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ABSTRACT

Layout-to-Image (L2I) generation, aiming at coherently generating multiple in-
stances conditioned on the given layouts and instance captions, has raised sub-
stantial attention in the recent research. The primary challenges of L2I stem from
1) attribute leakage due to the entangled instance features within attention and
2) limited generalization to novel scenes caused by insufficient image-text paired
data. To address these issues, we propose I-DRUID, a novel framework that lever-
ages instance-disentanglement representations (IDR) and unpaired data (UID)
to improve L2I generation. IDR are extracted with our instance disentanglement
modules, which utilizes information among instances to obtain semantic-related
features while suppressing spurious parts. To facilitate disentangling, we require
semantic-related features to trigger more accurate attention maps than spurious
ones, formulating the instance-disentangled constraint to avoid attribute leakage.
Moreover, to improve L2I generalization, we adapt L2I with unpaired, prompt-only
data (UID) to novel scenes via reinforcement learning. Specifically, we enforce
L2I model to learn from unpaired, prompt-only data by encouraging / rejecting the
rational / implausible generation trajectories based on Al feedback, avoiding the
need for paired data collection. Finally, our empirical observations show that IDM
and RL cooperate synergistically to further enhance L2I accuracies. Extensive
experiments demonstrate the efficacy of our method.

1 INTRODUCTION

Recent advances in text-to-image (T2I) generation have achieved remarkable success, primarily
driven by diffusion models (Rombach et al., 2022; Ho et al., 2020; Esser et al., 2024; Ramesh
etal., 2021). By employing UNet (Ronneberger et al., 2015) or multi-modal diffusion transformers
(MM-DiT) (Li et al., 2024; Esser et al., 2024) for noise / velocity prediction, these models learn
to generate high-quality images with given prompts. To achieve finer control over the generation
process, recent works have explored various spatial controls, such as semantic masks (Couairon
et al., 2023; Kim et al., 2023; Zhang et al., 2025a), sketches (Voynov et al., 2023; Zhang et al.,
2023), or bounding boxes (Zhang et al., 2025b; Zhou et al., 2024a; Wang et al., 2024). Among
these methods, bounding box-based control has become a particularly prevalent controlling factor (Li
et al., 2023; Wang et al., 2024; Xie et al., 2023; Zhang et al., 2025b; Zhou et al., 2024b) due to its
compatibility with downstream vision tasks. This has spurred the development of layout-to-image
(L2I) generation (Zhou et al., 2024a; Wang et al., 2024; Xie et al., 2023; Li et al., 2023; Zhang et al.,
2025b), which aims to synthesize multiple objects coherently based on a given spatial layout and
corresponding captions.

Concurrent studies show promising results in L2I (Zhou et al., 2024a; Zhang et al., 2025b; Wang
et al., 2024), but two key challenges remain. (1) The information fusion within attention layer hinders
instance rendering (Dahary et al., 2024; Wang et al., 2024), leading to the persistence of attribute
leakage. Previous works attempt to address attribute leakage through attention map manipulation (Da-
hary et al., 2024; Zhou et al., 2024a; Wang et al., 2024), but the inherent difficulty of CLIP (Radford
et al., 2021) in differentiating singular attributes from complex prompts remains a bottleneck (Feng
et al., 2023). Moreover, few studies have considered L2I under MM-DiT scenario (Zhang et al.,
2025b). Therefore, it is necessary to explore precise instance-level representation control for both
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Figure 1: (a) Overall framework of I-DRUID. I-DRUID jointly considers attribute leakage and
improves model generalization via Al feedback. (b) Visual results from our method.

UNet- and MM-DiT-based architectures. (2) L2I models may encounter performance degradation
when being deployed to novel scenes. e.g., models trained on training set with long captions (Wang
et al., 2024; Zhang et al., 2025b) get poor performance when deployed under testing set with short
coarse captions (Zhou et al., 2024b), demonstrating poor generalization when training with limited
pair-wise training data. Collecting more pair-wise data is an empirical solution, but suffers from huge
time cost. Inspired by the success of RL in scaling large language models to complex tasks (Guo
et al., 2025; Jaech et al., 2024), we would like to advance L2I with RL by using prompt-only unpaired
data, letting the novel-scene adaptation to be exempted from pair-wise data collection.

As shown in Fig. 1-(a), we present I-DRUID, which is comprised of instance disentanglement
learning, coupled with reinforcement learning. (1) We first introduce adapters (Ye et al., 2023) to
inject layout information into training process, then decompose attention features into “semantic-
related features” and “spurious part” with our instance disentanglement modules (IDM). The core
of disentanglement through IDM is based on our instance disentangling constraint (IDC). Our key
insight of designing IDC is that semantic-related features must elicit more precise attention maps than
spurious features, thereby facilitating the disentanglement process during L2I optimization. (2) To
generalize our L2I model to OOD prompts, we further introduce a novel reinforcement learning (RL)
framework (Agarwal et al., 2019; Liu et al., 2025b), encouraging L2I model to learn from unpaired
novel prompts based on Al feedback. Specifically, we conduct trajectory sampling from Gaussian
noise and the given novel prompt, producing images for the assessment of visual language model
(VLM) in terms of spatial accuracy and instance consistency in an online manner. The feedback
is used as a guidance in analyzing best generation policy, thus encouraging L2I capability. (3) We
also demonstrate IDC and RL could mutually benefit each other as IDM provides a more accurate
generation policy for RL, advancing L2I results as shown in Fig. 1-(b). Our method also has a high
flexibility, which could be easily utilized for both UNet-based (e.g., SD 1.5) and MM-DiT-based
architectures (e.g., SD3).

To sum up, our contributions are three-fold:

* We seek instance-disentangled representation, which is achieved with our IDC-supervised IDM.
IDC leverages collective instance information to extract semantic-related features, which triggers
more precise attention maps and thus avoids attribute leakage.

* We equip our L2I model with a novel Reinforcement Learning (RL) strategy to improve its
generalization. RL enables L21 to learn from unpaired data, letting novel-scene adaptation to be
exempted from pair-wise data collection.

