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Abstract

One roadblock to building general AI agents is the inability to continually learn and
adapt to environmental changes without dramatically forgetting previous knowl-
edge. This deficiency is highly linked to most reinforcement learning (RL) methods
being designed based on the critical assumption of a fixed environment transition
dynamics and reward function. To address these limitations, in this paper, we
first dive deeper into the less studied foundations of continual RL, focusing on
defining the MDP distance and catastrophic forgetting based on the difference
of optimal value functions. In particular, we analyze the learning behaviors of
continual RL algorithms with the sole stability or plasticity ability. A theoretically
principled continual RL algorithm is further proposed by reweighting the historical
and current Bellman targets, explicitly balancing the stability and plasticity in
continual RL. We conduct rigorous experiments in the tabular setting to corroborate
our analytical results, suggesting the potential of our proposed algorithm in real
continual RL scenarios.

1 Introduction

It is notoriously challenging to develop general artificial intelligence agents that can continually learn
new tasks while maintaining the knowledge they previously acquired in the historical tasks. This
research field also referred to continual reinforcement learning (RL) [21], which has gained increasing
attention in recent years with solutions growing substantially [4, 20, 19, 6, 18, 15, 42, 39, 3, 37].
Developing practical continual RL algorithms is crucial yet challenging as most successful RL
algorithms are designed for a single Markov decision process (MDP) [33], where they assume the
underlying MDP is stationary with a fixed reward function and state transition dynamics. Nonetheless,
this assumption is often violated in practical problems [7], limiting the generality of RL algorithms to
continually learn and adapt to environmental changes toward building human-level agents.

Challenges in Continual RL. Unlike the human brain, deep neural networks are prone to catastrophic
forgetting issue [14, 27], as deep nets or deep RL agents often quickly worsen their performance on
the previous tasks when sequentially trained on a sequence of new tasks [38], such as new datasets or
environments. Despite the promising progress of continual RL to ameliorate catastrophic forgetting,
we still have a limited understanding of how to define and solve this continual learning problem.
Recently, a conceptual basis of continual RL was provided in [1] to formalize the notion that “agents
can never stop learning”. Nevertheless, an explicit gap exists between their formalism and a practical
algorithm design. How to explicitly quantify foundations in continual RL, including catastrophic
forgetting, plasticity, and stability, has yet to be explored.
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Our Contributions. In this paper, we build out the foundations of continual RL. Specifically, we
leverage the difference of optimal value functions in the respective MDPs to define the MDP distance,
based on which the catastrophic forgetting is explicitly quantified. We further characterize the
learning behaviors of a continual RL algorithm with the sole stability or plasticity capability. The
sole plasticity degrades continual RL to a Finetune algorithm, suffering from complete catastrophic
forgetting. On the other hand, continual RL that merely reduces catastrophic forgetting is infeasible
in computation. To circumvent their drawbacks, we introduce a practical continual RL algorithm
by reweighting previous and current Bellman targets. This leads to a favorable trade-off between
mitigating catastrophic forgetting and reducing computation burden. Our algorithm is thus theo-
retically principled and is accomplished by maintaining a fixed copy of value networks trained on
each previous MDP. Finally, we conduct extensive experiments on the tabular setting to demonstrate
our theoretical results and evaluate the performance of considered continual RL algorithms. Our
empirical results substantiate the applicability of our proposed framework and the potential of our
proposed algorithm in real applications. Our contributions are summarized as follows:

(1) We analyze the foundations for continual RL, defining the MDP distance, catastrophic forgetting,
and adaptivity regarding the optimal Q functions.

(2) We develop a theoretically principled continual RL algorithm by reweighing the previous and
current Bellman targets, which explicitly balances the plasticity and stability.

(3) We conduct extensive experiments in the tabular setting to verify the effectiveness of our proposed
continual RL algorithms.

2 Related Work

Continual RL. Continual learning (CL) [34, 9] has been one of the most critical milestones on the
path to building artificial general intelligence. Existing methods can be mainly classified into three
groups, including rehearsal methods [25, 8], regularization-based methods [29, 22, 2] as well as
parameter isolation approaches [41, 26]. Within continual learning, there has also been growing
interest in the problem of training agents on the sequence of tasks, also referred to as continual
RL [21]. Existing continual RL algorithms are designed from a variety of perspectives, including the
synaptic model [18], behavioral cloning that queries all previous policies [39], sparse prompting [42],
policy consolidation [19] and policy subspace building [15]. [3] introduces permanent and transient
value functions by performing an interplay between fast and slow learning. By contrast, the reweighed
Bellman targets from the previous and current value functions in our method also integrate learning at
various speeds, but we maintain the Bellman targets and employ the reweighing strategy. In summary,
the design of continual RL algorithms seeks a trade-off between the performance and model size [15].
However, most of the existing continual RL approaches tend to be heuristic, and there is still a
fundamental lack of a theoretical analysis framework. Experimentally, only a few benchmarks have
been recently proposed [40, 16, 30, 35], and they still need to be verified widely in the future.

Ensemble and Reweighted Methods in RL. Reweighted and ensemble methods have suggested
substantial success in a wide range of RL problems, including the weighted Q learning [10] that
can reduce the bias in target estimates, Anderson Acceleration [36] that reweights previous target
estimates in the fixed-point iteration to speed up the convergence [32, 24], and ensemble RL [23] that
helps reduce the variance in target estimates. Reweighting past data was typically utilized to search
for a policy that maximizes future performance in one single non-stationary MDP [7], while our work
is the first to explore the efficacy of reweighting target estimates in the continual RL setting.

3 Foundations of Continual RL

3.1 Continual RL Setting and MDP Distance

Consider we have a sequence of T tasks denoted by t = 1, ..., T , where each task t is modeled by
a Markov Decision Process (MDP)Mt = ⟨St,At, Pt, Rt, γ⟩, with a set of states St and actions
At, the environment transition dynamics Pt : St × At → P(St) and the reward function Rt :
St × At → R. In our work, we assume the same state and action space across T tasks and the
known task boundaries for the RL agent. In continual RL, we aim to seek an optimal policy πCL
after sequential training that can be generalized favorably across all tasks. When training on each
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task t, we typically require a training budget, including a moderate model size and an allowable
computation cost. For practical continual RL algorithms, having full access to interact with prior
MDPs or an arbitrarily large model size is typically infeasible. We define the action-value function
Qπ(s, a) = Eπ

[∑∞
k=0 γ

kRt+k+1 | St = s,At = a
]

given the state s, the action a, and a policy π.

