An Augmentation a Day Keeps the MRI Away:
Blueprint Augmentation for Brain Graphs
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Abstract. Graph augmentations are essential for expanding datasets
for classification tasks. Existing graph augmentation techniques often
fail to preserve the graph’s topological structure. This is particularly im-
portant for brain graphs were changes in topology could lead to graph
misclassification (i.e., misdiagnosis of brain conditions). This paper in-
troduces Blueprint Graph Augmentation (BluGrAu), a proof-of-concept
method designed to address the challenge of augmenting brain graphs
derived from MRI data without compromising topological integrity. Blu-
GrAu leverages the novel concept of a "graph blueprint," which is a
transformed version of an input graph where essential topological fea-
tures of an input graph are preserved. The graph blueprint aims to serve
as a template for generating graph variations that retain critical struc-
tural properties. By employing a graph neural network-based variational
autoencoder (VAE), BluGrAu produces augmented graphs that improve
classification accuracy while maintaining a consistent topological struc-
ture.

Keywords: Brain graph augmentation, Topology-aware augmentation, Graph
Variational Autoencoder

1 Introduction

Brain graphs, often derived from Magnetic Resonance Images (MRIs), provide
a representation of structural or functional connectivity between different re-
gions of the brain. These graphs could be used for diagnosing neurological dis-
orders such as Alzheimer’s disease and Autism [3]. Recent studies demonstrate
that Graph Neural Networks (GNNs) can utilize brain graph data to distin-
guish between healthy and diseased states [7]. However, GNN-based methods
face challenges when limited training data are available, as robust classifica-
tion typically requires larger datasets [§]. Although generating additional brain
graphs by augmenting MRI scans can mitigate data scarcity, it comes with the
risk of bias where minor pixel-level changes in an MRI can produce different
graphs, potentially altering final diagnosis.
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Graph augmentation techniques have been investigated to expand dataset
sizes. For example, [9] introduces a method for random edge removal to cre-
ate augmented graphs for classification tasks. This method treats all edges
equally, hence potentially disregarding crucial connections. To enable effective
graph augmentation while maintaining topological integrity, [2] introduced a
topology-aware augmentation technique called Topology Adaptive Edge Drop-
ping (TADropEdge). This method utilizes a GNN to selectively remove edges
based on their topological relevance and influence within a given dataset. While
TADropEdge effectively augments input graphs and preserves their topology,
any edge removal, regardless of the edge relevance, leads to distortion of the
graph topology. Additionally, relying on removing only certain irrelevant edges,
limits the number of augmented graphs to the number of possible combinations
of edges to be removed. In this work, we aim to answer the following question:
How can we augment brain graphs while preserving all edges and maintaining
the overall topology?

To address this, we draw from the analogy of image augmentation, where
transformations like recoloring or scaling alter an image’s appearance with-
out changing its core structure. Similarly, we seek transformations—such as
edge weight adjustments—that preserve topology. We introduce Blueprint Graph
Augmentation (BluGrAu), a GNN-based method for generating unlimited aug-
mented graphs while retaining the initial topological structure. BluGrAu aims
to enhance classification by producing graph variations via topology-preserving
augmentations. We define a graph blueprint as a transformation of a given input
graph into a fully-connected graph where each node feature vector represents
topological attributes, such as betweenness centrality, and edges denote pairwise
node feature similarities.

Our proposed BluGrAu aims to augment a given input graph by training
a model that maps a combination of a blueprint graph and white noise to its
target graph using a GNN. We assume that generated graphs are variations
from the target graph while preserving input graph topology. Our contributions
are as follows: (i) We introduce the concept of a graph blueprint, which acts
as a topological representation that compacts the structural information of the
graph in a separate graph called graph blueprint. (ii) We demonstrate a proof
of concept for using graph blueprints with GNNs to generate augmented brain
graphs that are used to improve classification tasks.

