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ABSTRACT

Despite the increasing use of large language models for creative tasks, their out-
puts often lack diversity. Common solutions, such as sampling at higher temper-
atures, can compromise the quality of the results. Dealing with this trade-off is
still an open challenge in designing AI systems for creativity. Drawing on infor-
mation theory, we propose a context-based score to quantitatively evaluate value
and originality. This score incentivizes accuracy and adherence to the request
while fostering divergence from the learned distribution. We show that our score
can be used as a reward in a reinforcement learning framework to fine-tune large
language models for maximum performance. We validate our strategy through
experiments considering a variety of creative tasks, such as poetry generation and
math problem solving, demonstrating that it enhances the value and originality of
the generated solutions.

1 INTRODUCTION

GRPO-TUNED

Prompt x

+

scorei

- logp(yi|x)logp(x|yi)

ORIGINALITYVALUE

FROZEN FROZEN

Output yi

Figure 1: A summary of our method: the tar-
get model (orange) produces G outputs for each
prompt; a frozen reference model (blue) computes
the value and originality for each output; the over-
all scores are used in GRPO to correct the target
model (orange line).

Foundation models (Bommasani et al., 2021),
particularly large language models (LLMs)
(Gemini Team et al., 2023; Guo et al., 2025;
Touvron et al., 2023), are significantly trans-
forming creative activities. They can serve as
a foundation for co-creation systems involv-
ing human and artificial authors (Lin et al.,
2023), can be utilized to generate software code
(Rozière et al., 2023), or even to foster scien-
tific research (Boiko et al., 2023). However,
the nature of the self-supervised learning al-
gorithms used for the training of these mod-
els tends to make their sampling distribution as
close as possible to the training data distribution
(Franceschelli & Musolesi, 2024a). In addition,
fine-tuning, such as that based on reinforcement
learning from human feedback (RLHF) (Chris-
tiano et al., 2017), is often necessary to generate
appropriate and accurate responses. However,
this process tends to reduce output diversity fur-
ther (Kirk et al., 2024), and linguistic creativity
tends to be lower than that of humans (Lu et al.,
2025). On the contrary, LLMs for creative tasks
should produce more novel and surprising texts
that maintain a high level of correctness and ad-
herence to the request. One typical solution is to sample at a higher temperature to increase diversity.
However, this might lead to generating less coherent text (Peeperkorn et al., 2024).

To address the issues described above, we propose a new training approach for creative tasks based
on CoVO, a Context-based score for Value and Originality, with the goal of taking into consider-
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ation both value and originality of the neurally-generated text in the optimization of LLMs. The
definition of CoVO is grounded in the analysis of mutual information (MacKay, 2003) between the
model’s outputs and inputs, and vice versa. More specifically, we formulate a new optimization
objective where, given a specific input, the desired output is derived by simultaneously maximizing
the conditional probability of the input given the output and minimizing the conditional probability
of the output given the input under the generative model. In this way, we optimize for solutions that
are appropriate for the input request but also different from the outputs we would normally obtain
from the model. In particular, we show that our information-theoretic score can be used as a reward
in RL-based fine-tuning algorithms, guiding pre-trained models toward more diverse yet valuable
solutions. Figure 1 summarizes our proposed approach.

In summary, our key contributions are the following:

• We present the theoretical foundations of our approach, deriving our context-based score
for value and originality from the concept of mutual information.

• We discuss how the score can be practically computed in the case of autoregressive models,
and how it can be used as a reward with Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), a state-of-the-art reinforcement learning algorithm for fine-tuning LLMs.

• We evaluate our GRPO-based method on mathematical problem solving, poetry genera-
tion, and the tasks included in NoveltyBench (Zhang et al., 2025), demonstrating that our
approach can enhance both the quality and diversity of generated outputs, positioning it as
a strong candidate for creativity-focused applications of current foundation models.

2 RELATED WORK

2.1 INFORMATION THEORY AND CREATIVITY

The quest to provide a mathematical and computational definition of creativity has been a signifi-
cant focus in recent decades. Numerous methods have been developed to define various dimensions
or attributes for evaluating the creativity of AI-generated products (see, for example, Franceschelli
& Musolesi, 2024a). However, these methods are often domain-specific and typically require sub-
stantial human effort to implement and assess. In contrast, solutions based on information theory
(Shannon, 1948; Cover, 1999) offer a more universally applicable approach.

Information-theoretic methods can quantify creativity by measuring the novelty and complexity of
generated outputs, without the need for extensive human intervention, making them suitable for a
wide range of domains. Bayesian surprise (Baldi & Itti, 2010), i.e., the divergence between a prior
and a posterior belief, has been extensively used to measure different shades of originality, such as
novelty (França et al., 2016; Varshney et al., 2019) and surprise (Mazzaglia et al., 2022; Schmid-
huber, 2010). Nevertheless, Varshney (2019) demonstrated that there is a mathematical limit for
Bayesian surprise when combined with quality measures. Surprisal (Tribus, 1961), i.e., Shannon’s
self-information, has also been used (Bunescu & Uduehi, 2019; Fernandez Monsalve et al., 2012);
Barto et al. (2013) extensively discuss surprisal, Bayesian surprise, and novelty. Crucially, in the
context of RL, surprisal has been used as a form of intrinsic motivation to encourage the agent to
explore more (Achiam & Sastry, 2016). Sun et al. (2025) apply this idea to improve exploration in
RLHF (Christiano et al., 2017). A similar strategy can be applied during LLM fine-tuning, either by
explicitly maximizing the model’s perplexity (Dai et al., 2025) or by decoupling entropy and cross-
entropy from KL regularization and assigning greater weight to the former (Slocum et al., 2025).
Burns (2006) proposes to use entropy for expectation and violation, plus posterior probability for
explanation in the context of aesthetic experience. Additionally, mutual information has been ap-
plied to neural conversation models to improve both diversity and appropriateness (Li et al., 2016).
However, all these existing approaches are not able to capture and simultaneously optimize value
and originality at the same time.

