20

25

30

35

40

Learning General Policies for Planning through GPT Models

Primary Keywords: Learning

Abstract

Transformer-based architectures, such as TS5, BERT and GPT,
have demonstrated revolutionary capabilities in Natural Lan-
guage Processing. Several studies showed that deep learn-
ing models using these architectures not only possess re-
markable linguistic knowledge, but they also exhibit forms
of factual knowledge, common sense, and even program-
ming skills. However, the scientific community still debates
about their reasoning capabilities, which have been recently
tested in the context of automated Al planning; the litera-
ture presents mixed results, and the prevailing view is that
current transformer-based models may not be adequate for
planning. In this paper, we address this challenge differently.
We introduce a GPT-based model customised for planning
(PLANGPT) to learn a general policy for classical planning
by training the model from scratch with a dataset of solved
planning instances. Once PLANGPT has been trained for a
domain, it can be used to generate a solution plan for an input
problem instance in that domain. Our training procedure ex-
ploits automated planning knowledge to enhance the perfor-
mance of the trained model. We build and evaluate our GPT
model with several planning domains, and we compare its
performance w.r.t. other recent deep learning techniques for
generalised planning, demonstrating the effectiveness of the
proposed approach.

Introduction

Pre-trained Language Models and Large Language Mod-
els (LLMs) employing attention mechanisms represent
the state-of-the-art in Natural Language Processing (NLP)
tasks. Starting from the Transformer architecture (Vaswani
et al. 2017), and then with BERT (Devlin et al. 2019) and
GPT (Radford and Narasimhan 2018), LLLMs have achieved
SOTA results in different NLP tasks, such as machine trans-
lation and summarisation. Although these models can cap-
ture some forms of general knowledge of real-world facts
(e.g., historical facts, geography, and medicine) (Petroni
et al. 2019; Jiang et al. 2020), basic common sense (Geva
et al. 2021) and programming skills (Wang et al. 2021), they
have limited reasoning capabilities, such as logical infer-
ence or Al planning. In particular, some studies suggest that
LLMs cannot generate valid plans to solve automated plan-
ning problems using simple prompting strategies or fine-
tuning (Valmeekam et al. 2023, 2022; Arora and Kambham-
pati 2023). However, the recent work on Plansformer (Pal-

lagani et al. 2023) shows that it is possible to fine-tune a pre-
trained language model with planning instances from simple
planning domains obtaining promising results.

In the context of generalised planning (e.g., (Hu and
De Giacomo 2011; Srivastava, Immerman, and Zilberstein
2008, 2011)), several works have demonstrated that deep
learning models can learn a general policy, i.e. a strategy
employed to solve a set of different problems in a given
planning domain (Groshev et al. 2018; Stahlberg, Bonet,
and Geffner 2022a,b). An example of general policy for the
BLOCKSWORLD domain is to place all blocks on the table
and then stack them in the desired position. However, deep
learning approaches for learning general policies are often
used to guide the search, without directly tackling the prob-
lem of finding a valid plan. Moreover, they are often lim-
ited to image-based domains (Groshev et al. 2018) or have
logical restrictions, such as the one in (Stahlberg, Bonet,
and Geffner 2022a) which limits the approach to the two-
variable fragment of first-order logic.

In this paper, we investigate generalised planning through
transformer-based architectures. We introduce a GPT-based
model customised for planning (PLANGPT) to learn a gen-
eral policy for classical planning by training the model from
scratch with a dataset of solved planning instances. Once
PLANGPT has been trained for a domain, it can be used to
generate a solution plan for an input problem instance in that
domain. Our training procedure exploits automated planning
knowledge to enhance the performance of the trained model.
In particular, to prevent overfitting in training, we design and
exploit an early-stopping technique validating the planning
performance of the model while being trained. We build and
evaluate PLANGPT with several planning domains, and we
compare its performance with respect to other recent deep
learning techniques for generalised planning, demonstrating
the effectiveness of the proposed approach.

The paper is organised as follows: first, we discuss re-
lated work and provide background information. Then, we
describe the preprocessing phase, the training datasets, and
how the GPT models are designed and trained. Finally, we
present the experimental results and draw our conclusions.

Related Work

Recently several researchers have leveraged pre-trained
LLMs to address planning and evaluate their reasoning capa-

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

140

145

bilities. For instance, the studies in (Valmeekam et al. 2022,
2023) assess how pre-trained GPT models (GPT-3.5 and
GPT-4) can generate plans. They do not modify the original
GPT model, but simply query it by exploiting some few-shot
prompting frameworks to tackle planning tasks across vari-
ous benchmark domains, such as BLOCKSWORLD and LO-
GISTICS. Their results highlight poor performance in gener-
ating valid plans that satisfy the problem goal.

In (Arora and Kambhampati 2023) a fine-tuned GPT-2
model is evaluated for the BLOCKSWORLD domain. Starting
from a model pre-trained on text data, they built a genera-
tor of single actions, which are also progressively verified
by another GPT-2 model fine-tuned on this specific task,
reporting promising performance (about 60% of problems
solved over a custom-made test set of 200 instances). An-
other fine-tuning approach, called Plansformer, is proposed
in (Pallagani et al. 2022, 2023) starting from a Code-T5
model (Wang et al. 2021) fine-tuned with solved problems
in several planning domains. Although Plansformer obtains
almost 90% valid plans, these results are not directly compa-
rable to those in (Arora and Kambhampati 2023), since they
are obtained using two different test sets.