2 Method

2.1 Concept: Graph Blueprint

Let G(V, E) represent a brain graph, where V' denotes brain regions as nodes
where each node features is a vector C' containing the connectivity weights of
that node to every other node in the graph, and E represents weighted edges indi-
cating pairwise connection strength between nodes. A graph blueprint G, (V4, Ep)
simplifies G to serve as its structural template. In particular, as detailed below
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Fig. 1. BluGrAu Architecture Overview. (A) Blueprint graph creation: For each
node in an input brain graph, we calculate the betweenness, closeness, and eigenvector
centralities. These, combined with the graph label, form the blueprint graph’s node
features. (B) BluGrAu training pipeline: we concatenate each blueprint’s graph node
with a noise vector, the obtained new blueprint-+noise is processed by a graph VAE
to predict target brain graphs. The VAE comprises an encoder with two GNN layers
followed by ReLLU and dropout, then global pooling and dropout. The decoder includes
two linear layers, with output reshaped to match the input graph’s dimensions. We
denote by Gi., the input graphs, Ei. .,C1.n, B1.n the eigenvector, closeness, and
betweenness centrality measures, respectively, p(V;, V;) the Pearson correlation between
nodes’ features of V; and V}, by L¢ the label of the graph, and by F(Gy) the function
that generates a blueprint graph from an input graph.

in Algorithm 1, each node V;’ captures three key topological measures: between-
ness, closeness, and eigenvector centralities as well as the input graph label.
Despite the existence of several graph centrality measures (e.g., Katz central-
ity), these measures were chosen for their ability to jointly capture minimal core
roles within the network. For instance, betweenness centrality identifies nodes
bridging distant regions, while closeness centrality reflects a node’s accessibility
across the network, and eigenvector centrality highlights influence through con-
nections with other important nodes. Together, they provide a minimal profile
of topological information for each node. To complete the graph structure of Gy,
each edge Ej represents the pairwise Pearson correlation between feature sets
associated with a given pair of nodes V;/ and V.

2.2 BluGrAu for Augmented Brain Graph Generation

The BluGrAu model is a Graph Variational Autoencoder (VAE) designed to
generate topology-aware graph augmentations from input brain graphs G(V, E).
We utilize a GNN-based encoder, where G, (V;, Ej) represents the input blueprint
graph. Fig. 1 shows the architecture comprising of an encoder and a decoder
which are detailed as follows:

Encoder. The encoder is implemented using a two-layer GNN, where each
layer is followed by non-linear activation and dropout regularization. Initially,
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node features from Gy, with dimensions N x I¢ (N is the number of nodes and I
is the feature dimension per node), are concatenated with random noise features
(set to 20) and then fed into the first GNN layer. The added noise aims to
prevent overfitting and enhance model robustness to noisy node features. The
first layer projects the node features into a hidden space of dimensions N x 12.
The second GNN layer then processes this IV x 12 output while preserving the
hidden dimension of 12.

To introduce stochasticity in the latent space, the encoder performs a global
mean pooling operation across node embeddings which aggregates them into a
graph-level embedding of size 1 x 12. This pooled embedding is then mapped
through two fully connected layers to produce the mean (u) and log-variance
(log 02) vectors, parameterizing a Gaussian distribution specific to each graph
in the batch. These vectors, of dimension 1 x 6, enable the reparameterization
trick, where the latent vector z, which serves as the final encoded representation,
is sampled as z = y + € - o, with € ~ NV(0,1) and o = exp(0.5 - log 02). This en-
sures that the latent representations are differentiable to allow backpropagation
through stochastic nodes.

Algorithm 1 Generate Blueprint Graphs
Require: Directed weighted graph G = (V, F)
Ensure: Blueprint graphs G,
: for node 7 in G do
Initialize Gy < 0
Calculate betweenness, closeness, and eigenvector
Concatenate values into node feature vector
Vi « [eigenvector, closeness, betweenness, graph label]
end for
for node 7 in Gy do
for node j in G, do
E}7 < Pearson(E}, E})
end for
: end for
: return Gy
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Decoder. It comprises two linear layers to reconstruct the adjacency matrix
G from the latent representation z. The first linear layer maps from the latent
dimension 6 to a hidden dimension of 64, followed by a ReLU activation. The
second layer reshapes the output to a tensor of size (90 x 90), corresponding to
the flattened adjacency matrix format.

Training Procedure. The BluGrAu model is trained for each class (i.e.,
graph label) independently over 100 epochs using Adam optimizer [5] with a
learning rate of 0.005. We employ an L1 loss to compare the reconstructed
adjacency matrix G to the ground truth matrix G. Additionally, a KL diver-
gence term is included to regularize the latent space distribution, calculated
as:tKL = —0.5 - Y (1 + log(c?) — u? — 02?) The total loss function is defined as:
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L = L1+ B-KL, where (3 is a weighting parameter empirically set to control the
contribution of the KL divergence.

