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Abstract

Zero-shot stance detection (ZSSD) aims to001
determine whether the author of a text is in002
favor of, against, or neutral toward a target003
that is unseen during training. In this pa-004
per, we present EZ-STANCE, a large English005
ZSSD dataset with 30,606 annotated text-target006
pairs. In contrast to VAST, the only other exist-007
ing ZSSD dataset, EZ-STANCE includes both008
noun-phrase targets and claim targets, cover-009
ing a wide range of domains. In addition, we010
introduce two challenging subtasks for ZSSD:011
target-based ZSSD and domain-based ZSSD.012
We provide an in-depth description and analysis013
of our dataset. We evaluate EZ-STANCE using014
state-of-the-art deep learning models. Further-015
more, we propose to transform ZSSD into the016
NLI task by applying two simple yet effective017
prompts to noun-phrase targets. Our experi-018
mental results show that EZ-STANCE is a chal-019
lenging new benchmark, which provides signif-020
icant research opportunities on ZSSD. We will021
make our dataset and code available on GitHub.022

1 Introduction023

The goal of stance detection is to automatically024

detect whether the author of a text is in favor of,025

against, or neutral toward a specific target (Mo-026

hammad et al., 2016b; Küçük and Can, 2020; AL-027

Dayel and Magdy, 2021), e.g., public education,028

mask mandate, or nuclear energy. The detected029

stance can reveal valuable insights relevant to sig-030

nificant events such as public policy-making and031

presidential elections.032

Earlier research has concentrated on two types of033

stance detection tasks: in-target stance detection, in034

which models are trained and evaluated using data035

from the same set of targets, e.g., both train and036

test contain data about “Donald Trump” (Hasan037

and Ng, 2014; Mohammad et al., 2016b; Graells-038

Garrido et al., 2020), and cross-target stance de-039

tection, where the models are trained on source040

targets that are related to, but distinct from, the des-041

tination targets (Augenstein et al., 2016; Wei and 042

Mao, 2019), which remain unseen during training 043

(e.g., destination target is “Donald Trump” whereas 044

source target is “Hillary Clinton”). However, it is 045

unrealistic to incorporate every potential or related 046

target in the training set. As such, zero-shot stance 047

detection (ZSSD) has emerged as a promising di- 048

rection (Allaway and McKeown, 2020) to evaluate 049

classifiers on a large number of unseen (and unre- 050

lated) targets. ZSSD is more related to real-world 051

scenarios and has consequently started to receive 052

significant interest recently (Liu et al., 2021; Luo 053

et al., 2022; Liang et al., 2022b). 054

Despite the growing interest in ZSSD, the task 055

still exhibits several limitations. First, the VAST 056

dataset (Allaway and McKeown, 2020) which is 057

the only existing ZSSD dataset, contains only noun 058

phrase targets. Yet, in real-world scenarios, stances 059

are often taken toward both noun phrases (Mo- 060

hammad et al., 2016b; Glandt et al., 2021) and 061

claims (Ferreira and Vlachos, 2016; Derczynski 062

et al., 2017). We observe that models trained ex- 063

clusively on noun-phrase targets do not perform 064

well on claim targets (or vice versa), due to the mis- 065

match between the training and test data. The need 066

to incorporate both types of targets for ZSSD has 067

been relatively overlooked. Second, VAST is de- 068

signed solely to detect the stance of unseen targets, 069

but these unseen targets at the inference stage orig- 070

inate from the same domain as the training targets 071

(in-domain), possessing similar semantics, which 072

makes the task less challenging. Third, despite 073

being instrumental for the development of zero- 074

shot stance detection, VAST generates data for the 075

neutral class by randomly permuting existing doc- 076

uments and targets, leading to a lack of semantic 077

correlation between the two. Models can easily 078

detect these patterns, consequently diminishing the 079

complexity of the task. 080

In an effort to address the aforementioned limi- 081

tations and spur research in ZSSD, we present EZ- 082
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Tweet Nuclear Energy is a much safer and cost-
efficient source of energy than coal and
oil and people should be using it!

Stance/Noun-
phrase targets

Favor / Nuclear Energy
Against / Coal

Stance/Claim
targets

Favor / Compared with traditional energy
such as coal and gasoline, nuclear brings
more security and is more economical.
Against / Don’t play with nuclear! We
should stick with coal and fossil fuels.
Neutral / Nuclear Energy will soon be
the only energy left in the market. Coal
and oil are outdated.

Table 1: Examples of noun-phrase targets and claim
targets for a tweet in the “Environmental Protection”
domain of our EZ-STANCE dataset.