2.2 LLMS AND CREATIVITY

Since the introduction of GPT models (Brown et al., 2020; OpenAI, 2023) and their competitors
(e.g., Touvron et al., 2023), researchers have been keenly exploring the potential for LLMs to exhibit
creativity and the methods to achieve this (Franceschelli & Musolesi, 2025). For example, human
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creativity tests like the Alternate Uses Test have been employed to evaluate the creativity of LLMs
(Stevenson et al., 2022) and to investigate methods for enhancing their performance (Goes et al.,
2023; Summers-Stay et al., 2023). Porter & Machery (2024) report that non-expert poetry readers
already favor AI-generated poems over human-authored ones. In contrast, Davis (2024) argues that
ChatGPT’s poetry is incompetent and banal. Either way, instead of being used off-the-shelf, LLMs
can be fine-tuned to produce more rhyming poems (Popescu-Belis et al., 2023) or utilized in zero-
shot settings to emulate the writing styles of famous authors (Sawicki et al., 2023). It has also
been shown that these models can be fine-tuned via RLHF (Christiano et al., 2017) to write short
poems that human evaluators find more creative (Pardinas et al., 2023). Reinforcement learning
(RL) can also encourage large language models (LLMs) to produce more diverse outputs (Chung
et al., 2025), and can be leveraged to optimize metrics commonly linked to creative expression
(Ismayilzada et al., 2025). Finally, it is possible to leverage quality-diversity algorithms to generate
more creative products; these methods can be based on human (Ding et al., 2023) or AI (Bradley
et al., 2024) feedback to measure the quality of the generated outputs.

3 PRELIMINARIES

3.1 LANGUAGE MODELING

A θ-parameterized autoregressive language model is a probability distribution pθ(x) over a variable-
length text sequence x = (x1 . . . xT ), where T is the sequence length and each token xt is in a finite
vocabulary V of size N . The probability distribution is factorized as pθ(x) =

∏T
t=1 pθ(xt|x<t),

where x<t = x1 . . . xt−1. The language model is usually trained to maximize the likelihood of
the true distribution p∗(x) for any x from a reference dataset (the training set). In other words,
given an input x<t, the model learns to approximate the probability of each token from V being xt.
While this makes such a model immediately capable of scoring the probability of a given text, it also
allows for the generation of new sentences. Given a conditional input (prompt) z = (z1 . . . zL), we
can decode pθ(x|z) as the continuation of z, i.e., through the factorized representation pθ(x|z) =∏T

t=1 pθ(xt|x<t, z).

3.2 REINFORCEMENT LEARNING FOR LANGUAGE MODELS

Due to its adherence to the formal framework of Markov decision processes (Sutton & Barto, 2018),
RL can be used as a solution to the generative modeling problem in the case of autoregressive tasks
such as text generation (Bachman & Precup, 2015). The LLM plays the role of the agent, and each
generated token represents an action at. The current version of the generated output xt is part of
the state st (potentially with additional information such as initial prompts). Finally, the reward
rt+1 measures the “quality” of the current output. A common strategy is to assign a zero reward
for each xt, t ̸= T and a sentence-based reward when the final output is generated. Within this
framework, any policy-based method can be employed to train or fine-tune the LLM to optimize a
given objective. Indeed, RL facilitates the use of non-differentiable reward functions, enabling the
optimization of test-time metrics, domain-specific targets, and human preferences (Franceschelli &
Musolesi, 2024b).

A widely used RL algorithm for fine-tuning LLMs is Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), which aims to maximize the following objective:

J (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(1)

where rt(θ) =
πθ(xt|z,x<t)

πθold
(xt|z,x<t)

with πθ and πθold
denoting the current and old policy models, repec-

tively; x is the output sampled from the old policy given the prompt z; and ϵ is a clipping factor
used to stabilize training. The advantage Ât is usually computed through Generalized Advantage
Estimation (Schulman et al., 2016) based on the full rewards R(z,x) = r(z,x) − β log πθ(x|z)

πref (x|z) ,
thus integrating a KL penalty with respect to a reference model (usually, the same model before
fine-tuning), and a learned value function vϕ(s). However, learning such a value function is com-
putationally intensive, and its training is complicated by the fact that only the last state is scored by
the reward function. Moreover, the inclusion of the KL penalty as an auxiliary reward term adds
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complexity to the advantage estimation process. To address these issues, Group Relative Policy Op-
timization (GRPO) (Shao et al., 2024) has been introduced. GRPO directly adds a KL divergence
term −βDKL(πθ||πref ) to the loss rather than to the single rewards, and especially obviates the
need for a value function approximator by using the average reward of multiple sampled outputs as
the baseline:

Âi,t =
ri − mean(r)

std(r)
, (2)

with r = {r1, r2, ..., rG} as the list of rewards received by each of the G outputs sampled from the
same prompt.

