figure 2 further shows several attack examples on the image-text
retrieval results. From the results, it is evident that by manipulating
subtitle content, our MDA method effectively deceives the retrieval
model, resulting in incorrect top-1 retrieved text that does not
match the query image. It is worthwhile mentioning that the alter-
nations in the generated adversarial images are hardly noticeable
by humans.

We then measure the image quality of the adversarial examples
generated by these attacks using FID andNIMA-AVA, and the results
are listed in Table 3. It is important to note that the magnitude
of modifications in pixel-based attacks and unrestricted attacks
is typically evaluated using different ways (perturbation bound
for pixel-based attacks and image quality for unrestricted attacks).
Hence it is hard to choose a fair metric to evaluate pixel-based
attacks along with unrestricted attacks. From the results, we have
the following observations. Basically, for FID value, our MDA is
slightly higher than other baselines while for MIMA-AVA metric,
our MDA is slightly lower than the other baselines. Considering the
fact that MDA surpasses other attacks in ASR by a large margin, the
image quality results of adversarial examples generated by MDA
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Table 1: ASR on image-text retrieval task on Flickr30K dataset. * indicates the performance under white-box attack. The best
results are highlighted in bold.

Surrogate Model Attack ALBEF TCL CLIPViT CLIPCNN
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ALBEF

PGD 52.45* 36.57* 30.00* 3.06 0.40 0.10 8.96 1.66 0.41 10.34 2.96 1.85
BERT-Attack 11.57* 1.80* 1.10* 12.64 2.51 0.90 29.33 11.63 6.30 32.69 15.43 8.65
Sep-Attack 65.69* 47.60* 42.10* 17.60 3.72 1.90 31.17 12.05 7.01 32.82 15.86 9.06
Co-Attack 77.16* 64.60* 58.37* 15.21 4.19 1.47 23.60 7.82 3.93 25.12 8.42 5.39

SGA 97.24* 94.09 92.30* 45.42 24.93 16.48 33.38 13.50 9.04 34.93 17.07 10.45
MDA 93.53* 87.47* 83.2* 76.29 59.20 51.10 70.18 46.83 38.41 73.31 50.21 39.55

TCL

PGD 6.15 1.30 0.70 77.87* 65.13* 58.72* 7.48 1.45 0.81 10.34 2.75 1.54
BERT-Attack 11.89 2.20 0.70 14.54* 2.31* 0.60* 29.69 12.77 7.62 33.46 14.38 9.37
Sep-Attack 20.13 4.91 2.70 84.72* 73.07* 65.43* 31.29 12.98 7.72 33.33 14.27 9.89
Co-Attack 23.15 6.98 3.63 77.94* 64.26* 56.18* 27.85 9.80 5.22 30.74 12.09 7.28

SGA 48.91 30.86 23.10 98.37* 96.53* 94.98* 33.87 15.21 9.46 37.74 17.86 11.74
MDA 81.86 70.64 65.60 91.78* 87.94* 85.47* 74.72 55.04 44.51 75.73 57.29 49.33

Table 2: ASR on text-image retrieval task on Flickr30K dataset. * indicates the performance under white-box attack. The best
results are highlighted in bold.

Surrogate Model Attack ALBEF TCL CLIPViT CLIPCNN
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ALBEF

PGD 58.65* 44.85* 38.98* 6.79 2.21 1.20 13.21 5.19 3.05 14.65 5.60 3.39
BERT-Attack 27.46* 14.48* 10.98* 28.07 14.39 10.26 43.17 26.37 19.91 46.11 28.43 22.14
Sep-Attack 73.95* 59.50* 53.70* 32.95 17.10 11.90 45.23 25.93 19.95 45.49 28.43 22.32
Co-Attack 83.86* 74.63* 70.13* 29.49 14.97 10.55 36.48 21.09 15.76 38.89 22.38 17.49

SGA 97.28* 94.27* 92.58* 55.25 36.01 27.25 44.16 27.35 20.84 46.57 29.16 22.68
MDA 93.94* 88.58* 85.18* 79.90 64.52 57.05 73.78 57.32 48.93 75.13 58.90 49.90