Researchers also exploited different types of deep learn-
ing architectures in the context of learning general policies.
Toyer et al. (2018; 2020) use a custom feed-forward neu-
ral network to represent states and actions as neural lay-
ers and obtain the following action in probabilistic plan-
ning. The work in (Groshev et al. 2018) employed Con-
volutional Neural Network (CNN) to plan in the Sokoban
domain with the current state represented as an image. To
deal with propositional domains without image representa-
tions, they implemented a Graph Neural Network (GNN)
that solves the travelling salesperson problem by building
a plan selecting the next city to visit at each iteration. Simi-
larly, Stahlberg et al. (2022a; 2022b) adopt a GNN to tackle
various benchmark domains. Given the current state, the sys-
tem computes all the states reachable by applicable actions
and selects the state with the best heuristic value estimated
by the GNN, choosing it as the new current state; the proce-
dure is repeated until a state is reached where goal is satis-
fied. An important difference of this approach w.r.t our work
is that we use deep learning to directly generate the next ac-
tions rather than to evaluate heuristic values of states. More-
over, the expressive power of GNNss is restricted to the two-
variable fragment of first-order logic with counting quan-
tifiers (C2) (Stahlberg, Bonet, and Geffner 2022a,b), while
CNNs can only elaborate states encoded as images (Groshev
et al. 2018).

Instead of fine-tuning or prompt-engineering a pre-trained
model, in our work, we build a custom transformer-based
model (trained from scratch) to learn a general policy for
planning. This approach is followed by many other re-
searchers to solve tasks with a high level of complexity, such
as genetics-related challenges (Jumper et al. 2021) and the
generation of programming code (Wang et al. 2021). In au-
tomated planning, Serina et al. (2022) trained a BERT model
from scratch with a dataset of plans across various domains
to solve the plan recognition problem of predicting missing
actions from an observed partial plan. However, this method

is not applicable for learning general policies as it ignores
information about the initial states and goal of the class of
problems handled by the policy.

Background
Classical Planning and General Policies

We assume that the reader is familiar with the standard plan-
ning language PDDL for representing deterministic, fully
observable planning problems, of which here we present
the most relevant elements following the formalisation given
in (Stdhlberg, Bonet, and Geffner 2022a).

A classical planning problem is a pair P = (D, I) where
D is a planning domain and [is a problem instance. The
planning domain D contains a set of predicate symbols
p and a set of action schemas with preconditions and ef-
fects given by atoms p(z1,...,xx) where each z; is an ar-
gument of the schema. The problem instance is a tuple [=
(O, Init, Goal) where O is a (finite) set of objects names
¢i,» and Init and Goal are sets of ground atoms p(cy, ..., ¢)
representing the initial state and the goal of the problem.
A classical problem P = (D,I) encodes a state model
S(P) = (S, s0,Sq, Act, A,) where each state s € S is
a set of ground atoms from P, s is the initial state Init,
Sq is the set of goal states s € S such that Goal C s,
Act is the set of ground actions in P, A(s) is the set of
ground actions whose preconditions are true in s, and f is
the transition function so that f(a, s) for a € A(s) repre-
sents the state resulting from applying action a to state s. An
action sequence ag, ..., a,, is applicable in P if a; € A(s;)
and s;41 = f(ai,s;), fori = 0,...,n, and it is a plan if
Sn+1 € Sa. The cost of a plan is assumed to be given by its
length, and a plan is optimal if there is no shorter plan.

Generalised planning studies the representation and com-
putation of general policies to solve multiple problems in the
same planning domain (e.g., (Hu and De Giacomo 2011; Sri-
vastava, Immerman, and Zilberstein 2008, 2011)). A general
policy can be defined as a function 7 (s, Goal) providing the
next action in Act to apply given the current state s € S and
the goal of the problem instance Goal. A policy 7 solves a
set of classical planning instances for the same domain D
if each of these instances I = (O, Init, Goal) is solved by
the sequence of actions 7(sg, Goal), ..., m(s,, Goal), where
so = Init and Goal C Sp41.

Several approaches to generalised planning based on deep
learning, including PLANGPT, adopt this representation of
general policy (Groshev et al. 2018; Toyer et al. 2018,
2020). An alternative method is to define a value function
in which the policy selects the successor state with the min-
imum value given the current state, goals and action, as
in (Stahlberg, Bonet, and Geffner 2022a,b).

Generative Pretrained Transformer

GPT (Radford and Narasimhan 2018), which stands for
Generative Pretrained Transformer, is a transformer-based
architecture (Vaswani et al. 2017) originally designed to
analyse sequences of elements in natural language process-
ing (NLP) tasks. In the NLP context, these sequences are
sentences or documents divided into tokens (words or part

150

155

160

165

170

175

180

185

190

205

210

215

220

225

230

240

245

255

260

of words). In our planning context, as detailed in the fol-
lowing sections, we will consider sequences of fluents and
actions derived from the initial states, the goals, and the so-
lution plans of planning problems.

The division of the sequence into tokens is performed by
a probabilistic algorithm called zokeniser, which, through an
analysis of the training set, also collects all different tokens
into a vocabulary of size v. Typically, given a sequence of
tokens in input, a GPT model is trained to generate another
sequence in response, such as the translation of a sentence
into another language, an answer to a question, or, in our
case, a sequence of actions solving a planning instance. This
generation is done one token at a time. In the following, we
describe how the GPT architecture works considering the ¢,
token ¢; in a sequence of IV tokens.

First, the model encodes the input token ¢; into an embed-
ding vector E; € R®. This operation is performed through
an embedding matrix £/ € RV*¢ that embeds each word in
a numeric vector of length equal to the embedding size e.
Then, the model sums F; with the positional encoding vec-
tor P; € R® obtaining the vector I; € R€. After the em-
bedding phase, the first block processes the input through
multiple masked self-attention mechanisms, typically called
heads and other neural network layers.