* We demonstrate that these two components can be synergistically cooperated to further enhance
L2I accuracy under both UNet and MM-DiT-based architectures. Our approach achieves state-of-
the-art results on multiple L21 benchmarks, demonstrating its efficacy and flexibility.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

Layout to Image Generation. Diffusion models like SD (Ho et al., 2020; Rombach et al., 2022),
SD3 (Esser et al., 2024), and FLUX (Labs, 2024) are powerful tools to achieve text to image
generation. To achieve fine-level control, additional spatial control like bounding boxes (Wang et al.,
2024; Li et al., 2023; Zhou et al., 2024b;a; Zhang et al., 2025b; Lee et al., 2024) are introduced
into generation process to craft entities within the given location and instance-level prompts, termed
as layout to image generation. Generally speaking, these methods can be categorized as training-
based (Zhou et al., 2024b; Li et al., 2023) and training-free approach (Xie et al., 2023; Lee et al.,
2024). The former introduce adapters (Ye et al., 2023; Mou et al., 2023) and additional modules
to encode locations for subsequent attention. The latter focus on manipulating attention map at
test-time to achieve location control for each entity. Although effective, most of them are conducted
based on UNet architecture, while ignoring modern MM-DIiT architectures like SD3 (Esser et al.,
2024). Recently, Creati-Layout (Zhang et al., 2025b) first devise SD3-based L2I scheme, but ignores
explicit constraint to alleviate attribute leakage (Wang et al., 2024). Different from previous methods,
our approach devise disentanglement modules to advance L2I task under both UNet-based and
MM-DiT-based scenarios.

Reinforcement Learning. Reinforcement learning (RL) (Schulman et al., 2017) is a widely-used
strategy to align model’s response to human preference, both for large language models (Rafailov
et al., 2023; Wang et al., 2025; Yan et al., 2024) and diffusion models (Chen et al., 2024; Fan
et al., 2023). The core idea of RL is training a model to interact with environment, typically a
reward model, that provides feedback for the model’s responses. This feedback guides the model
in exploring and learning an optimal policy. Early RL methods for alignment often relied on
either a separate reward model (Ramamurthy et al., 2022; Peng et al., 2019) or extensive human
annotation of samples (Rafailov et al., 2023; Yuan et al., 2024) to obtain preference data. However,
the recent development of large-scale models has led to a paradigm shift. Learning from Al feedback
has emerged as a promising and efficient alternative for scaling the alignment process (Bai et al.,
2022; Fan et al., 2023). The RL under diffusion scenario can be categorized into online and
offline scheme. DPOK (Fan et al., 2023) and DDPO (Black et al., 2023) are pioneering works that
introduce RL into image generation by fine-tuning generation policy with feedback from Al like
ImageReward (Xu et al., 2024) in an online manner. DiffDPO (Wallace et al., 2024) proposes the first
DPO-based (Rafailov et al., 2023) RL method to fine-tune diffusion in an offline manner. Although
these methods show promising results, most of them relies on the randomness of generation trajectory
to achieve environmental exploration, which is not compatible with SD3 (Esser et al., 2024) or
FLUX (Labs, 2024) with deterministic ODE forward process. Recently, the advent of SDE-based
forwarding equivalence (Albergo et al., 2023; Liu et al., 2025a) enables efficient exploration during
the forwarding process of flow-matching methods. However, the application of RL under L2I scenario
is still under-explored, inspiring us to scale L2I model with the help of Al feedback and RL.

3 METHODOLOGY

3.1 OVERVIEW

Problem Formulation. Layout to image generation (L2I) assumes the users to give the following
information during inference. (1) a global prompt p defining the overall semantic information for the
generated image; (2) n instance captions Pr, = {p1, p2, ..., Pn }» Which describes detailed information
for each instance; (3) layout B = {by,ba, ..., b, }, where b; = {0, 0, Zi1,vi1},(1 < i < n)
containing top-left coordinate (x;9, y;0) and bottom-right coordinate (x;1, y;1) for each instance. The
goal of L2I is generating images that follows the above instructions. Although our method is capable
of L2I for both UNet-based (e.g., SD-1.5) and MM-DiT-based architectures (e.g., SD3), we mainly
introduce our method with SD3 and the SD-1.5 variant could be easily derived.

Overall Pipeline. As shown in Fig. 2-(a), Our L2I solution is comprised of (a) instance disentangle-
ment learning and (b) reinforcement learning. The former is built upon adapter-based L21I (Li et al.,
2023; Wang et al., 2024), further refining features based on our IDM and IDC. The latter enforces
L2I model to seek for the optimal generation policy based on the given prompt and feedback from
reward, thus generalizing the model to novel scenes without using image-text paired data. These two
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Figure 2: Overall Training Process. Our method is comprised of: (a) Instance Disentanglement
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contributions mutual benefit each other and further improves L2I capability. Next, we introduce our
solution in detail.

3.2 INSTANCE DISENTANGLEMENT STAGE

Instance Disentanglement Module. Previous L2I methods (Li et al., 2023; Wang et al., 2024,
Zhang et al., 2025b) achieve layout control by injecting layout-caption coupled features with cross-
attention for optimization. However, as demonstrated in previous literature (Dahary et al., 2024;
Zhou et al., 2024b;a), attention tends to fuse instance-level features, leading to the attribute leakage.
We therefore devise IDM as feature refiner to alleviate this. The IDM specifications are shown
in Fig. 2-(a), which receives n + 1 enhanced features and layout masks as inputs. IDM learns
to extract “semantic-related features” R while discarding “spurious part” R~ for subsequent
generation. Specifically, we compute the given n instances’ enhanced features with corresponding
layout and captions, coupled with global-prompt-enhanced features to formulate n + 1 inputs
E={el,en,....,epy 1} € ROTIXCOXWXH  Thege features formulate the input of feature branch.
For mask branch, we obtain layout masks for instance ¢ with its bounding box b; = {x;0, Yi0, Zi1, Yi1 }-
Pixels within bounding box b; will be assigned with 1 while others are set to 0. The mask for global
prompt is set to all-one matrix, formulating n + 1 masks M = {m;, my, ..., m,,1 }. IDM jointly
considers £ and M to get the optimal channel-wise weighting scheme:

a =IDM(E, M) € R™ T, 1)
where « is the weighting scores assigned to each enhanced feature in £. We thus obtain “semantic-
related features” R while discarding “spurious part” R~ through simple multiplication:

R =& R =(1- )&, (2)
where Rt and R~ are “semantic-related features™ and “spurious part” with the size of (n + 1) x
CxWxH.