TCL

PGD 10.78 3.36 1.70 79.48* 66.26* 60.36* 13.72 5.37 3.01 15.33 5.77 3.28
BERT-Attack 26.82 14.09 10.80 29.17* 15.03* 10.91* 44.49 27.47 21.00 46.07 29.28 22.59
Sep-Attack 36.48 19.48 14.82 86.07* 74.67* 68.83* 44.65 26.82 20.37 45.80 29.18 23.02
Co-Attack 40.04 22.66 17.23 85.59* 74.19* 68.25* 41.19 25.22 19.01 44.11 26.67 20.66

SGA 60.34 42.47 34.59 98.81* 97.19* 95.86* 44.88 28.79 21.95 48.30 29.70 23.68
MDA 85.62 74.90 69.23 93.69* 89.35* 86.98* 78.03 62.98 54.30 79.21 64.34 55.88

Figure 2: Attack examples of our method in image-text retrieval task.

is indeed acceptable. We also conduct experiments on MSCOCO
dataset, and the results are shown in supplementary materials.
Basically, similar observations can be obtained from the results.

4.3 Attack Performance on Visual Entailment
In addition to the cross-modal retrieval task mentioned above, we
also evaluate the proposed method on visual entailment task. The
evaluation is conducted by generating adversarial examples on
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Table 3: Evaluation on the quality of adversarial examples
generated by different attack methods on Flickr30K dataset.

(a) Comparison on FID. A lower FID indicates better image quality.

Surrogate model

Attack method
PGD Co-Attack SGA MDA

ALBEF 58.75 58.79 59.71 67.78
TCL 58.65 58.70 59.68 66.89

(b) Comparison on NIMA-AVA. A higher NIMA-AVA indicates better
image quality.

Surrogate model

Attack method
PGD Co-Attack SGA MDA

ALBEF 5.90 5.90 5.89 5.57
TCL 5.90 5.90 5.87 5.59

ALBEF/TCL and then transfer to attack TCL/ALBEF. ASR on classi-
fication accuracy is adopted as the metric to evaluate attack perfor-
mance. For each image, we randomly choose one corresponding text
to construct image-text pairs. The attack results are presented in Fig-
ure 3. From the results, we can observe that our method surpasses
all other attack methods in both ALBEF-to-TCL and TCL-to-ALBEF
settings, achieving the best attack performance. The results indi-
cate that our method achieves high transferability across different
downstream Vision-Language tasks, which is due to the additional
cross-modal interactions provided in our method.

Figure 3: ASR on visual entailment task on SNLI-VE dataset.
Adversarial examples are generated on ALBEF (TCL) and
transfered to TCL (ALBEF).

4.4 Cross-Task Transferability
We also conducted experiments to assess cross-task transferability.
Following the previous experimental setup of [17], we evaluated
the attack performance on the visual grounding task using adver-
sarial examples generated from the image-text retrieval task. The
results are summarized in Table 4. From the results, our method

continues to outperform the state-of-the-art attack SGA by a sig-
nificant margin (55.02% vs. 61.19% on test-A and 40.19% vs. 43.71%
on test-B). The results indicate that MDA achieves high adversarial
transferability in both cross-model and cross-task settings.

Table 4: Accuracy of visual grounding on RefCOCO+ dataset.
The adversarial examples used for evaluation are generated
on image-text retrieval task, thus capable of measuring cross-
task transferability. The target model and surrogate model
are both ALBEF. Baseline represents the accuracy on clean
data. Lower values indicate better cross-task transferability.

Attack method

Test set
test-A test-B

Baseline 65.89 46.25
Co-Attack 61.80 43.81

SGA 61.19 43.71
MDA 55.02 40.19

4.5 Ablation Studies
We then investigate the effect of different parameter settings on
attack success rates using Flickr30K dataset, here ALBEF is utilized
as the surrogate model. We first conduct experiments with different
relative weight control factor 𝜇 varying from 0.1 to 0.5 and a fixed
guidance scale𝜔 at 2.5. The ASR results based on TR@1(image-text
R@1) and IR@1(text-image R@1) are listed in Table 5. Increasing 𝜇
indicates paying more attention on the attack loss rather than the
retention of semantic structure, which notably affects both white-
box and black-box results. For instance, when 𝜇 is set to 0.1, the
white-box ASR is 67.26% on TR@1 and 73.71% on IR@1. Conversely,
when 𝜇 is increased 0.5, the white-box ASRs on TR@1 and IR@1 are
significantly increased to 93.53% and 93.94%, respectively. Similarly,
When taking TCL as the target model, increasing 𝜇 from 0.1 to
0.5 results in a notable increase in ASR (from 47.42% to 76.29% on
TR@1 and 59.36% to 79.90% on IR@1). It’s worth noting that there is
a slight increase in FID of adversarial examples as 𝜇 becomes larger,
which is an expected outcome of enhancing the attack strength.