MDP Distance. A desirable definition of the MDP distance should fully consider the variation of
both reward functions and state transition dynamics between two MDPs. To this end, we use the
normalized distance between two MDP-determined optimal Q functions Q∗(s, a) = maxπ Q

π(s, a)
to define MDP distance in Definition 1.
Definition 1. (MDP Distance) For two finite MDPs M1 = (S,A, R1, P1, γ) and M2 =
(S,A, R2, P2, γ), we denote their optimal Q functions as Q∗

1 and Q∗
2. The p-norm (normalized) MDP

distance dp(M1,M2) is defined as

dp(M1,M2)
def
=

(∑
s,a

∣∣∣∣Q∗
1(s, a)

∥Q∗
1∥

− Q∗
2(s, a)

∥Q∗
2∥

∣∣∣∣p
)1/p

. (1)

Unless otherwise stated, we mainly consider d2 (p = 2) in our paper and ∥ · ∥ represents ℓ2-norm.
Remarkably, we recommend employing normalization for each Q∗(s, a) to maintain scale-invariance
and comparability properties. Any MDP with scaled rewards retains the same policy and should
remain the MDP distance as the original. The normalization ensures the scale invariance, enabling
the capture of the MDP difference more accurately, regardless of the influence of reward scaling.
In Appendix A, we show that the normalized ℓ2 distance in Eq. 1 is equivalent to Cosine distance.
In addition, the normalization standardizes the comparison between different MDPs, which is
instrumental in quantifying catastrophic forgetting in Section 3.2. In general, we equally compare the
forgetting among past environments, necessitating the same magnitude in measuring MDP distance.

Note that employing the optimal Q function to measure MDP distance may not uniquely identify the
difference of a state transition and reward function pair between two MDPs. However, it remains
a preferable measure as the difference between two optimal Q functions effectively captures the
variations in both state transitions and reward functions in a unified and concise manner. A follow-up
definition of a weighted MDP distance is provided in Appendix B.1), which establishes an underlying
connection with the concept of catastrophic forgetting discussed in Section 3.2.

3.2 Stability: Catastrophic Forgetting

Our definition of catastrophic forgetting in continual RL is inspired by distribution drift and catas-
trophic forgetting quantified in deep learning scenario [11], which we have a brief recap in Ap-
pendix B.2. Before introducing the general catastrophic forgetting across a sequence of MDPs,
we first consider a simple continual learning from a source MDP Msou and a target MDP Mtar.
For any learning algorithm, we denote Q̂sou and Q̂tar as estimated Q functions after training from
Msou toMtar. We define the resulting target policy πtar based on Q̂tar, following the greedy rule,
i.e., πtar(·|s) = argmaxa Q̂tar(s, a). Grounded in the definition of distribution drift between two
MDPs (see Appendix B.3), we introduce catastrophic forgetting between two MDPs in Definition 2.
Definition 2. (Catastrophic Forgetting between two MDPs) For any given algorithm, if we apply the
target policy πtar to interact within the source MDPMsou, we denote the resulting state distribution
as µπtar

sou . The catastrophic forgetting ∆πtar
sou,tar(Msou) is formulated as

∆πtar
sou,tar(Msou) =

∑
s,a

µπtar
sou (s)πtar(a|s)

(
Q̂sou(s, a)

∥Q̂sou∥
− Q̂tar(s, a)

∥Q̂tar∥

)2

, (2)

where the catastrophic forgetting ∆πtar
sou,tar(Msou) in Eq. 2 can be seen as a variant of weighted MDP

distance by letting Q̂sou = Q∗
sou, Q̂tar = Q∗

tar, and the weight as µπtar
sou (s)πtar(a|s). Notably, the state

distribution is simultaneously determined by the MDP transition and the behavior policy. We next
define the general catastrophic forgetting across a sequence of MDPs {Mt}Tt=1. The quantity of
interest is one single optimal Q function estimator QT associated with the policy πCL, which is
expected to perform favorably across all considered MDPs. Importantly, we are capable of storing
the typically lightweight Q functions {Q̂t}t≤T and querying them to develop QT . This strategy
also implies that the model size of our continual RL algorithm is linearly increasing in terms of the
number of tasks.
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Definition 3. (Catastrophic Forgetting in Continual RL) Consider continual RL setting across a
series of MDP {Mt}Tt=1. The catastrophic forgetting CF(QT ) regarding QT is defined as

CF(QT ) =

T∑
t=1

∆πCL
t,T (Mt) =

T∑
t=1

∑
s,a

µπCL
t (s)πCL(a|s)

(
Q̂t(s, a)

∥Q̂t∥
−QT (s, a)

)2

, (3)

where we use ∆π
i,j(Mi) in general to represent the catastrophic forgetting from the i-th to j-th MDP

by leveraging the policy π. By solving Qopt
T = argminCF(QT ), we obtain a global policy πCL

following the greedy rule πCL(·|s) = argmaxa Q
opt
T (s, a). Intuitively, when fixing {Q̂t}t≤T we can

find the optimal Qopt
T in the subspace spanned by the basic functions {Q̂t}t≤T , a representation for

Qopt
T via {Q̂t}t≤T . However, it is almost infeasible to directly attain Qopt

T by minimizing Eq. 3, as it
will lead to solving an implicit equation in Proposition 1. The proof is provided in Appendix D.
Proposition 1. (Implicit Optimality Equation) Denote the weight wπCL

t (s, a) = µπCL
t (s)πCL(a|s).

When fixing wπCL
t , the optimal estimator Qopt

T by minimizing CF(QT ) in Eq. 3 satisfies the equation:

Qopt
T (s, a) =

T∑
t=1

wπCL
t (s, a)

Q̂t(s, a)

∥Q̂t∥
/

T∑
t=1

wπCL
t (s, a), (4)

where πCL is the function of Qopt
T , following the greedy rule, i.e., πCL(a

∗|s) = 1 if a∗ =

argmaxa′ Q
opt
T (s, a′), otherwise, πCL(·|s) = 0.

Implicit Optimality Equation, Online Alternating Algorithm, and Infeasible Computation.
For conciseness, we use wπ

t to denote wπCL
t . For practical algorithms, the weight wπ

t (s, a) can be
approximated by Monte Carlo, i.e., ŵπ

t (si, ai) =
1
Nt

∑Nt

i=1 1{st=si,at=ai}, where the state-action
pairs (si, ai) are collected by applying the behavior policy πCL in Mt and Nt is the number of
collected sample pairs. Despite the feasibility of applying the Monte Carlo method, the minimizer
Qopt

T is coupled with πCL in wπ
t within this implicit optimality equation. For a straightforward solution,

we introduce an online alternating algorithm (see Algorithm 1 in Appendix E), which alternately
updates the optimal Q function Qopt

T and the weight wπ
t . Nonetheless, the algorithm requires as many

interactions within all T MDPs as possible to accurately approximate the true weight wπ
t (s, a) for

each MDP, resulting in typically intractable computation, especially for MDPs with large state and
action spaces. This computational bottleneck motivates us to devise an efficient algorithm while
minimizing the catastrophic forgetting CF(QT ), on which we elaborate in Section 4.