Instance Disentanglement Constraint. To facilitate the disentangling process, we further devise
instance disentanglement constraint (IDC) by measuring R™’s ability in triggering accurate attention
map. Specifically, R™ will be used to obtain cross-attention map Rg 4~ We then adopt layout mask
M to extract attention value at background and evaluate overall attention accuracy with the following
criterion:

CAS(R{,, M) =D RS, —AVG(RS,,; © (1 - My))| 0 (1 — M), 3)
=1

4
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Based on CAS, it is obvious that
R should trigger lower CAS value than R, formulating an inequality CASg+ < CASg-. The
inequality could be further transformed into our “Instance Disentanglement Constraint’:

Lais(RE 1, RS 4, M) = Softplus| CAS(RZ ., M) — CAS(RG, M)}, )

where Softplus = In(1 + exp(+)) is a monotonically increasing function. 4

3.3 REINFORCEMENT LEARNING STAGE

RL Formulation. We build our algorithm based on classical PPO (Schulman et al., 2017). The
elements of conventional RL could be summarized into four essentials: (1) state (2) action (3) policy
(4) reward. We then introduce these elements in the context of flow matching model SD3. For
the given time ¢ and condition y = {b,p} (b and p are bounding box and their corresponding
instance captions), “state” is s; = (xt,t,y) “action” denotes denoised latent at t — 1, i.e., a; £ % 1.
“Policy” denotes the transition probability between two time steps 7(a;|s;) = 7(x;_1|xs,y). By
inferring from 7" to 0, the model generate final output xo, which could be subsequently decoded by
VAE to obtain image X, and evaluated with reward model (-) in terms of spatial accuracies and
instance consistency. () assigns score as a guidance to supervise the overall generation process, thus
promoting the L2I accuracy when novel prompts emerges. For UNet-based diffusion model, policy
is derived based on DDPM (Ho et al., 2020), which contains randomness to achieve exploration.
However, MM-DiT-based diffusion is built upon flow matching (Esser et al., 2024), which relies
on deterministic ODE and hinders environmental exploration. We thus divert deterministic ODE
sampling to SDE to formulate our policy. Specifically, we follow (Domingo-Enrich et al., 2024;
Albergo et al., 2023; Liu et al., 2025a) and change the policy as follow:
2

Xt4At = Xt + v@(xtat7y) + %(Xt + (1 - t)(UQ(Xtat,y))} At + gtV AtG, (5)

where x; is the partially denoised image latent at time ¢, vy is the predicted velocity. ¢ is the
random term sampled from standard Gaussian distribution N'(0,1). o¢ = a,/ %_t anda =0.7isa
hyper-parameter defined in (Liu et al., 2025a).

Reward Definition. Considering the layout-control nature of L2I task, we choose Grounding-DINO
(GDINO) (Liu et al., 2024) as the reward model r(-) to assess the overall spatial accuracy and
instance consistency for generated images. GDINO receives instance captions and X to detect
the location of objects within the input, then returns detected bounding box and confidence score
Opred = {bpmd, cpred}. We thus define the reward based on 0,4 and ground-truth o:

7"(0, Opred) = Z [IOU(bpred,iv bz) + Cpred,ij| P (6)

7

where bpreq; is the ground-truth bounding box for instance ¢, cpreq,; is the confidence score in
detecting instance ¢ based on instance caption pp,eq,;. IoU is the function to compute IoU score
between ground-truth bounding box and GDINO-predicted counterpart. Based on these formulations,
we require L2I model to perform actions and interact with environment, seeking the optimal action
by optimizing underlying policy. Following standard RL formulation, we term our diffusion model as
“actor net”.

Critic-Net. During RL fine-tuning, we also introduce critic-net ¢ as a collaborator to further improve
actor-net’s generation capability. The critic-net is a light-weighted MLP, which receives model state
s and embedded user inputs y to predict final scalar reward value. Its training goal is minimizing the
discrepancy between predicted and actual reward given by GDINO to learn the average reward:
2
Lcritic(sta o, Opred) = ¢<5t) - T(Oa Opred) . (7)
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With critic-net, we could further define advantage score by subtracting critic-net’s prediction from
reward:

A(St, o, Opred) = 7“(0, Opred) - d)(st)v (8)

the advantage function measures the expected reward over the average performance, which facilitates
actor-critic collaboration.

Actor-Critic Collaboration via PPO. The goal of RL is fine-tuning actor-net to obtain high advantage
scores for generated images. By following classical PPO (Schulman et al., 2017) algorithm, we use
importance sampling to optimize actor net. Specifically, we compute probability ratio p; at t-th step
by comparing the policy for current and old model:

m(ai|se,y)
m(ag!|sg!,y)’

&)

Pt =
old old

where a?'® and s?*“ are action and state for old actor net, which is commonly the EMA model (Klinker,
2011). The final loss for actor-net could be formulated as:

Lyt = min | peAp,clip(pr, 1= 1+ QA | + KL(r(ailse, )l In(@ s, y),  (10)

where clip(-) is the clipping function, limiting the probability ratio in the range of [1-(, 1+(] to ensure
stable training (Schulman et al., 2017), KL(+||-) is the KL divergence to avoid training collapse. It
should be noted that L,; instructs and optimizes actor-net through p; to achieve the enhancement of
advantage scores A;. A; does not directly supervise actor-net’s training.

Joint Optimization. We incorporate flow matching loss (Esser et al., 2024) to to optimize our
actor-net:

Ligm = EENN(O,l),t,y,Xt | ‘V — Vo (Xta t, Y) ‘ |§7 (11
where v is the ground-truth velocity, obtained through encoded image and Gaussian noise. For
UNet-based diffusion model like SD 1.5 (Rombach et al., 2022), the objective of training should be

noise prediction (Ho et al., 2020). We will introduce our UNet-based solution in the supplementary.
The final loss for actor-net’s optimization are formulated as follow:

Lact = lem + /\disLdis + )\7'lL'rla (12)

where )\y4;s and \,; are balancing factors. In practice, we utilize model pool MP to collect old
model’s policies. MP is a memory pool, storing old model’s policies to facilitate RL. When
computing Eq. 12, we randomly sample an old policy for image generation and optimization. The
overall training pipeline is shown in our appendix, at Alg. 1.