In a self-attention mechanism (without considering mask-
ing), the model projects I; into three new representations
called key (I(; € R?), query (Q; € R?) and value (V; € R?)
multiplying it with three weight matrices W, € R¢*<,
W, € R4 and W, € R®*?, where d is the dimension
of the attention vectors. Then, the model calculates the dot-
product between @); and all K; in the sequence, where K
is the key vector of the j;;, token in the sequence. The model
concatenates the results and applies the softmax function,
obtaining a vector A; € RY, called attention weight. Each
element of the attention weight a; ; ideally represents the
interaction between the 7;;, token and the j;, token of the
sequence. The head then calculates a new representation of
ti, R; € R? by averaging the value representations of all
tokens in the sequence multiplied by the respective attention
weight. Whereas the traditional self-attention calculates the
attention weights considering all tokens in a sequence, in the
masked-self attention mechanism, for the i, token, only the
tokens with a position j < 7 are considered and the attention
weights a; ; with j > ¢ are set to 0.

Each block of GPT applies n heads at the same time
(multi-head attention). In order to create a single representa-
tion of the context, the model concatenates the result of each
head, obtaining a vector M; € R?, where ¢ = d x n, which
is passed to a feed-forward layer that transforms M; into the
new output vector O; € R€. Then there is a feed-forward
layer and two residual connections with layer normalisation
which ends a GPT block. The overall task of these blocks is
to compute a more informative representation of each token
of the same size e. The output of a block is the input of the
next one. After the last block, the output of the last block is
multiplied by a weight matrix, obtaining a vector of length
N. A softmax layer then turns this vector into a probability
distribution among all the tokens in the vocabulary. Finally,
GPT outputs the token with the highest probability.

PlanGPT
(oo g\:]-'n
[0
8o

-2
\.\o.'ﬁ#ﬁ

INITIAL STATE

0000000

Figure 1: Architecture of PLANGPT and example of in-
put/output illustrated for a planning problem with two flu-
ents in the initial state (/o and /;) and two fluents forming
the goal (G and G1). PLANGPT generates as output the
plan (Ag, Ay, ..., End).

The overall process of GPT begins generating the first to-
ken; then this is added to the input and GPT continues gen-
erating the second token, added (concatenated) to the input
again to generate the third token, and so on. GPT repeats
the procedure until the special token <EndOfSequence> is
generated or reaches the maximum context length.

At training time, first the model generates the whole se-
quence. Next, the training algorithm compares it with the se-
quence label in order to compute the loss function (typically,
the cross-entropy loss). In our planning context, we gener-
ate a sequence of actions, and the label is a valid plan. The
sequence can be derived using different generation strate-
gies (Welleck et al. 2020):

* Greedy Generation: at each generation step, GPT out-
puts the token with the highest probability.

* Multibeam N generation: GPT keeps the most likely N
sequences, and chooses the sequence that has the highest
probability.

* Top-P (nucleus) sampling: at each step, GPT sam-
ples the most likely tokens whose cumulative probability
reaches a given probability P.

Architecture of PLANGPT

Our aim is to compute an effective general policy for a plan-
ning domain by training from scratch a custom GPT archi-
tecture for that domain. Given a PDDL problem with its ini-
tial and goal fluents as input, the objective is to generate a
sequence of actions that solve the problem. We build a dif-
ferent model for each domain, training it from scratch using
a set of training examples, each one made by an initial state,
a set of goal fluents and the corresponding solution plan,
which is the label of the example. In this section, we de-
scribe the preprocessing of the input data, the overall work-
ing of the model, how we train it, and how we evaluate the
generated plans.

Preprocessing and Tokeniser

In the preprocessing phase, we transform the initial state and
the goal into a format suitable for GPT (i.e. a sequence of

GENERATED PLAN

265

270

275

280

285

290

295

300

305

310

320

325

330

335

340

350

tokens). At training time, we also include the tokenised ver-
sion of the solution plan P as the label of our training pro-
cedure. At inference time, the model has the objective of
generating P in the same format.

To achieve this, the tokeniser splits each input fluent in its
components (the predicate name and its objects); then these
tokens are concatenated to obtain a token sequence repre-
senting both the initial state and the goal fluents. Similarly,
we apply this procedure for each action that is generated and
provided as input in the incremental generation of a solution
plan: the tokens of an action are its name and the objects of
the action, and a plan is a sequence of such tokens. For ex-
ample, for fluent (Ar Truckl Locl) we have three tokens: At,
Truckl and Locl; for action (Drive Truckl Locl Loc3), four
tokens: Drive, Truckl, Locl and Loc3.

The tokens of the initial state, the goal fluents, and the
(already generated) action sequence are then concatenated to
obtain a single sequence for GPT using some special tokens
as follows:

e <start> to mark the start of the initial state.

* <goal> to mark the end of the initial state and the begin-
ning of the goal fluents.

* <actions> to indicate the end of the goal fluents and the
beginning of the tokens of the action sequence.

* <end> to mark the end of the action sequence and, conse-
quently, of the entire plan generated to solve the planning
problem.

As in many GPT models, the tokenisation and preparation of
the model input are performed by WordPiece (Devlin et al.
2019). Since GPT models have a predefined vocabulary, i.e.,
a predefined set of tokens, we defined a predefined set of ob-
jects for each domain during training and instantiated all the
PDDL action schemas and predicates using those objects to
obtain the PLANGPT vocabulary of the object and action to-
kens. Although the predefined vocabulary is sensitive to the
object names, in our architecture this operation only requires
setting a maximum number of objects. This is because we
use a mapping algorithm to translate new names into prede-
fined ones. The algorithm takes as input a PDDL problem
and retrieves all the objects, then checks if these objects are
in the GPT vocabulary. If an object is not in the vocabulary,
it is substituted with an unused object of the same type in the
vocabulary.