4 A CONTEXT-BASED SCORE FOR VALUABLE AND ORIGINAL GENERATION

Our goal is to derive a score that is able to quantify both value and originality at the same time.
As discussed in depth by Csikszentmihalyi (2014), creativity depends on the context in which the
product is created, as the context provides the task identification and the domain information nec-
essary to generate and validate the outcome. In turn, the output aims to solve the given task and
provide a meaningful, original contribution to the current domain. Thus, our proposed score has its
roots in mutual information, which represents a quantitative way to study the relationship between
contextual, prior information and a produced posterior outcome. More specifically, we start from
the (point-wise) mutual information between two variables x and y:

I(x, y) = h(x)− h(x|y) = h(y)− h(y|x) (3)

where the self-information is h(a) = − log p(a), therefore:

I(x, y) = log p(x|y)− log p(x) = log p(y|x)− log p(y). (4)

Let us now assume x to be our input vector x and y our output vector y, obtaining:

I(x,y) = log p(y|x)− log p(y). (5)

We can generalize I(x,y) with two scaling factors:

I(x,y, λ1, λ2) = λ1 log p(y|x)− λ2 log p(y), (6)

where I(x,y) is just I(x,y, 1, 1). Computing the absolute probability p(y) can be difficult, as
usually generative models are developed to assign conditional probabilities. By applying the Bayes
theorem, i.e., log p(a|b) = log p(b|a) + log p(a) − log p(b), we can substitute the log p(y) term as
follows:

I(x,y, λ1, λ2) =λ1 log p(y|x)− λ2 log p(y|x)− λ2 log p(x) + λ2 log p(x|y)
=(λ1 − λ2) log p(y|x) + λ2 log p(x|y)− λ2 log p(x).

(7)

Since our goal is to find the optimal y for a given x, the last term can be ignored. Moreover, we now
define λv = λ2 and λo = λ2 − λ1, thus obtaining the following objective:

y = argmax
y

(λv log p(x|y)− λo log p(y|x)). (8)

Let us now consider the case where λv, λo > 0, for example, λv = λo = 1. Solving this maxi-
mization problem involves finding the target y that maximizes the posterior probability of x while
also being unlikely given x. In other words, the optimal y∗ must be unexpected and diverse from
p(y|x), but it must also be explainable by x. − log p(y|x), commonly known as surprisal (Tribus,
1961), is widely used to measure diversity and surprise (Barto et al., 2013), and adheres to the first
requirement from the standard definition of creativity by Runco & Jaeger (2012), i.e., originality.
Conversely, log p(x|y) can be used to measure value or effectiveness, the second requirement of
the definition. If the request (e.g., a problem or task) can be inferred from the outcome, the latter
constitutes an appropriate instance of that task or a correct, useful solution to that problem (e.g., if
the request is for a sonnet or a sci-fi screenplay, the generated artifact is valuable if identified as a
poem satisfying the metrical constraints of a sonnet or as a screenplay adhering to a sci-fi theme).

In summary, the CoVO (Context-based Value and Originality) score for a target y given a source x
on a reference probability distribution p is formally defined as:

sCoV O(x,y, p) = λv log p(x|y)︸ ︷︷ ︸
Value

−λo log p(y|x)︸ ︷︷ ︸
Originality

(9)
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5 IMPLEMENTATION AND OPTIMIZATION WITH AUTOREGRESSIVE MODELS

We now discuss the implementation of the CoVO score with autoregressive models. Using the
notation introduced above, in the context of a θ-parameterized LLM, p(y|x) can be expressed as∏T

t=1 pθ(yt|y<t,x). However, considering just the product of all the conditioned probabilities for
an optimization problem would lead to preferring shorter sequences. To avoid this, we propose to

use the T -th root: T

√∏T
t=1 pθ(yt|y<t,x). By leveraging the properties of the logarithm, we obtain:

sAR
CoV O = λv

∑|x|
i=1 log pθ(xi|x<i,y)

|x|
− λo

∑|y|
j=1 log pθ(yj |y<j ,x)

|y|
. (10)

It is worth noting that the vocabulary of an LLM can be extremely large, which can cause pθ(a|b)
to be small even when a is the most probable event given b. In particular, when an LLM generates
y given x and then evaluates both pθ(y|x) and pθ(x|y), this can lead to a significant discrepancy
between the magnitude of value and diversity. Since y has been sampled from a model based on pθ,
its probability would be high by definition. However, there may be various ways (possibly through
synonyms) to define y, leading to a smaller probability of x.

Inspired by Macedo et al. (2004), we propose to counteract this problem by normalizing pθ(a|b) via
n′ = n−nmin

nmax−nmin
. For probabilities, nmin = 0, while nmax = maxv∈V pθ(b), thus obtaining the

overall mapping for pθ: pθ(yt|y<t,x)
maxv∈V pθ(y<t,x)

. Once again, by applying the properties of logarithms, we
obtain:

sARnorm

CoV O (x,y, pθ) = λvsv(x,y, pθ) + λoso(x,y, pθ) =

λv

∑|x|
i=1(log pθ(xi|x<i,y)−maxv∈V log pθ(x<i,y))

|x|
−

λo

∑|y|
j=1(log pθ(yj |y<j ,x)−maxv∈V log pθ(y<j ,x))

|y|
.

(11)

Calculating pθ(x|y) is not trivial. Since LLMs are trained to complete text sequences, it is unlikely
that they would generate the source text immediately after the target text (which, we should remem-
ber, is generated immediately after the source text). To address this, we consider an approximation
pθ(x|y′), where y′ = y + q. Here, q represents an additional question, such as “How would you
describe this text?” or a similar formulation designed solely to increase the likelihood of generating
the source text x (as well as alternative sources).

Once the CoVO score has been defined, its adoption in an RL framework is straightforward. As
previously introduced, we can directly utilize our CoVO score as the final reward for the generated
sequence. Then, the model can be trained with any policy gradient method. Our experiments lever-
age GRPO (Shao et al., 2024), which is a state-of-the-art choice for training language models. As
introduced above, GRPO adds a per-token KL divergence term to the loss rather than to the sin-
gle rewards. Usually, the KL divergence is approximated with the following estimator (Schulman,
2020): rref (θ) − log rref (θ) − 1, where rref (θ) =

πref

πθ
and πref is the reference policy, i.e., the

model before GRPO training. In particular, GRPO aims to minimize the KL divergence, thus the
second term − log rref = − log πref + log πθ can be seen as made of two optimization problems:
the minimization of the originality component − log πref from Equation 9, and the maximization
of surprisal, or self-information, − log πθ under the current model. In other words, this second term
somehow trades off a portion of the originality component under the reference model (proportional
to the β ≪ 1 coefficient) with the surprisal under the current model. However, the first term of the
KL approximation keeps the two policies closer, preventing the trained one from deviating too much
and potentially disrupting the impact of the originality component in favor of the value component.