RL Speed-up. Our original RL scheme requires trajectory sampling for reward computation and
action-based fine-tuning, consuming large amount of time due to the inference of model with full
time-steps. Recently, the finding that optimization at early time steps (Zhou et al., 2024c; Kang
et al., 2025; Zheng et al., 2025) yields similar or even better results inspiring us to conduct RL at
early time steps. We therefore conduct RL only at the first 20% time steps and save corresponding
actions to avoid reference model’s action computation. Moreover, our PPO-based RL naturally has
computational advantage over the popular GRPO-based methods (Liu et al., 2025a) as GRPO requires
sampling several trajectories at the same time for group-level advantage computation.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Zhang et al., 2025b
Zhou et al., 2024b
Kirillov et al., 2023
Zhou et al., 2024b Qi et al., 2020
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Table 1: Comparison with state-of-the-art methods on COCO-MIG. We compare our method with
state-of-the-art generation methods, including BoxDiff (Xie et al., 2023), Reco (Yang et al., 2023),
GLIGEN (Li et al., 2023), RichContext Cheng et al. (2024b), InstanceDiff (Wang et al., 2024),
MIGC (Zhou et al., 2024b), and Creati-Layout (Zhang et al., 2025b). *: Evaluated based on MIGC’s

code. Red and Green are best and second best results.

Methods

Instance Success Rate 1

mloU 1

L2 L3 L4 LS L6 Avg

L2 L3 L4 LS L6 Avg

BoxDiff
GLIGEN
RichContext
InstanceDiff
MIGC
Reco
Creati-Layout*

24.61 19.22 14.20 11.92 9.31 15.85
42.30 35.55 32.66 28.18 30.84 33.89
40.31 30.83 30.78 26.50 25.42 30.76
58.00 52.16 55.03 47.59 47.12 51.98
67.70 59.61 58.09 56.16 56.88 59.68
65.50 56.10 52.30 52.40 58.30 56.90
65.93 65.41 56.40 50.62 50.00 57.67

32.54 29.88 25.39 23.81 21.19 26.56
37.58 32.34 29.95 26.60 27.70 30.83
37.88 31.43 30.35 28.42 26.59 30.93
52.14 48.64 50.36 42.64 42.86 47.33
59.39 52.73 51.45 49.52 49.89 52.60
55.70 46.70 47.20 43.30 48.80 47.60
56.61 56.29 50.30 45.85 45.66 50.94

Ours (SD-1.5)
Ours (SD-3)

79.10 70.24 65.48 63.87 66.97 69.13
76.87 69.16 62.96 52.37 52.39 62.75

70.61 62.10 58.63 56.04 58.18 68.18
63.35 59.01 53.80 51.32 50.54 55.60

Evaluation Protocol. We evaluate our method on two large-scale benchmarks: COCO-MIG (Zhou
et al., 2024b) and LayoutSAM-eval (Zhang et al., 2025b). COCO-MIG is composed of 800 randomly
sampled multi-instance prompts from COCO-2014, each prompt contains 2 to 6 instances and
therefore the whole benchmark could be split into 5 levels (L2-L6) in terms of instance numbers.
As COCO-MIG focuses on evaluating spatial correctness, all generated images will be checked by
Grounded-SAM (Ren et al., 2024) to compute instance success rate (ISR) and mloU. ISR evaluates
percentage that all instances are successfully recognized by Grounded-SAM, while mIoU calculates
the mean of the maximum IoU for all instances. Please refer to (Zhou et al., 2024b) for more
details. LayoutSAM-eval (Zhang et al., 2025b) is another large-scale benchmark for L2I with 5, 000
prompts. The evaluation on LayoutSAM-eval is based on MINI-CPM’s inquiry (Yao et al., 2024) in
terms of each instance’s spatial location, color, texture, and shape. As LayoutSAM-eval provides
real images for the given prompts, we also report general image quality metrics, including FID,
PickScore (Kirstain et al., 2023), and IS on this benchmark.

Implementation Details. We validate our method on both SD-1.5 (Rombach et al., 2022) and
SD3-mid (Esser et al., 2024). Conducting paired image-text training with LayoutSAM while un-
paired RL with COCO-2014-MIG. The optimized model is evaluated on COCO-MIG to check OOD
generalization while assessed on LayoutSAM-eval to check basic L2I capability. For SD-1.5 variant,
please check our supplementary for details. For SD3-based variant, we deploy our IDM and IDC
on every joint-attention transformer layers. During training, we set training batch size as 128, RL
batch size as 16, and optimize the model for 20 epochs with a learning rate of 1 x 10~*, which will
take 4 days on 8 NVIDIA H20 GPUs. Note that RL will not be included into training for the first
10 epochs. During RL, the critic-net and actor-net are optimized in a GAN-like manner. Critic-net
will be optimized for 5 times before the collaboration with actor-net. During the inference, we set
classifier free guidance scale as 7.5. We follow the inference-time trick used in (Zhang et al., 2025b),
activating IDM for the first 30% time steps during inference, while conduct vanilla joint attention for
the rest 70%. We set Ag;s = A,y = 1and ¢ = 1 x 10™*. We set training resolution to 1024 x 1024
for SD3. We set maximum number of instances as 10 for each training sample, i.e., only the first 10
instances will be kept during training. Samples with less than 10 instances will be padded with zero
for both text and layout embeddings.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Results on COCO-MIG. We first report the results on COCO-MIG to check L2I generalization.
As shown in Tab. 1, we have two conclusions. (1) Previous methods are struggling in adapting to
novel L2I scenes. Specifically, InstanceDiff (Wang et al., 2024) and Creati-Layout (Zhang et al.,
2025b) are trained with detailed instance captions, which is different from MIGC (Zhou et al., 2024b)
that is trained with short captions. As COCO-MIG assigns short captions for each instance, both
InstanceDiff and Creati-Layout fail to outperform MIGC, demonstrating the necessity of improving
L2I model’s generalization. (2) Our method outperforms all previous works in terms of averaged ISR
and mloU under both SD-1.5 and SD3 scenario, showing its strong flexibility and L2I generalization.
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Table 2: Comparison on LayoutSAM-eval. We compare our method with InstanceDiff (Wang et al.,
2024), Ranni (Feng et al., 2023), BeYourself (Dahary et al., 2024), MIGC (Zhou et al., 2024b),
HiCo (Cheng et al., 2024a), and CreatiLayout (Zhang et al., 2025b).

