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Abstract

Simulation-based inference (SBI) is an established approach for performing
Bayesian inference on scientific simulators. SBI so far works best on low-
dimensional parametric models. However, it is difficult to infer function-valued
parameters, which frequently occur in disciplines that model spatiotemporal pro-
cesses such as the climate and earth sciences. Here, we introduce an approach for
efficient posterior estimation, using a Fourier Neural Operator (FNO) architecture
with a flow matching objective. We show that our approach, FNOPE, can perform
inference of function-valued parameters at a fraction of the simulation budget
of state of the art methods. In addition, FNOPE supports posterior evaluation
at arbitrary discretizations of the domain, as well as simultaneous estimation of
vector-valued parameters. We demonstrate the effectiveness of our approach on
several benchmark tasks and a challenging spatial inference task from glaciology.
FNOPE extends the applicability of SBI methods to new scientific domains by
enabling the inference of function-valued parameters.

1 Introduction

Probabilistic inference of mechanistic parameters in numerical models is a ubiquitous task across
many scientific and engineering disciplines. Among methods for Bayesian inference, simulation-
based inference (SBI, [1H6]) has emerged as a powerful approach for performing inference without
requiring explicit formulation or evaluation of the likelihood. Instead, SBI only requires a simulator
model which can sample from the likelihood. By training a generative model on pairs of parameters
and simulation outputs, SBI can directly estimate probability distributions such as the posterior
distribution.

However, existing SBI methods are designed to infer a limited number of vector-valued parameters,
which strongly limits their use for inferring spatially and/or temporarily varying, function-valued
parameters. In these cases, parameters are commonly inferred on fixed discretizations of the domain.
Despite some recent advances leveraging generative models to infer higher-dimensional posterior
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Figure 1: Overview. FNOPE approximates the posterior over function-valued parameters of a
mechanistic model conditioned on function-valued observations. We use a FNO architecture with
a flow matching objective to efficiently represent the function-valued parameters, enabling us to
estimate extremely high dimensional posterior distributions at arbitrary discretizations of the domain.

distributions [ZHTT], the high-dimensional inference problems that arise from such approaches remain
a challenge.

Furthermore, current models need to be retrained for new discretizations of the parameters or the
observations. This is particularly challenging in fields like the geosciences, where observations cannot
always be made at the same locations. An alternative to using fixed discretizations is to represent
the functions using a fixed set of basis functions, where the inference problem becomes inferring the
basis function coefficients, as used, e.g., in [12]]. However, these approaches require a good selection
of basis functions and suffer from a trade-off between choosing sufficiently expressive basis sets,
while maintaining a tractable number of parameters to infer.

To overcome these limitations, we require methods that are capable of modeling and inferring function-
valued data. Here, we propose to make use of the Fourier Neural Operator (FNO, [[13]) architecture,
which operates on function-valued data, for performing SBI on function-valued parameters. Neural
operators [14416] combine operations on global features of function-valued data with local (typically
pointwise) operations, thus capturing both global and local structures. In particular, FNOs use Fourier
features to model the global structure. For smoothly varying data, the spectral power is concentrated
in the lower frequency components of the spectral decomposition. This allows for a compact
representation of the global structure of the data, and hence for the inference of function-valued data
on high resolution discretizations.

We present FNOPE (Fig. [T)), an inference method for function-valued parameters: It trains FNOs
for Posterior Estimation using a flow-matching objective [9} [I7]. FNOPE is capable of solving
inference problems for spatially and temporally varying parameters, and can generalize to posterior
evaluations on non-uniform, previously unseen discretizations of the parameter and observation
domains. Furthermore, FNOPE can estimate additional, vector-valued parameters of the simulator.
We demonstrate these features on a collection of benchmark tasks, as well as a challenging real-world
task from glaciology. We compare the performance of FNOPE to SBI approaches that use fixed-
discretization or basis-function representation of the parameters, and show that FNOPE outperforms
these methods, especially for low simulation budgets. Thus, FNOPE enables efficient inference for
high dimensional inference problems that were previously challenging or even intractable.

2 Preliminaries

2.1 Simulation-based inference

SBI is designed to solve stochastic inverse problems: Given a simulator parametrized by 6, a known
prior distribution p(#) and an observation x € R™=, the goal is to infer the posterior p(f | z) for



(typically) vector-valued parameters § € R™¢. The simulator implicitly defines the model likelihood
p(z | 0) by allowing us to sample x ~ p(z | #). We can construct a training dataset by sampling
from the joint p(6)p(x | 6) to construct a dataset of simulations S = {(6;, z;)}X, for a number of
simulations K. Standard approaches in neural posterior estimation (NPE) approximate the posterior
q®(0 | =) with a normalizing flow, which is trained by minimizing the negative log-likelihood
—E(6,2)~s log q®(0 | x) [1LB3]. In contrast to this, flow-matching posterior estimation (FMPE) [9]
learns a conditional velocity field vf, . (0¢) to iteratively denoise samples from a base distribution

(typically a Gaussian distribution) to the posterior distribution p(6 | ) . The velocity vf, ;18 trained
via the flow matching objective

Lempe = Eth[O,l],(Q,x)wS,ztwm(zt|9)vajgg — (2 | 0)] % (D

where p;(z; | 0) are the sample-conditional flow paths for z;, and u.(z; | 0) are the true velocity
fields. The sample-conditional paths are chosen so that p; and wu; are analytically tractable.

2.2 Fourier Neural Operators

We use FNOs [13]] to efficiently learn the posterior distribution of function-valued parameters. FNOs
are a class of neural operators using the Fourier basis as an intermediate representation of functional
data to learn mappings between function spaces. We assume to have a bounded domain D C R¢,
on which we define function spaces A(D;R% ) and B(D;R%). The goal of neural operators is to
approximate some given operator G : A — 3 by a learnable operator G¢: A— B.In practice, the
function-valued data is represented as discretizations of sample functions a; € A,b; € 3 on the
domain D. A single-layer FNO, G¢ : A — B, is defined by

b(z) = o(Wa(z) + (K%a)(x)) Va € D, 2
where W, is a learnable linear operator, o is a (pointwise) non-linearity, and
(K?a)(x) = F 1 (R?(Fa))(x)Vz € D.

Here, F and F ! refer to the Fourier and inverse Fourier transformation, and R? refers to some
operator acting on the Fourier modes of a. Typically, R? is a linear transformation, and therefore
corresponds to a convolution in real space with K. But typically R? only acts on the lower Fourier
modes, discarding higher ones, and therefore gives rise to a compact representation of high-resolution
data. However, as Eq. [2]includes the linear operator W®a(x), FNOs are still able to capture local
structures.

3 Method

To extend the standard SBI setting to inferring function-valued parameters, we develop FNOPE by
extending FMPE with FNOs as backbone (Figs.[T]2). FNOPE takes the function-valued parameters 6
and observations z as input, and estimates the FMPE flow-field v? for function-valued parameters
using a combination of several FNO blocks.

We assume that 6 as well as z are evaluated on discretizations specified by positions /¢ and [*, which
means we choose it from some set of (1%,1%) € Dy x D,. Here, the parameter positions 1? are
independent of the observation positions [* and can additionally vary between samples ¢. To adapt
the parameter prior to function-valued parameters, we define a prior draw as an evaluation of an
underlying measure 4 (e.g., a Gaussian Process) at specific locations [: @ ~ p;e. The simulator then
returns observations x at locations [% following the likelihood pj= (z | 6,1?). Many such simulations
create a dataset S = {(1¢,0;,1%, x;)} X, for a number of simulations K. The explicit usage of the

positions /% and 1? allows for flexible conditioning of the posterior.

3.1 Function-valued FMPE objective

To learn the velocity field v?, we adapt the FMPE objective function [9] for the function-valued
setting. Given a discretized observation (z,, (%), and a desired parameter discretization 17, we want
to sample 0 ~ p;o (0 | z,,1%). This is done by first sampling from a base distribution £ ~ p;e (£) and



then learning the velocity field vﬁ) (t,&t,0,1%) for &. In the following, we omit the arguments of vﬂ
for clarity. The learned velocity field allows us to iteratively denoise &; into a sample &, from the
target posterior distribution. Note that the noise distribution is discretized on the same positions 1 as

the parameter 6. Similarly to Eq. |1} the velocity field vﬁ is optimized via the loss function

Ly = Etwu[o,l],(le,e,lm,I)NS,Ethle(&\9)||Uﬁ —u(& | 0). 3

Here, p; ;o (& | ;) describes a known noising process such that §; | 6 is (approximately) drawn from
the base distribution p;e (£). Furthermore, u:(&; | 0) is the true vector field of the path defined by
Peo (& | 0¢). We use the rectified flows formulation [18], such that u (&, | 0;) = (§ — 0).