In addition to the relative weight control factor 𝜇, altering the
guidance scale 𝜔 also impacts the attack performance, as shown
in Table 6. A higher value assigned to the guidance scale 𝜔 results
in more robust guidance provided by the adversarial text during
the denoising process. The table illustrates a significant increase
in both white-box and black-box ASR, along with a slight rise in
FID, with a larger guidance scale. These findings suggest a trade-off
between attack effectiveness and image fidelity.

4.6 Visualization
We further visualize several benign images and their corresponding
adversarial images generated using our method in Figure 4. It is
evident that the modifications in the generated adversarial image
are subtle compared to the original clean image. Basically, the alter-
ations induced by ourMDAmethod primarily involve modifications
to the texture, edges, and color of the objects in the image. These
changes usually happen in a very small area in the image, hence
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Table 5: Effects of different relative weight control factor 𝜇. * indicates white-box attack.

𝜇 FID↓ ALBEF* TCL CLIPViT CLIPCNN
TR@1* IR@1* TR@1 IR@1 TR@1 IR@1 TR@1 IR@1

0.1 64.34 67.26 73.71 47.42 59.36 50.06 60.50 54.66 62.71
0.2 65.47 78.00 83.65 59.85 67.43 55.83 66.37 62.96 68.89
0.3 66.67 84.98 88.31 67.12 73.88 62.33 69.59 66.28 71.97
0.4 67.22 87.38 90.11 71.02 75.48 64.17 71.04 68.20 72.73
0.5 67.78 93.53 93.94 76.29 79.90 70.18 73.78 73.31 75.16

Table 6: Effects of different guidance scale 𝜔 . * indicates white-box attack.

𝜔 FID↓ ALBEF* TCL CLIPViT CLIPCNN
TR@1* IR@1* TR@1 IR@1 TR@1 IR@1 TR@1 IR@1

1 65.93 88.63 91.35 65.23 70.88 59.64 65.27 59.64 65.21
1.5 65.86 88.74 92.68 68.60 75.60 62.32 68.23 62.32 68.61
2 66.49 89.78 92.33 73.55 78.10 67.94 71.36 67.94 73.31
2.5 67.78 93.53 93.94 76.29 79.90 73.31 73.78 73.31 75.13

Clean 
image

Adv.
image

(a) (b) (c)

Figure 4: Visualization of clean images and their corresponding adversarial images generated using our MDA. Image details are
enlarged.

are hardly perceptible by human eyes. For example, in Figure 4(a)
and (b), our MDA generates the adversarial image by changing the
shape of the “apple peel” and “mint leaf”. In contrast, in Figure 4(c),
the adversarial image is generated by altering its background color.
Nevertheless, all these changes are subtle and difficult to notice.

5 CONCLUSION
In this paper, we explore the potential of Stable Diffusion to con-
duct transfer-based attack under multimodal settings. We propose
MDA, a highly transferable multimodal attack against VLMs, which
leverages Stable Diffusion to generate adversarial image with the
guidance of adversarial text. MDA uses Stable Diffusion, which

contains multiple cross-attention modules, to enable extra cross-
modal interactions by taking adversarial text as the prompt to guide
adversarial image generation to boost adversarial transferability. Be-
sides, MDA introduces perturbations in the latent space rather than
pixel space to manipulate high-level sematics, which also improves
adversarial transferability. We conduct extensive experiments on
several downstream tasks including cross-modal retrieveal, visual
entailment and visual grounding. Experimental results show that
our proposed MDA surpassing other attacks in black-box settings
by a large margin, which demonstrates MDA significantly strength-
enes the adversarial transferability. We also exhibit the adversarial
examples generated by MDA and analyze their visual characteris-
tics. We hope this work could promote further investigations on
the adversarial transferability on VLMs.
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