Methods Spatial © Color T Texture T Shape? | FID] PickScoret IS?T
Ranni 41.38 24.10 25.57 23.35 27.24 20.49 19.81
BeYourself 53.99 31.73 35.26 32.75 28.10 20.20 17.98
MIGC 85.66 66.97 71.24 69.06 21.19 20.71 19.65
InstanceDiff 87.99 69.16 72.78 71.08 19.67 21.01 20.02
HiCo 87.04 69.19 72.36 71.10 22.61 21.70 20.15
Creati-Layout 92.67 74.45 77.21 75.93 19.10 22.02 22.04
Ours (SD-1.5) 86.95 70.49 73.56 72.30 22.92 21.98 17.95
Ours (SD-3) 93.14 75.37 78.35 77.20 17.21 23.16 22.45

Creati-Layout I-DRUID

!

A photo showcasing 'Southeast Asian market, with the focus on two women. The left woman is wearing a 2
, while the right woman is wearing a * and a 3pink long-sleeved top.

W

NORDSTROM

Prominent !
palm trees

The main sign is a neon sign of the 2Phillips brand, with a bright orange background and black text. !
are placed on a corrugated *iron wall with a 3wooden ceiling.

1

S|

s
3
2

This is a photograph of a city park scene taken under natural light. Through the ! , one can see the Slush trees and a 3large fountain in the park.
The foreground of the image features several >*pedestrians.

2

Figure 3: Visualization of generated samples with I-DRUID and state-of-the-arts. Dashed red box:
wrongly generated. Dashed yellow box: Distorted text.

By introducing unpaired data from COCO-2014-MIG, I-DRUID learns to generate with short captions
under the guidance from GDINO and thus enhances its L2I generalization in novel COCO-MIG.

Results on LayoutSAM-eval. We also evaluate our method on LayoutSAM-eval in terms of spatial,
color, texture, and shape to show its basic L2I capability. As LayoutSAM-eval provides image-text
pair, we also report the general image quality metrics like FID at Tab. 2. It is obvious our SD3
counterpart outperforms other methods. SD3 provides better image quality, enabling our method to
achieve lower FID scores on LayoutSAM-eval. Moreover, our method also outperforms other state-
of-the-arts in all aspects (spatial, color, texture, and shape), demonstrating its efficacy on large-scale
L2I benchmark. It should be noted that MIGC (Zhou et al., 2024b) fails to achieve better results
than InstanceDiff (Wang et al., 2024) and Creati-Layout (Zhang et al., 2025b), demonstrating the
significance of improving L2I’s generalization to different scenes, especially when there is large
domain gap between training and testing sets.

4.3  VISUAL COMPARISON

We visualize some L2I results and compare them with state-of-the-arts for an intuitive evaluation. As
shown in Fig. 3, we conclude that (1) Our method achieves better image quality for L2I. Specifically,
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Table 3: Ablation study. We report the averaged ISR on COCO-MIG and four main criteria on
LayoutSAM-eval to check each component’s efficacy. Green and red are best and second best results.

No Attributes COCO-MIG LayoutSAM-eval
" | IDM RL-PPO RL-GRPO SFT Avg ISR Spatial Color Texture Shape
1 X X X X 56.82 86.96 71.08  73.20 72.44
2 v X X X 57.64 88.53 73.12 7493 75.62
3 v X X v 66.92 89.75 72.21 74.33 73.19
4 v X v X 61.64 92.86 74.67  78.65 75.80
5
6 v v X X 62.75 93.14 7537  78.35 77.20

our method and SD3-based Creati-Layout generate human face and characters with high quality, while
other methods like MIGC fail to achieve this. (2) Our method achieves better detail interpretation. e.g.,
at the third row of Fig. 3, I-DRUID correctly rendered the given instance prompt “Phillips brand”,
while Creati-layout additionally generates “66”, which is potentially caused by the attribute leakage
problem. By explicitly considering the instance-disentangled representation for L2I, the problem is
alleviated. Therefore, we demonstrate that our method show competitive capability in L2I.

4.4  ABLATION STUDY

lem lem+Ldis lem+Ldis+Lrl

and a white umbrella and a white chair
and a black chair and a brown chair

Figure 4: Ablated Visual Comparison.

Effectiveness of using IDM. To check the efficacy of each component, we also conduct ablation
study on COCO-MIG and LayoutSAM-eval and report the results in Tab. 3. We mainly check four
attributes of our method. “IDM”: using our IDM+IDC to disentangle features during L2I; “RL-PPO”:
PPO fine-tuning; “RL-GRPO”: replacing PPO with GRPO. GRPO does not require critic net for
advantage estimation, but needs to sample multiple trajectories at the same time; “SFT”’: We annotate
COCO-2014-MIG with stanza (Qi et al., 2020) and GDINO in an offline manner while integrating
the annotated data into training. Note that SFT introduces images from COCO-2014-MIG for joint
optimization and thus cannot be conducted with unpaired data. By comparing “No. 1 and “No.
2”, we found that introducing IDC is beneficial to improving L2I accuracies on both benchmarks,
yielding improvement on L2I accuracies on all metrics. The results indicate IDC’s effectiveness in
generating multiple samples with accurate attribute and layout.