PLANGPT Models

Figure 1 shows the architecture of our system, PLANGPT, in
which we use the latest open-source version of GPT (GPT-
2).! Given in input the initial state and goal of a planning
problem in a planning domain, PLANGPT generates a se-
quence of ground actions (each one tokenised as described
above) forming a plan to reach the goal from the initial state.
First, the input is tokenised as described in the previous sec-
tion. After tokenisation, the embedding layer converts the
tokens into embedding vectors, the decoder stack analyses

'GPT-2 is significantly smaller than recent GPT versions, and
hence much less demanding in terms of training data and required
computational resources for training.

the input sequence, and the final layer outputs the first token
of the plan. Then, PLANGPT adds the generated token to the
input sequence and repeats the whole process for generating
the second token, and so on. Each token generated by GPT
is the name of an action or one of its objects. For example,
if the output of PLANGPT is the sequence Drive, Truckl,
Locl, Loc3, ..., <end>, the first action of the generated plan
is (Drive Truckl Locl Loc3). The tokens of each output ac-
tion are generated one after the other. E.g., first PLANGPT
generates Drive, then it adds Drive to the input sequence and
outputs Truckl, and so on. This is repeated until the end-of-
sequence token <end> is generated.

Tipically, GPT models are trained to generate all the to-
kens starting from token <start>, i.e., to replicate the entire
input sequence, which in our case represents the initial state,
the goal, and a solution plan. Since our goal is to generate
only a plan, we are not interested in learning how to repli-
cate the tokens of the initial state and the goal. Therefore, we
include a loss masking mechanism in the training procedure
to prevent the model from learning to generate these tokens.

Each training example consists of the sequence of tokens
derived from a planning problem (initial state and goal) and
its label is the sequence of tokens from a solution plan solv-
ing the problem. At training time, the model generates a se-
quence of tokens corresponding to a sequence of actions.
Such a sequence is compared against the example label to
compute the loss function and adjust the network weights
through backpropagation. As loss function we adopt the
widely used cross-entropy.

Planning Coverage for Early Stopping in Training

Generally speaking, the use of the cross-entropy (CE) forces
the model to mimic the example label. Each time the model
generates a token, this token is compared with the corre-
sponding one belonging to the label. From this comparison
the loss is calculated, and then, the backpropagation algo-
rithm modifies the weights in order to generate a sequence
of tokens that is the closest possible to the label.

However, this process is not fully adequate for learning
to solve planning tasks because a planning problem can be
solved by different plans. With the cross-entropy loss func-
tion, we may observe an error in the generated (tokenised)
plan just because it is not totally identical to the one that was
used as label. This problem is exacerbated by the tendency
of deep learning models to overfit the training data. With an
overfitted model, we may have a model that is capable of
generating plans for the training problems, but is uncapable
of solving other similar problems in the test set.

A typical technique to prevent ovetfitting is the Early
Stopping. The mechanism uses a validation set of examples
that are not used for training. If the loss value for the vali-
dation set (the validation loss) increases, which is a typical
evidence of overfitting, the model continues to train for a
fixed number of epochs. After these epochs, if the validation
loss has not improved, the model restores the weights that
obtained the best performance on the validation set and the
training stops.

Since, for planning, optimising the standard cross-entropy
on the validation set suffers the problem outlined above, we

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

DOMAIN OBJECTS RANDOMISED || RANDOMISED
PROBLEM SOLUTION
ACTION4(K,G)

E LI
- D A3
B A=A

K T5 G

PROBLEM
GENERATOR

ACTION(P25,T5)

ACTION,(A3,G)

t 1

OBJECT NAME
RANDOMISER

®

1 1
PROBLEM SOLUTION
n 1 ACTION1(A,B)
> Al PLANNER ACTIONo(P1,T1)
A=A
e b ACTIONp(A1,8)

Figure 2: Dataset generation procedure. Given a PDDL do-
main and a set of objects, the problem generator outputs a
PDDL problem in that domain; then the planner generates up
to four solution plans solving it; finally the objects names of
the problem and of the corresponding plans are randomised.

designed a new early stopping technique. Our technique,
called Planning Coverage Early Stopping (CES for short),
evaluates the capability of solving the planning problems in
a validation set with the current learned model. This metric
is based on verifying the correctness of the plans generated
by the model for the planning problems in the validation set.
The verification is performed using the PDDL specification
of the actions (preconditions and effects) through the stan-
dard validator VAL (Howey, Long, and Fox 2004).

At the end of each training epoch, the model generates
the solution plans for the validation problems. If at least one
action in a plan is not applicable or at least one goal fluents is
not reached, the plan is considered incorrect, otherwise it is
valid. The coverage metric value is defined as the percentage
of valid plans over the total number of generated plans.

The use of CES helps the model to generate valid plans
rather than plans identical to ones labelling the training set.
The CES metric is evaluated at each training epoch; if the
CES value has not improved for a predefined number of
epochs, the training stops and we select the model’s weights
which obtained the best performance in terms of the cover-
age metric.

Dataset Generation

In this section, we describe the procedure depicted in Fig-
ure 2 to build the dataset used for training our GPT model.
First, we generate 70,000 planning problems (written in
PDDL) for the considered domain using a problem genera-
tor; we used the one proposed in (Seipp, Torralba, and Hoff-

mann 2022). Depending on the number of objects involved,
we have problems of different difficulty. We chose the num-
ber of objects following the setups of the International Plan-
ning Competition (IPC).2 However, with such setups and the
problem generators we could derive a class of problems that
is too specific for training, limiting the generalisation capa-
bility of the learned model. When we observed this issue for
the domain considered, we generated additional problems
through a revised problem generator. For instance, the gen-
erator available for LOGISTICS always creates problems in
which all packages of the problem must be transferred to a
location specified in the goal. To address this bias, we also
create scenarios where the goal does not encompass all the
packages specified in the planning problem.