STANCE, a large English Zero-shot stance detec-083

tion dataset collected from Twitter. In contrast with084

VAST, EZ-STANCE is, to our knowledge, the first085

large ZSSD dataset that captures both noun-phrase086

targets and claim targets, covering a more diverse087

set of targets. Moreover, EZ-STANCE includes088

two real-world scenarios for zero-shot stance detec-089

tion, namely target-based and domain-based ZSSD.090

Subtask A: target-based zero-shot stance detec-091

tion. This subtask is the same as the traditional092

ZSSD task (Allaway and McKeown, 2020), where093

stance detection classifiers are evaluated using a094

large number of completely unseen (and unrelated)095

targets, but from the same domains (in-domain).096

Subtask B: domain-based zero-shot stance detec-097

tion. Subtask B is our proposed ZSSD task where098

stance detection classifiers are evaluated using a099

large number of unseen targets from completely100

new domains (out-of-domain). Furthermore, in EZ-101

STANCE, annotators manually extract targets from102

each tweet to form the neutral class, ensuring se-103

mantic relevance to the tweet content. An example104

tweet from our dataset along with corresponding105

noun-phrase and claim targets and their stance are106

shown in Table 1. As we can see from the table, the107

author of the tweet is in favor of the noun-phrase108

target “Nuclear Energy” and against “Coal”. The109

author also opposes claim target 2, whose main110

idea is to refute the need for nuclear energy.111

In summary, our contributions are as follows: 1)112

We present EZ-STANCE, a unique large zero-shot113

stance detection dataset, composed of 30,606 an-114

notated English tweet-target pairs. EZ-STANCE is115

1.9 times larger than VAST (Allaway and McKe-116

own, 2020), which is the only large existing ZSSD117

dataset for English. We provide a detailed descrip-118

tion and analysis of our dataset; 2) We consider119

a more diverse set of targets including both noun120

phrases and claims in EZ-STANCE (see Table 1); 121

3) We include two challenging ZSSD subtasks in 122

EZ-STANCE: target-based zero-shot stance detec- 123

tion and domain-based zero-shot stance detection; 124

4) We establish baseline results using both tradi- 125

tional models and pre-trained language models; 5) 126

We propose to formulate stance detection into the 127

task of natural language inference (NLI) by ap- 128

plying two simple yet effective prompts for noun- 129

phrase targets. Our results and analysis show that 130

EZ-STANCE is a challenging new benchmark. 131

2 Related Work 132

Most earlier research is centered around in-target 133

stance detection where a classifier is trained and 134

evaluated on the same target (Zarrella and Marsh, 135

2016; Wei et al., 2016; Vijayaraghavan et al., 2016; 136

Mohammad et al., 2016b; Du et al., 2017; Sun 137

et al., 2018; Wei et al., 2018; Li and Caragea, 2019, 138

2021). However, the challenge often arises in gath- 139

ering enough annotated data for each specific tar- 140

get, and traditional models perform poorly when 141

generalized to unseen target data. This spurred in- 142

terest in investigating cross-target stance detection 143

(Augenstein et al., 2016; Xu et al., 2018; Wei and 144

Mao, 2019; Zhang et al., 2020), where a classifier is 145

adapted from different but related targets. However, 146

cross-target stance detection still requires prior hu- 147

man knowledge of the destination target and how 148

it is related to the training targets. Consequently, 149

models developed for cross-target stance detection 150

are still limited in their capability to generalize to a 151

wide range of unseen targets (Liang et al., 2022b). 152

Zero-shot stance detection (ZSSD) which aims to 153

detect the stance on a large number of unseen (and 154

unrelated) targets has received significant interest 155

in recent years. Allaway and McKeown (2020) de- 156

veloped VAried Stance Topics (VAST), the only 157

existing dataset for ZSSD that encompasses thou- 158

sands of noun-phrase targets. Some ZSSD models 159

have been developed based on VAST (Liu et al., 160

2021; Liang et al., 2022a,b; Luo et al., 2022). In 161

contrast with VAST, we include two types of ZSSD 162

subtasks in EZ-STANCE. Target-based ZSSD is 163

the same as the VAST setting. For domain-based 164

ZSSD, classifiers are evaluated on unseen targets 165

from completely new domains, which is a more 166

challenging task. Moreover, data for the neutral 167

class in the VAST dataset is generated by randomly 168

permuting existing documents and targets, result- 169

ing in easy-to-detect patterns. Comparatively, in 170
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Domain Query Keywords

Covid Epidemic CE epidemic prevention, living with covid, herd-immunity, WFH, booster, vaccine, mask
mandate, FDA, post-covid, Fauci

World Events WE world news, Ukraine, Russia, migrant, NATO, China, Mideast, negative population
growth, terrorism

Education and
Culture EdC public education, pop culture, cultural output, home schooling, AI assistance writing,

arming teachers, private education, international student
Entertainment
and Consumption EnC prices, gasoline price, online shopping, TikTok, iPhone, Reels, Disney, medical insurance,

ethical consumption, vegetarian
Sports S World Cup, NBA, men’s football, women’s football, NCAA, MLB, NFL, WWE

Rights R gender equality, equal rights, women’s rights, LGBTQ, BLM, doctors and patients, racism,
Asian hate, gun control

Environmental
Protection EP climate change, clean energy, environmental awareness, environmental protection agency,

shut down coal plants, nuclear energy, electric vehicle

Politics P government, republican, reform, leftists, democrat, democracy, right-wing, politic,
presidential debate, presidential election, midterm election

Table 2: The domains used in our dataset and the selected query keywords for each domain.

our dataset, targets of the neutral data are extracted171

based on the documents, ensuring strong semantic172

relevance to the document content. We compare173

our EZ-STANCE dataset with previous stance de-174

tection datasets in Appendix A.175

Target-specific stance detection is the prevalent176

stance detection task (ALDayel and Magdy, 2021),177

whose goal is to determine the stance for a tar-178

get, which could be a figure or controversial topic179

(Hasan and Ng, 2014; Mohammad et al., 2016a;180

Zotova et al., 2020; Conforti et al., 2020a,b). In181

contrast, claim-based stance detection aims to pre-182

dict the stance toward a specific claim, which could183

be an article’s headline or a reply to a rumorous184

post (Qazvinian et al., 2011; Derczynski et al.,185

2015; Ferreira and Vlachos, 2016; Bar-Haim et al.,186

2017; Derczynski et al., 2017; Gorrell et al., 2019).187

Nonetheless, insufficient attention has been paid188

to integrating both noun-phrase targets and claim189

targets into a single dataset. In contrast, our dataset190

accommodates data with both noun-phrase targets191

and claim targets (see examples in Appendix B).192

3 Dataset Construction193

In this section, we detail the creation of EZ-194

STANCE, our large English ZSSD dataset con-195

sisting of 30,606 annotated instances covering a196

comprehensive range of domains.197

3.1 Data Collection198

Our data are collected using the Twitter API, span-199

ning from May 30th, 2021 to January 20th, 2023.200

In alignment with previous works (Mohammad201

et al., 2016b; Glandt et al., 2021; Li et al., 2021),202

we crawl tweets using query keywords. To cover a203

wide range of domains on Twitter, we begin with204

the domain names from the Explore page of Twit-205

ter as keywords for data crawling (e.g., Covid epi- 206

demic, education, etc.). After we collect our initial 207

set, we gradually expand the keywords set for the 208

next round by including the most frequent words as 209

supplementary keywords. The full list of keywords 210

that we used for crawling is provided in Appendix 211

C. In total, we collect 50,000 tweets. 212

After this, we perform keyword filtering to elim- 213

inate keywords that are not suitable for stance de- 214

tection. Our keyword filtering is performed in the 215

following steps: 1) We manually detect a subset 216

of tweets crawled using each keyword and we re- 217

move keywords that are frequently associated with 218

promotional content (e.g., YouTuber, live shopping, 219

etc.), whose main purpose is for product/people 220

promotion instead of addressing controversial top- 221

ics; 2) Keywords that people predominantly hold 222

single stances on are filtered out, e.g., pollution, 223

crime, delicious food, etc. This is because mod- 224

els would simply learn the correlation between the 225

keywords and the stance and predict stances based 226

solely on keywords instead of the content of tweets 227

and targets. After filtering, we select 72 keywords 228

covering controversial topics. We summarize the 229

72 keywords into 8 domains: “Covid Epidemic" 230

(CE), “World Events" (WE), “Education and Cul- 231

ture" (EdC), “Entertainment and Consumption" 232

(EnC), “Sports" (S), “Rights" (R), “Environmental 233

Protection" (EP), and “Politics" (P). Table 2 shows 234

the domains and query keywords in each domain. 235

3.2 Preprocessing 236

To ensure the quality of our dataset, we perform 237

the following preprocessing steps: 1) We remove 238

tweets with less than 20 or more than 150 words. 239

According to our observations, tweets with less 240

than 20 words are either too easy or cannot include 241

enough information to express stances toward mul- 242
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Noun-phrase targets Claim targets