Implementation Details. The model was implemented using the PyTorch
Geometric library [1]. The training was conducted on Google Colab using its
available CPUs. The hidden dimensions and dropout rates were empirically cho-
sen to prevent overfitting while allowing model complexity to capture graph
structures. Code is available in this link: (shared upon acceptance.)

3 Results and Discussion

Dataset and Preprocessing. We evaluated BluGrAu using a dataset described
in [10], comprising 88, healthy individuals (48 females and 40 males, ages 18 to
48). Each subject’s structural connectome includes 90 brain regions, defined
by the Automated Anatomical Labeling Atlas (AALA) [12]. The dataset was
preprocessed following the procedures outlined in [10], which include quality
checking and artifact removal, distortion correction, skull stripping, spatial reg-
istration of T1 and DWI images to the MNI template, generation of white matter
masks, and probabilistic tractography to construct normalized connectivity ma-
trices based on streamline counts between AAL [12] atlas ROIs.

3.1 Quantitative Evaluation of Predicted Graphs

Table 1. Evaluation table

Method MAE | Fl-score 1|{GRAM |
Without Augmentation |N/A 0.7 -
BluGrAu w/ GCN 0.0054+0.01{1.0 8.34%
BluGrAu w/ GAT 0.0052+0.01|1.0 19.13%
BluGrAu w/ GraphSAGE|0.005040.01{1.0 9.72%

We train our VAE with 3 distinct GNN configurations: A graph convolutional
network (GCN) [6], a graph attention network (GAT) [13] and GraphSAGE [4].
We split data into 80% training and 20% testing. Each testing graph is aug-
mented 100 times. Table 1 shows the Mean Absolute Error (MAE) as well as
the classification F1 score (males vs females) using a 5-layer Multi-layer Percep-
tron (MLP). The MLP inputs flattened brain graphs into vectors of size 8100 x 1
and outputs vectors of the following sizes at the output of each layer: 512, 256,
64, 8, and 1, respectively. The MLP is trained over 75 epochs and with a learning
rate of 0.01 and Adam optimizer [5]. Additionally, we employ Graph Regulariz-
able Assessment Metric (GRAM), which aims to linearly measure the distortion
between the ground-truth and augmented graphs using a selection of 10 graph
topological metrics as in [11].
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Table 1 presents the model’s performance metrics, indicating that the MAE is
low, reflecting strong alignment between predicted and reference graphs. Further-
more, the F1 score—encompassing both precision and recall—rose significantly
from 0.7 for non-augmented test graphs to 1.0 with augmentation. Additionally,
the similar performance across all three GNN layer configurations indicates that
the choice of aggregation function in each graph convolutional layer has minimal
impact on model accuracy in this setup, suggesting that the augmentation itself
is the primary contributor to the improved results. As for GRAM, we notice that
our predicted graphs using BluGrAu trained with GCN scored 8.34%, the lowest
topological deviation from the target graphs, while the predicted graphs using
BluGrAu and GAT scored the highest topological deviation at 19.13% from the
target graphs.

3.2 Qualitative Evaluation of Predicted Graphs

Fig. 2 displays the reference, prediction, and absolute difference for an exem-
plar brain graph using the abovementioned 3 GNN configurations in the VAE.
Visually, the difference seems to be markedly minimal between reference and pre-
dicted graphs. This indicates that BluGrAu can be used to predict graphs that
closely match the reference graphs. Additionally, by visual inspection, we notice
that most highly-weighted connectivities are close to the diagonal in the refer-
ence graphs, a close connectivity scheme is also visible in the predicted graphs
which shows that our model is able to preserve a topological consistency with
the reference graphs.

4 Conclusion and Future Work

We introduced BluGrAu, a topology-preserving augmentation proof-of-concept
method for brain graphs, using the graph blueprint framework within a graph
VAE architecture. Our results demonstrate that BluGrAu effectively generates
augmented graphs that maintain the topological structure of input graphs and
improve classification performance. Future work will extend this approach to
several brain graph datasets and qualitative assessments to rigorously quantify
topological preservation.

5 Compliance with Ethical Standards

No ethical approval was required.
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Fig. 2. Prediction and Difference Visualization. The reference and predicted
graphs (generated by the VAE from the blueprint graph with noise) are displayed
alongside the absolute difference between the predicted and reference graphs.
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