Effectiveness of RL. By further comparing the results between “No. 17, “No. 3”, “No. 47,
and , we conclude RL is beneficial to improving L2I accuracies. Specifically, we only
adopt unpaired prompt-only data from COCO-2014-MIG in our RL-based experiments, but the
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Figure 5: Sensitivity to Ag;s and \,;. “Blue

dashed line”: Result when \,; = A\g;s = 0.

results on COCO-MIG demonstrate RL’s efficacy in improving L2I model’s generalization with
unpaired data. It should also be noted that “SFT” variant in “No. 3” is optimized with paired data
from COCO-2014-MIG and violates our experimental setting that requires unpaired data for training.
Although “SFT” achieves better results on COCO-MIG, it fails to enhance L2I accuracies under
LayoutSAM-eval. Therefore, SFT may lead to performance degradation due to the domain gap
between different training sets. Moreover, introducing RL does not lead to performance degradation,
which further demonstrates RL’s efficacy.

Effectiveness of using Different RL scheme. We also compare PPO-based RL with GRPO-
based (Shao et al., 2024; Liu et al., 2025a) RL. By comparing “No. 4 and , we note that using
different RL strategies yields similar improvement over baseline. The results demonstrate the efficacy
of RL even when different RL strategies. Moreover, GRPO-based counterpart requires sampling
several trajectories at the same time to obtain group-level advantage, significantly increasing the
training time cost. As advantage in our solution is obtained through light-weighted critic-net, training
under our scheme is much faster than GRPO-based method. Our method achieves training speed of
nearly 15s / iter on NVIDIA H20, while GRPO-based method needs more than 60s / iter when setting
group size to 4 and conducting RL on full time steps.

4.5 SENSITIVITY ANALYSIS

Sensitivity to )\y;s and \,.;. We first check model’s sensitivity to hyper-parameters \g;s and \,; with
averaged ISR over all instance-levels. At this experiment, we change Ag;s / A from 0.5 to 5 while
keeping A\, / Ag;s at 1. The results are shown in Fig. 5, we visualize baseline method’s averaged ISR
(results of “No.1” in Tab. 3) with blue dashed line. From the results, we draw two conclusions. (1)
Our method is not sensitive to both hyper-parameters. Specifically, we note in Fig. 5 that changing
these two parameters does not bring significant degradation on performance and the best results
are achieved when setting A\g;s = Ay = 1. (2) A\gis plays an important role in our L2I algorithm.
Specifically, we note performance degradation than baseline when setting A\g;s = 0.5 and A\, = 1.
However, setting Ag;s = 1 and A,; = 0.5 will not cause such problem. We speculate disentangling
process brings better representation for L2I, generalizing model in a more efficient manner as correct
samples’ trajectory could be easily collected than models without disentangling.

Reward stability. We also check the reward stability during the RL process. As RL is introduced
after the 10-th training epoch, we compute the averaged reward for sampled trajectories and visualize
them in Fig. 6. From the figure, we conclude that although RL may encounter fluctuation during
training, the training process is generally steady.

5 CONCLUSION

This paper advances layout to image (L2I) generation by addressing attribute leakages and generaliza-
tion. For the first challenge, we devise instance disentanglement module (IDM) and utilize instance
disentanglement constraint (IDC) for disentangling semantic-related features. IDC requires semantic-
related features to yield more accurate attention maps than spurious ones, and thus avoids attribute
leakage. For the second challenge, we formulate a reinforcement learning (RL) framework, enabling
our method to learn with unpaired prompt-only data to improve model’s generalization. These two
contributions formulates our I-DRUID and achieves high accuracies on several benchmarks.

10
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APPENDIX

Algorithm 1 The Process of [-DRUID.
Inputs: Sample with b bounding boxes, a global prompt p, and n instance captions p. Reward
model r(+), critic-net, actor-net, hyper-parameters A4, Ay, training epochs F, action pool MP,
unpaired prompt {p., by, pg.u}-

1: // Disentangling Stage.

2: Initialize L2I model with SD3-mid;

3: for ein F do

: Sample a batch of training data {b., p., ps };

4
5 Sample time ¢;

6: Obtain R* with IDM and compute Eq. 4;

7: Compute Eq. |1 with R and time ¢;

8 /I RL Stage.

9 if ¢ > 10 then,;

0 Sampling trajectory with unpaired data {p,,, b, pg,.} and enqueue actions into MP
(only enqueue actions for the first 20% time steps);

11: Obtaining generated images Xo;

12: Obtaining reward with Eq. 6;

13: Computing Eq. 7 and optimize critic-net;

14: Computing advantage scores with Eq. §;

15: Sampling old actions of the same input from M7P;
16: Obtaining policy for old and current actor;

17: Computing Eq. 10 to obtain L,;

18: else

19: Setting L, to 0;

20: end if

21: Optimizing L2I model through backpropagation with Eq. 12;
22: end for

LLM Statement. We use LLM to polish the writing, such as correcting grammar and other errors.

A  OVERALL TRAINING PIPELINE

We demonstrate our overall training pipeline in Alg. 1. Our training contains two parts, i.e., disen-
tangling stage and RL stage. The former will be conducted for the whole training process to ensure
basic L2I capability while the latter will be utilize only for the last 10 epochs to improve L2I model’s
generalization with unpaired data. It should be noted that action pool MP will be activated only for
the last 10 epochs and will only save the actions for the first 20% time steps for faster RL. Moreover,
during RL, actor- and critic-net will be optimized in a GAN-like manner. critic-net will be optimized
5 times before joining actor-net’s optimization.

B IMPLEMENTATION DETAILS FOR UNET-BASED METHOD

Our method is also compatible with UNet-based diffusion models like SD-1.5. When transferring to
SD-1.5, (1) IDM’s location for deployment, (2) the objective for noise prediction, and (3) RL actions
should be modified. For (1), we deploy IDM at the 8 x 8 mid-layer and 16 x 16 decoder layers of
UNet to conduct feature disentanglement and subsequent cross attention. For other cross-attention
layers without IDM, we optimize them with global prompt. For (2), as SD-1.5’s training objective is
noise prediction, L;4,,, should be changed (Rombach et al., 2022) accordingly. Finally, for (3), the
actions for SD-1.5 follows original transitional probability formula at (Ho et al., 2020).