Domain Con Pro Neu Con Pro Neu
CE 625 505 488 862 862 862
WE 557 367 540 772 772 772
EdC 395 538 436 731 731 731
EnC 429 601 703 945 945 945
S 125 516 500 625 625 625
R 574 660 340 786 786 786
EP 318 624 350 611 611 611
P 758 538 507 872 872 872
Overall 3,781 4,349 3,864 6,204 6,204 6,204

Table 3: Label distribution for noun-phrase targets and
claim targets in each domain from our dataset. Con, Pro,
Neu represent against, favor, and neutral, respectively.

tiple targets. Tweets with more than 150 words243

usually contain links to external content; 2) We244

remove duplicates and retweets; 3) We keep only245

tweets in English; 4) We filter out tweets containing246

advertising contents (e.g., scan the QR code, reply247

or DM me, sign up, etc.); and 5) We remove emojis248

and URLs as they may introduce noise. We ran-249

domly select around 86 tweets for each keyword,250

obtaining 6204 tweets for annotation.251

3.3 Data Annotation252

The target and stance annotations of our dataset253

are gathered through Cogitotech,1 a data annota-254

tion company that provides annotation services for255

big AI companies (e.g., OpenAI, AWS, etc.). To256

ensure high-quality annotations, we apply rigorous257

criteria: 1) Annotators should have a minimum ed-258

ucation qualification of college graduation; 2) The259

annotators’ native language must be English. More-260

over, we randomly sample 10% of each annotator’s261

annotations to perform quality checks and discard262

annotations from an annotator if the acceptance263

rate is lower than 90%. This data is re-sent to other264

qualified annotators for labeling. The stance label265

distribution for both noun-phrase and claim targets266

for each domain is shown in Table 3.267

3.3.1 Annotation for Noun-Phrase Targets268

The annotation for noun-phrase targets is per-269

formed in the following two steps. In step 1, one an-270

notator is asked to identify a minimum of 2 targets271

from each given tweet. Annotators are given the fol-272

lowing instructions: From each tweet, please iden-273

tify at least 2 noun-phrase targets. Targets should274

meet the following criteria: 1) Targets should be275

the principal subject of the tweet rather than mi-276

nor details; 2) Targets should represent widely dis-277

cussed topics where different stances are exhibited;278

1https://www.cogitotech.com/

3) Targets where people often express the same 279

stance should be avoided, e.g., violence abuse. In 280

step 2, we instruct 3 annotators to assign a stance 281

label to each tweet-target pair, using the following 282

instructions: Imagine yourself as the author of the 283

tweet, please annotate the stance that you would 284

take on this given target as “Favor”, “Against”, 285

or “Neutral”. After the annotations are completed, 286

we determine the stance for each tweet-target pair 287

by using the majority vote amongst the three anno- 288

tators. For 6,204 tweets, we obtain 11,994 anno- 289

tated instances (around 2 targets per tweet). The 290

inter-annotator agreement measured using Krippen- 291

dorff’s alpha (Krippendorff, 2011) is 0.63, which 292

is higher than VAST (0.427). 293

3.3.2 Annotation for Claim Targets 294

The annotation for claim targets aims to collect 295

three claims, to which the tweet takes favor, against, 296

and neutral stances, respectively. We provide the 297

following instructions: Based on the message that 298

you learned from the tweet, write the following 299

three claims: 1) The author is definitely in favor 300

of the point or message of the claim (favor); 2) 301

The author is definitely against the point or mes- 302

sage from the claim (against); 3) Based solely on 303

the information from the tweet, we cannot know 304

whether the author definitely supports or opposes 305

the point or message of the claim (neutral). To 306

make this task more challenging, we establish a set 307

of extra requirements: First, claims labeled with 308

favor must not replicate the tweet verbatim. Sec- 309

ond, claims labeled with against should not merely 310

negate the tweet content (e.g., adding “not" before 311

verbs). Models could easily detect such linguistic 312

patterns and predict stances without learning the 313

content of tweet-claim pairs. 314

For quality assurance, we hide the stance labels 315

for a subset of tweet-claim pairs and ask another 316

group of annotators (who did not write the claims) 317

to annotate the stance. The two groups agree on 318

95% of the times. This result indicates high-quality 319

generations of the claim targets and stance labels. 320

In total, we obtain 18,612 tweet-claim pairs. 321

3.4 Dataset Split 322

We partition the annotated data into training, val- 323

idation, and test sets for both target-based ZSSD 324

(subtask A) and domain-based ZSSD (subtask B). 325

For subtask A, we split the dataset in alignment 326

with the VAST dataset (Allaway and McKeown, 327

2020): the training, validation, and test sets do not 328
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# Examples # Unique Avg. Length Lexsim

N C N C T N C T (%)

Subtask A
Train 8,705 12,264 4,842 12,248 4,088 1.8 18.4 39.8 -
Val 1,667 3,081 1,578 3,078 1,027 2.3 19.2 39.1 13
Test 1,622 3,267 1,613 3,253 1,089 2.3 18.9 39.3 12

Subtask B
(Covid Epidemic)

Train 8,498 13,167 5,875 13,151 4,389 2 18.6 39.3 -
Val 1,231 2,754 1,220 2,744 918 2.3 18.4 39.5 11
Test 1,716 2,607 1,156 2,602 869 1.9 18.7 41.1 10

Table 4: Dataset split statistics for subtask A and subtask B (“Covid Epidemic” as the zero-shot domain). N, C, T
represent noun-phrase targets, claim targets, and tweets, respectively. Lexsim represents the ratio of LexsimTopics.

share any documents (tweets) and targets with each329

other. We provide further details of our split ap-330

proach in Appendix D. The dataset distribution is331

shown in Table 4. Additionally, we present the332

average percentage of overlapping tokens in all333

tweet-target pairs in Appendix E.334

For subtask B, we use the data from seven do-335

mains (source) for training and validation, and the336

data from the left-out domain (zero-shot) as the337

test set. This results in 8 dataset splits for subtask338

B with one dataset split assigned for each of the339

eight domains, wherein each domain in turn is used340

as the test set. To ensure the zero-shot scenario,341

we remove data with overlapping targets from the342

source domains in each split. Next, we divide the343

source domains into training and validation sets,344

ensuring no overlapping tweets and targets. The345

statistics when using the “Covid Epidemic” as the346

zero-shot domain are shown in Table 4. The full347

statistics of subtask B are shown in Appendix F.348

Given the linguistic variations in the noun-phrase349

target expressions, we investigate the prevalence of350

LexSimTopics (Allaway and McKeown, 2020) be-351

tween the training and the test set. LexSimTopics352

is defined as the percentage of targets that possess353

more than 0.9 cosine similarities with any training354

targets in the word embedding space (Bojanowski355

et al., 2017). As shown in Table 4, in Subtask A,356

we have 12% and 13% LexSimTopics in the test set357

and the validation set, respectively. Whereas for the358

“Covid Epidemic” domain in subtask B, we only359

have 10% and 11% LexSimTopics for the test and360

validation sets. This indicates that subtask B poses361

more challenges as the targets in the training and362

test sets exhibit more differences. In comparison,363

the VAST dataset has 16% and 19% LexSimTopics364

in the zero-shot test set and validation set, respec-365

tively, which are higher than our dataset.366

4 Methodology367

We now present our approach for converting ZSSD368

into the natural language inference (NLI) task.369

Figure 1: Our approach to transfer ZSSD into NLI.