The noise distribution, & ~ ppe (), is com-
monly defined to be independent Gaussian white
noise, & ~ N(0,I). Such distributions give
rise to samples with a uniform power spectrum
of £&. As FNOs typically operate on the lower  £yo piock
frequency modes of their inputs, independent (
Gaussian white noise would not be a suitable
base distribution choice for our application. In-
stead, we sample noise from a Gaussian Pro-
cess & ~ GP(0,k(-,-)) [19,20]], where k(-, ) is
the square exponential kernel with lengthscale
l. Using Bochner’s theorem (Appendix [S3.1)
[21} 22], the spectral density of samples is

P(f) = (2rl?)%/% exp (—27%12f?),

o (z,17)

]
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where dy is the domain dimension of 6 (and
therefore of £). We choose [ to be dependent
on the highest Fourier mode M used by the
FNO. This ensures that the majority of the
signal power in the noise samples &; is con-
served by the FNO block. We use the heuristic
l= W, which in expectation assures that
> 99% of the spectral density of samples £ is
in the lower M frequency modes (derivation in
Appendix [S3.2). The covariance kernel k of the
Gaussian Process is scaled to have unit marginal
variance and defines the FMPE noise sampling
during training via

freq.-lim.
spec. decomp.,
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Figure 2: FNOPE architecture. FNOPE is based
on several FNO blocks (gray): A FNO block re-
ceives the discretization-dependent spectral fea-
tures of the function-valued parameters and obser-
vations as an input and processes them in a linear
layer before transforming it back to the original do-
main via the approximate inverse transformation.
(&1 0) = N((1 =)0, t2k(1°, 19))_ A pointwise linear operation on the input is added,
along with embeddings of the flow time, point po-
sitions, and vector-valued parameters. We expand
this setup to several parallel channels and stack
layers. The vector-valued velocities are separately
estimated via a MLP.

3.2 Adapting to non-uniform,
unseen discretizations of the domain

To operate on non-uniform discretizations, we
adopt the work of Lingsch et al. [23] and use a
FNO with a type II non-uniform fast Fourier transform (NUDFT, [24]). The NUDFT allows us to
approximate the first M spectral modes of data or parameters discretized on any N points in the
domain. We additionally add the positions [’ and I* to the input of the FNO blocks through multilayer
perceptrons (MLPs, omitted in Fig. | for clarity) [25 26].

In addition to non-uniform discretizations, FNOPE is also able to deal with distinct data and pa-
rameter discretizations at training and evaluation time. If we can query the simulator for arbitrary
discretizations le, ", we can generate the training data with mixed discretizations. However, this
is not the case for all simulators. To mitigate errors when evaluating the posterior at non-uniform
discretizations unseen during training, we perform data augmentation during training. First, we
independently mask parts of the parameters and observations by randomly removing entries of 6; and
x; and the corresponding positions 1¢ and [?. Second, we add small, independent Gaussian noise to
the remaining positions (Appendix [S3.3).



In addition to this flexible implementation, we provide and evaluate FNOPE (fix), a variant of
FNOPE which uses the fast Fourier transform (FFT) in the FNO blocks and can be used for applica-
tions which exclusively consider parameters and observations discretized on uniform grids. The FFT
computes spectral components in O (N log V) in the number of points in the discretization N, com-
pared to O(N - M D ) for the NUDFT, where D is the domain dimension. Therefore, FNOPE scales
favorably with the parameter dimensionality N (the number of points in the discretization), but
FNOPE (fix) scales favorably with the domain dimensionality D (details in Appendix [S3.4).

3.3 Inferring additional parameters

As most real world simulators have additional vector-valued parameters 7, we extend the FNOPE ar-
chitecture to also infer their posterior distribution. Vector-valued parameters are drawn from a
known prior distribution p(n) and the model likelihood becomes pi= (z; | 0;, 19.m). The resulting
inference problem is to estimate the posterior distribution p;e (6,7 | z,,(%). Hence, we now condition

the velocity field vﬁ additionally on the vector-valued parameters 77 by embedding them into the
channel-dimension and subsequently adding them to the input of the FNO blocks (Fig. [2).

To estimate the velocity field of the vector-valued parameters v,ﬁf (Fig. , we use a multilayer
perceptron (MLP) to process the spectral features of the output of the final FNO block together with

the vector-valued parameters and the spectral features of the observation. This approach results in a

network which targets the combined velocity v® = [vﬁ) , vf;] The combined network can be trained

by an extension of the loss in Eq.[3

where the noise p(z; | 7)) of the vector-valued parameters is given by a normal distribution
N (25 (1 — ), °T), and uy = [ug(& | 0),u(z | 1)]. The vector field u;(z; | n) for the vector-
valued parameters is analogously defined as u;(z; | ) = (2 — n). In practice, we separately normal-

ize the loss for vﬂ and vﬁ by the number of parameters (Appendix [S3.5).

4 Experiments

We apply FNOPE to four simulators: a Gaussian linear toy example, the SIRD model from epi-
demiology, the Darcy flow inverse problem and a real world application from glaciology (details in

Appendix [S5).

For the linear Gaussian simulator, we can analytically compute the posterior distribution, allowing us
to compare the estimated posterior distributions to this ground truth using the Sliced-Wasserstein
Distance (SWD) [27]]. However, as is common in SBI applications, we do not have access to the
ground truth posterior for the other simulators. Instead, we use a combination of two metrics to
measure the quality of our posteriors: First, we report the predictive mean square error (Pred. MSE)
between ground truth observations and predictive simulations from posteriors conditioned on those
observations. We complement this metric with simulation-based calibration (SBC) [28] on the
posterior marginal distributions. We quantify posterior calibration using the Error of Diagonal (EoD),
measuring the average distance of the calibration curve of the estimated posterior from a perfectly
calibrated posterior. Good performance on both of these metrics is not a sufficient condition to
indicate a correctly estimated posterior, but healthy posteriors typically achieve good performance on
these metrics. All evaluation metrics are averaged over three runs and we report mean =+ standard
error. We provide more details on all evaluation metrics in Appendix [S2] We provide an overview of
training and sampling times, as well as network sizes and computational resources used for all tasks,

in Appendix[ST]
4.1 Baseline methods

We compare FNOPE to three baseline methods: NPE (with normalizing flows) [3] and FMPE [9] on
the coefficients of the spectral basis functions of the parameters (NPE/FMPE (spectral) respectively,
details in Appendix [S4). We also compare to FMPE with a fixed parameter discretization (FMPE
(raw)).

For all baseline methods, we use the sbi foolbox [29]]. For the SIRD simulator we compare to
Simformer [30], a transformer-based amortized inference approach that is also capable of flexible



discretization of function-valued parameters. The other baselines cannot be applied in their basic
version to this task because they do not support non-uniform discretizations of both parameters and
observations.

4.2 Linear Gaussian

We first show the ability of FNOPE to approximate the
true posterior of a linear Gaussian, as commonly done
in SBI benchmarks [31]. To illustrate FNOPE’s ability
to infer a large number of parameters, we increase the 1
dimensionality to 1000. We also replace the independent
Gaussian prior in this task with a Gaussian process to
model smoothly-varying function-valued parameters.

SWD

FNOPE clearly outperforms all benchmark methods on T T T T

this problem (Fig. . With a training dataset of 10? sim- 10° 10" 10 10°
ulations the SWD is close to zero for both FNOPE and # simulations

FNOPE (fix). In contrast, both NPE and FMPE based

on spectral features need as many as 10° simulations to ~ =#= FNOPE =&— NPE (spectral)
achieve similar performance. Furthermore, this exam-  ~#= FNOPE(fix) == FMPE (spectral)
ple shows that the data augmentation applied in training —&= FMPE (raw)
FNOPE, results in a small difference between FNOPE and Figure 3: Linear Gaussian simulator.
FNOPE (fix), which is an effect of the introduced posi- Sliced-Wasserstein distance (SWD) to
tional noise. FNOPE learns a posterior under a slightly ~ground truth posterior.

broader likelihood than what is defined by the model and

for very constrained posteriors the posterior quality is slightly poorer. However, we will see that for
more challenging tasks, this is an acceptable trade off, as we gain flexibility on evaluation points.

We perform ablation experiments (Appendix [S7.1)), and observe that the performance of FNOPE is
dependent on using sufficiently many Fourier modes in the FNO blocks (Fig.[STh,b). However, other
hyperparameters show less influence on the performance (Fig. [STk-e).