3.3 Plasticity: Adaptivity and Convergence

In contrast to the stability and catastrophic forgetting, plasticity refers to the capability of an RL
agent that can quickly learn new experiences and adapt to changes in the environment. In fact, a
continual RL algorithm that merely minimizes catastrophic forgetting may not quickly adjust to
the new environment and can even diverge in the optimization process. Specifically, the one that
fully captures the plasticity and ignores the stability is the commonly used Finetune algorithm.
The Finetune algorithm follows MDP-wise training by deploying a specific RL algorithm without
imposing any continual learning strategy. Consequently, the obtained Q function after training the
previous MDP serves as the initialization of Q functions on the current MDP. The global policy πCL

is directly obtained based on Q̂T after training on the T -th MDP immediately, i.e., Qopt
T = Q̂T . We

contend that understanding the continual learning behaviors of the Finetune algorithm is indispensable
for analyzing the plasticity of any continual RL algorithms. For the Finetune continual RL algorithm,
we make the following conclusions from the perspectives of convergence and convergence rate:

• Convergence. The estimator Q̂t we obtain in each MDP will converge to the MDP-
dependent optimal Q function Q∗

t regardless of MDP distance.
• Convergence rate. The convergence rate on the current t-th MDP is determined by MDP

distance only with its preceding MDP, i.e., dp(Mt−1,Mt).

We present our analytical results in the general framework of Fitted Q Iteration (FQI) [31, 12] that
provides a favorable interpretation of many practical deep RL algorithms, such as DQN [28]. The
FQI captures two key features, including the leverage of the target network and the experience replay.
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The objective function in the k-th phrase of FQI is Q̂k+1
θ = argminQθ

1
n

∑n
i=1 [yi −Qθ (si, ai)]

2
,

where the target yi = r(si, ai) + γmaxa∈A Qk
θ∗ (s′i, a) is fixed within every Ttarget steps to update

target network Qθ∗ by letting θ∗ = θ. We define Bellman optimality operator T opt such that
T optQ(s, a) = E [R(s, a)] + γmaxa′ Es′ [Q(s′, a′)]. Theorem 1 demonstrates the convergence
behaviors of Finetune continual RL algorithm, denoted as Finetune FQI:
Theorem 1. (Convergence of Finetune FQI.) Denote Q∗

t as the optimal Q function for the t-th MDP,
Q̂k

t as the Q function estimate after the k-th phase of FQI in the t-th MDP. If the regression error
ekt (n) = ∥Q̂k+1

t − T optQk
θ∗∥∞ decreases to 0 as the sample size n→ +∞, we have:

(1) ∥Q̂k
t −Q∗

t ∥∞ ≤ γkd∞(Mt−1,Mt) as n→ +∞; ∥Q̂k
t −Q∗

t ∥∞ → 0 if we further let k → +∞.

(2) The iteration complexity is O(log d∞(Mt−1,Mt)
ϵ ) in the t-th MDP given the tolerance error ϵ.

Please refer to Appendix C for the detailed proof. Theorem 1 demonstrates the estimated Q function
has an Markov-like property in Finetune FQI, whose convergence rate is determined by the MDP
distance only between the preceding and current MDPs, regardless of other MDPs. More importantly,
the Q function estimator in the Finetune FQI algorithm in each MDP can asymptotically converge to
the MDP-dependent optimal Q function Q∗

t , suffering from complete catastrophic forgetting about the
knowledge of previous environments. While the results in Theorem 1 are direct follow-up conclusions
of FQI and may not be surprising, they serve as foundations to understand the plasticity ability of
continual RL algorithms. Overall, without incorporating any strategy to minimize catastrophic
forgetting, the resulting learning algorithm possesses full plasticity ability under mild conditions. The
principal caveat is the convergence rate, which hinges on two adjacent MDPs.

Remark: Non-decreasing Regression Error ekt (n). In deep RL, the lack of access to sufficient
samples often leads to violations of the decreasing regression error condition. This results in Q̂t being
additionally affected by the neural network parameters from previous or even older environments.
This issue is, in fact, related to the transfer challenges in continual RL, as discussed in [39], and goes
beyond the conventional stability and plasticity concerns. We leave this direction as future work.

4 Our Approach: Continual RL with Reweighted Bellman Targets

Motivation: Trade-off between Stability and Plasticity. The analysis in Section 3 motivates us
to find a trade-off between plasticity and catastrophic forgetting. A key insight is the optimal Q
function Qopt

T in Proposition 1 by minimizing the catastrophic forgetting has a weighted average form
of the estimated Q functions among all MDPs. It is, therefore, theoretically principled to design a
continual RL algorithm by reweighting Bellman targets, e.g., the estimated Q functions from MDPs
that the agent has interacted with. Our algorithm explicitly considers the two crucial characteristics
of continual learning, i.e., stability and plasticity. (1) Stability. The past Q functions encompass
the knowledge from previous MDPs. Incorporating them into the target to guide the learning in the
current MDP contributes to stability. (2) Plasticity. As the weighted target also includes the current
Q function estimate, the agent can adapt to the new environment, which enhances plasticity.

4.1 Algorithm Framework with Reweighted Bellman Targets

Recap the updated rule Qk+1(s, a) ← Qk(s, a) + ηk [r(s, a) + γmaxa′ Qk(s
′, a′)−Qk(s, a)] in

the vanilla Q learning, where ηk is the step size in the k-th step. Similarly, the updating rule with
reweighted targets in continual Q learning for the t-th MDP is

Qt
k(s, a)← Qt

k(s, a) + ηk

[
rt(s, a) + γ

t∑
i=1

αi max
a′

Q̂i(s
′, a′)−Qt

k(s, a)

]
,

where
∑t

i=1 αi maxa′ Q̂i(s
′, a′) with the weight αi plus the reward rt(s, a) collected in the current

t-th MDP serves as the target, and α = [α1, ..., αt]
⊤. In the FQI, we further have

Q̂k+1
t = argmin

Qk
t

1

n

n∑
i=1

[
ȳt
i(α)−Qk

t (si, ai)
]2

, s.t. α ⪰ 0, α⊤1 = 1, (5)

where the reweighted target is ȳti(α) = rt(si, ai) + γ
∑t

j=1 αj maxa′ Q̂k
j (s

′
i, a

′). Q̂k
t = Qk

θ∗
t

is the
target network in the t-th MDP, acting as the Bellman target for the learning in the current MDP.
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Remarkably, the proposed algorithm in Eq. 5 is a variant of FQI as the reweighted targets are fixed
within each updating phase, akin to the vanilla FQI.

Principle of Selecting α: Balancing Stability and Plasticity. The optimal α is selected by consider-
ing both stability and plasticity: 1) to minimize catastrophic forgetting CF(QT ) while incorporating
the knowledge from previous MDPs, and 2) to possess the convergence guarantee in the current MDP.