6 EXPERIMENTS

We evaluate the effectiveness of our RL strategy through three case studies: poetry generation,
mathematical problem resolution, and the tasks included in NoveltyBench1. In all experiments, we

1The code and results of the experiments can be found at
https://anonymous.4open.science/r/CoVO-grpo/
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employ two settings, i.e., GRPO to maximize the score from Equation 11 without the KL divergence
loss, i.e., with β = 0.0 (CoVO); and GRPO to maximize the score from Equation 11 with the KL
divergence loss, i.e., with β = 0.05 (CoVO + KL). Both methods assume λv = λo = 1.0. While
it is common to induce diversity at the sampling level (e.g., through min-p (Minh et al., 2025) or
conformative decoding (Peeperkorn et al., 2025)), we restrict our baselines to the original model
and, if available, a model tuned solely on the environmental reward. Our approach is orthogonal to
the chosen sampling strategy and can benefit from more advanced methods. In our evaluation, we
aim at verifying whether our reward scheme can increase value and originality, regardless of how
the output is sampled.

6.1 POETRY GENERATION

Method In-distribution Out-of-distribution
Corr. ↑ Metric (L/S) ↑ T-LCS ↓ Tone ↑ Corr. ↑ Metric (L/S) ↑ T-LCS ↓ Tone ↑

Meta-Llama-3-8B 0.987 0.300 / 0.177 6.067 / 19 0.664±0.069 1.000 0.444 / 0.132 5.853 / 68 0.621±0.063

+ CoVO 1.000 0.200 / 0.084 4.880 / 07 0.749±0.055 0.960 0.267 / 0.046 4.933 / 06 0.661±0.060

+ CoVO + KL 0.987 0.333 / 0.066 5.107 / 09 0.745±0.057 0.973 0.289 / 0.117 5.160 / 22 0.682±0.059

Table 1: Aggregate results of generated poems considering both training prompts (left) and testing
prompts (right). Scores on the poetical metrics are reported at the line level (L) and syllable level
(S) and only consider requests for styles with specific metrical properties. Under T-LCS, we report
both the mean and the maximum longest common substring across all generated poems. The mean
and the 95% confidence interval are reported for tone adherence.
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Figure 2: The distribution of value and original-
ity (according to our scores) for the in-distribution
and out-of-distribution poems generated by the
baseline and our two methods.

Experimental Setup. The first set of experi-
ments concerns a very common creative task,
aiming to teach the LLM to generate poems
that are both more original and valuable. More
specifically, we follow the approach outlined
by Bradley et al. (2024) and instruct the model
to write a poem in a particular style and tone.
We consider the Meta-Llama-3-8B model
(Grattafiori et al., 2024) as our pre-trained
agent. Since we do not use the instruction-
tuned model, we prompt it with some few-shot
examples of the task to make it more likely to
produce the desired output in the desired form
(the full prompt is reported in Appendix A, to-
gether with the full training parameters). In-
stead of fine-tuning the entire network, we con-
sider Low-Rank Adaptation (LoRA) (Hu et al.,
2022). The original model is also used to com-
pute the score. All sampling happens with top-
k (k = 50) and at a temperature of 1.0. We per-
form a quantitative evaluation where we com-
pute poetical metrics for quality (lexical correctness of poems, adherence to line- and syllable-level
constraints, and tone adherence to the request through zero-shot classification (Yin et al., 2019) with
bart-large-mnlimodel (Lewis et al., 2020)) and for originality (accidental reproduction of ex-
isting poems). For the latter, we define a Token-based Longest Common Substring (T-LCS) score,
and we use it by comparing generated poems with a reference dataset of approx. 84k public-domain
poems extracted from Project Gutenberg (please refer to Appendix B for a first presentation of our
GutenVerse dataset). While a generated poem can be an accidental reproduction of a protected
work or a different kind of text (e.g., a song), we believe it can provide a useful evaluation tool to
understand the general degree of originality.

Experimental Results. Table 1 reports the scores about the compliance of poetical constraints at
the syllable and line levels, lexical correctness (as the ratio of poems not containing noisy text), tone
adherence (as the zero-shot classification of that poem being of that tone rather than its opposite), and
accidental reproduction rate (as the mean and maximum token-based longest common substring).

6
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Overall, our CoVO-based fine-tuning leads to a higher tone adherence and lower reproduction rate,
at the potential cost of metric adherence, especially without the KL loss. Indeed, its role seems
to foster quality (especially in terms of metrical correctness), trading off some originality. On the
contrary, not using the KL loss arguably avoids any significant reproduction, as demonstrated by the
very low maximum token-based longest common substring.

Interestingly, these considerations align well with our CoVO score. Figure 2 reports the value and
originality according to Equation 11 under the pre-trained model. While the two methods do not
significantly differ from the baseline (which is possibly due to the opposite forces of value and
originality (Varshney, 2019)), we again see that the presence of KL leads to slightly higher value,
while its absence leads to slightly higher originality. However, aggregated scores, such as those
presented here, might be insufficient. For a more complete overview, we also conducted a fine-
grained analysis of the generated poems in Appendix C.