4.3 SIRD: Inference on unseen, non-uniform discretizations

Next, we consider the Susceptible-Infected-Recovered-Deceased (SIRD) model [32] to demonstrate
the ability of FNOPE to solve inference problems on non-uniform discretizations of the parameters
and observations that were not seen in the training data. In addition, we also show its ability to
simultaneously infer vector-valued parameters. The model has three parameters: recovery rate, death
rate, and contact rate [33)134]]. We use the same setup as in Gloeckler et al. [30], where we assume
that the contact rate varies over time, but recovery and death rates are constant in time. We sample
training simulations on a dense uniform grid for both parameters and observations. For evaluation we
sample 100 observations, each discretized on a different set of 40 randomly sampled time points in
[0, 50], using contact rates defined on a distinct set of 40 randomly sampled times.

FNOPE, as well as Simformer, can reliably infer the posterior distribution (Fig. E}a) and the observa-
tions lie close to the mean of the posterior predictive (Fig. db). Both methods are comparable in terms
of MSE of posterior predictive samples to the observations, as well as producing well-calibrated pos-
teriors (Fig.[dc). When we use only 20 timepoints to condition on, the performance of FNOPE slightly
decreases (Fig.[S2). This highlights the necessity of the FNO block to have enough observation
points to perform a reliable (approx.) Fourier transformation. We also observe that FNOPE performs
robustly across the base distribution lengthscale (Fig.[S3). This experiment shows that FNOPE is on
par with the state of the art on this low dimensional problem: It successfully infers function-valued
parameters together with vector-valued parameters and can be conditioned on arbitrary discretizations
of the observations. However, FNOPE can also be applied to very high dimensional problems, as
shown in the following experiment.

4.4 Darcy flow: Scalable inference in high dimensions

The Darcy flow is defined by a second order elliptic PDE and has been used to model many processes
including the deformation of linearly elastic materials, or the electric potential in conductive materials.



1.0

o
~

/./ Figure 4: SIRD model. (a)
Posterior conditioned on 40 time

0 20 40 0.2 04 Dboints. left: Posterior (mean =+
std.) of the time-varying param-

Contact rate
&,
(\

Death rate

o
N

0.0

Time [days] Recovery rate
b c 107 eter and ground truth parameters
0.1 4 — FNOPE . (dashed). right: Two dimensional
8 Simformer W 8 7 posterior of vector-valued param-
ks x Data g I eters and ground truth parame-
= 0.0 2 o0 AN D ters (dot). (b) Posterior predic-
' T T T a tive (mean =+ std.) of infected, re-
3 021 0 4 —— —+  covered and deceased populations
§ with observations marked. (c¢) up-
§ per: MSE of posterior predictive
® god X 0.2 7 lower samples to observations. lower:

. T T 1 -m . . . .
Q bound Simulation-based calibration error
3 %% /'.‘.ﬁb.nuﬁi.- 8 of diagonal (SBC EoD). ‘Lower
o R bound’ refers to the SBC EoD for
@ @
g ¥, @ - uniformly sampled posterior ranks
0.0 - = T T 0.0 & ——— (details in Appendix [S2).
0 20 40 10° 10" 10°
Time [days] # simulations

In the geosciences, the Darcy equation is used to describe the distribution of groundwater as a function
of the spatially variable hydraulic permeability, which can be inferred from point observations in
wells [35)]. The Darcy flow is a common benchmark model for FNO applications, especially in the
context of training PDE emulator models [13} 136, 37].

We consider the steady-state of the two dimensional Darcy flow equation on a unit square:
-V (a(z)Vu(z)) =1 z € (0,1)?
u(z) =0 x € 0(0,1)?,

where a(z) > 0 is the permeability we want to infer and u(x) is the hydraulic potential. We adapt
the implementation from [38]], which provides a GPU-optimized solver. We use a log-normal prior
distribution for the permeability, similar to Lim et al. [37]: b = log(a) ~ N (0, (—A+71)~2), where
A is the Laplacian operator and 7 = 9. We sample the prior on a 129 x 129 grid which results in
~ 16k parameters. For FNOPE, we use the first 32 Fourier modes in both spatial dimensions and for
spectral NPE/FMPE we used the first 16 modes, resulting in 2 - 162 = 512 parameter dimensions.
For all methods, we infer the log-permeability and evaluate in the original space (as in [37]).

Samples from the posterior inferred with FNOPE closely resemble the ground truth (Fig. [Sh and
Fig.[S6). Both FNOPE and FNOPE (fix) correctly capture the fine-structure of the posterior samples
and reproduce parameters at much higher fidelity than all baseline methods. While the spectral
methods learn oversmoothed posteriors that do not capture local structures, the posterior samples
from FMPE (raw) are much noisier and only capture the rough global structure. The posterior
means show a similar trend (Fig.[S7), and the standard deviations of the baseline methods are higher
compared to FNOPE (Fig. [S8).

The MSEs between posterior predictive samples and ground truth observations of FNOPE and
FNORPE (fix) are consistently better compared to the spectral baseline methods, especially at lower
simulation budgets, and are in the same range as FMPE (raw) (Fig. Eb). While all methods are
reasonably well-calibrated (Fig. [5k), the visual appearance is vastly different. We additionally
measure the posterior quality in terms of posterior log-probability (normalized by the number of
pixels) of the associated ground truth parameter 6 [31]. FNOPE has a much higher log probability
(Fig.[5d) compared to FMPE (raw). FNOPE (fix) also achieves strong performance for a sufficient
number of simulations. As the spectral methods do not model the parameters directly, we cannot
calculate the log-probabilities they assign to the ground truth parameters. Overall, FNOPE is the only
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Figure 5: Darcy flow. (a) Ground truth parameter and posterior samples for a simulation budget of
10* training samples (more posterior samples in Fig. . (b) MSE of posterior predictives to the
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based calibration Error of Diagonal (EoD) for 50 dimensions. (d) Posterior log-probability of ground
truth samples normalized by the number of dimensions (higher is better).

method that consistently performs well on all presented metrics. In additional ablation experiments
(Fig.[S4), we show that FNOPE attains strong performance across different hyperparameter choices,
and that our lengthscale heuristic (Sec.[3.1)) is an appropriate choice for this task.

4.5 Mass balance rates of Antarctic ice shelves: Real world application

Finally, we turn to a real-world task from glaciology: Inference of snow accumulation and basal
melt rates of Antarctic ice shelves from radar internal reflection horizons (IRHs) [39-41]. Snow
continuously accumulates on top of the ice shelf. Over time, it is transported to larger depths where
the former surfaces are further deformed by ice flow and form internal layers of constant age, which
are measured by radar (Fig. [6p,b). The inference of accumulation and melt rates is a challenging
SBI task, where the model is misspecified, as it cannot accout for all real-world effects. We use an
isochronal advection scheme forward model as described in [39]). In this work, the authors consider
simulations on a grid of 500 points along a one-dimensional spatial domain and directly infer 50
parameters on a fixed downsampling of this domain using NPE. We refer to this approach as NPE
(raw) and compare it to FNOPE and the baseline methods.

First, we evaluate all methods on a test set of simulations (Fig.[6k). As with the previous tasks, the
performance of FNOPE at 10% simulations is comparable to the performance of the other methods at
10° simulations in terms of predictive MSE, and is only marginally worse at 10? simulations. All
methods show a reasonable calibration in terms of SBC EoD at all simulation budgets (Fig. [6d).
We then test the performance of all methods on real data (as in [39])). Posterior predictive samples
from FNOPE match the observation very well (Fig[6p), and while FNOPE still performs better at
low simulation budgets than the other methods, the relative improvement compared to the baselines
is smaller than the one observed on synthetic data (Fig.[6f). We note that this modeling problem
was explicitly set up by Moss et al. [39] so that NPE (raw) can infer the posterior using a feasible
number of simulations. FNOPE achieves the same performance with two orders of magnitude fewer
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Figure 6: Mass balance rates of ice shelves. (a) Measurement transect of the radar data in Ekstrom
Ice Shelf, Antarctica (adapted from [39]], published under Creative Commons CC BY license). (b)
Posterior predictive results obtained with FNOPE (trained on 10° simulations), compared to radar-
based observation on one layer in the ice shelf. (c¢)-(e) Performance measures on test simulations and
the real observation, where NPE (raw) refers to the method used in [39].

simulations. Additionally, FNOPE is able to infer the full parameter dimensionality (500) instead of
downsampling to 50 dimensions (Fig. [S3).

5 Discussion

We present FNOPE, a simulation-based inference method using Fourier Neural Operators to efficiently
infer function-valued parameters. On a variety of task, we showed that FNOPE can infer posteriors for
function-valued data at very small simulation budgets compared to baseline methods, especially for
high-dimensional problems. In addition, by building upon existing work for FNOs on non-uniform
discretizations of the domain, FNOPE can generate samples from posteriors and observations defined
on any discretizations of the domain, even if these discretizations were never seen during training.