4.2 Stability: Minimizing Catastrophic Forgetting

With a pre-specified weighted form of Qopt
T as shown in Proposition 2, we consider to plug this

parametric from of Qt in catastrophic forgetting CF(QT ) defined in Eq. 3. This leads to a bi-level
optimization with the stability constraint to minimize catastrophic forgetting:

Q̂k+1
t (α∗) = argmin

Qk
t

1

n

n∑
i=1

[
ȳt
i(α

∗)−Qk
t (si, ai)

]2
,

s.t. α∗(Q̂k
t ) = argmin

α

t∑
i=1

∑
s,a

µπ
i (s)π(a|s)

(
Q̂i(s, a)

∥Q̂i∥
−

t∑
j=1

αjQ̂
k
j (s, a)

)2

, α ⪰ 0, α⊤1 = 1,

(6)

where the constraint objective function CF(QT ) is reformulated by replacing QT with
∑t

j=1 αjQ̂
k
j .

In updating the target network, we have Q̂k
t = Qk

θ∗ . In the constraint, α∗(Q̂k
t ) is first obtained by

minimizing CF(QT ) regarding a fixed Q̂k
t , which further consists of ȳti(α

∗) in the objective function.
By solving the regression problem, we attain Q̂k+1

t , which is then utilized to optimize α∗(Q̂k+1
t ) in

the (k + 1)-th phrase of FQI. From the perspective of computational cost, however, the resulting
lower-level optimization is also expensive as the exact evaluation on µπ

i (s)π(a|s) requires the agent
to interact with previous MDPs additionally. To ease this burden, we choose to simplify CF(QT ) by
approximating µπ

i (s)π(a|s) with a uniform distribution, i.e., µπ
i (s)π(a|s) ≈ 1

|S||A| :

t∑
i=1

∑
s,a

µπ
i (s)π(a|s)

 Q̂i(s, a)

∥Q̂i∥
−

t∑
j=1

αjQ̂
k
j (s, a)

2

≈
t∑

i=1

∥δki α∥22 = ∥Γkα∥22, (7)

where δki = [Q̂k
i /∥Q̂k

i ∥ − Q̂k
1 , Q̂

k
i /∥Q̂k

i ∥ − Q̂k
2 ..., Q̂

k
i /∥Q̂k

i ∥ − Q̂k
t ] ∈ R|S×A|×t and Γk =[

δT1 , δ
T
2 , . . . , δ

T
t

]T ∈ Rt|S×A|×t are the constant matrixes within each lower-level optimization
of FQI. Such a simplification leads to a quadratic objective function w.r.t. α, enjoying a unique
solution and facilitating commonly-used optimization tools, e.g., the CVXOPT toolbox in Python.
We can tolerate a certain amount of interactions with the environments within the training budget or
collect offline datasets to approximate the µπ

i (s)π(a|s) more accurately than the uniform strategy we
use here. We leave this direct improvement as future work and focus on the simplest form of stability
in our methodology. Moreover, the optimization form in Eq. 7 has an interesting connection with a
specific type of acceleration algorithm, called Anderson Acceleration [36], for which we provide a
discussion in Appendix F for interested readers.

Tractable Computation and Space Complexity. Within the stochastic optimization paradigm for
practical algorithms, the state space |S|, which consists of the dimension of ΓK , will be reduced
to the batch size for the batch-level training. The Q function is typically lightweight instead of
parameterized by very deep nets to avoid the optimization instability issue [5].

4.3 Plasticity: Convergence Guarantee

The plasticity ability of a continual RL algorithm enables rapid adaptation and convergence within a
new MDP. To examine the convergence properties of our continual RL algorithm by introducing a
continual learning Bellman Optimality Operator T opt

CL within the k-phase of FQI framework:

T opt
CL Qk

t (s, a) = E [Rt(s, a)] + γ
∑
s′

Pa
s,s′ max

a′
Qk

t (s
′, a′),

Qk
t (s, a) = E [Rt(s, a)] + γ

∑
s′

Pa
s,s′

t∑
i=1

αk
i max

a′
, Qk−1

i (s′, a′)

(8)
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where Pa
s,s′ = P (s′|s, a) is the state transition dynamics. We define

∑
s′ Pa

s,s′
∑

a′ π∗(a′|s′) =∑
s′ Pπ∗

s,s′ , omitting a in Pπ∗

s,s′ for brevity, with π∗(·|s′) = argmaxQi(s
′, ·). To guarantee the

convergence of Qk
t in the t-th MDP under T opt

CL , we have the following condition in Proposition 2.

Proposition 2. T opt
CL has a γ-linear convergence rate ∥T opt

CL Qk
t −Qk

t ∥ ≤ γ∥T opt
CL Qk−1

t −Qk−1
t ∥, if

αk = argmin
α
∥

t∑
i=1

αi(T opt
CL Qk−1

i −Qk−1
i )∥, s.t. α ⪰ 0, α⊤1 = 1 (9)

where Qk−1 = [Qk−1
1 , ..., Qk−1

t ] ∈ R|S×A|×t and T opt
CL Qk−1 = [T opt

CL Qk−1
1 , ..., T opt

CL Qk−1
t ].

The proof of Proposition 2 is given in Appendix G. Proposition 2 demonstrates that αk should be the
obtained by solving Eq. 9 for γ-linear convergence of T opt

CL , the plasticity ability in the current MDP.
In practice, we leverage Q̂i = Qk

i for all k in each i = 1, ..., t− 1.

4.4 Putting All Together: Continual RL algorithm with Reweighted Bellman Targets

To combine the two constraints on αk regarding stability and plasticity, we introduce the coefficient λ.
The complete bi-level optimization of our continual RL algorithm with reweighted Bellman targets
is:

Q̂k+1
t (αk) = argmin

Qk
t

1

n

n∑
i=1

[
ȳt
i(α

k)−Qk
t (si, ai)

]2
,

s.t. αk(Q̂k
t ) = argmin

α
∥

t∑
i=1

αi(T opt
CL Q̂k−1

i − Q̂k−1
i )∥2 + λ∥Γkα∥2, α ⪰ 0, α⊤1 = 1.

(10)

where λ controls the strength of catastrophic forgetting over the convergence, explicitly trading off
the stability-plasticity dilemma in continual RL. It is worth noting that the upper-level optimization
is an iterative regression problem in terms of Qk

t given αk, while the lower-level one is a quadratic
convex optimization problem regarding αk. We can initialize α0 = [1/t, .., 1/t]⊤.

Interpolation between Sole Plasticity and Stability. When λ = 0, our algorithm only emphasizes
plasticity and will degrade to Finetune FQI if we further let αk = [0, ..., 1]. Conversely, as λ→ +∞
and without the uniform approximation in Γk, the solution to Eq. 10 in our algorithm also satisfies
the optimal condition in Proposition 1, solely focusing on reducing catastrophic forgetting.

5 Experiments

In this section, we conduct experiments to verify the analytical results in Sections 3.2 and 3.3 and the
effectiveness of our proposed continual RL algorithm with reweighted Bellman targets. Concretely,
we sequentially deploy different continual RL algorithms on an array of MDPs with distinct reward
functions and state transition dynamics. As our analysis and the proposed algorithm are mainly
value-based in the tabular setting, we demonstrate our results on a simple MDP and the Grid World
environment.