6.2 MATH PROBLEM RESOLUTION

Experimental Setup. The second set of experiments concerns a more practical and quantitative
task, as it aims to teach the LLM to solve mathematical problems through more diverse procedures.
In particular, we focus on the Mistral-based (Jiang et al., 2023) MetaMath-Mistral-7B model,
i.e., fine-tuned with self-supervised learning on the MetaMathQA (Yu et al., 2024). It is a dataset of
textual math questions paired with responses where the numerical answer is easily separable from
the textual procedure. While the entire set contains 395k entries, making an additional training
epoch too expensive, MetaMathQA is composed of entries from two different training sets, then
augmented with various techniques: GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). Since we are only interested in the questions, we limit our training to a single epoch over
those datasets. Moreover, we exclude all questions with a tokenized length of either question or
answer greater than 512, obtaining 14876 out of 14973 total entries. We separate the procedure
and the answer from each solution to train our model and use the numerical answer to check the
correctness of the predicted solution. The RL problem can then be formulated considering up to two
rewards: our CoVO score computed on the procedure and a verifiable, extrinsic reward based on
the correctness of the answer. Instead of fine-tuning the entire model, we adopt a more parameter-
efficient strategy with LoRA and use the original model to perform the CoVO score computation.
Following Yu et al. (2024), the outputs are obtained with a greedy strategy.

The evaluation considers both GSM8K and MATH test sets (limited to the entries with a tokenized
length of question and answer smaller than 512, i.e., all 1319 entries for GSM8K and 4546 out
of 5000 for MATH). We compute the percentage of correct solutions together with two diversity
metrics: expectation-adjusted distinct N-grams (EAD) (Liu et al., 2022) and sentence embedding
cosine similarity (SBERT) (Hong et al., 2024), which should measure syntactical and semantical
diversity, respectively (Kirk et al., 2024). EAD counts the number of distinct N-grams (averaging
over N = 1 . . . 5) across all generated responses and removes the bias toward shorter inputs by
scaling the number of distinct tokens based on their expectations. The SBERT metric computes the
average of the cosine similarity between the embeddings of any possible pairs of outputs and returns
1 minus the similarity. This was originally based on Sentence-BERT (Reimers & Gurevych, 2019),
we employ instead the more recent all-mpnet-base-v2, as suggested by their developers2.

Following Kirk et al. (2024), we compute cross-input EAD and SBERT, i.e., we derive them by
considering all outputs produced for a specific seed together. In addition, we also calculate against-
pretrained EAD and SBERT. Given each input, we compare the output with the one from the pre-
trained model by calculating the average expectation-adjusted distinct N-grams not present in the
pre-trained model response, and 1 minus the cosine similarity between the two outputs, respectively.

Experimental Results. Tables 2 and 3 report the results for the GSM8K and MATH test sets. For
the GSM8K test set, while all methods achieve similar results, using the CoVO score only (with and
without the KL loss) leads to greater EAD diversity and to diverge more from the original model,
while the presence of the math reward leads to greater accuracy, especially without KL.

The results for the MATH test confirm that the most accurate method is the one trained to optimize
the CoVO score and the extrinsic reward, with a negligible trade-off in terms of diversity, since

2https://huggingface.co/sentence-transformers/bert-large-nli-stsb-mean-tokens
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Method Accuracy ↑ Cross-Input Diversity Against-Pretrained Diversity
EAD ↑ SBERT ↑ EAD ↑ SBERT ↑

MetaMath-Mistral-7B 77.96%(3) 2.0071 0.6402 - -
+ Ext 78.18%(4) 2.0045 0.6404 0.0081±.0021 0.0008±.0002

+ Ext + KL 78.08%(5) 2.0077 0.6401 0.0096±.0024 0.0011±.0004

+ CoVO 78.12%(3) 2.0509 0.6403 0.0854±.0062 0.0118±.0012

+ CoVO + KL 78.12%(3) 2.0464 0.6402 0.0879±.0063 0.0122±.0013

+ CoVO + Ext 78.33%(4) 2.0340 0.6404 0.0628±.0056 0.0088±.0011

+ CoVO + Ext + KL 77.95%(4) 2.0367 0.6402 0.0638±.0057 0.0089±.0011

Table 2: Accuracy and diversity of results for the GSM8k test set. In brackets, the number of
responses that exceeded the fixed maximum token limit. The best scores are highlighted in bold,
while the worst scores are indicated with underlining. The mean and the 95% confidence interval
are reported for against-pretrained diversity.

Method Accuracy ↑ Cross-Input Diversity Against-Pretrained Diversity
EAD ↑ SBERT ↑ EAD ↑ SBERT ↑

MetaMath-Mistral-7B 33.55%(483) 5.7239 0.8032 - -
+ Ext 33.19%(469) 5.7187 0.8027 0.0333±.0029 0.0074±.0008

+ Ext + KL 33.56%(476) 5.7517 0.8028 0.0345±.0030 0.0075±.0008

+ CoVO 33.29%(521) 5.8219 0.8029 0.1457±.0049 0.0339±.0016

+ CoVO + KL 32.79%(533) 5.8442 0.8030 0.1479±.0050 0.0343±.0016

+ CoVO + Ext 33.76%(503) 5.8114 0.8030 0.1136±.0047 0.0259±.0015

+ CoVO + Ext + KL 33.74%(497) 5.8082 0.8031 0.1102±.0047 0.0250±.0015

Table 3: Accuracy and diversity of results for the MATH test set. In brackets, the number of re-
sponses that exceeded the fixed maximum token limit. The best scores are highlighted in bold,
while the worst scores are indicated with underlining. The mean and the 95% confidence interval
are reported for against-pretrained diversity.

the cross-input EAD and the against-pretrained scores are still substantially higher than those from
the baselines. However, removing the extrinsic reward likely pushes the model too far from its
pre-trained version, causing the accuracy to decrease.