4.1 Problem Definition 370

Suppose we are given a training set Dtrain= 371

{(xtraini , ttraini , ytraini )}Ntrain
i=1 and a test set Dtest= 372

{(xtesti , ttesti )}Ntest
i=1 , where xtraini is a training doc- 373

ument (tweet), ttraini is a target in xtraini and ytraini 374

is its label (or stance) ∈ {Favor, Against, Neutral}. 375

For target-based ZSSD (subtask A), targets in xtesti 376

do not overlap with targets in xtraini . For domain- 377

based ZSSD (subtask B), targets in xtesti not only 378

do not overlap with the targets in xtraini , but they 379

also belong to a domain that is not seen in Dtrain. 380

The objective is to predict the stance given both 381

xtesti and ttesti by training a model on the Dtrain. 382

4.2 Transform ZSSD into NLI 383

We propose to convert the document and target 384

into the premise and hypothesis of NLI, respec- 385

tively. The task of predicting stance labels (Favor, 386

Against, or Neutral) is transformed into the task of 387

predicting entailment labels (Entailment, Contra- 388

diction, or Neutral). In particular, we design two 389

simple yet effective prompt templates to formulate 390

noun-phrase targets into more refined hypotheses, 391

thereby facilitating the model to better leverage the 392

NLI pre-trained model for stance detection. These 393

prompts are: “The premise entails [target]!”, and 394

“The premise entails the hypothesis [target]!” For 395

each noun-phrase target, we randomly apply one of 396

the prompts. Note that we do not apply prompts for 397

claim targets as they already resemble hypotheses 398

quite closely. We fine-tune the BART-large encoder 399
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Mixed targets Noun-phrase targets Claim targets

Con Pro Neu All Con Pro Neu All Con Pro Neu All
BiCE .539 .358 .536 .478 .583 .550 .453 .529 .313 .346 .317 .325
Cross-Net .504 .485 .571 .520 .559 .552 .466 .526 .473 .448 .622 .514
TGA Net .558 .564 .625 .582 .641 .603 .503 .583 .514 .551 .687 .584
BERT .724 .732 .756 .738 .669 .619 .535 .608 .706 .768 .872 .782
RoBERTa .787 .785 .769 .780 .712 .677 .529 .639 .821 .856 .881 .853
XLNet .767 .766 .760 .764 .685 .652 .531 .623 .806 .841 .880 .842
BART-MNLI .652 .699 .632 .661 .194 .531 .205 .310 .789 .832 .783 .801
BART-MNLI-e .816 .808 .773 .799 .729 .690 .542 .653 .858∗ .888∗ .892∗ .879∗

BART-MNLI-ep .818∗ .813∗ .783∗ .805∗ .739∗ .692∗ .576∗ .669∗ - - - -

Table 5: Comparison of different models on EZ-STANCE subtask A. The performance is reported using F1 score for
the against (Con), favor (Pro), neutral (Neu), and the F1macro (All). ∗: our approach improves the best traditional
baseline at p < 0.05 with paired t-test.

(Lewis et al., 2020) pre-trained on MNLI (Williams400

et al., 2018) to predict the stance. The BART de-401

coder is not included due to memory constraints.402

As shown in Figure 1. The text “I think electric cars403

are better for the environment.” with stance Favor404

towards the target “clean energy” in ZSSD becomes405

<premise, hypothesis> as <“I think electric cars are406

better for the environment.”, “The premise entails407

clean energy!”> with the Entailment NLI label.408

5 Baselines and Models409

We evaluate EZ-STANCE using the following base-410

lines. BiCE (Augenstein et al., 2016) and Cross-411

Net (Xu et al., 2018) predict the stance using the412

conditional encoding of BiLSTM. TGA-Net (All-413

away and McKeown, 2020) captures implicit re-414

lations/correlations between targets in a hidden415

space to assist stance classification. We also con-416

sider fine-tuning the base version of state-of-the-art417

transformer-based models as strong baselines, in-418

cluding BERT (Devlin et al., 2019), RoBERTa419

(Liu et al., 2019) and XLNet (Yang et al., 2019).420

To evaluate NLI pre-trained models for ZSSD,421

we compare the following methods: BART-MNLI-422

ep: We fine-tune the BART-MNLI encoder using423

EZ-STANCE dataset with our proposed prompts424

applied to noun-phrase targets. BART-MNLI-425

e: We fine-tune the BART-MNLI encoder using426

the original EZ-STANCE dataset without prompts.427

BART-MNLI: We directly use the pre-trained428

BART-MNLI model with both encoder and decoder429

without fine-tuning to infer the stance labels for the430

test set. We show the hyperparameters adopted in431

our experiments in Appendix G.432

6 Results433

In this section, we first conduct experiments for434

subtask A (§6.1) and subtask B (§6.2). We then435

compare our EZ-STANCE with the VAST dataset 436

(§6.3). We also study the impact of different 437

prompts (§6.4). Next, we explore the effects of 438

integrating noun-phrase targets and claim targets 439

into one dataset (§6.5). Lastly, we perform the spu- 440

riosity analysis for claim targets (§6.6). Like prior 441

works (Allaway and McKeown, 2020), we employ 442

class-specific F1 scores and the macro-averaged F1 443

score across all classes as our evaluation metrics. 444

6.1 Target-based Zero-Shot Stance Detection 445

Target-based zero-shot stance detection (subtask A) 446

aims to evaluate the classifier on a large number 447

of completely unseen targets. Our experiments are 448

performed using the full dataset with mixed targets 449

(both noun phrases and claims), the dataset with 450

noun-phrase targets only, and the dataset with claim 451

targets only, respectively. 452

Results are shown in Table 5. First, we ob- 453

serve that fine-tuning MNLI pre-trained models 454

(i.e., BART-MNLI-ep and BART-MNLI-e) consis- 455

tently outperform traditional baselines (that do not 456

use NLI pre-trained knowledge), showing the ef- 457

fectiveness of transforming ZSSD into the NLI 458

task. Second, we observe that BART-MNLI-ep 459

outperforms BART-MNLI-e, which suggests that 460

our proposed prompts can effectively formulate 461

noun-phrase targets into more refined hypotheses 462

to better leverage the MNLI model for ZSSD. As 463

we do not apply prompts to claim targets, these two 464

models have the same performance on claim targets. 465

Third, the BART-MNLI model without fine-tuning 466

on EZ-Stance performs much worse than the fine- 467

tuned BART-MNLI encoders, particularly for the 468

noun-phrase targets. This result demonstrates the 469

necessity of developing a large dataset for ZSSD, 470

so that the NLI pre-trained knowledge can be better 471

utilized. Fourth, transformer-based models outper- 472

form on claim targets in comparison to noun-phrase 473
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Model CE WE EdC EnC S R EP P