Baselines. (1) Minimizing Catastrophic Forgetting (MCF). As discussed in Section 3.2, a continual
RL algorithm that solely minimizes catastrophic forgetting is typically infeasible in computation.
However, we can deploy an online alternating algorithm (Algorithm 1), which alternately solves
the implicit optimality equation in Proposition 1, to approximately minimize catastrophic forgetting.
We call this baseline algorithm Minimizing Catastrophic Forgetting (MCF), which normally serves
as the upper bound of performance if the approximation is accurate. (2) Finetune. As analyzed in
Section 3.3, the Finetune continual algorithm has a rapid adaptation capability to learn in the new
environment but suffers from complete catastrophic forgetting. (3) V ∗. We also report the estimated
Q function by deploying separate Q learning on each MDP. We denote this baseline algorithm as V ∗

because it can achieve almost optimal value function, although it is not a continual learning algorithm
in nature. (4) Optimal. Since searching-based algorithms can solve many simple MDPs, we thus
evaluate the optimal value function by leveraging the well-known Floyd’s algorithm [13] to find the
shortest path, equivalent to finding the optimal policy to achieve the largest cumulative rewards. We
denote this search-based algorithm as “Optimal”. Note that “Optimal” evaluated by the deterministic
Floyd’s algorithm only relies on the reward function, ignoring the transition randomness. We only
employ this baseline algorithm in the first simple MDP environment.
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5.1 Continual Q Learning on Simple MDPs
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Figure 1: (Left) The simple MDP with different reward functions and environment dynamics. (Right)
Learning curves of the Finetune algorithm on three MDPs, where Q∗ is evaluated as the separate Q
learning on each MDP. Different colors represent learning curves under MDP 2 with different reward
ranges, thus having distinct MDP distances between adjacent MDPs.

Experimental Setup. The 8-state MDP structure is illustrated in Figure 1 (Left), where the action
space includes “Up" and “Down". When the agent takes the action “Up” (“Down”), it will reach
the upper (lower) state with a certain probability p, typically close to 1. Otherwise, it will reach the
converse state in the reversed direction with the probability 1− p. We construct three MDPs with
distinct reward functions and state transition dynamics. In particular, we randomly select rewards in
each edge, ranging from (0, 20), (10, 20), and (0, 30) for these three MDPs, respectively. We set the
transition probabilities p in the three MDPs as 0.9, 0.8, and 0.9. To verify the convergence behaviors
of Finetune algorithm in Theorem 1 regarding MDP distance, we specify three MDP 2 with different
reward ranges, i.e., (10, 20), (30, 45), (80, 100), in the green, blue and red colors in Figure 1 (Right).

Results: Adaptivity under different MDP distances. To investigate the adaptivity ability of
continual RL, we deployed the Finetune algorithm across three MDPs and plotted the learning curves
in Figure 1. As shown in Figure 1 (Right), the Finetune algorithm converges faster in the 2nd
and 3rd MDPs when the MDP distance d∞(Mt,Mt−1) is smaller, as indicated by the transition
from green to blue and red curves. However, with sufficient training, the normalized Q function
difference ∥Q̂−Q∗∥/∥Q∗∥ tends to 0, indicating that the algorithm asymptotically converges to the
MDP-dependent optimal Q function. These results corroborate Theorem 1 and support our intuition
that initializing the Q function with an MDP closer to the target MDP, speeds up adaptation.

Average Return MDP 1 MDP 2 MDP 3 Average Performance
Optimal 49.8 (±3.7) 63.6 (±3.2) 161.2 (±15.5) 91.5 (±5.7)

V ∗ 48.5 (±3.7) 60.9 (±2.7) 159.4 (±15.4) 89.6 (±5.6)
Finetune 38.6 (±4.6) 55.2 (±3.4) 159.7 (±15.3) 84.5 (±5.5)

MCF 47.8 (±5.5) 60.2 (±5.8) 154.0 (±15.0) 87.4 (±5.9)
Ours (λ = 0) 42.6 (±5.8) 57.0 (±4.2) 156.8 (±15.3) 85.4 (±5.5)
Ours (λ = 3) 43.0 (±6.2) 58.9 (±3.9) 155.6 (±16.0) 85.8 (±5.3)
Ours (λ = 6) 42.6 (±5.2) 57.5 (±5.5) 156.8 (±15.9) 85.6 (±5.6)

Ours (λ = 10) 40.6 (±4.5) 58.2 (±4.7) 156.9 (±15.9) 85.2 (±5.9)

Table 1: Achieved average return with standard deviations of different continual RL algorithms over
20 runs. Our method with λ = 3 performs best in this simple MDP.

Results: Algorithm Performance. We run each algorithm 20 times and report the average return for
each and among all three MDPs. Table 1 shows that the performance of our algorithm interpolates
between the Finetune and MCF, with λ = 6 yielding the best result. While the Finetune algorithm
performs best in the last MDP compared to Ours and MCF, it suffers a significant performance
drop when evaluated in the 1st and 2nd MDP. In contrast, MCF effectively reduces catastrophic
forgetting and retains consistent performance across three MDPs at the cost of intensively evaluating
the true weight function in Eq. 4. We also demonstrate that MCF is more likely to outperform the
Finetune algorithm when the MDPs differ dramatically. Precisely, we specify the reward in MDP 3
as C − 1

2R1 − 1
2R2, where R1 and R2 are the rewards in the 1st and 2nd MDPs and C is a constant

generated in the range of (60, 80). Detailed empirical results are provided in Appendix H.

5.2 Continual Q Learning on the Grid World Environment

Experimental Setup. The Grid World environment, as used to evaluate continual RL algorithms in
[18], features a stochastic MDP with two-dimensional states, where the same action could lead to
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different outcomes and transition to different states. In particular, the environment moves the agent
in the intended direction with a certain probability p; with probability 1 − p, the agent moves in
a random other direction. We set the width and height as ten and select four MDPs with different
transition probabilities p, namely 0.75, 0.8, 0.85, and 0.9. As illustrated in Figure 2 (Left), the agent
receives a +100 reward upon encountering the gold and a -100 reward upon encountering a bomb. In
the four MDPs, we gradually shift the locations of gold and bomb from the right upper part to the left
lower part, thereby altering both the reward functions and the environment transitions.
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Figure 2: (Left) The Grid World Environment. (Right) Learning curves of the Finetune algorithm on
Grid World under the scenarios with different MDP distances. Results are averaged over ten runs.

Results: Adaptivity under different MDP distances. We begin by demonstrating the algorithm’s
adaptivity ability presented in Theorem 1 of the Finetune algorithm. As illustrated in Figure 2 (Right),
the convergence rate of the Finetune algorithm declines as we increase the MDP distance between
the current and previous MDPs. This trend is evident from the red, blue to the green lines, indicating
that a greater MDP distance between two MDPs impedes the convergence speed of adaptivity.