6.3 NOVELTYBENCH

3.7 3.8 3.9 4.0 4.1 4.2
Quality

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

N
ov

el
ty

3B-Instruct + CoVO + CoVO + KL

Figure 3: The mean utility (quality) and mean dis-
tinct (novelty) scores on NoveltyBench (‘curated’
partition) for the original model and our methods
(tuned on the ‘wildchat’ partition).

Experimental Setup. Finally, we also ex-
periment with NoveltyBench (Zhang et al.,
2025), a very recent benchmark that aims
to evaluate the ability of language models
to produce multiple distinct and high-quality
outputs. NoveltyBench contains two sets
of prompts thought for eliciting diverse re-
sponses: the ‘curated’ partition, with 100
prompts manually curated by the paper’s
authors, and the ‘wildchat’ partition, with
1000 prompts sourced from the WildChat-
1M dataset (Zhao et al., 2024). The bench-
mark requires a language model to gener-
ate 10 outputs per prompt using a temper-
ature setting of 1.0, after which it com-
putes scores for novelty and quality. To
assess novelty, the 10 outputs are grouped
into equivalence classes using a fine-tuned
DeBERTa model (He et al., 2021), and the
number of distinct classes is reported as the
novelty score. To assess quality, it com-
putes the cumulative utility of the 10 out-
puts, where the utility is zero if the i-th out-
put has the same equivalence class as a prece-
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dent output, and a calibrated reward from
Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024) otherwise (we refer to Zhang
et al. (2025) for full details). To evaluate our approach with NoveltyBench, we fine-tune the
Llama-3.2-3B-Instruct model (Grattafiori et al., 2024) for a single epoch on the ‘wildchat’
partition (the full parameters are reported in Appendix A); then, we compute the novelty and quality
scores on the ‘curated’ partition.

Experimental Results. Figure 3 reports the quality and novelty scores achieved by our methods,
compared to those from the original instructed model. Optimizing for the CoVO score results in
substantial improvements in both novelty and quality metrics, with the greatest gains in novelty.
Moreover, these results underscore the interplay between KL loss and our CoVO score: incorporat-
ing the KL penalty tends to improve quality, but at the cost of reduced novelty.

7 DISCUSSION

The CoVO score captures properties that are functionally aligned with creativity-relevant aspects of
language generation, as demonstrated through both conceptual analysis and empirical results. When
used as a reward function in Group Relative Policy Optimization (GRPO), CoVO drives improve-
ments in the novelty and quality of model outputs, even with a relatively small number of optimiza-
tion steps. Although KL-divergence regularization is typically employed to constrain policy shifts
and preserve alignment with the base model distribution, CoVO can contribute independently to
several desirable behaviors: reducing the risk of inadvertent memorization of copyrighted material,
promoting diversity in generated outputs, and mitigating undesirable inductive biases introduced
during pretraining.

There are a few limitations worth noting. Firstly, our score represents only a quantifiable approx-
imation of a particular theoretical perspective on creativity, grounded in the dimensions of value
and originality. For example, value has been considered from the perspective of effectiveness, while
other dimensions have been proposed as well (e.g., interestingness (Boden, 1994) or monetary worth
(Lepak et al., 2007)); and other classic definitions of creativity, such as that presented in Boden
(2003), add a third requirement by splitting originality into novelty and surprise. Moreover, our
score reflects a specific view of the evaluation of creativity based on the generated outputs and does
not account for potential alternative theories (for example, arising from different cultures (Lubart,
1999)) and perspectives (Rhodes, 1961). Finally, our experiments are currently limited to only three
relatively short-form text generation tasks. While their generalizability is supported by the theoreti-
cal framework discussed above, the resulting performance was experimentally evaluated for a finite
number of scenarios.

8 CONCLUSION

In this paper, we presented CoVO, a novel score that quantifies the value and originality of neurally-
generated text. The definition of CoVO is based on the analysis of mutual information between
the model’s outputs and inputs, and vice versa. We also proposed an optimization problem where
a generative model aims to maximize this score to generate more creative products, and detailed
how to use it in language modeling. We conducted experiments on poetry generation, math problem
solving, and tasks included in NoveltyBench, exploring trade-offs in accuracy vs diversity. Effec-
tively balancing value and originality maximization remains an open question, but our score seems
to relate to domain-specific measures appropriately. In addition, fine-tuning to maximize it improves
quality- and diversity-related metrics.

Our research agenda aims to extend our method to other models and tasks, to include inference-level
strategies such as creativity-oriented sampling schemes, and to explore its use for evaluation (e.g.,
in a Best-of-N setting (Stiennon et al., 2020)) rather than solely for optimization. We also plan to
investigate the definition of additional scores for capturing other potentially relevant aspects of the
creative process. Despite being costly and inherently constrained (Davis, 2024), assessing whether
our creativity score aligns with human judgment is another key direction for future work.
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ETHICS STATEMENT

The authors are aware of the potential impact that generative technologies might have on the pro-
duction of artistic outputs and, as a consequence, on human artists. This work may contribute to
enhancing the quality of generated outputs. However, the authors argue that typical traits of hu-
man creativity, such as the active participation of artists in the creative process, cannot be directly
replicated by machines, as also pointed out by Runco in the updated standard definition of creativity
Runco (2025). The authors refer interested readers to a previous work of theirs (citation removed
for double-blind submission), in which these themes are discussed in detail.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive details throughout the paper
and its appendices. The formal definition of our reward and learning scheme is presented in Section
5. Our experimental setup is described in Section 6, with full implementation details available in
Appendix A. The source code for all experiments is available as supplementary material at https:
//anonymous.4open.science/r/CoVO-grpo/.
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A IMPLEMENTATION DETAILS

The experiments were carried out using a Linux-based local server with two 80GB NVIDIA H100
GPUs, running Python 3.11.9. All the trainings were conducted with a random seed equal to 1
(set through the set seed method from the HuggingFace transformers library), while poems
were sampled at inference time with three different seeds (1, 42, and 121). The hyperparameters
were selected to accommodate the most efficient use of the available resources, and otherwise set
according to their default values from HuggingFace transformers and trl libraries. Only the
learning rate has been tuned for the different tasks according to their training performances.