BiCE
M .441 .443 .480 .451 .458 .485 .465 .439
N .461 .485 .486 .476 .434 .515 .514 .433
C .323 .313 .325 .319 .324 .309 .319 .310

CrossNet
M .482 .489 .501 .484 .470 .531 .489 .484
N .471 .502 .489 .487 .487 .505 .522 .476
C .495 .495 .499 .486 .475 .505 .473 .501

TGA-Net
M .535 .545 .565 .559 .553 .606 .570 .562
N .471 .528 .552 .544 .530 .565 .558 .552
C .572 .568 .595 .591 .545 .610 .567 .567

BERT
M .681 .689 .716 .685 .698 .728 .695 .698
N .567 .560 .580 .577 .587 .612 .578 .569
C .753 .760 .784 .763 .769 .780 .764 .765

RoBER-
Ta

M .716 .728 .759 .744 .738 .763 .736 .746
N .612 .600 .629 .596 .598 .633 .625 .591
C .815 .833 .856 .845 .833 .831 .825 .828

XLNet
M .707 .722 .741 .724 .719 .745 .734 .717
N .586 .609 .596 .588 .581 .622 .605 .580
C .790 .796 .832 .829 .793 .819 .808 .802

BART-
MNLI

M .590 .591 .633 .627 .656 .616 .638 .577
N .314 .270 .336 .334 .368 .330 .377 .309
C .755 .797 .794 .787 .788 .780 .768 .752

BART-
MNLI-e

M .751 .758 .771 .769 .766 .765 .759 .757
N .604 .620 .639 .609 .582 .624 .623 .610
C .850∗ .866∗ .874∗ .866∗ .866∗ .830 .850∗ .846∗

BART-
MNLI-ep

M .752∗ .769∗ .772∗ .771∗ .768∗ .783∗ .768∗ .763∗

N .613 .613 .629 .613∗ .613∗ .628 .638∗ .613∗

C - - - - - - - -

Table 6: Comparison of F1macro of different models
on EZ-STANCE subtask B. Models are trained and eval-
uated using datasets for 8 zero-shot domain settings. ∗:
our approach improves the best traditional baseline at
p < 0.05 with paired t-test.

targets. In contrast, BiCE and CrossNet underper-474

form on claim targets compared to noun-phrase475

targets. This could be due to the transformer mod-476

els’ ability at capturing contextual features from477

claims which typically contain more contextual in-478

formation than noun phrases. Last, performances479

on noun-phrase targets are not very high, indicat-480

ing that EZ-STANCE is a very challenging new481

benchmark for ZSSD.482

6.2 Domain-based Zero-Shot Stance Detection483

Domain-based zero-shot stance detection (subtask484

B) focuses on evaluating classifiers using unseen485

topics from completely new domains. Particularly,486

we select one domain as the zero-shot domain and487

the rest seven domains as source domains. We488

train and validate models using data from source489

domains and test models using data from the zero-490

shot domain. We have eight zero-shot domain set-491

tings (each with a different zero-shot domain). As492

before, we experiment with the full dataset with493

mixed targets (M), data with noun-phrase targets494

(N), and data with claim targets (C), respectively.495

Results are shown in Table 6. First, we notice496

that models show lower performance when com-497

Subtask A Subtask B (CE)

Train Val Test Train Val Test
V 4,003 383 600 - - -
E 17,090 4,656 4,866 19,026 3,964 3,758

Table 7: Distribution of zero-shot targets of EZ-
STANCE compared with VAST (denoted as E and V,
respectively).

Train/Val Test Con Pro Neu All
E V .578 .626 .286 .497
V E .644 .615 .005 .421
E E .739 .692 .576 .669
V V .719 .701 .919 .780

Table 8: Cross-dataset and in-dataset performance of
BART-MNLI-ep trained using EZ-STANCE and VAST
(denoted as E and V, respectively).

pared with the in-domain task (see results for sub- 498

task A from Table 5). This is because the domain 499

shifts between the training and testing stages intro- 500

duce additional complexity to the task, making our 501

proposed domain-based ZSSD a more challenging 502

ZSSD task. Second, in most cases, models perform 503

worst on the “Covid Epidemic” domain, suggesting 504

that the “Covid Epidemic” domain shares the least 505

domain knowledge with other domains, making 506

it the most difficult zero-shot domain for domain- 507

based ZSSD. Moreover, we also observe that most 508

models show higher performance when predicting 509

stances for the “Rights” domain. 510

We also report the results for training on mixed 511

targets and testing separately on noun-phrase tar- 512

gets and claim targets in Appendix H. 513

6.3 EZ-STANCE vs. VAST 514

We compared EZ-STANCE and VAST from two 515

perspectives: the target diversity and the challenge 516

of the task. In Table 7, we can observe that EZ- 517

STANCE includes a much larger number of zero- 518

shot targets than VAST, suggesting that models 519

trained on EZ-STANCE can potentially be gen- 520

eralized to a wider variety of zero-shot targets. 521

To understand which dataset presents more chal- 522

lenges, we perform the cross-dataset experiments 523

by training our best-performing BART-MNLI-ep 524

using one dataset and testing the model using the 525

other dataset. We also explore the in-dataset set- 526

ting by training and testing the model on the same 527

dataset. For a fair comparison, for EZ-STANCE, 528

we use only noun-phrase targets from subtask A. 529

Results are shown in Table 8. First, we ob- 530

serve that the model shows significantly higher 531

performance for the in-dataset setting than the 532

cross-dataset setting. Second, for the in-dataset 533
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Prompts Con Pro Neu All
The premise entails [target]! .729 .684 .578 .664
The premise entails the hy-
pothesis [target]!

.727 .688 .571 .662

I am in favor of [target]! .727 .690 .559 .659
I support [target]! .728 .690 .551 .656
I am against [target]! .718 .678 .558 .652
I disagree with [target]! .721 .686 .567 .658
Ours .739 .692 .576 .669

Table 9: Comparison of F1macro of BART-MNLI-ep
trained using different prompts.