Results: Algorithm Performance. The results in Table 2 suggest that our proposed algorithm
performs favorably compared with the other baselines, with the best performance observed for
λ = 18.0. Although MCF involves significant computation by interacting with previous MDPs,
it performs poorly in this environment. This underperformance is due to the online alternating
algorithm’s possible divergence issue when deployed in this relatively complex environment, resulting
in an inaccurate approximation of the true weight function described in Proposition 2.

Average Return MDP 1 MDP 2 MDP 3 MDP 4 Average Performance
V ∗ 90.7 (±1.3) 93.2 (±4.5) 92.3 (±6.1) 90.7 (±3.9) 90.7 (±1.9)

Finetune -100.0 (±0.0) -100.0 (±0.0) -92.3 (±8.9) 26.2 (±87.0) -66.5 (±23.2)
MCF -93.0 (±5.6) -98.0 (±1.9) -61.2 (±17.3) 18.1 (±67.8) -58.5 (±20.7)

Ours (λ = 0.0) -99.0 (±0.6) 37.4 (±53.7) -102.8 (±3.9) -100.0 (±0.0) -66.1 (±12.9)
Ours (λ = 12.0) -70.2 (±42.3) 42.6 (±44.0) -100.0 (±0.2) -100.0 (±0.0) -56.9 (±18.4)
Ours (λ = 18.0) -48.8 (±67.3) 84.4 (±8.6) -98.0 (±2.2) -99.0 (±0.2) -40.6 (±16.2)

Table 2: Average return of the considered continual RL algorithms over five runs on the Grid World.

6 Conclusion, Limitations and Future Work

In this paper, we study the foundations of continual RL and propose a theoretically principled
algorithm by reweighting Bellman targets. We begin by defining the MDP distance and then
characterizing catastrophic forgetting in continual RL. Next, we propose a practical continual RL
algorithm by reweighing Bellman targets, and extensive experiments in the tabular setting have
demonstrated promising results for our algorithm.

Limitations and Future Work. There are still some limitations to our work. First, we focus
on continual RL algorithms in the tabular setting by balancing plasticity and stability/catastrophic
forgetting. However, we have not explicitly considered the knowledge-transferring effect from the
representation of deep RL algorithms across multiple MDPs. Moreover, our continual RL setting
requires access to the task boundary and assumes the same state and action spaces across different
MDPs. Instead, the research community could put more effort into the task-agnostic case with
arbitrarily different state and action spaces across various MDPs, which is more challenging but
closer to real-world scenarios. We leave the exploration in these directions as future work.
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A Equivalence to Cosine Distance

For two vectors x and y, the cosine distance dcos is defined as

dcos(x,y) = 1− cos(x,y) = 1− x⊤y

∥x∥∥y∥
. (11)

Although cosine distance is scale-invariant (dcos(ax, by) = dcos(x,y)) and can be used as a distance
in general, it does not satisfy triangle inequality properties and thus is not a metric in a mathematical
sense. In our study, we prefer to use a normalized ℓ2 distance, which is more commonly used. In
addition, the normalized ℓ2 distance can be shown to be proportional to the cosine distance, therefore
satisfying the scale-invariant. For two ℓ2 normalized vectors x and y with ∥x∥2 = 1 and ∥y∥2 = 1,
we have

∥x− y∥22 = (x− y)⊤(x− y) = x⊤x− 2x⊤y + y⊤y = 2− 2 cos(x,y) = 2dcos(x,y). (12)

B More Definitions with Detailed Explanation

B.1 Weighted MDP Distance

In the basic version of MDP distance in Definition 1, each state-action pair possesses the same weight,
while we further define a weighted version of d2 associated with a state-action weight function w(s, a)
in Definition 4. We will show later that the catastrophic forgetting between two MDPs is a particular
weighted MDP distance.
Definition 4. (Weighted MDP Distance) The weighted MDP distance d̄w is defined as:

d̄w(M1,M2) = ∥Q∗
1 −Q∗

2∥w =

(∑
s,a

w(s, a)

(
Q∗

1(s, a)

∥Q∗
1∥2

− Q∗
2(s, a)

∥Q∗
2∥2

)2
) 1

2

(13)

where we have a state-action weight function w(s, a), with
∑

s,a w(s, a) = 1 and w(s, a) ≥ 0 for
each s, a.

B.2 Definition of Distribution Drift and Catastrophic Forgetting in Deep Learning

We first introduce the concept of drift in the process of learning a parameterized function f from the
source data distribution τS with the dataset DτS to the target data distribution τT with the dataset
DτT . After learning f on the source dataset DτS , we obtain the estimated function f̂τS . Then we
apply the same model architecture f on the target dataset DτT with any learning algorithms, and
finally we evaluate the drift of the attained f̂τT via δτS→τT defined as [11]:

δτS→τT (XτS ) =
(
f̂τT (x)− f̂τS (x)

)
(x,y)∈DτS

(14)

Based on the definition of drift, we define the vanilla catastrophic forgetting ∆τS→τT as

∆τS→τT (XτS ) = ∥δτS→τT (XτS )∥22 =
∑

(x,y)∈DτS

(
f̂τT (x)− f̂τS (x)

)2
, (15)

where the catastrophic forgetting can be further simplified as ∆τS→τT =
∥∥ϕ (XτS )

(
ω∗
τT − ω∗

τS

)∥∥2
2

in the Neural Tangent Kernel (NTK) regime [11, 17], allowing the proposal of new continual learning
approaches. In deep learning, minimizing the catastrophic forgetting ∆τS→τT is equivalent to
minimizing a weighted drift in terms of the prediction function f̂ with the weights determined by the
dataset.

B.3 Definitions of Distribution Drift between two MDPs

Before defining the catastrophic forgetting, we first measure the distribution drift between two MDPs
for a given RL algorithm in Definition 5 by leveraging the estimated Q functions:
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Definition 5. (Drift between two MDPs) Consider the continual RL setting across the source and
target MDPMsou andMtar. The drift, denoted as δπtar

sou,tar(Msou), with respect to πtar between two
MDPs is defined as:

δπtar
sou,tar(Msou) =

∑
a

πtar(a|s)

(
Q̂sou(s, a)

∥Q̂sou∥2
− Q̂tar(s, a)

∥Q̂tar∥2

)2


s∈|S|

. (16)

Notably, the drift term δπtar
sou,tar(Msou) in Definition 5 can be interpreted as the state-level difference

between estimated Q functions with each element weighted by the target policy πtar that determines
the proportion of the action a. Furthermore, suppose we apply a behavior policy to interact within a
specified MDP. In that case, the resulting state distribution will be simultaneously determined by the
behavior policy and the MDP-specific state transition dynamics. This allows us to define catastrophic
forgetting between two MDPs by additionally incorporating the state distribution.