Table 4 reports the full training parameters for the experiments on poetry generation. The prompt
for generation leverages Nothing gold can stay by Robert Frost, Fame is a bee by Emily Dickinson,
and Epitaph by William Carlos Williams for few-shot learning:

Write a fatalistic epigram poem of high, award winning quality.

Nature’s first green is gold,
Her hardest hue to hold.
Her early leaf’s a flower;
But only so an hour.
Then leaf subsides to leaf.
So Eden sank to grief,
So dawn goes down to day.
Nothing gold can stay.

Write an ironic quatrain poem of high, award winning quality.

Fame is a bee.
It has a song-
It has a sting-
Ah, too, it has a wing.

Write a naturalistic epitaph poem of high, award winning quality.

An old willow with hollow branches
Slowly swayed his few high fright tendrils
And sang:

Love is a young green willow
Shimmering at the bare wood’s edge.

Write a {tone} {style} of high, award winning quality.

The training phase includes requests with tone-style pairs sampled among ‘dark’, ‘happy’, ‘mysteri-
ous’, ‘reflective’ or ‘romantic’ for the tone, and ‘ballad’, ‘haiku’, ‘hymn’, ‘limerick’ or ‘sonnet’ for
the style. At inference time we also consider ‘cinquain’, ‘couplet’, ‘free verse’, ‘ode’ or ‘tanka’ as
styles and ‘cutting’, ‘nostalgic’, ‘poignant’, ‘solemn’ or ‘whimsical’ as tones.

Instead, the prompt used for computing pθ(x|y) is:

Describe the style of the following poem in two words:

{prova}

I would describe it as a
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Parameter Value
Total batches 100
Batch size B 4
Gradient accumulation steps 8
Max new tokens 256
Temperature 1.
Top-k 0
Optimizer Adam
Learning rate 1e-5
Max gradient normalization 100.
Rank (LoRA) 16
α parameter (LoRA) 32
Dropout (LoRA) 0.05
Training iterations 1
Scale rewards True
β (when used) 0.05
Number of generations G 4

Table 4: Training parameters for poetry generation.

Parameter Value
Total epochs 1
Batch size B 4
Gradient accumulation steps 8
Max new tokens 512
Temperature 1.
Top-k 0
Optimizer Adam
Learning rate 1e-6
Max gradient normalization 100.
Rank (LoRA) 16
α parameter (LoRA) 32
Dropout (LoRA) 0.05
Training iterations 1
Scale rewards True
β (when used) 0.05
Number of generations G 4
Reward for correct answer +1.

Table 5: Training parameters for math problem solving.

Finally, the zero-shot classification for the tone adherence is performed with the given tone and ‘not’
plus the given tone as the candidate labels (e.g., if the required tone is ‘happy’, the two labels are
[‘happy’, ‘not happy’]).

On the contrary, Table 5 reports the full training parameters for math problem resolution. We also
adopted the same two different prompts from Yu et al. (2024), i.e.:

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

### Instruction:
{question}

### Response:

at training time and
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Parameter Value
Total epochs 1
Batch size B 4
Gradient accumulation steps 8
Max new tokens 512
Temperature 1.
Top-k 0
Optimizer Adam
Learning rate 1e-4
Max gradient normalization 100.
Rank (LoRA) 16
α parameter (LoRA) 32
Dropout (LoRA) 0.05
Training iterations 1
Scale rewards True
β (when used) 0.05
Number of generations G 4

Table 6: Training parameters for NoveltyBench.

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

### Instruction:
{question}

### Response: Let’s think step by step.

at inference time. Instead, for computing pθ(x|y) we used the following:

Below is a response that appropriately completes a request. Write the instruction that
describes the task.

### Response:
{response}

### Instruction:

Finally, Table 6 reports the full training parameters for NoveltyBench. At training and inference
time, we simply adopt the following prompt:

user

{prompt}
assistant

where user and assistant are keywords used by the model to identify different roles in the
chat. Instead, for computing pθ(x|y) we used the following:
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Below is a response that appropriately solves a task. Write the instruction that describes the
task.

### Response:
{response}

### Instruction:

B GUTENVERSE DATASET

To evaluate the accidental reproduction rate of generated poems, we introduce the GutenVerse
dataset, which comprises over 84,000 public-domain, English-written poems extracted from Project
Gutenberg. While generated poems can reproduce different content, e.g., songs or copyrighted ma-
terial, we believe this can provide a useful indication of how likely a text is to be original or not.

To derive our dataset, we started from Gutenberg, dammit3, a corpus of every plaintext file in Project
Gutenberg (up until June 2016). We selected all the text files whose metadata report English as the
language, public domain as copyright status, poetry among the subjects or poems or poetical work
in the title, and that were not a translation of another book. Then, we applied a series of rules (e.g.,
about the verse length) to automatically extract the titles and poems from all the selected text files,
and we defined our GutenVerse dataset. While it can still contain content that is not poetry (e.g.,
a table of contents formatted very uncommonly), the poems can be effectively used to measure the
overlap between real and generated text.