C FAILURE CASE STUDY

We visualize some failed cases in Fig. 7 to show its limitation. Specifically, our method is liable to
generate flawed cases when small characters and human body emerges. However, the generation with
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Figure 7: Visualization of generated failure cases.
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Figure 8: Justification of Reward Design.

small-scale text is a known issue in original stable diffusion (Esser et al., 2024), which will bring
similar negative effects on all SD-based AIGC algorithms (Zhou et al., 2024b). To mitigate these
negative effects, users could collect more data with text and human bodies to finetune the model.

We also note that previous SD1.5-based MIGC Zhou et al. (2024b) achieves better results than SD3-
based Creati-Layout Zhang et al. (2025b) on COCO-MIG in terms of “Avg ISR”. COCO-MIG is a
benchmark highly focused on evaluating attribute leakage and rendering of each instance, suggesting
weaker instance-level rendering capability for SD3-based L2I. We speculate the phenomenon is
caused by the inherent problem in MM-attention, where text tokens are diluted in MM-attention Lv
et al. (2025). Therefore, as MM-attention is heavily used in SD3, improving SD3-based L2I models
generation capability in correctly rendering instance attributes becomes challenging. The problem
further leads to the relatively lower L2I accuracies on COCO-MIG.

D JUSTIFICATION OF REWARD DESIGN

As demonstrated inour experiments,  Taple 4: Quantitative Results for Reward Justification.

we set the reward as “IoU + Confi-
dence” to jointly consider spatial accu- ISR. L2 L3 L4 L5 L6 | Avg
racies and instances’ generation qual- BasIeliljle gggg gégg ggg? 2%32 2(1)12 ggig
ity. To explore the optimal reward de- +CO ¢ 76.87 69.16 62.96 52'37 52'39 62.75
sign, we conduct experiments by set- +2-on : : : : : :

N : + 5Conf | 72.50|67.29 | 61.09 | 51.25 | 52.79 | 60.98

ting different weights to “Confidence”
term, and visualize generated images
for different variants. The results are shown in Fig. 8, we also visualize the results from InstanceD-
iff Wang et al. (2024) for comparison. From the result, we draw two conclusions. (1) IoU term in RL
enables better spatial control. Specifically, the “blue cat” at second row does not follow the given
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Table 5: RL for initial states. Table 6: Robustness to False Reward on COCO-MIG.
Method Avg ISR ISR L2 L3 L4 L5 L6
Full-Time Sampling 63.06 w/o False Reward | 76.87 | 69.16 | 62.96 | 52.37 | 52.39
Ours 62.75 w/ False Reward | 67.18 | 66.25|57.34 |51.20|51.92
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In the foreground, stands by This is a photo of a woman sitting on the roof of a vehicle in a desert
the water. In the background, the iconic Venetian buildings and **gondolas environment. The woman is dressed in 2 black top and N
are clearly visible, with the water shi ing under the i wearing a pair of grey hiking shoes. She is sitting on the roof of a beige
vehicle.
4
1 3
2
[Ts] ] !
l |
2 3
4
The temple is located in a tropical environment, with trees growing on its The man is dressed in a black suit, while the woman is
roof and walls. The walls of the temple are covered with moss. The ground is . They are sitting next to a table, with 2
paved with stone slabs. curtain with red tablecloth in the background.
2 1 2
3
3
! r
4
The officer on the left is wearing a black hat. The officer on the right is also The child in the middle is holding a small drum in his hand. The left is a
wearing a black hat. They are standing in front of a yellow police van, with young child in festive white dress and oversized hat, while the right child is

focused on her dancing.

Figure 9: Visualization of more cases (Part-I).

layout when RL is not applied. After using “IoU-based” RL, the spatial control is further improved.
(2) Introducing confidence score into RL further improves instance-level generation, but may lead to
low image quality. Specifically, ignoring “confidence term” will lead to the unnatural generation of
some instances (e.g., green cat with a black tail, or blue cat with multiple legs). These artifacts are
alleviated after taking “confidence term” into RL. However, when changing the reward function to
“IoU + 5 * confidence”, we note over-saturation for some generated instances. We thus adopt “IoU +
confidence” as our final reward. The quantitative results on COCO-MIG at Tab. 4 demonstrate the
same conclusion.
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The foreground features a winding river, lined with bare trees. In the The man stands in front of a podium, wearing a dark navy uniform with
background, snow-covered mountains forms a stark contrast with . badges. In the background, a painting of a sailboat is hung on the wall, next to
A few white clouds float in the sky.

2
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sk [
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w 5 6
¥

The ChocullateH-Pi;e

& o |

A candy store. The background features a huge Star Wars logo, with the words The bedroom is equipped with a double bed, covered with a blue blanket.
"THE CHOCOLATE M-PIRE" below it. Beside the bed is a wooden desk and a chair. There is
in the room. The floor is covered with a blue carpet.

3
3
1
4
5 2
2 1
The center of the image is a . N 3 . The centerpiece of the image is a wooden dining table. Surrounding the table
i - On both sides of the road are modern high-rise buildings. are 2Sseveral dark chairs, with a grey carpet laid on the floor. The background
The sky is filled with thick clouds.

of the photo features a window.

Figure 10: Visualization of more cases (Part-II).

E RL AT EARLY TIME STEPS

We only conduct RL on the first 20% time steps to speed up the training process, raising the concern
whether RL on initial states yields similar improvement on L2I trajectory sampling with full time
steps (we term this variant as full-time sampling). We conduct experiment with full time trajectory
sampling and evaluate L2I model on COCO-MIG to demonstrate this. As shown in Tab. 5, using
full-time sampling yields slight improvement but requires higher computational cost as optimization
will be conducted on the whole trajectory. Specifically, with RL training at early time steps, our
method achieves training speed of nearly 15.4s / iter on NVIDIA H20, while the training speed with
full trajectory sampling is nearly 82.6 s / iter. We thus propose to optimize initial states for faster RL.

F MORE VISUALIZATION

We visualize more results in Fig. 9 and Fig. 10 to show our method’s efficacy in L2I. Specifically, our
method achieves both spatial correctness and high instance image quality, demonstrating its potential
in L2I field.
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G ROBUSTNESS TO UNRELIABLE REWARD

We also conduct experiment to check our method’s robustness when encountering false reward by
deliberately assigning false reward (minus of the reward). The results are shown in Tab. 6.