For a typed domain, we incorporated the type predicates
into the initial states of the problems. E.g., for problems
in LOGISTICS, predicates such as (City Cityl) or (Package
Packagel) are added to the initial state. This helps the model
to associate each object name with its corresponding type.

For each generated problem, we compute different sub-
optimal solutions (four in our implementation). In this way,
we show to the system that a single problem can have more
than one valid plan. Furthermore, generating multiple solu-
tions for a single problem augment the number of training
samples. To obtain multiple plans, we used LPG (Gerevini
and Serina 2002), but other planners could be used (Richter
and Westphal 2010; Lipovetzky and Geffner 2017; Helmert
2006).

Then, we randomise the object names to mitigate potential
biases in the generated problems and plans. The names ran-
domisation is performed by replacing each object name obj
with a name of an object of the same type of obj randomly
taken from the vocabulary. This step is important because
it prevents a deep learning model to learn biases tied to the
conventions used in problem generators. In LOGISTICS this
issue arises for the following reason: the generator names
trucks and cities with increasing numbers and assigns them
in increasing order. E.g., assume we consider problems with
three cities (Cityl, City2, City3) and one truck for each city;
the generator always set in the initial states Truckl at Cityl,
Truck?2 at City2 and Truck3 at City3. Training a model using
only problems following this convention limits its general-
isation capability, since it would provide wrong results for
instances following other conventions.

In addition to LOGISTICS, we built datasets for other
seven well-known benchmark domains (briefly described
in the supplementary material): BLOCKSWORLD, DE-
POTS, DRIVERLOG, FLOORTILE, SATELLITE, VISITALL and
ZENOTRAVEL.

We also analysed the previous biases in the IPC bench-
marks and available generators of these domains. We ob-
served that all the IPC problems of BLOCKSWORLD have
only one tower to build, while BLOCKSWORLD generator
always creates problems with more than one tower to build.
Therefore, we used a variant of the standard generator where
every problem requires to build from one to five towers.

In ZENOTRAVEL, planes consume fuel transporting peo-

*https://www.icaps-conference.org/competitions/.

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

530

535

540

545

ple, and in general, a varying fuel level (among those avail-
able) is assigned to each plane in the initial state of a prob-
lem. However, in the ZENOTRAVEL problem generator, ev-
ery plane has zero fuel in the initial state. A model trained
with such problems could learn a simplified version of the
domain in which all planes used must always be refuelled,
without an understanding of the overall fuel management.
To solve this bias, we extended the ZENOTRAVEL generator
to randomise the initial fuel level of each aircraft.

For VISITALL, as in the approach of (Stahlberg, Bonet,
and Geffner 2022b), we used the IPC-2011 optimal track
problems, and we generated problems with rectangular grids
of different sizes and different percentages of tiles to visit.

Experimental Results

We trained a custom GPT model for each of the eight do-
mains indicated above using GPT-2 Small, which has 12
blocks with 12 heads each, for a total of about 83M parame-
ters. The training hyperparameters are available in the Sup-
plementary Material. We also tested bigger GPT configura-
tions (which require a higher number of training instances,
more training time, and more computational power) without
obtaining significantly better results. Our models are trained
on a NVIDIA A100 GPU of 40 GB.> We tested the three
standard generation strategies previously described: Greedy,
Multibeam N generation (setting N = 10) and Sampling
Top-P (setting P = 0.9 and generating 10 sequences).

In the following, we evaluate our GPT-based models
in terms of percentage of valid generated plans (cover-
age). The generation takes, on average, less than 3 sec-
onds, with a maximum of 20 seconds for FLOORTILE using
Sampling. We also experimentally compare our approach
with Plansformer (Pallagani et al. 2023), the best perform-
ing transformer-based model applied to automated plan-
ning, and with a state-of-the-art approach for learning gen-
eral policies based on GNN (Stdhlberg, Bonet, and Geffner
2022b). This comparison is perfomed in terms of correct
plans, and scores IPCScore-Quality and IPCScore-Agile, as
defined in the last planning competition (IPC 2023) and re-
ported in the supplementary material.

Effectiveness in Valid Plan Generation

Table 1 shows the results of PLANGPT with and with-
out the Planning Coverage Early Stopping (CES) for the
Greedy, Multibeam and Sampling generation strategies. For
this evaluation, we used a test set of more than 6000 prob-
lems for each considered domain; this test set, indicated with
Tset, was created using the available generators modified
as described above to avoid original biases previously dis-
cussed.

Our system obtains very good results for most of the do-
mains considered. In particular, with Sampling the cover-
age is higher than 90% for every domain except LOGISTICS,
where we have 77.3% of coverage. PLANGPT solves all
the BLOCKSWORLD and VISITALL problems and 99.6% of
the FLOORTILE problems with CES. With Multibeam and

3The code, the datasets and the models will be made available
after acceptance of this paper.

Greedy Multibeam Sampling
Domain CE CES | CE CES CE CES
BLOCKSWORLD | 98.8 99.5 | 99.4 99.6 100.0 100.0
DEPOTS 729 787 | 77.1 854 90.3 94.5
DRIVERLOG 61.3 684 | 73.0 80.8 94.7 96.5
FLOORTILE 929944 | 96.9 96.6 98.2 99.6
LOGISTICS 63.3 66.1 | 62.8 63.7 76.3 77.3
SATELLITE 68.0 753 | 71.6 78.3 81.3 90.1
VISITALL 94.0 94.0 | 97.8 97.8 99.9 100.0
ZENOTRAVEL 82.7 827 | 87.3 873 94.7 94.7

Table 1: Coverage for each domain with the greedy, multi-
beam and sampling generation of PLANGPT using standard
Cross Entropy without (CE column) and with the Coverage
Early Stopping (CES column) using the Tset test set.