C Proof of Theorem 1

Proof. Convergence. Recap the objective function in the k-th phrase of FQI is

Q̂k+1
θ = argmin

Qθ

1

n

n∑
i=1

[yi −Qθ (si, ai)]
2
, (17)

where the target yi = r(si, ai) + γmaxa∈A Qk
θ∗ (s′i, a) is fixed within every Ttarget steps to update

the target network Qθ∗ by letting θ∗ = θ. The periodical updating of the target network Qθ∗ in
continual RL indicates that

Qk
θ∗(s, a) = Q̂k

t (s, a). (18)

Since we require Q̂k
t has a decreasing regression error, the regression error denoted by ekt (n) between

it and the expectation target T optQk
θ∗ converges to 0 as n→ +∞, i.e.,

ekt (n) = ∥Q̂k+1
t − T optQk

θ∗∥∞ = ∥Q̂k+1
t −Qk+1

t ∥∞ → 0, as n→ +∞, (19)

where we denote the expectation target as Qk+1
t . Thus, we have Qk+1

t = T optQk
θ∗ = T optQ̂k

t (s, a).
Putting all notations together, we have the following result:

sup
s,a

∣∣∣Q̂k
t (s, a)−Q∗

t (s, a)
∣∣∣ ≤ sup

s,a

∣∣∣Q̂k
t (s, a)−Qk

t (s, a)
∣∣∣+ sup

s,a

∣∣Q∗
t (s, a)−Qk

t (s, a)
∣∣

= ekt (n) + sup
s,a

∣∣∣T optQ∗
t (s, a)− T optQ̂k−1

t (s, a)
∣∣∣

≤ ekt (n) + γ sup
s,a

∣∣∣Q∗
t (s, a)− Q̂k−1

t (s, a)
∣∣∣

= ekt (n) + γek−1
t (n) + γ2 sup

s,a

∣∣∣Q̂k−2
t (s, a)−Q∗

t (s, a)
∣∣∣

=

k−1∑
i=0

γiek−i
t (n) + γk sup

s,a

∣∣∣Q̂0
t (s, a)−Q∗

t (s, a)
∣∣∣

(a)
=

k−1∑
i=0

γiek−i
t (n) + γk sup

s,a

∣∣∣Q̂t−1(s, a)−Q∗
t (s, a)

∣∣∣
(b)→ γk sup

s,a

∣∣∣Q̂t−1(s, a)−Q∗
t (s, a)

∣∣∣ (n→ +∞)

(c)→ 0 (k → +∞)

(20)

where (a) relies on the fact that Q1
t = T optQ̂0

t in the first phase for the t-th MDP, and Q̂0
t = Q̂t−1

which is initialized as the final Q estimation Q̂t−1 after traning the t − 1-th MDP. The limit (b)
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leverages the decreasing property of regression error ekt (n)→ 0 as n→ +∞. The last arrow (c) of
proof holds when k → +∞ as long as ∥Q̂t−1 −Q∗

t ∥∞ is bounded. This assumption is also mild, as
most environments have bounded Q functions or impose a bounded reward range.

Putting all together, the proof above indicates that ∥Q̂k
t −Q∗

t ∥∞ → 0 as n, k → +∞ without the
optimization error in each FQI regardless of the initialization Q̂t−1 or Q̂0

t . As Q̂k
1 → Q∗

1 under the
above conditions, we can easily prove recursively, showing that Q̂k

t → Q∗
t for each t = 1, ..., T in

this Finetune FQI algorithm, i.e., Q̂t = Q∗
t . As such, we further plug this condition into the last two

arrows in the proof above. Therefore, given the k-th phase in the t-th MDP, as n→ +∞, we have
the limiting upper bound as follows:

sup
s,a
|Q̂k

t (s, a)−Q∗
t (s, a)| ≤ γk sup

s,a

∣∣Q∗
t−1(s, a)−Q∗

t (s, a)
∣∣

= γkd∞(Mt−1,Mt),
(21)

where the RHS in terms of the Q function is exactly the MDP distance defined in Definition 1.

Iteration complexity. Let RHS in Eq. 21 be less than ϵ, after taking log transformation, we have:

k log γ + log d∞(Mt−1,Mt) ≤ log ϵ

Finally, we have:

k ≥ C log
d∞(Mt−1,Mt)

ϵ
, (22)

where C = − 1
log γ . This indicates that the iteration complexity is O(log d∞(Mt−1,Mt)/ϵ) given

an ϵ iteration error. In other words, a larger MDP distance between the current and preceding ones
would require a larger number of iterations for Q̂k

t in order to converge to the MDP-dependent optimal
Q∗

t in the t-th MDP.

D Proof of Proposition 1

Proof. The catastrophic forgetting CF(QT ) regarding QT is defined as

CF(QT ) =

T∑
t=1

∑
s,a

µπCL
t (s)πCL(a|s)

(
Q̂t(s, a)

∥Q̂t∥
−QT (s, a)

)2

=

T∑
t=1

∑
s,a

wπCL
t (s, a)

(
Q̂t(s, a)

∥Q̂t∥
−QT (s, a)

)2
(23)

where we denote the weight as wπCL
t (s, a) = µπCL

t (s)πCL(a|s). Since we aim to find the optimal Q
estimator for the whole objective function, the Q function mapping from s, a to the Q is just the inner
mapping. We only need to consider the optimality equation for a specific s, a. Although wπCL

t (s, a)
is coupled with QT (s, a) following the greedy rule in terms of the policy π, when we fix wπCL

t it
leads to a bi-level optimization. In particular, thanks to a fixed wπCL

t , the objective function above is
equivalent to a quadratic function regarding QT (s, a). By taking the derivative of CF(QT ) regarding
QT (s, a) and then let the gradient equal to zero for each s, a, it arrives at

T∑
t=1

wπCL
t (s, a)

(
Q̂t(s, a)

∥Q̂t∥
−QT (s, a)

)
= 0 (24)

Consequently, we have the following equation:

Qopt
T (s, a) =

T∑
t=1

wπCL
t (s, a)

Q̂t(s, a)

∥Q̂t∥
/

T∑
t=1

wπCL
t (s, a) ∀s, a, (25)

where the constraint is the weight wπCL
t (s, a) = µπCL

t (s)πCL(a|s) with π(a∗|s) = 1 if a∗ =
argmaxa′ Q

opt
T (s, a′), otherwise πCL(a|s) = 0.
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E Online Alternating Algorithm to Minimize Catastrophic Forgetting

The algorithm procedure includes two iterative steps. The first is the weight evaluation while fixing
the estimated Q function, in which case, the policy is also fixed. The weight evaluation ŵπ

t (s, a)
typically proceeds via the Monte Carlo method, and a more significant number of simulations leads
to a more accurate evaluation at the cost of the more computational cost. The second step is to
update the Q function with the evaluated weights ŵπ

t (s, a) in step one. This procedure requires online
interaction with all MDPs, and hence, it is called an online alternating algorithm. This alternating
optimization in Algorithm 1 is similar to the policy/value iteration algorithm that interacts between
the Q function and the policy. In our implementation, we select a sufficiently large L to guarantee a
favorable convergence of our online alternating algorithm, although an overly large L will increase
the computational cost significantly.