Train/Val Test RoBERTa BART-MNLI-e
M N .609 .619
M C .859 .880
C N .364 .349
N C .309 .325

Table 10: Comparison of F1macro of RoBERTa
and BART-MNLI-e using different targets for train-
ing/validation and test. M, N, and C are mixed targets,
noun-phrase targets, and claim targets, respectively.

setting, the model trained on EZ-STANCE shows534

much lower performance than the one trained on535

VAST, particularly for the neutral class. The result536

demonstrates that data from the neutral class in537

EZ-STANCE with close semantic correlations be-538

tween documents and targets are much more chal-539

lenging than in VAST, where documents and tar-540

gets are randomly permuted (and do not reflect the541

natural/real-world data for the neutral class). Third,542

the model trained on VAST performs extremely543

poorly on the neutral class of the EZ-STANCE test544

set, while the model trained on EZ-STANCE show545

much higher performance on VAST, indicating that546

EZ-STANCE test set captures more challenging547

real-world ZSSD data, especially for the neutral548

category. This reinforces our motivation to create a549

new, large dataset for ZSSD.550

6.4 Impact of Prompt Templates551

To understand the impact of prompt templates on552

our proposed approach, we experiment with dif-553

ferent prompts to noun-phrase targets. Note that554

for prompts “I am against [target]!” and “I dis-555

agree with [target]!”, we swap the stance labels556

between Entailment and Contradiction to ensure557

semantic consistency. The results are shown in Ta-558

ble 9, where our selected 2 prompts outperform559

other prompts. Also, our approach that randomly560

selects one prompt or the other outperforms models561

trained using only one type of prompt.562

6.5 Impact of Incorporating Two Target Types563

In order to explore the necessity of incorporating564

both noun-phrase targets and claim targets into one565

Data RoBERTa BART-MNLI-e
T+C .853 .879
C .526 .541

Table 11: Comparison of F1macro of RoBERTa and
BART-MNLI-e when both the tweet and claim target
(T+C) are used vs. when only claim target (C) is used
as the input.
dataset, we evaluate models that have been trained 566

with noun-phrase targets using the claim targets, 567

and vice versa. We contrast these results with mod- 568

els trained with the mixture of two target types 569

and evaluated using each target type individually. 570

Experiments are performed for subtask A, using 571

RoBERTa and BART-MNLI-ep. 572

From Table 10, we can observe that when models 573

are trained using noun-phrase targets and evaluated 574

with claim targets (and vice versa), the performance 575

is much worse than models trained by the mixed 576

targets. These results suggest that datasets featur- 577

ing a single target type are not adept at handling 578

the other type of target, further reinforcing the ne- 579

cessity of developing a dataset encompassing both 580

target types. 581

6.6 Spuriosity Analysis for Claim Targets 582

We conduct a spuriosity analysis for claim targets to 583

ensure that stance cannot be detected based solely 584

on the claim. In Subtask A, experiments are per- 585

formed on RoBERTa and BART-MNLI-e with only 586

the claim target as input, and these results are com- 587

pared with those that use both the tweet and claim 588

target as input. From Table 11 we observe a sig- 589

nificant performance drop when only the claim 590

target is used as input. Therefore, the integration of 591

tweets and claim targets is necessary for the mod- 592

els to accurately predict stances by learning the 593

semantic association between them. 594

7 Conclusion 595

In this paper, we present EZ-STANCE, a large En- 596

glish ZSSD dataset. Compared with VAST, the 597

only existing ZSSD dataset, our dataset is larger 598

and more challenging. EZ-STANCE covers both 599

noun-phrase targets and claim targets and also 600

comprises two challenging ZSSD subtasks: target- 601

based ZSSD and domain-based ZSSD. We improve 602

the data quality of the neutral class by extracting 603

targets from texts. We evaluate EZ-STANCE on 604

ZSSD baselines and propose to transform ZSSD 605

into the NLI task which outperforms traditional 606

baselines. We hope EZ-STANCE can facilitate 607

future research for varied stance detection tasks. 608
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Limitations609

Our EZ-STANCE data is collected from social me-610

dia. This might be perceived as a drawback as it611

might not encompass all facets of formal texts that612

could be found in essays or news comments. In613

the future, we aim to expand this dataset to include614

other text types. Yet, this restriction isn’t unique to615

our dataset, but also affects any other datasets that616

concentrate on social media content.617

Ethical Statement618

Our dataset does not provide any personally iden-619

tifiable information. Tweets are collected using620

generic keywords instead of user information as621

queries, therefore our dataset does not have a large622

collection of tweets from an individual user. Thus623

our dataset complies with Twitter’s information624

privacy policy.625
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A EZ-STANCE vs. Previous English 909

Stance Detection Datasets 910

We compare the statistics of our EZ-STANCE with 911

previous English stance detection datasets in Ta- 912

ble 12. We can observe that the sizes of existing 913

English stance detection datasets are smaller than 914

ours except for the WT-WT dataset (Conforti et al., 915

2020b). However, WT-WT is designed for in-target 916

stance detection limited to the financial domain. In 917

contrast, EZ-STANCE is a ZSSD dataset covering 918

a comprehensive range of domains. When com- 919

pared with rest datasets with either noun-phrase 920

targets or claim targets, EZ-STANCE includes a 921

much larger number of targets including both noun- 922

phrase targets and claim targets. 923

B More Examples of EZ-STANCE 924

In this section, we show examples of tweets with 925

noun-phrase targets and claim targets for each do- 926

main of our EZ-STANCE dataset in Table 13. 927

C Query Keywords 928

The full keywords set that we used for data crawl- 929

ing is shown in Table 14. We generate the list by 930

gradually expanding the initial keywords set (from 931

the Twitter Explore page) using the most frequent 932

words. 933
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Authors Source # Target(s) Target Type Size
Ferreira and Vlachos (2016) News articles 300 Claim 2,595
Derczynski et al. (2017) Twitter 305 Claim 5,568
Gorrell et al. (2019) Twitter, Reddit 8,574 Claim 8,574
Mohammad et al. (2016b) Twitter 6 Noun-phrase 4,870
Swami et al. (2018) Twitter 1 Noun-phrase 3,545
Conforti et al. (2020b) Twitter 5 Noun-phrase 51,284
Allaway and McKeown (2020) News Comments 5,634 Noun-phrase 18,545
Glandt et al. (2021) Twitter 4 Noun-phrase 6,133
Li et al. (2021) Twitter 3 Noun-phrase 21,574
EZ-STANCE (ours) Twitter 26,612 Noun-phrase, Claim 30,606

Table 12: Comparison of English stance detection datasets.

CE

Tweet Cost of living off the scale, country being flooded with migrants, covid scam and jab injuries out
there. How much more before the people decide enough is enough.

N target/Stance Covid Scams / Against
C target/
Stance

Skyrocketing living costs and on the other side migrants will come in a lot of amounts so the
country’s population will increase someday. / Neutral

WE

Tweet
China’s economy isn’t just doing well. It is increasingly becoming 1 in several categories. Home
prices are growing at slow and healthy rates, inflation is normal and healthy and the yuan is solid.
The west should be trying to befriend China. Make a friend, not an adversary.