Greedy we have a lower performance, but the coverage per-
centage is never lower than 60%.

We now evaluate the effectiveness of our coverage early
stopping (CES) technique, analyzing the coverage perfor-
mance with and without its utilization on the Tset test set.
The results are presented in Table 1. The use of CES im-
proves performance in all domains except ZENOTRAVEL,
where the performance remains the same. In particular, we
have a remarkable improvement for SATELLITE with all
three generation strategies (7.3 points with greedy, 6.7 with
multibeam, and 8.8 with sampling), DEPOTS and DRIVER-
LOG. Even for domains where PLANGPT obtains very high
performance without CES, such as FLOORTILE, VISITALL
and BLOCKSWORLD, with CES we still have a small im-
provement. These results confirm the usefulness of including
our planning evaluation technique in the training process.

In Figure 3 we examine the behaviour of the cross-entropy
loss function and the use of CES for three domains during
training (we report only these three domains for the sake
of clarity; the results for the other domains are available in
the Supplementary Material). The black cross on the curves
indicates when the training stops using the standard cross-
entropy loss evaluated on a validation set (1000 randomly
generated problems for each domain not used for training
PLANGPT) as the early stopping metric. The red star mark-
ers indicates when the model stops the training using CES.
For all three domains, using CES leads to train for a higher
number of epochs w.r.t. not using it (i.e., with the stan-
dard cross-entropy technique). In these additional epochs,
the loss function value worsens. Despite this worsening of
the loss function, the coverage increases until the number
of epochs indicated by the red star marker is reached. This
shows that using the CES improves the training process, ob-
taining higher coverage.

The experimental results of Table 1 and Figure 3 indicate
that the standard loss function of GPT-2 is not fully adequate
to learn planning policies. In fact, the experimental results
show that an improvement in the plan generation can be ob-
tained with a worsening of the loss function at training time.
As we already noticed, a possible reason is that the standard
loss forces the model to imitate the target plan (the sample
label), limiting the model capabilities of generating a valid

550

555

560

565

575

580

585

590

595

600

605

610

615

620

625

—e— Floortile
0.45 Depots
—=— Satellite

o
»
o

Cross Entropy Loss
I o
N W
wv o

o

w

w
Coverage Early Stopping

I
N
o

0 2 4 6 8

o
[
w

10 12 14 16 18 20 22 24 26 28
Epoch

(a) Cross Entropy Loss of PLANGPT.

100
—e— Floortile

Depots
—=— Satellite

90
80 *
70
60
50
40
30
20
10

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Epoch

(b) Coverage Early Stopping of PLANGPT.

Figure 3: Cross Entropy Loss (on the left) and Coverage Early Stopping (on the right) for each epochs in the training phase
of PLANGPT for DEPOTS, FLOORTILE, and SATELLITE domain on the validation set. The black marker indicates the training
termination when the Cross Entropy Loss is at its minimum. Instead, the red marker indicates the termination of the training

when Coverage Early Stopping is at its minimum.

plan that is different from the target one.

We have also performed an analysis of the invalid plans
generated by PLANGPT with aim of understanding its main
mistakes. Most of the errors in the invalid plans are related
to a violation of a precondition. In particular, for LOGIS-
TICS the trained GPT-based model selects an object that is
not in the correct location for the truck/plane loading action.
Therefore, we argue that the main difficulty for the model is
understanding the relation of the objects involved in a single
action (the truck and the package must be in the same po-
sition to perform a load-truck action). For the invalid plans
in SATELLITE, PLANGPT generates fake-image actions that
have preconditions of type supports instrument mode unsat-
isfied. This is because before these actions PLANGPT pow-
ers on, points, and calibrates the wrong instruments (that
do not support the mode needed later by the fake-image ac-
tions). For the invalid plans in DRIVERLOG, PLANGPT gen-
erates walk actions moving a driver between locations that
are not connected (as requested by the action preconditions).

Finally, we have evaluated PLANGPT when used to per-
form plan completion tasks rather than plan generation from
scratch. In this setting, in input we have the additional in-
formation of a plan prefix (an initial sub-sequence of its ac-
tions), and we ask the system to complete the plan. Overall
the results are promising, reaching performances higher than
when planning from scratch. In particular, in LOGISTICS
(the domain with the worst performance in Table 1), using
the Sampling strategy and an input plan prefix of 10%, 20%,
40% and 60% of a valid plan, the obtained performance in
term of coverage is 79.9%, 83.1%, 86.1%, and 90%, respec-
tively.

Evaluation with the IPC Benchmarks

In this section, we evaluate PLANGPT using benchmark
problems from the International Planning Competition
(IPC). For this experiment we use CES and the Sampling
generation strategy, which we observed to perform generally

better than the other two implemented strategies.

When an object name in an IPC problem is not in the
PLANGPT vocabulary, a name for that object is randomly
selected from the vocabulary, saving it into a conversion
table. However, if the number of objects is higher than
those in the vocabulary, the problem cannot be attempted by
PLANGPT. This is the case only for 4% of the IPC problems
in the eight considered domains (2 problems in DEPOTS, 3
in SATELLITE and 2 in ZENOTRAVEL). In the following, we
will consider both sets of test sets, the original set without
the problems that PLANGPT cannot attempt (IPC™ test set)
and the original one (IPC test set).