From the result, we conclude that our RL part suffers from performance degradation when wrong
rewards are given, but the performance degradation does not cause catastrophic false generation. This
is due to two reasons:

(1) Joint optimization with paired data and KL terms. This is a commonly used strategy to overcome
training instability during RL Stiennon et al. (2020); Fan et al. (2023); Black et al. (2023). By using
KL term and keeping original pair-wise training loss, our method mitigates the negative effects
brought by RL. Moreover, we only conduct RL at the last 10 epochs of training, where our model
already has strong capability for L2I generation. During the trajectory sampling, the generated images
will not introduce samples with completely false layout, alleviating the negative effects brought by
false reward.

(2) Feature Disentanglement. As demonstrated in Tab. 3, after using IDM for RL, the final L2I
accuracies are improved. Therefore, our IDM provides better representation for subsequent RL.

To further alleviate the negative effects brought by false reward, one can combine multiple reward
functions (combining multiple detectors, efc.) to improve reward robustness, or carefully adjusting
KL weights to strike a balance between aggressive exploration or stable training.

H PSEUDO CODE OF OUR I-DRUID

We provide the pytorch-like pseudo code for our disentangling module and RL training. Specifically,
“CAS score computation” is the function to compute CAS score. “Compute Ly, is the function
to compute Lg;s, “Compute L,;” is the function to compute L,;, while “SDE-ODE Conversion” is
conducted on original “FlowMatchingScheduler” of SD3 to implement Eq. 5.

CAS score computation

def _get_bg_attn_loss(self, worse_attn, bg_mask):
BPN, heads, HW, _ = ori_attnmap.shape
B = bg_mask.shape[0]
bg_mask = bg_mask.reshape (-1, 1, HW)

# get ori bg attn map

ori_attnmap = torch.sum(ori_attnmapl:, :, :, 1:], dim=-1)
ori_attnmap = ori_attnmap.reshape (B, -1, HW)

bg_mask = bg_mask.reshape (B, 1, HW)

# get general bg info

bg_attn_mean = (ori_attnmap * bg_mask) .sum(dim=-1) / \
((bg_mask) .sum(dim=-1) + le-6) # (B, PNxheads)
loss_attn = (abs(ori_attnmap - bg_attn_mean[..., None].detach()) \

* bg_mask) .sum(dim=-1) / (bg_mask.sum(dim=-1) + le-6)
return loss_attn.mean ()

Compute Lg;s

def _get_disen_loss(self, worse_attn, better_attn, masks):
ranking_loss = torch.nn.SoftMarginLoss ()
H ori = self._get_bg_attn_loss(worse_attn, masks)
H_better = self._get_bg_attn_loss(better_attn, masks)
y = torch.ones_like (H_ori)
return ranking_loss (H_ori-H_better, vy)

Compute L,;
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def rl_train(self, state_dict, chosen_pid, height, width, \
clip_range=le-4):

cur_glob = [state_dict["caption"] [pid] for pid in chosen_pid]
sub_prts = [state_dict["sub_prompts"][pid] for pid in chosen_pid]
sub_bbox = [state_dict["bboxes"] [pid] for pid in chosen_pid]
ref_logp = state_dict["log prob"] [chosen_pid, :]
cur_logp, cur_reward, infer_img = self.pipe.train_get_logp(
cur_glob, height, width, num_inference_steps=50, \
max_objs = 10, timesteps = None,

bbox_phrases=sub_prts, bbox_raw=sub_bbox, \
reward_func=self.reward_func,
load_image=self.load_image, topk=10

)

topk = ref_logp.shape[-1]

cur_adv = cur_reward.to(cur_logp.device) .view(-1,1) -\
self.value_func(infer_img)

ratio = torch.exp(cur_logp[:, :topk] - \
ref_logp.to(cur_logp.device))

unclipped_loss = —-cur_adv * ratio

clipped_loss = —-cur_adv x torch.clamp (
ratio, 1.0 - clip_range, 1.0 + clip_range,

)

return torch.mean (torch.maximum (unclipped_loss, clipped_loss)) +\
self.kl_loss(cur_logp, ref_logp)

ODE-SDE Conversion

def sde_step_with_logprob(
self, model_output, timestep, sample = 0.7,
prev_sample = None, generator = None,

sample=sample. float ()
if prev_sample is not None:
prev_sample=prev_sample.float ()

step_index = [self.index_for_timestep(t) for t in timestep]
prev_step_index = [step+l for step in step_index]
sigma = self.sigmas[step_index].view (
-1, *=([1] * (len(sample.shape) — 1))
)
sigma_prev = self.sigmas|[prev_step_index].view(
-1, *([1] » (len(sample.shape) - 1))
)
sigma_max = self.sigmas[l].item()
dt = sigma_prev - sigma
std_dev_t = torch.sqrt (sigma / \
(1 - torch.where(sigma == 1, sigma_max, sigma)))*noise_level
# sde
prev_sample_mean = samplex (l+std_dev_t**2/(2xsigma) *dt)+\

model_outputx (1+std_dev_t**2* (1l-sigma)/ (2xsigma) ) »dt

if prev_sample is None:

variance_noise = randn_tensor (
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,

)

prev_sample = prev_sample_mean +
std_dev_t =« torch.sqgrt (-1xdt) = variance_noise
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def

log_prob = (
—((prev_sample.detach() - prev_sample_mean) *x* 2) /
(2 * ((std_dev_t * torch.sqgrt (=1xdt))=*=*2))
— torch.log(std_dev_t * torch.sqgrt (-1xdt))
- torch.log(torch.sgrt (2 » torch.as_tensor (math.pi)))
)

log_prob = log_prob.mean (dim=tuple (range (1,
log_prob.ndim)))
return prev_sample, log_prob, prev_sample_mean, std_dev_t

compute_log_prob(self, noise_pred, sample, time):
prev_sample, log_prob, prev_sample_mean, std_dev_t =
self.sde_step_with_logprob (
noise_pred.float (), time, sample.float(),
prev_sample=None, noise_level=0.7,
)

return prev_sample, log_prob, prev_sample_mean, std_dev_t
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