Related work Scaling SBI methods to high-dimensional parameter spaces has been the focus of
many works which make use of state of the art generative modeling techniques such as generative
adversarial networks [7]], diffusion models [8} 10, [11]] and flow matching [9]]. In particular, recent
works [30,42] use a transformer architecture to tokenize function-valued parameters, allowing for
complete flexibility in estimating conditional distributions. However, as these methods explicitly
model each point for discretized function-valued parameters, they are limited in terms of scalability.
Our FNO-based approach allows us to compactly represent the parameters, significantly lowering
the computational costs as the number of parameters grows. Finally, for applications where only the
one-dimensional marginal distributions of the Bayesian posterior are needed, it is possible to scale
SBI methods to higher dimensions, as the correlation between the parameters does not need to be
captured [43]]. However, in most scientific applications the correlation structure is an essential object
of interest and marginal distributions are only of limited use.

Estimating function-valued parameters using FNOs [44-46]] and other neural operators [47-49] has
been explored in previous work. A majority of these approaches consider deterministic inversion, or
estimating a single value for the parameters as opposed to targeting the Bayesian posterior. While



probabilistic generative models such as invertible Fourier Neural Operators (iFNOs, Long et al. [50]])
estimate a conditional distribution, they do not explicitly target the Bayesian posterior. We compare
the performance of iFNO on the Darcy task, and while it has comparable performance in terms of
predictive MSE, the uncertainty estimates are not well-calibrated and the conditional distribution
collapses to a tiny parameter region (Appendix [S§).

The closest neighbours to our work are Lingsch et al. [51]], who use a FNO architecture with an
FMPE objective to learn vector-valued parameters and, additionally, learn an emulator producing
function-valued observations. The crucial difference to our approach is that their simulators are
deterministic and the inferred parameters are not function-valued. Recently, Lim et al. [37]] developed
an approach for score-based modeling in function spaces using FNOs. This enables high-dimensional
posterior inference, but their approach is limited to uniform grids and does not allow for flexible
conditioning.

Another related approach is diffusion posterior sampling [52-54]], which seeks to learn a high-
dimensional prior distribution from samples using score-based models. The learned priors can then
be used to generate samples from the posterior using analytically tractable model likelihoods [S5} 56].
Other works extended such approaches for intractable likelihoods [57, 158]]. Similarly to diffusion
posterior sampling, we only require prior samples. However, instead of learning the prior distribution,
we learn the posterior distribution directly.

Limitations The FNO-backbone used by FNOPE inherently makes assumptions about the structure
of the parameters. These assumptions enable computationally efficient inference, but result in
some limitations. First, the FNO assumes limited high-frequency information in the parameter and
observation domains. Therefore, they are ill-suited to infer parameters with high power in higher
frequencies—for example, parameters with discontinuities. This could potentially be addressed by
neural operators using other transforms, such as wavelet transforms [S9]. Furthermore, to (accurately)
compute the FFT or NUDFT of the observations, we require sufficiently many points in their
discretization. Therefore, unlike other flexible methods [30, i42]], our approach cannot perform
inference using extremely sparse observations. Still, the SIRD experiment shows that even for
20 points we get reasonable estimations (Fig.[S2). Finally, the computational complexity of our
approaches still scales exponentially with the domain dimension, which could be challenging in
high-dimensional domains.

Conclusion We presented FNOPE, a simulation-based inference approach for inferring function-
valued data. FNOPE can be applied to non-uniform, unseen discretizations of the domain, can scale
to large parameter dimensions, and can be trained using comparatively small simulations budgets. As
we show in various experiments, FNOPE can therefore tackle spatiotemporal inference problems that
were previously challenging or even intractable for simulation-based inference.
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Supplementary Material

S1 Software and Computational Resources

For all baseline SBI methods, we use the sbi toolbox [29]], for the Simformer baseline we use the
publicly available code from Gloeckler et al. [30] . We use an optimized solver to solve the Darcy
Flow PDE [38].

We use various compute resources for the different experiments. For each experiment, we run the
training and evaluation for each method, for each simulation budget, and for each of the three random
seeds separately. The summary of network sizes and compute times for all tasks are provided in

Tab. [STIS2S3]

For the Linear Gaussian and SIRD experiments, we perform our experiments on Nvidia RTX 2080ti
GPU nodes. Both simulators have negligible wall-clock costs on these GPU nodes. The Darcy
flow experiment required GPUs with higher VRAM to accommodate the large (=~ 16k dimensional)
parameters and observations. We performed these experiments on Nvidia A100 GPUs. For the
Antarctic Ice experiment, we perform training and evaluation on CPU, namely Intel Xeon Gold 16
cores, 2.9GHz. We perform this experiment on CPU as the main computation cost is in running the
simulations for the predictive MSE check, and the implementation of the model is not accelerated by
use of GPUs. The simulation costs are described in Moss et al. [39].

Table S1: Network sizes and training times for Gaussian Linear (GL) and Darcy Flow (Darcy)
tasks. We report the mean over 3 runs with a training budget of 10k simulations. Baselines estimating
the "raw" (untransformed) parameters are denoted (R) and those estimating Fourier coefficients are
denoted (S). Linear Gaussian task was run on a 2080ti GPU, Darcy flow on an A100 GPU.

Task Metric FNOPE FNOPE (fix) NPE(S) FMPE (S) FMPE (R)
GL # params. 110K 109K 567K 86.3K 299K
GL train (Tot.) [m] 3.12 1.98 6.77 2.46 5.14
GL train (/epoch) [s] 0.99 0.87 2.17 0.24 0.31
GL sample (/sample) [ms] 2.16 1.06 0.05 0.24 0.20
Darcy # params. 11.6M 11.6M 3.54M 898K 9.18M
Darcy train (Tot.) [m] 72.2 41.8 20.5 10.9 12.2
Darcy train (/fepoch) [s] 20.3 26.2 2.82 0.66 0.73
Darcy sample (/sample) [ms] 280 35.2 0.21 1.95 2.70

Table S2: Network sizes and training times for SIRD. We report the mean over 3 runs with a
training budget of 10k simulations. Both methods were trained and evaluated on a 2080ti GPU.

Task  Metric FNOPE Simformer
SIRD  # params. 117K 286K
SIRD train (Tot.) [m] 6.95 47.17
SIRD train (/epoch) [s] 1.19 9.43
SIRD sample (/sample) [ms] 0.22 0.22

Table S3: Network sizes and training times for Antarctic Ice (Ice) task. We report the mean over
3 runs with a training budget of 10k simulations. Baselines estimating the "raw" (untransformed)
parameters are denoted (R) and those estimating Fourier coefficients are denoted (S). All methods
were trained and evaluated on CPU.

Task  Metric FNOPE NPE(S) FMPE (S) NPE(R) FMPE (R)
Ice # params. 25.3K 236K 923K 361K 96.2K
Ice train (Tot.) [m] 474 19.7 31.6 6.80 33.5
Ice train (/epoch) [s] 9.82 4.21 1.92 5.64 2.02
Ice sample (/sample) [ms] 22.8 1.50 16.6 1.53 23.9
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S2 Evaluation details

We here describe more details about our evaluation procedures. We evaluate on a heldout test

set {(0%, l?, ng, x5, 15 )}'f‘;‘“l, where Jicq is the number of test simulations. Given an approximate

posterior distribution qﬁ, (6,7 | z,1*) and a test observation (a:;’, l;”) we draw K, posterior samples
(OrjsMiej) ~ qﬁ, (0,n | 24,15 ). In the case where no vector-valued parameters 7 are present, they can
be omitted. Similarly, for methods which do not explicitly use the positions 1?, % (e.g. FNOPE (fix)),
the positions can be omitted, as we do not apply these methods to tasks where we consider arbitrary

discretizations.

We report the average and standard error over all Ji. test simulations.

S2.1 Sliced Wasserstein Distance

Following Bonneel et al. [27], we define the (empirical) sliced Wasserstein(-2) distance (SWD)
between IV samples from two probability distributions p and ¢ as

LK 1/2
WG0) B | (26t |. @
1=1

where z ~ p(z),yr ~ q(y) are samples from the two distributions, u are uniformly randomly
sampled vectors on the unit sphere SP-1 and m&k)7 yt(f) are the 1-dimensional i-th order statistics of
the projections u "z, u " yy, respectively. We calculate the SWD with 50 random projections u and

K = 1000 posterior samples.