The results of this experiment are in Table 2. PLANGPT
solves all IPC problems in the domains of BLOCKSWORLD,
FLOORTILE and ZENOTRAVEL, and a very high percent-
age of problems in the domains of DEPOTS, VISITALL and
DRIVERLOG. These remarkable results are especially inter-
esting for FLOORTILE because its [PC problems have nu-
merous dead-ends and different grid conformations, which
make them hard to solve for state-of-the art planners such
as LAMA (Richter and Westphal 2010) and FastDownward
(Helmert 2006) (e.g., LAMA solves only 2 of the 20 FLOOR-
TILE problems with run time limit of 10 minutes). The do-
main for which we observe the lowest performance is LO-
GISTICS, where only 53.3% of IPC problems are correctly
solved. The observed performances for the original and the
restricted (IPC™) test sets are similar, with lower perfor-
mance for the original set because the 4% problems that are
not attempted are counted as unsolved problems in the re-
sults for the original test set.

Comparison with the State of the Art

In this section, we compare PLANGPT and state-of-the-art
deep learning models for computing general policies. We
consider Plansformer (Pallagani et al. 2023) and the Graph
Neural Networks proposed in (Stahlberg, Bonet, and Geffner
2022b).

630

635

640

645

650

655

660

665

670

675

680

685

Domain \ IPC™ testset IPC test set
BLOCKSWORLD 100.0 100.0
DEPOTS 95.0 86.4
DRIVERLOG 95.0 95.0
FLOORTILE 100.0 100.0
LOGISTICS 53.3 53.3
SATELLITE 70.6 60.0
VISITALL 95.0 95.0
ZENOTRAVEL 100.0 90.0

Table 2: Coverage of PLANGPT using the Sampling strat-
egy and CES on the IPC/IPC™ test sets.

Coverage IPC-A IPC-Q
Domain GPT GNN| GPT GNN | GPT GNN
BLOCKS 100.0 26.2 | 6292.5 1247.4| 6597.1 1611.0
LOGISTICS | 77.3 21.6 | 4752.2 791.7 | 5125.1 772.1
VISITALL | 100.0 96.0 | 5754.53176.4| 6046.4 6002.0

Table 3: Comparison of PLANGPT (GPT) and GNN
in terms of problem coverage, IPCScore-Agile (IPC-A)
and IPCScore-Quality (IPC-Q) on the Tset test set.
BLOCKSWORLD is abbreviated with BLOCKS.

Plansformer is a transformer trained on code written in
several programming languages (CodeT5) and fine-tuned
on planning problems. In general we observed that our
PLANGPT models perform much better than the available
models of Plansformer. For instance, on the IPC problems
of BLOCKSWORLD and DRIVERLOG the coverage results
are 100% versus 11%, and 90% versus 5%, respectively.
Plansformer’s inability to generalise to complex instances
(the TPC benchmarks) could be explained by the excessive
simplicity of the problems in its training set (up to 5 blocks
in BLOCKSWORLD compared to 20 in our training dataset,
and up to 4 packages in DRIVERLOG compared to 25 in our
training). We tried to re-build Plansformer by fine-tuning
CodeT5 using our LOGISTICS and DRIVERLOG datasets.
Even in this case, Plansformer obtained much lower perfor-
mance for the two tested domains (coverage 30% and 5%
versus 53.3% and 96.5% of PLANGPT).

We now compare our GPT-based approach and the ap-
proach based on Graph Neural Networks (GNNs) proposed
in (Stahlberg, Bonet, and Geffner 2022b), which in the fol-
lowing is indicated simply with GNN. For this compari-
son we use three domains: BLOCKSWORLD, LOGISTICS and
VISITALL.*

Starting from the problem initial state, GNN evaluates the
successor states using a Graph Neural Network as heuristic
function, and chooses the action that leads to the best succes-
sor state; this is repeated for such successor state, and so on

“We could not use the other domains examined in (Stihlberg,

Bonet, and Geffner 2022b) because either they are too simple, or no
generator is available, or they have particularly long lists of pred-
icates in the problems that exceed the PLANGPT context window
(2048 tokens). This implementation limitation could be solved by
using GPT models with larger context windows.

until a state satisfying the goal is reached. The GNN models
are trained with the IPC problems, augmenting the training
set with traces obtained during the heuristic search of the
planner BFWS (Lipovetzky and Geffner 2017). Therefore,
we can not use the IPC problems as test set, and so we use
our test set (Tset) as benchmark.

Table 3 shows the performance of PLANGPT and GNN in
terms of coverage and IPC scores. GNN solves only 26.40%
of the BLOCKSWORLD instances while PLANGPT solves all
of them. By analysing the generated plans, we notice that
GNN is unable to solve many problems where the agent has
to build more than one tower. Given that the GNN models
were trained with the IPC benchmarks where the goal of ev-
ery problem has only one tower of blocks, it appears that
GNN is unable to generalise because it learnt this bias.

For LOGISTICS, PLANGPT obtains a coverage of 77%
versus 21.6% of GNN. The authors of GNN notice that LO-
GISTICS is a challenging domain for GNN due to its be-
longing to the C3 logic fragment (Stihlberg, Bonet, and
Geffner 2022b). For this reason, they also modified this do-
main (changing the used fragment of logic to C2), adding
a predicate to link packages, trucks, and planes to locations
in the problems. With this modification of the domain, cov-
erage increases to 44.7%, which is still lower than the cov-
erage result of PLANGPT. We also trained PLANGPT with
this modified version of LOGISTICS, observing a coverage
performance similar to the one of GNN.

For VISITALL, PLANGPT obtains a coverage of 100%
versus 96% of GNN.