N target/Stance China’s economy / Favor
C target/
Stance

The economy of china is decreasing at an alarming rate due to which it’s occupied last position in
several categories. / Against

EdC

Tweet
To my Twitter pals who are parents in Ontario, trying to deal with homes chooling and work and
all the stresses of the pandemic, my God, I don’t know how you’ve managed to pull this off. But
you have, even if you’re exhausted. And you all rock.

N target/Stance home schooling / Against
C target/
Stance

Parents in Ontario have managed to cope with homeschooling, work, and the pandemic, even if
they are exhausted. / Favor

EnC

Tweet Interviewer: why do you want this position? Me: so I can pay for all the online shopping I did
this while being stressed about this interview.

N target/Stance online shopping / Favor
C target/Stance I do online shopping when I’m stressed. / Neutral

S

Tweet Dwyane Wade winning an NBA Championship in his 3rd NBA season as the best player on the
team .. does not get spoken on enough.

N target/Stance Dwyane Wade / Favor
C target/Stance Dwyane Wade’s success in his 3rd NBA season made him the best player of all times. / Neutral

R

Tweet
The FEUHS Student Government is one with the LGBTQIA community in celebrating the
PrideMonth2021 and pursuing equal rights for everyone, regardless of sexual orientation, gender
identity, and expression.

N target/Stance Equal Rights / Favor
C target/
Stance

Regardless of sexual orientation, gender identity, or gender expression, the FEUHS Student
Government opposes equitable rights for everyone. / Against

EP

Tweet
The Sines coal plant in Portugal has been shut down nine years ahead of schedule, reducing the
country s carbon emissions by 12%. A second and final plant is due to close in November which
will make Portugal the fourth European country to eliminate.

N target/Stance Carbon emissions / Against
C target/
Stance

Portugal’s Sines coal facility was shut down nine years earlier than expected, cutting the nation’s
carbon emissions by 12 percent. / Favor

P

Tweet
I wish Democrats would play tough and just release an ad that says "GOP loves guns more than
our kids." Just show the 234 mass shootings in 2022 and how GOP has obstructed every attempt
at gun reform. There’s no lie in that claim. At the very least don’t call them "rational."

N target/Stance GOP / Against
C target/Stance The GOP will bring gun reform to stop the mass shootings. / Neutral

Table 13: Examples of noun-phrase targets and claim targets for tweets in each domain of our EZ-STANCE dataset.
“N target” and “C target” represent the noun-phrase target and the claim target, respectively.
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YouTube shorts, modern history, work from home, herd immunity, living with covid, Fauci, public education, college
football, pop culture, war, LGBTQ, environmental awareness, YouTube, career, vaccine, reels, democracy, pop culture,
online shopping, hockey, reform, AI assistance writing, working class, election, parenting, global news, China, NBA,
sports, student loan, traditional culture, Asian hate, presidential debate, Russia, bully, climate change, medicare, forcing
electrical power, Mideast, doctors and patients, anti LGBTQ, post-covid, cooking, Snapchat, EU, presidential election,
tictok, pfizer, business, general election, baseketball, prices, Chinese history, insurance, covid conspiracy, live shopping,
SAT, Taliban, MLB, baseball, vaccine injury, tiger parents, environmental protection a, gency cultural output, Reels,
government, family, new energy, WFH, clean energy, consumption concept, right wing, quality education, world news,
stock market, private education, racism, long covid, NFL, vote, negative population growth, youtube, NASA, co-exist-
ence with Covid, WWE, DPR, political correctness, world cup, relationship, epidemic prevention, mideast, artificial
intelligence, ethical consumption, Garbage classification, arming teachers, force kid to compete, health insurance, media,
Negative population growth, terrorism, NATO, population aging, MLB’s rule change, technology, wildfire, gun control,
gender equality, migrant, doctors and patient, debate, mRNA vaccine, boxing, booster, leftists, republican, life in reels,
abortion, teacher carry gun, Disney, overloaded kids, reward unreliable electricity gasoline price, international student,
Ukraine, women’s football, BLM, DPRK, privacy, shut down coal plants, homeschooling, physical education, men’s
football, NCAA, security, mask, sealed management, medical insurance, vegetarian, short video, iPhone, Iran, democrat,
FDA, mid-term election, livestream shopping, CDC, women’s rights, politic, electric vihicles, new york time, Hollywood,
immigrant, Metoo, covid-19, equal rights, nuclear energy, mask mandate

Table 14: The full query keywords list used in our work for tweet crawling.

D Split Method934

Initially, we randomly select x% of unique tweets935

for the training set and the rest as the combination936

of validation and test set. We then move data with937

overlapping targets and documents from the mix-938

ture of validation and test sets to the training set.939

After this step, we may introduce some additional940

overlapping targets during the transaction. This is941

because the tweets that are moved to the training942

set may have other noun-phrase targets that overlap943

with the remaining validation and test set. There-944

fore we repeat this transferring procedure y times945

until we do not have any overlapping targets and946

documents between the training set and the mixture947

of validation and test set. In our experiments, we948

use x=40% and y=4, because with these parame-949

ters, 66% tweets are split into our final training950

(similar to VAST). We then perform similar proce-951

dures to split validation and the test set. Therefore,952

the training, validation, and test set do not include953

overlapping tweets and targets with each other.954

E Token Overlap955

We also provide the average percentage of target956

tokens that overlap with tokens in tweets. The re-957

sults are shown in Table 18. We observe that noun-958

phrase targets show a higher overlapping percent-959

age than claim targets. This can be attributed to the960

fact that annotators tend to summarize noun-phrase961

targets using tokens that carry similar semantics962

from the text.963

F Full Statistics of Subtask B 964

The statistics of the 8 dataset splits (data from seven 965

domains for training and validation, and the data 966

from the left-out domain as the zero-shot test set) 967

are shown in Table 15. 968

G Training Details 969

Our experiments are carried out using an NVIDIA 970

RTX A5000 GPU based on the PyTorch (Paszke 971

et al., 2019). Hyperparameters were fine-tuned us- 972

ing our validation set. The BiCE and CrossNet 973

models were trained using AdamW (Loshchilov 974

and Hutter, 2019) as the optimizer with a learn- 975

ing rate of 0.001. Each model was trained for 20 976

epochs, with each mini-batch of size 128. As for 977

TGA-Net, we adhered to the hyperparameters as 978

recommended in prior research (Allaway and McK- 979

eown, 2020). The AdamW optimizer with a learn- 980

ing rate of 2e-5 was utilized for BERT, RoBERTa, 981

XLNet models, BART-MNLI-e, and BART-MNLI- 982

ep models, which were fine-tuned for 4 epochs 983

using batch size of 64. The entire training process 984

was completed within 3 hours. Each result is the 985

average of 4 runs with different initializations. 986

H Evaluations on Models Trained by 987

Mixed Targets with Noun-Phrase 988

Targets and Claim Targets 989

In subtask A and subtask B, for experiments using 990

mixed targets, we test the baseline models using 991

noun-phrase targets and claim targets separately. 992

Our goal is to better understand how each model 993

trained on mixed targets performs for each type of 994

target separately. The results for subtask A and sub- 995
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# Examples # Unique Avg. Length