S2.2  Simulation-based Calibration Error of Diagonal

Simulation-based calibration (SBC) [28] is a standard measure of the calibration of approximate
posterior distributions (in terms of over- or underconfidence). We obtain ranks r;; for each sample
(95-’7 x?) in the test set using SBC with the 1-dimensional marginal distributions used as the reducing
functions. That is, for each of the dimensions ¢ of 6, the rank ;; is an integer in (1, Kpos + 1). This
results in Je ranks. The cumulative distribution function of ranks is therefore
1

Tri [ Kpost < .
Jtest zj: [ 1]/ post }
The SBC Error of Diagonal (SBC EoD) is then the mean absolute distance between this cumulative
distribution and the cumulative distribution function of a uniform distribution,

CDF,‘ (O/) =

1
SBCEoD(z'):/ |CDF; () — alda.
0

In contrast to the SBC area under the curve (SBC AUC), the EoD will detect poor calibrations
for posteriors that are overconfident at low confidence levels «, and underconfident at high « (or
vice-versa).Finally, we report the average SBC EoD across the dimensions of 6,

1
SBC EoD = — SBC EoD(i).
Ny

For SIRD, since the posterior dimensionalities are low, we compute an average SBC EoD over all
one-dimensional marginals of the posterior. For the Darcy Flow and Antarctic Ice tasks, we select a
subset of 50 marginal distribution for computing the SBC EoD, regularly spread across the domain.

S2.3 Predictive MSE

To calculate the MSE for posterior predictive samples, we run for each posterior sample (01, 1k ),
and each true observation z¢, the simulator x; ~ piz (x| Ok , 1, k5 ). We then compute the average
mean square error of the simulation x; to the corresponding observations x7,

1 Jlesthmt 1
MSE=——0— 3 llaws — a5l
JtelepoS[ =11 |l;7| H J ]HL27
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where [I7| is the number of points in the discretization [ and therefore the dimensionality of z¢.
We use this metric since the simulators considered in this work correspond to (unknown) unimodal
likelihood functions—a correctly estimated posterior will produce simulations clustered around the
true observation. We opt for this metric to quantify predictive performance due its clear interpretability.
However, for multimodal likelihood functions, this metric can be replaced with a scoring rule.

S2.4 Posterior Log Probability

For the Darcy Flow task, we additionally report the posterior log-probability of the true parameters
[31], normalized by the number of pixels:
1

log-probability per pixel = 7
J

log qjy (05 | 5, 15)-

For the spectral methods NPE/FMPE (spectral), we cannot directly compute the posterior-log-
probabilities, as we can only compute the posterior-log-probabilities of the first M modes of the
spectral decomposition of the ground truth parameters 9. However, by discarding the information
of the higher modes, we remove the information which these baseline methods cannot capture, thus
biasing the resulting log-probabilities in favor of these baselines.

S3 FNOPE details

S3.1 Bochner’s Theorem

We state Bochner’s theorem following Williams and Rasmussen [22]. A complex-valued function k
on R? is the covariance function of a weakly stationary mean continuous complex-valued random
process on R” if and only if it can be represented as

k(r) = / exp”™ 7 dp(s) ©)
RD

for some positive finite measure . Crucially, in the less general but relevant case that p admits a
density P(f), the integral is a Fourier transform between the kernel k(7) and the spectral density
P(f). We apply this result to relate the lengthscale of the square exponential kernel to the spectral
density of its Fourier decomposition in Sec.[3.1]

S3.2 Kernel lengthscale heuristic

The spectral density of samples from a Gaussian Process with a square exponential kernel of
lengthscale [ is stated in Sec. [3.1]as

P(f) = (2nl?)%/2 exp(—27%12 f2).

This is also a Gaussian density, and trivially we see that the full spectral power is

p= [ Ppir=1
Re
We consider discretizations normalized to [0, 1] in each dimension, and so the power contained in the
first M spectral modes, Py, corresponds to the above integral within the domain || f||oc < M/2, i.e.

where all the components of f are within [—M /2, M /2]. Therefore Py, simplifies to the product of
the Gaussian integrals

) M/2 do
Py = </ (2ml?)1/? exp(—27r212fi)dfi>

—M/2
>d9

()’
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where erf is the Gauss error function, and in the last line we substituted our heuristic | = W
This value saturates the error function and produces values very close to 1. For example, for the
Darcy Flow example (dg = 2), we set M = 32. The resulting spectral power in the first 32 modes is
P35 /= 0.9997. While individual samples from the Gaussian process can result in discrete Fourier
transforms where this spectral property is not fulfilled, it is clear that the majority of the spectral

power will be contained in the first M modes for all samples.

S3.3 Flexible discretization

We provide further detail of the data augmentation scheme introduced in Sec.[3.2] First, we describe
why this is necessary despite the use of the non-uniform fast fourier transform (NUDFT). The NUDFT
is applied as a matrix multiplication., © = V(1%)6, where © is a vector containing the first M spectral
components of #, and V is the discretization-dependent transformation matrix. The inverse NUDFT is
similarly implemented as a matrix multiplication = V' T (1)©, where V' T is the conjugate transpose
of V. This approach enables the computational efficiency of the NUDFT, as the exact inverse matrix
does not need to be computed at runtime. However, V' T is only an approximate inverse of V', with
the approximation error increasing for increasing non-uniformity of the discretization.

Consider the common case where the simulation dataset .S (Sec. [3) provides parameters ¢; and
observations x; always discretized on the same, uniform simulation domain. Without data aug-
mentation, we always apply the NUDFT and its inverse without approximation error. However, if
we wish to condition a posterior on x° measured at some non-uniform discretization [*, then the
NUDFT and its inverse will produce some error, which was unseen during training. This could lead
to unpredictable, out of distribution errors at evaluation time. By explicitly passing the positions
19 and I to the network, as well as augmenting them to ensure the network is not always applied
on uniform discretizations during training, we give FNOPE capacity to learn to counteract these
approximation errors.

Masking We define a uniform distribution over the binary mask vectors with a fixed num-
ber of nonzero entries, Ng,. Suppose we are given a simulation (6,1?, z,1%), where 6,1° con-
sist of Ny points, and x,[” consist of N, points. We construct two random binary masks,
M’ € {0,1}"o, M? € {0, 1}"V=, each with exactly Ny nonzero entries. We then remove the cor-
responding elements of 6, [? where My is zero, and similarly remove the corresponding elements
of x,l” where M, is zero. For a minibatch of simulations, we independently sample the masks
MY?, M? for each simulation. If Nys > Ny or Ngg > N, we leave the corresponding value and
position vector unchanged. The value of Ny used in our work is reported for each experiment in

Appendix

Positional noise We additionally add small, independent gaussian noise ¢; ~ N(0,02) to each
point in [? and [* in the unmasked positions. This reduces generalization error for simulation datasets
where the discretization of 6 and z is fixed. The value of o2 can be set according to the spacing of
the discretization. In our experiments, we always normalize the simulation domain to [0, 1] in all
dimensions, and set ¢ = 103,

S3.4 Fixed discretization

For applications with uniform grids, we provide FNOPE (fix). Here, we use the FFT instead of
the NUDFT in the FNO blocks to transform the data from physical to spectral space and back. In
addition, we do not mask any parameters during training and do not add any positional noise. We
expect this method to have improved performance on uniform grids as we do not introduce additional
noise through the data augmentation process described above.

Another potential advantage of FNOPE (fix) is its computational efficiency. Consider the case
of a parameter discretized uniformly in a D-dimensional domain, with L points per dimension,
leading to a total of L” points. The computational cost of computing the spectral decomposition
of the parameters using the FFT is O(L” log LP) = O(DLP log L). Assuming the maximum
number of modes in each dimension modeled by the FNO is M, this leads to M D total modes to
compute. Therefore, the computational cost of the frequency-limited NUDFT is O(M P LP). For
one-dimensional domains, the NUDFT may well be faster to compute than the FFT. However, for
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higher dimensions, the NUDFT scales exponentially with both M and L. This discrepancy increases
with both the dimensionality of the domain, and the number of modes M modeled by the FNO
blocks.

S3.5 Additional Parameters

The niive extension of the FMPE objective as stated in Sec. is to minimize the L2 loss |[v® —uy||?,

where v? = [vﬁ, ,0f] and uy = [uy(&10), ue(2¢|n)]. However, the scale of the loss for the continuous

parameters, ||vf; — uy(&]0)||? varies with the number of points in the discretization [?, which we
denote Ny. To ensure that the loss is balanced for the function- and vector-valued parameters, we
in practice add their L? losses, normalized by their respective vector dimensionalities. That is, we
minimize

1 1
Ny N,

where NV, is the fixed dimensionality of 1. The expectation is over the same random variables as for
the statement of the loss Lo in Sec.[3.3]

E %],

[[vfs = we(&lO)II1® + = llof — we(zeln)

S4 Baseline Methods

S4.1 Spectral preprocessing

For spectral NPE/FMPE we first apply a Fourier transformation to the parameters, take the first
M Fourier modes and expand these M complex values to a real vector of dimension 2M — 1
representing the real and imaginary parts (the imaginary part of the first component is always 0, hence
it is discarded). For two dimensional data, the same preprocessing results in 2//2? — 1 parameters.
After inferring the posterior of the parameters in Fourier space and sampling from it, we apply the
inverse Fourier transform to get samples in the spatial domain.