We also released a datasheet (Gebru et al., 2018) for the GutenVerse dataset that can be found,
together with the code used to create it, at: https://anonymous.4open.science/r/
GutenVerse-DD32/.

C DETAILED ANALYSIS OF THE GENERATED POEMS

We now present some noteworthy generated poems to provide a detailed qualitative discussion of
our methods and our score.

The baseline model Meta-Llama-3-8B, while producing prosaic text (without line breaks) oc-
casionally, is the most conservative method. This results in its poems being usually well-formatted
but also somehow banal, and more prone to reproducing existing works. For example, when asked
to write a dark hymn, it produced the very famous two lines “i am the master of my fate: / i am the
captain of my soul”. In terms of the CoVO score, it is noteworthy that the poem with the lowest
originality component achieves the highest T-LCS score. This strongly suggests that the model has
memorized the hymn All Things Bright and Beautiful by Cecil Frances Alexander and reproduced it
almost entirely, with only minor alterations in punctuation—enough to prevent the LCS score from
being even higher. We report it in Table 7. Instead, for the overall score, the value part becomes
the most relevant: the adherence to the requirement seems to be the reason behind the highest and
lowest scores, as shown in Table 8.

Regarding the fine-tuned models, the one trained without the KL loss exhibits the opposite behav-
ior. It never reproduces existing poems, but occasionally exploits the CoVO score in adversarial
ways—for example, by learning to generate specific words associated with the requested tone. In
one instance, it even learned to simply repeat the style-tone prompt itself, which resulted in the
highest possible score, albeit at the cost of very low originality. Instead, maximizing the originality
component makes the model produce noteworthy outputs, but without satisfying stylistic constraints,
as reported in Table 9. In general, optimizing the CoVO score without the KL loss leads the model
to deviate from memorized poems but also from metrical rules, and leads it to focus on the tone
(both the explicit, requested tone and that intrinsic to the poetic style). For example, its limericks
maintain the typical playful tone, but only once adhere to the traditional “There [once] was a man”
starting line and only partially, as it starts with “There was an old dog”. Interestingly, it is still not

3https://github.com/aparrish/gutenberg-dammit/
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the highest-valued limerick; the best in terms of value component better shares the jocking nature of
limericks (see Table 10).

On the contrary, including the KL loss makes the model adhere more to the required style; for
instance, the majority of limericks start with different subjects of the classic “There [once] was a
man”. In general, the KL loss seems to help the model preserve coherence and increase the CoVO
score in a more meaningful way, e.g., the repetitions are quite rare (though, when present, they
lead again to the highest value scores), as well as the regurgitation of existing poems. Interestingly,
this method also leads to the highest-scoring poem from an out-of-distribution tone-style pair, as
reported in Table 11, together with the best poem that does not contain adversarial exploitation of
the scores (e.g., repetitions or mention of the request), which, though not perfectly adhering with the
syllable counts, share all the features of a proper haiku.

Happy hymn
all things bright and beautiful,
all creatures great and small,
all things wise and wonderful;
the lord god made them all.
each little flower that opens,
each little bird that sings,
he made their glowing colors,
and spread their little wings.
the rich man in his castle,
the poor man at his gate,
god made them high or lowly,
and ordered their estate.
the purple headed mountain,
the river running by,
the sunset and the morning
that brightens up the sky;
V = -2.118 O = 0.219

Table 7: The poem generated by the pre-trained model with the highest T-LCS score and the lowest
originality score.

Romantic sonnet
when to the bat and the moth
the world becomes a moon of beauty
as twilight’s cloak unfurls,
and dreams and dreams and more dreams
fill all of this fair air with poetry,
a kiss is worth more than diamonds pure
or sapphires rich and glinting
like eyes of lovers in romance,
where love is just like dew on wings of swans;
and all that is beautiful is sweet,
so love me as our love is new,
my dear, for i love you!
V = -0.449 O = 1.568

Nostalgic ode
there was an old tree growing in a wood,
its fruit was red, and its leaves were blue.
an ant ran up it, and then down again,
it turned into a purple snail in june.
V = -6.845 O = 1.206

Table 8: The poems generated by the pre-trained model with the highest (top) and lowest (bottom)
overall CoVO score (top).
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Mysterious haiku
when no one sees,
a child plays.
i love what could be.
no one believes?
so they know her mind:
so the bird sings
for me alone
this evening of dark rain?
V = -2.501 O = 2.177

Whimsical couplet
we need no art for that;
but in wild nature see
so sweet, it is a gift
sang at every bird and flower.
V = -2.103 O = 1.960

Table 9: The poems generated by the CoVO-based fine-tuned model with the highest originality
scores from training (top) and testing (bottom) tone-style pairs.

Happy limerick
The young man was a master of the rhyme
and in love with the young lass to this time.
So for her first night with her he wrote
a new form to try in order the note. . .
A true Limerick for her delight.
Oh so happy and joyous the first night of love!
V = -0.818 O = 1.370

Dark limerick
There was an old dog from Japan
Who fell in love with a harem of cans.
He would hide there on hot afternoons,
Till the sun turned his hair purple fawns.
One day, while watching a game in blue jeans,
He dropped by mistake the key to his knees.
He gave the other a quick whiplash and then,
Said to himself, ”Ouch! my balls are in danger!” [...]
V = -1.261 O = 1.354

Table 10: Two limericks from the CoVO-based fine-tuned model: above, the one with the highest
value score; below, the only generated one that starts with the classic first line.

Romantic haiku
spring winds
carry in the leaves.
love whispers.
V = -1.343 O = 2.049

Whimsical couplet
no more of one or two
let there be more.
one’s never new
but two and more’s a rarity.
V = -1.361 O = 1.718

Table 11: Two of the highest-scoring poems from the CoVO+KL-based fine-tuned model.
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