In summary, to leverage all optimal Q functions and seek an optimal Q function estimator in
continual RL, we must interact with all MDPs. This additional computation is likely helpful in
continual learning provided that the weights ŵπ

t (si, ai) can be approximated favorably via the online
alternating algorithm within the computational budget.

Algorithm 1 Online Alternating Algorithm to Minimize Catastrophic Forgetting

1: Given the {Q̂t} for t = 1, .., T , and initialize Q(0). Set the total training steps K, evaluation step
L, and the number of samples Nt for each t = 1, ..., T . Initialize l = 1.

2: while l ≤ L do
3: / * Step 1: Weight Evaluation via π determined by Q(l−1) * /
4: for t = 1 to T do
5: Observe the initial state s0 in the t-th MDP;
6: for i = 1 to Nt do
7: Select ai = argmaxa Q

(l−1)(si, a) via the greedy rule.
8: Perform the action ai on t-th MDP, obtain ri and si+1.
9: Store the transition (si, ai) in the t-th buffer.

10: end for
11: Estimate wπ

t based on samples in the t-th buffer:

ŵπ
t (s, a)←

1

Nt

Nt∑
i=1

1{st=si,at=ai}

12: end for
13: / * Step 2: Q Function Updating * /
14: Sample the batch of transitions (si, ai) from all T buffers.
15: Update Q Function for each (si, ai) via

Q(l)(si, ai)←
T∑

t=1

ŵπ
t (si, ai)Q̂t(si, ai)/

T∑
t=1

ŵπ
t (si, ai)

16: l← l + 1
17: end while

F Discussion with Anderson Mixing

Comparison with Anderson Acceleration. The optimization form in Eq. 7 is similar to the widely
used Anderson Acceleration [36] technique that can speed up RL algorithms [32, 24]. In Anderson
Acceleration, within the FQI framework, weights can be solved by

α∗(Q̂k
t ) = argmin

α

∥∥∥∥∥
m∑
i=1

αi

(
T Q̂k+1−i

t (s, a)− Q̂k+1−i
t (s, a)

)∥∥∥∥∥
2

(26)

where anderson acceleration use the m historical values
{
Q̂k+1−i

t

}m

i=1
and

{
T Q̂k+1−i

t

}m

i=1
, aiming

at accelerating the training on the current MDP. It is worth noting that the weighted targets in
Anderson acceleration are from the iteration in the current MDP. Alternatively, our reweighted
method in continual RL uses Q functions in the previous tasks from different MDPs. While both
Anderson acceleration and our reweighted algorithm have a similar optimization form to solve the
weight, they are fundamentally different and in distinct contexts.
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G Proof of Proposition 2

Directly considering two Qt(s, a) to derive the contraction mapping would be difficult as α depends
on the Qt(s, a) and decoupling α and Qt(s, a) is hard. Instead, we consider the proof of the
convergence rate below by following [24]:

T opt
CL Qk

t (s, a)−Qk
t (s, a)

= E [Rt(s, a)] + γ
∑
s′

Pπk

s,s′Q
k
t (s

′, a′)−Qk
t (s, a)

= E [Rt(s, a)] + γ
∑
s′

Pπk

s,s′Q
k
t (s

′, a′)−

(
E [Rt(s, a)] +

t∑
i=1

γ
∑
s′

Pπk−1

s,s′ αk
i Q

k−1
i (s′, a′)

)
(a)

≤ γ
∑
s′

Pπ∗

s,s′

(
Qk

t (s
′, a′)−

t∑
i=1

αk
i Q

k−1
i (s′, a′)

)

= γ
∑
s′

Pπ∗

s,s′

(
E [Rt(s

′, a′)] +

t∑
i=1

γ
∑
s′′

Pπk−1

s′,s′′ α
k
i Q

k−1
i (s′′, a′′)−

t∑
i=1

αk
i Q

k−1
i (s′, a′)

)

= γ
∑
s′

Pπ∗

s,s′

(
t∑

i=1

αk
i

(
E [Rt(s

′, a′)] + γ
∑
s′′

Pπk−1

s′,s′′ Q
k−1
i (s′′, a′′)−Qk−1

i (s′, a′)

))

= γ
∑
s′

Pπ∗

s,s′

(
t∑

i=1

αk
i

(
T opt

CL Qk−1
i (s′, a′)−Qk−1

i (s′, a′)
))

(27)
where T opt

CL Qk indicates that we apply the operator T opt
CL on the vector Qk = {Qk

i }ti=1 in an column-
wise way. (a) relies on the inequality maxx f(x) − maxy g(y) = f(x∗) − g(y∗) ≤ f(x∗) −
g(x∗) ≤ maxx f(x)− g(x) if we assume the difference is positive without loss of generality, and∑

i bifi −
∑

j bjgj =
∑

i bi(fi − gi). Qk = [Qk
1 , ..., Q

k
t ]. Consequently, we have

∥T opt
CL Qk

t −Qk
t ∥ ≤ γ∥Pπ∗

s,s′∥∥
t∑

i=1

αk
i

(
T opt

CL Qk−1
i −Qk−1

i

)
∥

≤ γ∥
t∑

i=1

αk
i

(
T opt

CL Qk−1
i −Qk−1

i

)
∥

(b)

≤ γ∥T opt
CL Qk−1

t −Qk−1
t ∥,

(28)

where (b) relies on the optimization regarding α in Proposition 2:

αk = argmin
α
∥

t∑
i=1

αi

(
T opt

CL Qk−1
i −Qk−1

i

)
∥. (29)

The inequality (b) holds because we can use a specific αk = [0, ..., 1]⊤.

H Experiments on MDP

Further, we investigate when MCF is significantly superior to the Finetune algorithm. Instead of
randomly assigning rewards in a specific range in the previous setting, we construct a “reverse”
reward function setting in the third MDP in contrast to the reward functions in the first and second
MDPs, respectively. In particular, given the reward function in the first and second MDP, we set
rewards in the third MDP as C − r1, C − r2 and C − r1 − r2, where C is a pre-specified constant.
It is expected that if the reward function in the three MDPs is C − r1, for example, the Finetune
algorithm will “overfit” to the last MDP, which is reversed to the reward distribution in the first MDP.
Therefore, its performance on the first MDP would be undesirable and worse than that of MCF, which
simultaneously considers all MDPs. To make a detailed comparison, we evaluate the difference
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Figure 3: The first two orange bars for C − r1, C − r2 are calculated on MDP 1 and MDP 2,
respectively. The third bar for C − r1 − r2 is averaged over both MDP 1 and MDP 2. The ’Upper -
Lower’ represents the performance difference between MCF and the Finetune algorithm.

between the Finetune and MCF algorithms on random (rewards are sampled randomly) or reverse
reward, e.g., C − r1.

As suggested in Figure 3, when the reward function in the third MDP is the reverse one of the previous
MDP, MCF performs much better than the Finetune algorithm as the latter tends to overfit the last
MDP, which is dramatically different from previous environments.
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