For the one dimensional problems (Linear Gaussian and Ice Shelf) we first pad the data by replicating
the first/last value and perform a real FFT with torch.fft.rfft. We then use the first M fourier
components and expand these complex numbers to a real tensor of dimension 2, which we use as
input to NPE/FMPE. For the Linear Gaussian and Ice Shelf we use M = 50, 10, respectively. We then
revert this process for samples from the posterior with torch.fft.irfft with the corresponding
settings.

For the two dimensional Darcy flow, we use the two dimensional FFT implemented in pyforch on
the padded data (in mode replicate). We then center the frequencies before cropping to the first M
Fourier components in both dimensions, and expanding it to a real tensor of dimension 23 2. For
posterior samples we again revert this process with the corresponding settings.

S4.2 NPE (spectral)

For NPE (spectral) we infer the posterior over the coefficients of the first M Fourier modes following
the spectral preprocessing described above. We use NPE [3] with normalizing flows. We do not apply
spectral preprocessing to the observations but pass raw observations through an embedding net as it
is common practice in NPE.

S4.3 NPE (raw)

For the mass balance experiment (Sec. .5)), we also compare to the approach of Moss et al. [39],
which we refer to as NPE (raw). This approach infers the mass balance parameters on a fixed
discretization of 50 gridpoints. The authors use a Neural Spline Flow with 5 transformations, two
residual blocks of 50 hidden units each, ReLU nonlinearities and 10 bins. The embedding net used
to embed the 441-dimensional observation is a CNN with two convolutional layers of kernel size 5,
with ReLU activations and max pooling of kernel size 2. The convolutional layers are followed by
two linear layers with 50 hidden units and output dimension 50. The same settings are used in the
500-dimensional experiment (Appendix [S7.4). Training is performed with a batch size of 200 and an
Adam optimizer with learning rate of 0.0005.
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S4.4 FMPE (spectral)

As with NPE (spectral), in this approach we apply spectral preprocessing to the parameters, and
infer the coefficients of the top M Fourier modes, but process the observations directly using an
embedding net. We use MLPs to estimate the flows, as in Wildberger et al. [9], as implemented in the
sbi toolbox [29]]. This implementation also uses the rectified flow [18]] objective for FMPE, and we
use independent Gaussian noise as the noise distribution. The flow networks are conditioned on time
by concatenating the time to the inputs.

S4.5 FMPE (raw)

In this approach, we infer the parameters directly on a fixed discretization of the domain. We again use
embedding nets to encode the observations, and MLPs to learn the flows. As with FMPE (spectral),
we use a rectified flow objective, and independent Gaussian noise as the noise distribution, as in the
sbi toolbox. The flow networks are conditioned on time by concatenating the time to the inputs.

S4.6 Simformer

For the SIRD experiment, we apply Simformer with the same settings as in Gloeckler et al. [30]. That
is, we use a transformer model with a token dimension of 50, 8 layers, and 4 heads. The widening
factor is 3, and the training was performed with a batch size of 1000 and an Adam optimizer. We
train Simformer to learn all conditionals, and so uniformly draw between the posterior, joint, and
likelihood masks, as well as two random masks drawn from Bernoulli distributions with p = 0.3
and p = 0.7 respectively. For both SIRD experiments, where we evaluate on 20 and 40 time points
respective, we use the same Simformer model which is trained using 20 randomly sampled time
points.

S5 Simulators

S5.1 Linear Gaussian model

The Gaussian Simulator is inspired by Lueckmann et al. [31], but instead of a 10 dimensional
Gaussian distribution with independent dimensions we expanded the problem to 1000 dimensions
and use a Gaussian Process prior (see below). Draws from the simulator are still drawn independently
per dimension as z ~ N'(6, 02T), where 02 = 0.1 (as in [31])).

Prior The prior is defined as a Gaussian process GP on [0, 1] with an equidistant discretization

with 1000 timepoints. A draw from the prior is therefore defined as 8 ~ GP(0, k(-, -)), where k is the
(t—t)*

squared exponential kernel, k(t,t") = exp(— ). We set the lengthscale [ = 0.05 and variance
to 1. Only in the ablation experiments (Fig.[STh,b) we changed the lenghtscale [ to 0.005.

Evaluation parameters The results for Fig. |3|is based on 100 observations and 1000 posterior
samples for each observation.

S5.2  SIRD model

Similar to Gloeckler et al. [30] we extend the SIRD (Susceptible, Infected, Recovered, Deceased)
model to have a time-dependent contact rate. Compared to the classical SIR framework the model
additionally incorporates a deceased (D) population. Similar models were explored by Chen et al.
[33], Schmidt et al. [34]. This addition is important for modeling diseases with significant mortality
rates. The SIRD model, including a time-dependent contact rate 3(¢), is defined by the following set
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of differential equations:

B s,

= B()ST ~ 7T I,
% =1,

% =ul.

Here, S, I, R and D are the susceptible, infected, recovered, and deceased population, 3(t) is the
time dependent contact rate, and v and p are the recovery and mortality rates among the infected
population. We simulate on a dense uniform grid of 100 time points for parameters and observations.
The simulations are additionally contaminated by an observation noise model, which is described by
a log-normal distribution with mean S(¢) and standard deviation o = 0.05.

Prior We impose the same prior as in Gloeckler et al. [30]]: the global variables ~ and p are drawn
from a uniform distribution, v, i ~ Unif(0, 0.5). For the time-dependent contact rate we define a
Gaussian process prior which is further transformed by a sigmoid function to ensure that 5(¢) € [0, 1]

for all ¢. For the Gaussian process we use a RBF kernel k defined as k(¢,t') = exp(—%).

Evaluation parameters MSE as well as SBC EoD is based on 100 observations with 1000 posterior
samples each (Fig. e and Fig. [SZt). To calculate the posterior predictive, we sample the initial
condition I(0) from the Simformer prediction for both methods, as opposed to the prior defined
above, to match the setting of Gloeckler et al. [30].

S5.3 Darcy Flow

Details for the Darcy model are already given in the main text. We additionally scale the log-
permebility a by the scale factor of 1000 before taking the exponential - this results in permeabilities
which produce sufficiently variable solutions using the Darcy flow simulator, and the permeabilities
on the same scale as reported in Lim et al. [37]]. The simulation output is additionally corrupted by an
independent Gaussian observational noise per pixel ¢; ~ N(0,02). We set o; = E[u?/30], where
the expectation is per simulation batch, resulting in a signal to noise ratio (SNR) of 30.

Evaluation Parameters All metrics are calculated over a test set of 10 observations (Fig. [5]b-d).
For MSE and SBC EoD, 100 posterior samples were used for each observation and for each method.
Finally, for SBC EoD, we use a subset of 50 pixels of the full 129 x 129 as the marginals used for
the reducing functions. The same pixels were used across all methods and all observations.

S5.4 Mass balance rates of Antarctic Ice Shelves

We use the same simulator as described in Moss et al. [39]. This model takes in spatially varying
surface accumulation rates a(l), which are related to the basal melt rates b(!) through the total balance
condition (1) = a(l) — b(1). m(l) is known and fixed across all simulations.

The layer prediction model consists of a set of isochronal layer with prescribed thicknesses
{h1(1), ha(l),...,hg (1)} such that Zszl hi(1) = h(l), where h(l) is the known and fixed to-
tal ice shelf thickness. At each time step, the thickness of the layers are simultaneously updated

through an advection equation,

oy
S ==V (hu),

where wu(l) is the known velocity profile of the ice shelf which is fixed across simulations. Additional

layers are added at the top of the ice shelf and removed from the bottom according to a(l), b(l)
accordingly. The noise model approximates the observation noise of the radar measurement given an
assumed density profile of the ice shelf. At the final timestep 7', the layer that most closely matches
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the ground truth observation 2 according to the L2-norm is selected as the simulator output. Full
details are described in Moss et al. [39]].

Prior The prior is defined over the accumulation rate parameter a((), and is motivated by physical
observations at Ekstrom ice shelf. Prior samples are drawn using

a(l) = 0l + por, ©)

where 1o ~ N(0.5,0.25%), o ~ U([0.1,0.3]), and ¢ is drawn from a Gaussian Process with a
unit-variance, zero-mean Matérn-v kernel of lengthscale 2500 and v = 2.5.

Evaluation Parameters For SBC EoD, as well as the predictive MSE on synthetic test simulations,
we use 100 test observations and sample 10 posterior samples for each observations and for each
method. The real test data consists of one field observation (shown in Fig. [6a-b), and the posterior
predictive was estimated using 1000 posterior samples.