Regarding the comparison in terms of IPC scores reported
in Table 3, we observe that, for the considered domains,
PLANGPT performs generally better than GNN in terms of
both run time to generate a valid plan (IPC-A column) and
length of the generated plan (IPC-Q column). Note that the
definitions of the IPC scores take account of the problems
that are unsolved.

Conclusions

We have investigated generalised planning as a deep learn-
ing task using transformer-based architectures. We propose a
system based on GPT, called PLANGPT, that learns to solve
an extensive class of problems for a given planning domain.
Our training procedure exploits a technique that we designed
to take into account the planning capability of the model in
the validation phase, which we show helps to increase the
performance of the trained system w.r.t. just using the stan-
dard cross-entropy loss.

An experimental analysis demonstrates the effectiveness
of our approach. For several domains, PLANGPT solves
the large majority of the IPC benchmark problems, as well
of other larger test sets, and it achieves better or compara-
ble performance w.r.t. state-of-the-art approaches based on
Transformers or Graph Neural Networks.

Current and future work includes improving the training
process through a tighter integration of planning knowledge
in the loss function, and to overcome the current limits due
to maximum number of objects in the vocabulary and the
length of the context window.

690

695

700

705

710

715

720

725

730

740

745

755

760

765

770

775

780

785

790

800

References

Arora, D.; and Kambhampati, S. 2023. Learning and Lever-
aging Verifiers to Improve Planning Capabilities of Pre-
trained Language Models. CoRR, abs/2305.17077.

Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT (1), 4171-4186.
Association for Computational Linguistics.

Gerevini, A.; and Serina, 1. 2002. LPG: A Planner Based
on Local Search for Planning Graphs with Action Costs. In
AIPS, 13-22. AAAL

Geva, M.; Khashabi, D.; Segal, E.; Khot, T.; Roth, D.; and
Berant, J. 2021. Did Aristotle Use a Laptop? A Question
Answering Benchmark with Implicit Reasoning Strategies.
Trans. Assoc. Comput. Linguistics, 9: 346-361.

Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In /CAPS, 408-416. AAAI
Press.

Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191-246.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL. In ICTAI, 294-301. IEEE Computer
Society.

Hu, Y.; and De Giacomo, G. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
1JCAI, 918-923. IICAI/AAAL

Jiang, Z.; Xu, F. F.; Araki, J.; and Neubig, G. 2020. How
Can We Know What Language Models Know. Trans. Assoc.
Comput. Linguistics, 8: 423-438.

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek,
A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.; Bal-
lard, A.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain,
R.; Adler, J.; and Hassabis, D. 2021. Highly accurate protein
structure prediction with AlphaFold. Nature, 596: 1-11.

Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In AAAI 3590-3596. AAAI Press.

Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F;
Horesh, L.; Srivastava, B.; Fabiano, F.; and Loreggia, A.
2022. Plansformer: Generating Symbolic Plans using Trans-
formers. CoRR, abs/2212.08681.

Pallagani, V.; Muppasani, B.; Srivastava, B.; Rossi, F;
Horesh, L.; Murugesan, K.; Loreggia, A.; Fabiano, F.;
Joseph, R.; and Kethepalli, Y. 2023. Plansformer Tool:
Demonstrating Generation of Symbolic Plans Using Trans-
formers. In IJCAI, 7158-7162. ijcai.org.

Petroni, F.; Rocktidschel, T.; Riedel, S.; Lewis, P. S. H.;
Bakhtin, A.; Wu, Y.; and Miller, A. H. 2019. Language Mod-
els as Knowledge Bases? In EMNLP/IJCNLP (1), 2463—
2473. Association for Computational Linguistics.

Radford, A.; and Narasimhan, K. 2018. Improving Lan-
guage Understanding by Generative Pre-Training.

Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res., 39: 127-177.

Seipp, J.; Torralba, A.; and Hoffmann, J. 2022. PDDL Gen-
erators.

Serina, L.; Chiari, M.; Gerevini, A. E.; Putelli, L.; and Se-
rina, I. 2022. A Preliminary Study on BERT applied to Au-
tomated Planning. In IPS/RiCeRcA/SPIRIT@AI*IA, volume
3345 of CEUR Workshop Proceedings. CEUR-WS.org.

Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning Generalized Plans Using Abstract Counting. In
AAAI 991-997. AAAI Press.

Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artif. Intell., 175(2): 615-647.

Stahlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In ICAPS, 629—
637. AAAI Press.

Stahlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
Generalized Policies without Supervision Using GNNs. In
KR.

Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. J. Artif:
Intell. Res., 68: 1-68.

Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies With Deep
Learning. In AAAI 6294-6301. AAAI Press.

Valmeekam, K.; Hernandez, A. O.; Sreedharan, S.; and
Kambhampati, S. 2022. Large Language Models Still Can’t
Plan (A Benchmark for LLMs on Planning and Reasoning
about Change). CoRR, abs/2206.10498.

Valmeekam, K.; Sreedharan, S.; Marquez, M.; Hernandez,
A. O.; and Kambhampati, S. 2023. On the Planning Abilities
of Large Language Models (A Critical Investigation with a
Proposed Benchmark). CoRR, abs/2302.06706.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In NIPS, 5998-6008.

Wang, Y.; Wang, W.; Joty, S. R.; and Hoi, S. C. H. 2021.
CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation.
In EMNLP (1), 8696-8708. Association for Computational
Linguistics.

Welleck, S.; Kulikov, I.; Kim, J.; Pang, R. Y.; and Cho, K.
2020. Consistency of a Recurrent Language Model With Re-
spect to Incomplete Decoding. In EMNLP (1), 5553-5568.
Association for Computational Linguistics.

805

810

815

820

825

830

835

840

845