N C N C T N C T

Covid Epidemic
Train 8,498 13,167 5,875 13,151 4,389 2 18.6 39.3
Val 1,231 2,754 1,220 2,744 918 2.3 18.4 39.5
Test 1,716 2,607 1,156 2,602 869 1.9 18.7 41.1

World Event
Train 8,457 13,536 5,867 13,515 4,512 2 18.6 39.2
Val 1,211 2,688 1,197 2,678 896 2.4 18.4 39.7
Test 1,576 2,304 1,192 2,304 768 1.9 18.9 41.6

Education and
Culture

Train 8,769 13,641 5,984 13,620 4,547 2 18.6 39.3
Val 1,248 2,730 1,234 2,720 910 2.3 18.3 38.8
Test 1,432 2,157 1,052 2,156 719 2 19.2 42.2

Entertainment
and consumption

Train 8,535 13,107 5,750 13,086 4,369 2 18.9 40.3
Val 1,175 2,604 1,163 2,599 868 2.3 18.6 40.4
Test 1,819 2,817 1,361 2,812 939 1.9 17.3 35.2

Sports
Train 9,525 14,004 6,083 13,985 4,668 1.9 18.7 40.1
Val 1,213 2,667 1,203 2,661 889 2.4 18.5 40.2
Test 1,232 1,857 985 1,850 619 2 18.2 35.3

Rights
Train 8,541 13,422 5,809 13,402 4,474 2 18.6 39.4
Val 1,222 2,751 1,209 2,742 917 2.3 18.5 40.1
Test 1,685 2,355 1,237 2,350 785 2 18.8 39.7

Environmental
Protection

Train 8,878 13,929 6,030 13,907 4,643 1.9 18.6 39.3
Val 1,243 2,757 1,228 2,747 919 2.4 18.3 39.1
Test 1,343 1,842 1,001 1,842 614 2.3 19.4 41.9

Politic
Train 8,283 13,236 5,727 13,217 4,412 2 18.6 39.4
Val 1,214 2,703 1,204 2,693 901 2.4 18.4 39.5
Test 1,837 2,589 1,342 2,586 863 1.9 18.7 40.3

Table 15: Data statistics of all 8 dataset splits for subtask B. N, C, and T represent noun-phrase targets, claim targets,
and tweets, respectively.

task B are shown in Table 16 and Table 17, respec-996

tively. We can observe that most compared models997

show higher performance on the claim targets than998

the noun-phrase targets. Compared with models999

trained solely on noun-phrase targets and claim tar-1000

gets (see Table 5 and Table 6), we can observe that1001

models trained on mixed targets show lower perfor-1002

mance for noun-phrase targets and slightly higher1003

performance for claim targets. This demonstrates1004

that incorporating noun-phrase targets during train-1005

ing can boost the performance of claim targets.1006

However, training with a mixture of claim targets1007

negatively impacts the performance of noun-phrase1008

targets. This implies a continued need for ZSSD1009

models capable of effectively leveraging both types1010

of targets, which we leave as our future work.1011
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Mixed targets Noun-phrase targets Claim targets

Con Pro Neu All Con Pro Neu All Con Pro Neu All
BiCE .539 .358 .536 .478 .550 .508 .469 .509 .303 .318 .367 .329
Cross-Net .504 .485 .571 .520 .553 .539 .434 .509 .461 .467 .641 .523
TGA Net .558 .564 .625 .582 .641 .609 .435 .562 .522 .534 .706 .587
BERT .724 .732 .756 .738 .682 .634 .493 .603 .744 .786 .878 .803
RoBERTa .787 .785 .769 .780 .692 .642 .526 .620 .830 .859 .886 .859
XLNet .767 .766 .760 .764 .679 .652 .469 .600 .808 .834 .883 .842
BART-MNLI-e .816 .808 .773 .799 .702 .679 .495 .626 .865 .884 .896 .882
BART-MNLI-ep .818 .813 .783 .805 .707 .681 .544 .644 .869 .885 .897 .884

Table 16: Comparison of different models in subtask A, which are trained on mixed targets and tested using the full
test set with mixed targets (M), the noun-phrase targets (N), and the claim targets (C), respectively. Results are
averaged over four runs.

Model CE WE EdC EnC S R EP P

BiCE
M .441 .443 .480 .451 .458 .485 .465 .439
N .463 .481 .495 .479 .453 .470 .468 .441
C .324 .319 .329 .331 .294 .312 .340 .298

CrossNet
M .482 .489 .501 .484 .470 .531 .489 .484
N .473 .482 .484 .476 .454 .515 .473 .470
C .491 .485 .502 .483 .467 .513 .485 .486

TGA-Net
M .535 .545 .565 .559 .553 .606 .570 .562
N .495 .522 .558 .539 .547 .559 .566 .534
C .562 .554 .598 .588 .554 .610 .562 .563

BERT
M .681 .689 .716 .685 .698 .728 .695 .698
N .549 .564 .587 .561 .570 .600 .582 .571
C .760 .768 .792 .766 .772 .783 .770 .765

RoBERTa
M .716 .728 .759 .744 .738 .763 .736 .746
N .587 .576 .604 .587 .582 .618 .606 .610
C .798 .824 .855 .847 .825 .830 .816 .824

XLNet
M .707 .722 .741 .724 .719 .745 .734 .717
N .554 .570 .572 .559 .584 .600 .610 .591
C .788 .810 .841 .814 .813 .810 .806 .792

BART-MNLI-e
M .751 .758 .771 .769 .766 .765 .759 .757
N .618 .600 .602 .622 .604 .624 .623 .607
C .837 .861 .873 .865 .857 .844 .841 .849

BART-MNLI-ep
M .752 .769 .772 .771 .768 .783 .768 .763
N .607 .619 .615 .619 .599 .631 .637 .615
C .841 .868 .872 .868 .863 .863 .847 .854

Table 17: Comparison of F1macro of different models trained on mixed targets for 8 different zero-shot domain
settings, and tested using the full test set with mixed targets (M), the noun-phrase targets (N), and the claim targets
(C), respectively. Results are averaged over four runs.

N C
Train 74.5% 41.6%
Val 77.0% 41.3%
Test 76.0% 40.6%

Table 18: Average percentage of token overlap between
two types of targets and tweets. N and C represent noun-
phrase targets and claim targets, respectively.

15