S6 Experimental details

S6.1 Linear Gaussian

For all the baseline methods, we train the networks using an Adam optimizer with a learning rate
of 0.0001, and a batch size of 200. For NPE/FMPE (spectral), we use 50 modes, leading to 100
parameters to learn, and a pad width of 20 for the spectral preprocessing (Appendix [S4.1)). For NPE
(spectral) the density estimator is a Neural Spline Flow (NSF) with 2 residual blocks with 50 hidden
dimensions each, 5 transforms, with RELU activations. For FMPE (spectral), we use an MLP with 5
linear layers with 64 hidden dimensions to estimate the flow, with ELU activations. In both cases, we
embed the 1000 dimensional observation into a 40-dimensional vector using an MLP with 2 layers
and 50 hidden units and RELU activations. For FMPE (raw), we use an MLP with 5 layers and 64
hidden features, with ELU activations.

For FNOPE and FNOPE (fix) we use 50 Fourier modes for the FNO blocks. We use 5 FNO blocks
with 16 channels, while the context is embedded into 8 channels. We train for a maximum of 500
epochs with an early patience of 50. We used a training batch size of 512 and a learning rate of 0.001.
For FNOPE, we use 4 channels each for the positional and time embeddings and the target gridsize
Nygs = 256 (for FNOPE (fix), no positional embedding is included). All nonlinearities are GELUs.

S6.2 SIRD

For FNOPE we use 32 Fourier modes for the FNO blocks. We use 5 FNO blocks with 16 channels,
while the context is embedded into 8 channels. We train for a maximum of 1000 epochs with
an early patience of 50. We use a training batch size of 200 and a learning rate of 0.001. The
discretization positions and flow times are embedded into 4 channel dimensions each, and the target
gridsize Nys = 40. This experiment additionally included vector-valued parameters in R?. These are
embedded into a 16-dimensional vector using a 1-layer MLP with a hidden dimension of 64. The flow
for the vector-valued parameters is estimated using an 1-layer MLP with a hidden dimension of 64.
The spectral decomposition of the output of the FNO blocks, as well as the spectral decomposition
of the observation, are embedded into a 32-dimensional vector and concatenated to the input of the
MLP. All nonlinearities were GELUs.

The training hyperparameters for simformer are described in

S6.3 Darcy Flow

For all the baseline methods, we train the network using an Adam optimizer with a learning rate
of 0.0001, and a batch size of 200. For NPE/FMPE (spectral), we use 16 modes, leading to
2 x 162 = 512 parameters to learn, and a pad width of 20 in each dimension for the spectral
preprocessing (Appendix [S4.T)). For NPE (spectral) the density estimator is a NSF with 2 residual
blocks with 50 hidden dimensions each, 5 transforms, with RELU activations. For FMPE (spectral),
we use an MLP with 8 layers with 256 hidden dimensions to estimate the flow, with ELU activations.
For FMPE (raw), we use an MLP with 8 layers and 256 hidden features, with ELU activations. All
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baseline methods embed the observation with a CNN embedding net into a 100-dimensional vector
using 4 convolutional layers with kernel size 5 followed by max pooling of kernel size 2, followed by
a 4-layer MLP with 100 hidden units, with RELU nonlinearities throughout.

For FNOPE and FNOPE (fix) we use 32 Fourier modes for the FNO blocks. The network is made
of 5 FNO blocks with 32 channels, while the context is embedded into 32 channels. We train for
a maximum of 300 epochs with an early patience of 50. We use a training batch size of 200 and a
learning rate of 0.0005. For FNOPE, we set the target gridsize Ny = 2048. The architecture includes
8 channels for positional embedding, and 8 channels for time embedding. All nonlinearities are
GELUs.

S6.4 Mass balance rates of Antarctic Ice Shelves

For all the baseline methods, we train the network using an Adam optimizer with a learning rate
of 0.0001, and a batch size of 200. For NPE/FMPE (spectral), we use 10 modes, leading to 20
parameters to learn, and a pad width of 20 for the spectral preprocessing (Appendix [S4.1). For NPE
(spectral) the density estimator is a NSF with 2 residual blocks with 50 hidden dimensions each, 5
transforms, with RELU activations. For FMPE (spectral), we use an MLP with 5 linear layers with 64
hidden dimensions to estimate the flow, with ELU activations. For FMPE (raw), we use an MLP with
5 layers and 64 hidden features, with ELU activations. For all baseline methods, we used the same
embedding as Moss et al. [39]], which was a CNN embedding the 441-dimensional observation into a
50-dimensional vector using 2 convolutional layers with kernel size 5 followed by max pooling of
kernel size 2, followed by a 2-layer MLP with 50 hidden units, with RELU nonlinearities throughout.
The configuration of NPE (raw) is described in Appendix [S4.3]

For FNOPE we use 10 Fourier modes for the FNO blocks. The network is made of 5 FNO blocks
with 16 channels, while the context is embedded into 8 channels. We train for a maximum of 1000
epochs with an early patience of 50. We use a training batch size of 200 and a learning rate of 0.001.
We do not include the data augmentation procedure for this experiment, as the discretizations of both
observations and parameters was fixed to the setting of [39]. We still include positional embedding
due to the parameter and observations being discretized differently to one another: the architecture
included 4 channels for positional embedding, and 4 channels for time embedding. All nonlinearities
are GELUs.

For the experiments on 500 gridpoints (Fig. we use the same hyperparameters.

S7 Ablation experiments

S7.1 Linear Gaussian

To investigate the influence of different hyperparameters on the performance of FNOPE, we ran
several ablation experiments. First, we studied the performance of FNOPE in the deliberately
insufficient setting where the prior distribution over the parameter contains higher-frequency modes
than what is modeled by the FNO blocks. To this end, we changed the lengthscale of the prior
distribution for the Linear Gaussian task (Sec. by a factor of 10 to 0.005, resulting in higher
frequency components for the parameter . We then trained FNOPE with a varying number of spectral
modes in the FNO blocks. With a lower number of modes, the performance of FNOPE degrades,
and the posterior samples clearly miss the high frequency components present in the ground truth
observations (Fig.[STh,b). Second, we varied the number of unmasked points in the FNOPE training
procedure (Sec. [3.1). While the SWD decreases with the number of unmasked points, it saturates at
512 unmasked points, which is approximately half of the observed data (Fig.[SIt). We then consider
changing the lengthscale heuristic used to define the base distribution for FNOPE (Sec. [3.1), by
defining | = L/M for the number of modes M and some lengthscale scaling factor Lg. In the
extreme case Ly = 0, this corresponds to the base distribution sampling uncorrelated white noise
(WN). The lengthscale heuristic used in our work corresponds approximately to Lo = 4/7 ~ 1.27.
In contrast to the other hyperparameter ablation experiments, varying the lengthscale scaling factor
does not seem to impact the performance of FNOPE considerably for this task. FNOPE performs well
over a wide range of lengthscale scaling factors (Fig.[STd). Finally, we consider a version of FNOPE
which keeps the masking scheme as described in Sec. [3.1] but without adding positional noise to
the remaining positions, which effectively only sees positions on the simulation grid during training
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(FNOPE (no jitter)). On this task, we evaluate on an equispaced grid, and we see that FNOPE (no
jitter) performs similarly to FNOPE (Fig.[STk). Therefore, the performance of FNOPE does not
degrade from the inclusion of positional noise in this task.
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Figure S1: Linear Gaussian ablation experiments. (a) Performance for 10* training samples
in terms of SWD for the Linear Gaussian experiments with varying number of Fourier modes in
the FNO block. Note that we changed the lengthscale of the simulator prior by a factor of 10 to
0.005 (Appendix[S3] (b) Power analysis of FNOPE (fix) samples and ground truth  for different
number of used modes in the FINO block. (¢) Performance in terms of SWD for different numbers of
masked points in FNOPE. (d) Influence of the lengthscale of the noise process on the SWD. “WN”
corresponds to white noise (an uncorrelated Gaussian distribution). (e) Same as Fig. El with a version
of FNOPE in which we omit the adding of positional noise (FNOPE (no jitter)).

S7.2 SIRD

First, we compare the performance of FNOPE to Simformer on the SIRD task when using observations
at 20 (instead of 40) randomly sampled times (Fig.[S2). The performance of FNOPE slightly degrades,
while Simformer still performs robustly. Second, we adapt the lengthscale heuristic used to define the
base distribution for FNOPE (Sec. , by defining [ = Ly/M for the number of modes M and some
lengthscale scaling factor Lg. The lengthscale heuristic used in our work corresponds approximately
to Lo = 4/m ~ 1.27. We observe that FNOPE performs robustly for a wide range of lengthscale
scaling factors.

S7.3 Darcy Flow

In the Darcy task, we ablate the number of modes used in the FNO block for FNOPE. We see
that while the MSE of posterior predictive simulation and posterior calibration as measured by
the SBC EoD of marginal distributions is not strongly affected by the number of modes used, the
posterior log-probability per pixel increases with the increased model capacity (Fig.[S4h). This is
expected, as more modes allow FNOPE to estimate a more constrained posterior distribution, leading
to higher posterior densities. Second, we adapt the lengthscale heuristic used to define the base
distribution for FNOPE (Sec. , by defining | = Lo /M for the number of modes M and some
lengthscale scaling factor Ly. The lengthscale heuristic used in our work corresponds approximately
to Lo = 4/7 ~ 1.27. We see that increasing the lengthscale scaling factor improves the calibration
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Figure S2: SIRD model on 20 conditioning points. (a) Posterior conditioned on 20 time points.
left: Posterior (mean =+ std.) of the time-varying parameter and ground truth parameters (dashed).
right: Two dimensional posterior of vector-valued parameters and ground truth parameters (dot). (b)
Posterior predictive (mean = std.) of infected, recovered and deceased populations with observations
marked. (¢) upper: MSE of posterior predictive samples to observations. lower: Simulation-based
calibration error of diagonal (SBC EoD). ‘Lower bound’ refers to the SBC EoD for uniformly sampled
posterior ranks (details in Appendix[S2). See Fig. [ for the results with 40 conditioning points.
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Figure S3: SIRD ablation experiments. Influence of the lengthscale of FNOPE’s base distribution
(Sec.[3.1) on posterior quality in terms of MSE of posterior predictive simulations and Simulation-
based calibration error of diagonal (SBC EoD).

of the posterior learned with FNOPE. We observe that FNOPE achieves its best performance in terms
of posterior log-probability when the base distribution lengthscale scaling factor is set to a value
around our lengthscale heuristic (Fig.[S4p).

S7.4 Mass balance rates of Antarctic Ice Shelves

We repeat the Antarctic ice mass balance experiment (Sec. 4.5), without downsampling the parameter
space from simulation to inference, i.e. inferring the full 500-dimensional posterior distribution
over the mass balance parameters. Overall, we observed that FNOPE maintains its performance
on this higher-dimensional problem (Fig. [S5). For low simulation budgets, the performance of
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Figure S4: Darcy ablation experiments (a) Influence of number of used modes in the FNO block on
different performance measures. The original experiments used 32 modes. Measures are the same as
in Fig. [5b-d. (b) Influence of the noise length scale on different performance measures. The original
experiments used a lengthscale of ~ 1.27. Measures are the same as in Fig. [5p-d.

FNOPE exceeds the other methods in terms of predictive MSE for both synthetic and real observations.
As expected, spectral baseline methods significantly outperform the other baselines, especially at low
simulation budgets.

W " A 0.2 = = |ower bound W
na 0.6 w2 0.6
= & =9
BE E 0 ?.—S? B3 SO=
o L”, n EEEEEER [0 W
0.0 0.0 0.0
T T T T T T T T T
10> 10" 10° 10> 10" 10° 10> 10" 10°
# simulations # simulations # simulations
=@= FNOPE === NPE (spectral) == FMPE (spectral) NPE (raw)

Figure S5: Mass balance rates of ice shelves. Inference of mass balance rates where the parameter
discretization uses 500 gridpoints (observation discretization remains unchanged). Performance
measures on test simulations and the real observation, where NPE (raw) refers to the method used in
Moss et al. [39]]. Results for FMPE (raw) omitted as this baseline was not able to always produce
samples within the prior bounds across all test observations. See Fig. [6] for the results based on 50
grid points.
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S8 Additional Results

S8.1 Additional Darcy results
61 6 63 6,4
~
\1‘
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Figure S6: Posterior samples Darcy flow experiment. Additional posterior samples for the Darcy
flow experiment for six distinct observations simulated from ground truth parameter 6;.
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Figure S7: Posterior means for Darcy flow experiment. Posterior means (based on 100 samples)
for the Darcy flow experiment for six distinct observations simulated from ground truth parameter 6;.
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Figure S8: Posterior standard deviation for Darcy flow experiment. Posterior standard deviations
(based on 100 samples) for the Darcy flow experiment for six distinct observations simulated from
ground truth parameter ;.
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S8.2 Comparison to invertible Fourier Neural Operator

As an additional comparison, we apply the work of Long et al. [50] and train an invertible Fourier
Neural Operator (iFNO) to solve the Darcy Flow inverse problem, using the same training data and
simulation budgets. We train the iFNO with the same settings as described in Long et al. [50] for
the D-CURV experiment, summarized below. We observe that while iFNO achieves a comparable
performance to FNOPE in terms of its predictive MSE, the posterior distribution is not calibrated
as measured by the SBC EoD (Fig.[S9,b) and essentially collapsed to a point estimate. The SBC
EoD value measured for iFNO (around 0.25) is consistent with this point estimate, because the
one-dimensional marginal of a point mass distribution either always overestimates or underestimates
the ground truth value. Hence, recalling the definition of SBC EoD (Sec. [S2.2)), the ground truth
will have rank r;; = 1 or 7;; = Kpost + 1. Supposing that over different observations x;’ the point
mass distribution is equally likely to underestimate or overestimate the ground truth, the cumulative
distribution of the ranks will be given by CDF;(«) = 0.5 for all significance levels o € (0,1). Given
the definition of the SBC EoD, a point mass distribution results in a SBC EoD value of

1
/ ICDF; (a) — alda = 0.25 @
0

for each dimension 7. This overconfidence is also reflected in the standard deviations of the estimated
distributions (Fig.[S9), which show that iFNO essentially estimates a point mass for this task.

iFNO hyperparameters We trained iFNO with 4 FNO blocks and 16 Fourier modes. The number
of training epochs for the invertible Fourier blocks was set to 100, for the 5-VAE 1000, and for joint
training 100. The architecture of the 3-VAE was the same as in Long et al. [30] with rank 32, as well
as the value 3 = 10~°. We used a minibatch size of 10 for joint training and 20 for the VAE and
iFNO pretraining.
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Figure S9: Darcy Flow, comparison of FNOPE to iFNO [50]. (a) MSE of posterior predictives to
the ground truth observation (zoomed in relative to Fig. [5). (b) Simulation-based calibration Error of
Diagonal (SBC EoD) for different training budgets. (¢) Ground truth 8, Posterior means, pixelwise
error of means relative to ground truth, and posterior standard deviations. The color bars of the means
match Fig.[S7} and for errors and standard deviations they match Fig. [S8]



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state the contributions of our work: We introduce FNOPE, a simulation-
based inference method for inferring function-valued parameters. We demonstrate on
synthetic and real world tasks its ability to generalize to new and non-uniform discretizations
of the parameter and observation domains, as well as its scalability to large numbers of
parameters.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly mark a discussion on the limitations of our approach, including
limitations of the low-frequency assumption of Fourier Neural Operators, and limitations in
higher-dimensional parameter domains than those considered in our experiments.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our work includes a lengthscale selection heuristic for the FNOPE noise
distribution, for which we provide a derivation for in Appendix[S3.2] and appropriately refer
the reader to this derivation in the main text.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details in appropriately labelled subsections of the
appendix, including simulator configurations, model hyperparameters for each experiment,
and details on the evaluation metrics. In addition, we provide our code to reproduce all
experiments in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our code and document how to run the experiments included in
our paper. These include the simulators, as well as the random seeds used to generate the
training data from the simulators.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report all experimental details, including data splits, model hyperparame-
ters, and optimizers in Appendix [S6] We provide the random seeds used to run our training
and evaluation scripts to allow full reproducibility of our experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report the standard errors in our results over 3 independent runs for each
experiment. The size of the test set is provided for each experiment in the appendix and in
the configuration files provided with the code.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

 The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the specifications of our compute nodes as well as further informa-
tion in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that this work conforms to the NeurIPS Code of Ethics in all
respects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work presents a methodological development in performing simulation-
based inference, with the goal of enabling scalable and flexible inference in various scientific
domains. We do not target applications with direct societal impact, and do not foresee
potential for misuse.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work uses only synthetic or publicly available data. Our work is method-
ological and empirical, and therefore we do not see a risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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14.

15.

Answer: [Yes]

Justification: We credit all external asserts in our work, including datasets. We reproduce a
figure component from existing published work which is correctly attributed and licensed,
with some details omitted for the review stage to preserve anonymity.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code for our method with appropriate documentation. No other
assets are produced in this work.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not include crowdsourcing or research with human experts.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were involved in this study, nor data involving human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used in the development, implementation, or evaluation of the
proposed method according to the NeurIPS LLM policy.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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